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Abstract

The calculation of Dirac brackets (DB) using a symplectic matrix approach

but in a Hamiltonian framework is discussed, and the calculation of the DB for the

supersymmetric extension of QED (super-QED) is shown. The relation between the

zero-mode of the pre-symplectic matrix and the gauge transformations admitted by

the model is veri�ed. A general prescription to construct Lagrangeans linear in the

velocities is also presented.
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Introduction

The quantization of singular �eld theories can be formulated, following Dirac [1], in the

framework of a Hamiltonian formalism, by mapping the so-called Dirac brackets (DB)

into quantum commutators. In a more recent work [2], Faddeev-Jackiw (FJ) showed that

using a Lagrangean formalism, in which the Lagrangean is of �rst degree in the velocities,

these DB can also be obtained as the elements of the inverse of the symplectic matrix

of the model. In [3], Barcelos-Wotzasek (BW) showed how the FJ approach can also

be consistently used to obtain these DB even when the model under consideration is

constrained from the geometric point of view1. The ideas presented in [2, 3] provided a

useful framework for further work too, as for instance the quantization of singular systems

in superspace [4], and establishing the connection between the gauge invariance of a given

model and the zero-modes of its pre-symplectic matrix [5].

In this paper, the calculation of Dirac brackets using a symplectic matrix approach

but in a Hamiltonian framework is discussed, and the calculation of the DB for the

supersymmetric extension of QED (super-QED) [6] is presented.

The exposition is organized as follows. In sec. 1, it is shown that the symplectic matrix

of a model can be obtained directly from its Hamiltonian, hence without having to de-

scribe the model in terms of a Lagrangean of �rst degree in the velocities (as is implicit, for

instance, in [10]). This possibility is then exploited in sec. 2, where we work on super-QED

in a Hamiltonian framework by �rst explicitly determining the form of the gauge trans-

formations admitted by the theory from the zero modes of the associated pre-symplectic

matrix. The gauge is then �xed and the DB of the model are obtained. In addition, for

when a Lagrangean description is preferred, in sec. 3 a general prescription for obtaining

a �rst degree Lagrangean equivalent to another given one is shown. This prescription

is independent of the original Lagrangean's degree in the velocities, and appears as an

appropriate alternative when working with singular models de�ned in superspace.

1This case occurs when the model has second-class constraints in the Dirac approach, and was not

covered in [2]
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1 Symplecticmatrix and Hamiltonian formalism for

singular systems

Consider a system with N degrees of freedom described by a singular Lagrangean L(qi; _qi),

i.e., a system with the Hessian matrix rank R < N . After de�ning the momenta, we can

express2 N �R momenta p� (� : R + 1! N) and R velocities _qa (a : 1! R) as in [7]

_qa � fa(qi; pb; _q�); (1)

p� � g�(qi; pb) (2)

where i : 1 ! N and b : 1 ! R. We will call the _qa invertible and the _q� non-invertible.

Following [7], the Hamiltonian can then be written as3

H = pafa(qi; pb; _q�) + g�(qi; pb) _q� � L(qi; fa(qi; pb; _q�); _q�): (3)

and the corresponding Hamilton equations as

_qa � @H

@pa
� _q�

@g�

@pa
(4)

_pa � _q�
@g�

@qa
� @H

@qa
(5)

dg(qi; pb)

dt
� _q�

@g�

@q
� @H

@q
( : R+ 1! N) (6)

De�ning the N �R primary constraints �� of such a model as

�� = p� � g�(qi; pb) � 0 (7)

the Poisson Brackets (PB) of �� with the Hamiltonian and between themselves are given

by

h� � f��;Hg = �@g�
@qb

@H

@pb
+
@g�

@pb

@H

@qb
� @H

@q�
;

P� � f��; �g =
@g�

@qb

@g

@pb
� @g�

@pb

@g

@qb
� @g�

@q
+
@g

@q�

(8)

2The de�nition of weak equalities used along this paper follows that given in [1].

