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INTRODUCTION

The twistor formalism has recently received a large progress in its
foundations, mainly due to the works of Penrose. This formalism in flat
spacetime, that is for special relativity, is a procedure for treating with
conformal invariant theories, that is, with null rest mass particles and with
fields presenting such symmetry. However, for the specification of certain
problems it is necessary to know how the interaction with a massive source
may be introduced in the formalism, as for instance in the scattering of zero
rest mass particles by a massive spinning source (by means of the linearized
Schwarzschild's or Kerr's solution giving tﬁe gravitational field). Penrose
has proposed a process for introducing massive systems in twistor theory by
means of the superposition of intermediate null rest mass systems (i.e.
superposition of momenta and angular momenta of null rest mass systems)(l).
As result, a massive system is described by a second rank twistor. Presently
we consider a'perturbative approach which introduces non null rest masses in
this formalism in such form that the mass appears as an independent quantity,
not bounded to the values assumed by the intermediate auxiliary systems as is
the case for Penrose's method. This process allows for a direct limit to the
case of a null rest mass system, ver& much similar, for instance to the limit

from the Dirac equation for a massive particle to Weyl's equation.

In the first section a brief definition of a twistor is given, and
the definition of the real quadratic form in twistor space which gives the
scalar product of twistors is also given. Presently we show how to write this
quadratic form as the matrix elements of the second rank Hermitian singular

spinor associated to null rest mass systems. In the second section we give
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Penrose's way of introducing non null rest mass systems, and finally in the
third section we treat with the problem of introducing non null rest mass

systems by means of perturbations acting on some given null rest mass system.

The notation used is the following: spinor indices are denoted by
capital latin letters, they fange from 0 to 1. Two types of such indices
exist: unprimed and primed indices, both transforming as representations of

the group SL(Z,C). The twistor indices are indicated by greek letters,

formally they range from 0 to 3 in the complex domain, or they may be thought

as representing the effect of considering simu]taneous1y two sets of two-
-component spinors of the above type (the particular form in which this
combination appears will be seen Tater); Tensor indices, referring to the
Lorentz group, are denoted by latin letfers, and the sjgnature of the flat

spacetime metric is taken equal to -2.

1 - TWISTORS IN FLAT SPACETIME

In this section the concept of a twistor will be slightly treated,
for a more extensive presentation see the reference given previously. Given
a null rest mass particle with the momentum four-vector P3(which is taken as

real quantities), we can introduce the Hermitian singular spinor matrix

0 — '
M A A

p such that

o P L2 o M e

P2 . 2  p AN 0 AA
In this event, P® is a future pointing real null four-vector. In our

~ notation the spin matrices o® are defined by
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- <P '
Camnt O, 9, %aper = 8 €ag Eprpe
which imply in

2 ) ,
Ua AA' GBB' = Z,EAB EAcBr
the major part of the spinor notation used here is similar to that used by

2
Penrose( ), for instance,

A Lo

for any two-component spinor n. Associated to this particle we also have a

spin vector Sa éuch that

S. =sP (1-])

the quantity s being the helicity, and Is] 1is the spin of the particle.

Since,

o b ..cd )
Sy = =1/2 ngp oy PO M (1-2)

where M¢d is the angular momentum tensor. Using the spinors associated to

Nabca 2N to MY, which have the form




4

>

Nabed i(epp €pc Sa'c' SB'D' ~ ©AC SBD SA'D' SB'C')

. tnt
wed ., (D) co , @ =(C'D')

We obtain from (1-1) and (1-2),

Mieay = T 9(c Ty (1-3)

for some spinor w.

The twistor associated to this system is defined by the pair of two-

-component spinors mA and Tas as(l)
o
I (wA, TTAn) (1-4)

This pair of spinors (up to a phase factor) describe the pair of tensors pa,
Mab which describe the system. In spite of looking simitar to a Dirac spinor,
the z° is really not similar to such four-component spinor(a) since it may
be proved that z° possess well défined properties of transformation under

translations.

Defining the conjugate twistor by

- —A
Za g ('ﬂ'Al’(D )
The Hermitian form

7T = P Ty + T A= 2 (1-5)
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defines the inner product in twistor space. This form has a signature (++--).

We have, excluding the possibility that w is parallel to =

— o}
| N
-B -
W TTB
taking complex conjugate,
t O
= " Para
A T B
[(\) 11'8,
so that
+ O A A _ A
e T e -4 (1-6)
o B T3
w Mg © o
Defining,
A X
w s @
o R S
/B . /we o
which gives,
-A A
= A’ w "~ A w
= TN W
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We get for (1-6)

Introducing the notation

' 0 0 '
<€ [Pln> = APyt

(1-7)

(1-8)

holding for any pair of spinors E and n. This expression will give a »e.d

number if we consider only the "diagonal" matrix elements:

0 = e
<g|Plg>=<g|PlE>

‘o . - )
(for proving this use the property that P is Hermitian). For our case,

(o] ) A' 2
<g|PlE>= | 7 gA.]