3Throughout this paper we use the convention of sum over repeated indices.
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Roughly speaking, the strategy in Dirac's method consists of substituting the expressions

(4) and (5) into (6) to obtain a description involving only the non-invertible velocities:

P� _q = �h� (9)

Now, when trying to invert this system to express the velocities _q as functions of the

coordinates and momenta, we encounter two di�erent cases [7].

1.1 Case detP 6= 0

The simplest case occurs when the matrix P is invertible (not all the h� are weakly null),

and we have

_q � �P�1�h� (10)

Using this result, the time derivative of an arbitrary function A(qi; pi; t) can be expressed

as

_A � fA;Hg � fA;�gP�1�f��;Hg| {z }
Dirac bracket between A and H

+
@A

@t
(11)

and the de�nition of Dirac brackets can be seen as an extension of the formula above for

the case of two arbitrary functions A1 and A2:

fA1; A2gD = fA1; A2g � fA1; �gP�1�f��; A2g (12)

These brackets, in turn, are the cornerstone both in the Dirac and the FJ methods. Now,

still in a Hamiltonian framework, if instead of removing the invertible velocities as done

in (9), we work with all the velocities, as in the FJ approach, and rewrite equations (4),

(5) and (6) as 0
BB@

0 @g�

@qb
��ba

�@g

@qa
�@g

@q�
+ @g�

@q
�@g

@pa

�ba
@g�

@pb
0

1
CCA

| {z }
F (0)

(N+R)�(N+R)

0
BB@

_qa

_q�

_pa

1
CCA �

0
BB@

@H

@qb

@H

@q

@H
@pb

1
CCA (13)

we directly arrive at the symplectic matrix (F (0) above) for such a model. Actually, from

(8), (12) and (13), it follows that

(F (0))�1�;! = fy�; y!gD (14)
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where fy�; y!gD are the Dirac Brackets for y�; y!; (�; !) : 1 ! N + R, yi = qi and

yN+a = pa.

1.2 Case detP = 0

The interesting case is that in which the determinant of P is weakly null; that is, the

system is constrained from a geometric point of view, and P has M < (N � R) null

eigenvectors. In such a case, multiplying both sides of (9) by these eigenvectors, we

obtain M relations (constraints) of the form

�A(qi; pb) � 0 (A : 1!M) (15)

Di�erentiating these expressions with respect to time and using (4) and (5), we obtain

_�A � f�A;Hg+ _qf�A; �g � 0 (16)

These M expressions can be used to extend the system (9) as follows: f��; �g
f�A; �g

!
| {z }

C(0)
(N�R+M)�(N�R)

( _q� )|{z}
(N�R)�1

�
 fH;��g
fH;�Ag

!
(17)

Although C(0) above is not a square matrix, it is possible to add M columns to it with

the purpose of making it square without altering the content of the system, via f��; �g J�B

f�A; �g KAB

! 
_q�

0

!
�
 fH;��g
fH;�Ag

!
(18)

where B : 1 ! M , and J�B and KAB are arbitrary. Now, to obtain the generalized

antisymmetric Dirac brackets, we proceed as in [1] and take J�B = f��; �Bg and KAB =

f�A; �Bg, so that C becomes

C =

 f��; �g f��; �Bg
f�A; �g f�A; �Bg

!
(19)

Using �� (or ��) to represent any of the constraints �� or �A, the system (17) can be

written as

f��;Hg+ f��; ��g _q� � 0 (20)
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and provided the model has no gauge invariance, by repeating the steps represented by

equations (15) to (19) it is always possible to extend C so as to have det(C) 6= 0, in turn

leading to

_q� � �C�1��f��;Hg; (21)

0 � C�1A�f��;Hg (22)

Using (4), (5), (22) and (21), the time derivative of an arbitrary function A can then be

expressed as

_A � fA;Hg � fA; ��gC�1��f�� ;Hg| {z }
Dirac bracket between A and H

+
@A

@t
(23)

from where the DB between two arbitrary functions A1 and A2 in the case detP = 0

becomes

fA1; A2gD = fA1; A2g � fA1; ��gC�1��f�� ; A2g (24)

To construct the symplectic matrix directly from the Hamiltonian when detP = 0, we

proceed as follows. First, as done in the case detP 6= 0, we rewrite the system composed

by (4), (5) and (6) as in (13). The resulting matrix F (0) is now singular4. We then

multiply both sides of (13) by the M null eigenvectors of F (0), obtaining the M relations

(15). Taking the time derivative of these constraints, we extend our system in the same

way as in (17), obtaining0
BBBBB@

0 @g�

@qb
��ba

�@g

@qa
�@g

@q�
+ @g�

@q
�@g

@pa

�ba
@g�

@pa
0

�@�A
@qa

�@�A
@q�

�@�A
@pa

1
CCCCCA

| {z }
F (1)

(N+R+M)�(N+R)

0
BB@

_qa

_q�

_pa

1
CCA �

0
BBBBB@

@H
@qb

@H

@q

@H

@pb

0

1
CCCCCA (25)

The procedure for turning square the matrix F (1) above is the same as that used for the

matrix C(0) in the Dirac method5: we add M columns without altering the contents of

4F (0) is called pre-symplectic in order to point out that it is not invertible.
5The procedure used here to turn F a square matrix is also equivalent to the one adopted by Barcelos-

Wotzasek [3] in order to enlarge the pre-symplectic matrix in the context of the FJ method.
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the system, via 0
BBBBB@

0 @g�

@qb
��ba @�A

@qb

�@g

@qa
�@g

@q�
+ @g�

@q
�@g

@pa

@�A
@q

�ba
@g�

@pa
0 @�A

@pb

�@�A
@qa

�@�A
@q�

�@�A
@pa

0

1
CCCCCA

| {z }
F (1)

(N+R+M)�(N+R+M)

0
BBBBB@

_qa

_q�

_pa

0

1
CCCCCA �

0
BBBBB@

@H

@qb

@H

@q

@H
@pb

0

1
CCCCCA (26)

Now F (1) is antisymmetric. If the model has no gauge invariance, either F (1) is invertible,

or enlarging F (1) as explained, again, a �nite number of times, will lead to the required

invertible matrix. The resulting matrix is the symplectic matrix of the model, and the

elements of its inverse are then the fundamental DB (see [3]). If the model has gauge

invariance of some type, we then need to remove it by �xing the gauge (i.e., introducing

related terms in the formulation of the model), after which the procedure just explained

will render the symplectic invertible matrix we are looking for (see sec. 2).

The procedure outlined shows how the symplectic matrix (13) can be built directly

from the Hamiltonian, as opposed to setting up a �rst degree Lagrangean (FJ method).

This amounts to working out a constrained system having secondary constraints, using a

Hamiltonian description, but involving all the velocities, instead of just the non-invertible

ones as in Dirac's method. Furthermore, using equivalent arguments, one can work out

the system using only the non-invertible velocities, but describing the model with a La-

grangean of �rst degree in the velocities. In summary, from these considerations, what

appears relevant is the choice of whether or not to work with all the velocities, as opposed

to the choice between a Hamiltonian or Lagrangean framework.

Example

As an example of the use of the technique just described, consider the case of a relativis-

tic point particle. This example is interesting because the description is gauge (scale)

invariant; the Lagrangean is given by 6

L = �m
p
u0 2 � u1 2 � u2 2 � u3 2; (27)

6The space-time signature is (�1;+1;+1;+1).
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where u� =
dx�

d�
, and � is the arbitrary monotonic parameter [8]. In this model, there are

three relations of the form (1) and one relation of the form (2):

u0 � p0u3p
Z
; u1 � �p

1u3p
Z
; u2 � �p

2u3p
Z
; (28)

p3 � +�
q
p02 � p12 � p22 �m2 (29)

where Z = (p0)
2� (p1)