We also have, for a general "matrix element" of

P A —

0 )
<g|Pln> = <n IP[g >

O
P,

Note also the result: (which follows directly from (1-9)).

0
<m [Pln>=0

(1-9)

(1-10)
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We have for (1-7)

ounny. w‘o’\ ~ of\
i Z,= <w|Pla> +<a [Plu>

—ayn

which in turn is equivalent to(*)

“ | ~ 0. .
Z ‘Za = 2Re.<w |Plw> (1-11)

Thus, the value for the helicity takes the form
'X’o A
s =Re<uw|Plw>

From (1-10) we see that presently the inner product Z° Z& gives all the
information on the physical quantities associated to the null rest mass

particle. It is simple to verify that the other possible matrix element of
(o]

P vanishes: '

<w |[Plr>=0

2. MASSIVE SYSTEMS AS A SECOND RANK TWISTOR

Given a timelike momentum fourvector Pa, associate to it we have an
Hermitian second order non-singular spinor PAA" Therefore, in this situation-

it is not possible to select one spinor quantity for the description of this

(*) The case For null twistors is excluded from the present analysis, since

as was noted w cannot be here proportional to .




motion. As consequence the results of the twistor formalism do not apply
here in a direct way. Nevertheless, Penrose has shown that this situation
may be regarded as the supekposftion of several (at least two null momenta,
the twistor method being applied to each one of such intermediate momenta. If
we select all such auxiliary null momenta as future poiniing, we obtain as
result of the superposition of such momenta a future pointing timelike
momentum. Besides; as before we take 511 null momenta as real quantities.
The same superposition is taken for the angular momenta of the null systems.

Thus, we have (from here on we take just two auxiliary null systems)

i o9
to each pair (Pa’ M ab) of tensors it is associated a pair of spinors
(P
(wA "A') according to the prescription of the last section. Then, associated
to the massive system with momentum Pa and angular momentum m2b we get the

spinors PAA' and MAA B8’ such that

P ~_1 1+...z 2
: AT AT AT AT

MAA. RB! - i; [wl(A WIB) + wz(A FZB)} gA’B' . €AB [F(A’ _"13:) +

"

We have
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giving,

2

1
mlz = 4 I'ITI B szB|l

The case for m = 0 s recovered for vZB. = A"IB' where 1 s a complex

number. In this case we get

2 1

Py = Al Pa

giving the well known result that the superposition of two parallel null vectors

is again a null vector.

A second order twistor is of the form

/ AB A ‘

‘\ QA! B QA'B' /,fl

and may be considered as a direct product of a twistor

by znother one of the form

That is,
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. . ~R aiven
~ An important example of a second order twistor is the unit twistor Iﬂ'6 +

cAB 0 \\
IaB

- -:sz_ISG

0 o/}

The 98 May be considered as the direct product of the two null twistors

A and cB:

by

(skew symmetrized product) associated to the base spinors o

%=/OA), J8=5/CB\§
| 0 \01'

aB
I

- Q

Then, according to Penrose(l), a massive system is described by the second order

twistor A% given by

A% - 2(e® 1BY 4 B 19 (2-1)
Y Y
where
2 i L i i
2 = 7 * 7, 2 o (P
Y i=] Y

a direct calculation gives,

[ 25 w(AB) A g \

\ ,p B )

A8 -
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for
k
2
, (AB) ) 5(1\ = 8)
k=1
A 2 kA 1A, Zp 2
P BI = kZ“ P B' =7 ks B' + ‘"B'

Note that from the definition of the rest mass, and from the relation giving the

conformal changing into the components %A

v 1 iA
F o STy, > YAA' w
g 2 de2
Y = v log @ , ds® = Q2 ds
AA' AA* 4

we get the following conformal changing in m?