2� (p2)
2�m2. These equations lead to the canonical Hamiltonian

(3): H = 0. The related Hamilton equations are: those shown in (28), of the form (4);

three other ones of the form (5)

dp0

d�
� 0;

dp1

d�
� 0;

dp2

d�
� 0; (30)

and one of the form (6)

p2
dp2

d�
� p0 dp

0

d�
+ p1

dp1

d�
� 0 (31)

From these equations, the pre-symplectic matrix F (0) (see (13)) is given by2
6666666666666666666664

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 � p0p
Z

p1p
Z

p2p
Z

�1 0 0
p0p
Z

0 0 0

0 �1 0 � p1p
Z

0 0 0

0 0 �1 � p2p
Z

0 0 0

3
7777777777777777777775

| {z }
F (0)

2
666666666666666666664

u0

u1

u2

u3

dp0

d�

dp1

d�

dp2

d�

3
777777777777777777775

�

2
666666666666666666664

0

0

0

0

0

0

0

3
777777777777777777775

; (32)

F (0) is singular and has one null eigenvector�
� p0p

Z
;

p1p
Z
;

p2p
Z
; 1; 0; 0; 0;

�
(33)

Multiplying both sides of (32) by this eigenvector does not lead to new constraints. This is

so because the model is gauge (scale) invariant, so that to proceed further we need to �rst
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�x the gauge. This is done here as in [8], by introducing x0 � � � 0; the corresponding

new equation is u0 = 1 and leads to the addition of one line to F (0). The system of

equations then becomes2
66666666666666666666666664

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 � p0p
Z

p1p
Z

p2p
Z

�1 0 0
p0p
Z

0 0 0

0 �1 0 � p1p
Z

0 0 0

0 0 �1 � p2p
Z

0 0 0

�1 0 0 0 0 0 0

3
77777777777777777777777775

| {z }
F (1)

2
666666666666666666664

u0

u1

u2

u3

dp0

d�

dp1

d�

dp2

d�

3
777777777777777777775

�

2
6666666666666666666666664

0

0

0

0

0

0

0

�1

3
7777777777777777777777775

; (34)

The matrix F (1) is not a square matrix, but it is possible to make it so by adding to it one

column without altering the content of the system. We choose the elements of this new

column so that the resulting matrix, F (2), is antisymmetric. It now turns out that F (2)

is invertible; hence, no more extensions are required and F (2) is already the symplectic

matrix of the model, and the elements of its inverse
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2
666666666666666666666666666664

0 0 0 0 0 0 0 �1

0 0 0 0 �p1

p0
�1 0

p1

p0

0 0 0 0 �p2

p0
0 �1 p2

p0

0 0 0 0

p
Z

p0
0 0 �

p
Z

p0

0
p1

p0
p2

p0
�
p
Z

p0
0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 �p1

p0
�p2

p0

p
Z

p0
0 0 0 0

3
777777777777777777777777777775

| {z }
(F (2))�1

(35)

are the fundamental DB for the problem

fp�; x�gD = �g�� + g�0
p�

p0
; (36)

fp�; p�gD = fx�; x�gD = 0: (37)

These results are in agreement with those shown in [8] obtained using the Dirac method.

2 Dirac brackets for super-QED

In this section we derive the Dirac brackets for super-QED as the elements of the inverse

of the symplectic matrix, in turn built directly from the Hamiltonian, as explained in

the previous section. Besides, super-QED is a supersymmetric gauge invariant model,

and hence it is not possible to set up the symplectic matrix until this gauge invariance

is determined and �xed. This obstacle is reected by the fact that the pre-symplectic

matrix F (0) has null eigenvectors which do not lead to new constraints. For such a model,

it has been shown [5] that there is a relation between these zero modes of F (0) and the

gauge invariance of the theory. We then proceed as follows. First, for completeness,

this connection between zero modes and gauge invariance is briey reviewed. The gauge
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transformations admitted by super-QED are then derived and the gauge �xed. Finally,

we use the technique explained in the previous section to obtain the symplectic matrix of

the model and compute the DB as the elements of its inverse.