Y

where,
sm? = lw|2+2Re (VI‘}TB.%B,)
for
JEEE VN E PSSR
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3 - AN ALTERNATIVE APPROACH FOR INCLUDING MASSIVE PARTICLES IN THE
TWISTOR THEQRY

From the mathematical viewpoint the method used in the section 2 for
incorporating the rest mass in the formalism of twistors is very elegant and
self consistent. However, this method gives a well determined expression for

the rest mass as function of the square of the modulus of the complex number

1 o ' s
%B 7 - Since both quantities %B B

1 2 .
P and P, it follows, in principle, that the spinors ¥ and % may assume

and 7 are associated to null momenta

any value (of course excluding the trivial value zero), thus givingto m a
domain of variation much larger than is necessary. In special relativity the
twistor formalism is a process for treating with conformal invariant particles
and fields, thus, the introduction of the rest mass in this formalism is
connected to a break of the conformal symmetry. According to section 2 such
process is obtained by selecting a particular class of spinors such that for
every given vaiue of m the previous relation holds. But for other values of
the spinors we may form values for m which do not exist in the spectrum of

the elementary particles.

In what follows we will propose another process for introducing the
rest mass in the twistor formalism in such way that m appears as an independent
quantity, not related to other quantities directly connected to the twistor
concept. The process which will be followed allows for a direct limit to the

case of null rest'mass. We start by writing

' Opapt [ |
pAAY L pAAT L gm2) P (3-1)

JR8) L (A =B) | oy (AB) (3-2)
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0
where pAA is the singular Hermitian spinor introduced before. Since we :re

interested in a real quantity Pa the spinor PAA' is taken as a second rank
Hermitian spipor. In the present problem we are directly interested in the

spinor representation of a massive particle, therefore we need two spinors for
the defiﬁition‘of PAA'. Then, the general form for HAA' is:

’ HAA' - E;(EA nﬁ. . EA' 'ﬁA) . e;(fﬁ gA'+- ﬁA nAn) (3-3)

where €, and ¢, are constants with the values (-1, 0, 1). This formula
may, eventually, be simplified by considering that one of the spinors is

proportional to ?r'A, as for 'Instance, ﬁ'A = om A for a a complex.

]
However, in all subsequent discussions we will keep the general form (3-3).
From (3-3) we have

2 = - 2 ‘ 2 2 ' |
H 4 € IEA nA'l. +4 ¢ IEA nA"z

Hy = ,( |€5-lz'+ [, 1% + [no.l2 + Inxnlz) +2¢ Re(E; no'i-T; Ny )

Therefore, for the choices g, = 1, ¢ =+ 1, Ha will be a null
fourvector. For € =0, g, =t 1, Hy ‘{s timelike, and for ¢, = 0,
e =%*1, H, is spacelike.

The equation (3-1) is equivalent to

0

Pa = Pa + Ra, Ra = fHa
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then,
TQ
P2 = 2°, R? + R?

. -
For Ry timelike (Ha timelike) we can map to a frame where R =0, giving

. ©
P* "= R* 4+ 2P R
(o} o o

o]
zince P° is greater than zero, P

a is timelike if Ro >0 orif RO <0 but

‘n the last situation we have:
o )
Ro =-b, b>0; b> 2?0 > P°

and this implies that Pa is past pointing. This case will not be considered,
~ that means we take R, >0 {f R is timelike (this implies that for this

case €, = + 1)(*). For R, a null fourvector we have, .

(o] o] !
taking Ra as non parellel to Pa’ such that P0 > 0, Ro >0, we get P2>0
with positive Po (a situation similar to that of section 2). If Ra is

spacelike we can map to a frame where Ro = 0, giving

-
(o]

P2=-2N.R-R2, N=P

(*) later it will be shovﬁ that R) > 0 implies in Hy > 0.
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* -
for some choices of the components N and R we can make P> positive, for
> .
instance, taking N = (0, n, 0) = N1(1 =1, 2,3), R=(0,q,0) with g
negative, q = -S, S >0, we get

2ns - s = m?

(for real m). Given m and n the solution for s is,
'
s = n £((n+m)(n-m)) /2
and selecting the situation for n > m, the quantity

1
s =n+ ((nm)(n-m)) /2

is positive, and P® > 0. Thus, we have: (for all situations giving P? > 0)

. . oa
(1) Ha is a null fourvector if g = 1, e, =+1, for Ro > 0, H, P #£0.

(i1) H, 1is timelike future pointing, €, =+ 1

=0, ¢

(iff) Ha is spacelike, €, =0, g = 1,

Introducing the notation

q) =
- A
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Then

In this notation (3-3) takes the form
WA w1l (e, 14e, ST TR (3-4)

where I is the 2 x 2 identity matrix and S 1§"tRe matrix

S =
1 0

Given the quantities HM', that means, given the fourvector H,s the quantities

v A ai'e not uniquely determined by (3-4). Indeed, under ?J;A+ W'A‘(") for

Freauwh utuan

(Uis a 2 x 2 unitary 'matrix) the same values for HAA' are obtained:

H.AAf - HAA'
Due to this indetermination in the f'orm of the ¥ A (and consequently in the form
of the T A and b A)', these quantities will be used only through the invariant
combination wri_tterg-»in, the right, hand side of (3-4).
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The P8 of Eq. (3-2) s of the form

8) L (A ®) | (3-5)

The f(m?) in equations (3-1) and (3-2) 1is taken as a real quantity restricted
by the condition

i f(m?) = (3-6)
m-+0

From (3-1) we get, by imposing that P? = m?> with real m(the mass term):
f?H® ¢ daf - m* =0 - (3-7)

where,

0
a.
a=1/2°pP, H

Eq. (3-7) 1is an algebraic equation for determining the function f(m*). If Hy

is timelike or spacelike the solution of this equation which satisfies the
condition (3-6) is

2a 1
f(m?) = - — » —— (4a% + W2 m?)"/2 (3-8)
T

For a null Ha’ (H* = 0), the solution for (3-6), (3-7) is simply

m2
f(m2) = - o (3-9)
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This last case is similar to Penrose's method. By taking f =1 in (3-9) we

obtain Penrose’s result.

Cons{dering (3-8)‘for Ha timelike, and transforming to a inertial
S ,

frame where H = 0, we obtain (taking 'Ho > 0),

P, =K+ fH =+ (K+m)!/250

o _
(K is here a short Po). Since a similar result holds for Ro = fHo >0, we

conclude that Ro >0, Ho >0. This in turn implies that here ¢, =+ 1.

Another condition obtained from (3-8) is:
4% + H2m?* >0

The case when this quantity vanishes may be verified by some spacelike Ha’ but
it has no interest since then m 1is not present in (3-8). Thus, this possibility
is not considered. A timelike or spacelike Ha may satisfy the condition

332 + H2 m?2 > 0. For H, spacelike, we have

Given the base spinors gh, th such that 7, T A, 1, we may write for the -

two SPiHOrs"?'A,tn A associated to the null rest mass initial system:

]

7 A uUA+BCA
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defining another spinor E'A R

sh.utheyTA

such that-
5 AL 3-10-1)
Pa | T | (
5 o =0 ‘ (3-10-2)

which is equivalent to introduce two 2 x 2 matrices, M and N, the first

unimodular and the second singular:(*).

Mt =1, JINj] =0
(11M}] = det M).

We have from (3-1), (3-2), (3-5) and-(3-10):

. ‘ -A A
(*) Given the complex numbers a, B8, Yy and & (components of T ",w ) the

two conditions (3-10) (or ||M|| =1, ||N]| = 0) fix uniquely the four real
parameters contained in the components ﬁ, v of E’A. Another way for showing
this is to note that from (3-10-2) E'A = Awp for A a complex, then (3-10-1)
gives kwA'i'A = 1, since the product wp Th is known, we determine X from
this relation. Note also that s = Re(x”") where s is the helicity of null

rest mass initial system.




87

=5, PV = A g W (3-11)

-
HY

= p A m(AB) = wB + f EA u(A v B) (3-12)

0
o
!

It is also possible to form combinations such as

(ABY (A =B)

Wy W Wy UV
™ A B A

e "r'r'c wp ?r'c
' AA' AA'

wy, P wy H
M A LA e A

~  (AB) ~ (A=B)

Ty W Ta UV
kB = A - 784 f A

"r'r'c wc "v'r'c mc

but in this case we have to suppose that wp 7 A

is different from zero,
consequently this process will not apply for null twistors (the initial system is
given by a null twistor). Due to this conclusion we will not use these type of

relations, but only the expressions (3-11) and (3-12). Calling,

SA' . B—A HAA'

B . (A _,B)
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we have

L A (3-13)

® WP s frB (3-14)

with these spinors it is possible to construct the twistor

<@
!

W+ R, mpr + £ S,,)

or

o ¢ 4 o A
Z+fJ , 3 =(Rh s

~<Q
i

At

The twistor J s associated to some null rest mass particle with momentum

. _
NAA' = SA SA' = 3‘3 HBA' HB'A -pB » and with angular momentum NAA'BB' =

au

i(R(A Sb) €prp! +'R(A. SB') epg)- Introducing the quantity
c* =172 %:? Yy
y= 1222, +YY)

which corresponds to the factor E“Y of the section 2, and such that

o
. o
Tim C v = A ZY
m->0

We may form a combination similar to (2-1),
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B = 2(c® 1fY 4+ B 19y,
Y vy

This second rank twistor describes the massive particle according to the
process presently consfdered. The fundamental characteristic of this method

is that the mass m appears as an independent quantiiy, not bounded to the

values assumed by the spinors under consideration.
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