2.1 Zero-modes of the pre-symplecticmatrix and gauge invari-

ance

Consider a system with N degrees of freedom described by a singular Lagrangean L(qi; _qi)

(rank R < N). As shown in sec. 3, such a system can always be described by a Lagrangean

L(1) linear in the velocities7

L(1)(qi; _qi; pb) = pa _qa + g�(qi; pb) _q� �H(pb; qi) (38)

When the system has secondary constraints, its pre-symplectic matrix F (0) is singular, so

that we proceed as explained in [3], enlarging F (0) by using its null eigenvectors until the

enlarged F (0) (denoted as F (1) in equation (26)) has no more null eigenvectors or such

eigenvectors exist but they generate no more constraints. According to [5], we then write

the functional variation of the action in terms of F (1) as

�S =

Z
�y!

�
F (1)
!� _y� � @H

@y!

�
dt = 0; (39)

where (�; !) : 1! N +R, and y! represents both qi and pb. If the matrix F (1) is singular

with n zero modes V (n), taking �y! = &V
(n)
! (& is an in�nitesimal parameter) we have

�y!
@H

@y!
= &V

(n)
!

@H

@y!
� 0 (40)

Recalling that these V (n) don't lead to new constraints, a transformation �y satisfying the

above is by de�nition a gauge transformation with V (n) playing the role of the in�nitesimal

generators.

2.2 Zero-modes and gauge invariance in super-QED

Following [6], we write the Lagrangean for the four-dimensional supersymmetric gener-

alization of QED (WZ gauge) in terms of the �eld components of the supersymmetric

7For the symbols and indices entering (38) see the conventions introduced with equations (1), (2) and

(3).
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multiplet as8

L = 1
2
D2 � 1

4
vmnv

mn � i��m@m�� + F+F
�
+ + F�F

�
� +A�+2A+ ++A��2A�

+i(@n � +��n + + @n � ���n �) +
1
2
evn( � +��n + � � ���n �)

+1
2
ievn(A�+@nA+ � @nA�+A+ �A��@nA� + @nA

�

�A�)

�1
2
ie
p
2(A+

� +
�� �A�+ +��A� � ���+A�

�
 ��)

+1
2eD(A

�

+A+ �A��A�)� 1
4e

2vnv
n(A�+A+ +A��A�)

+m(A+F� +A�F+ �  + � � � +
� � +A�+F

�

�
+A�

�
F �+)

(41)

where m is the electron mass, D is a real scalar �eld, vn is a real vector �eld, vmn =

@mvn � @nvm, F+; F�; A+ and A� are complex scalar �elds,  +; � �;  �; � +; �� and

� are Weyl spinors (2 components), and �m are the Pauli matrices9. Now, instead of

proceeding by setting up a Lagrangean of �rst degree in the velocities, we will work on

the model using a Hamiltonian description, for which we de�ne the momenta

� � @L

@(@0A+) = 1
2iev

0A�+ + @0A
�
+ �1 � @L

@(@0A�+) = �1
2iev

0A+ + @0A+;

�i � @L
@(@0vi)

= @iv
0 + @0v

i ���_b � @L

@(@0��
_b)

= i�0
a _b�

a

� � 
_b
+
� @L

@(@0 � 
_b
+)

= i��0
_b;a
 a+ � � 

_b
�

� @L

@(@0 � 
_b
�
)

= i��0
_b;a
 a�

� � @L

@(@0A�)
= �1

2iev
0A�� + @0A

�

� �1 � @L

@(@0A��)
= 1

2iev
0A� + @0A�

(42)

and note that the following momenta are all primary constraints:

0 = @L

@(@0�b)
= @L

@(@0v0)
= @L

@(@0D) = @L
@(@0F+)

= @L

@(@0 b+)
= @L

@(@0 b�)
= @L

@(@0F�)

= @L

@(@0F �+) = @L

@(@0F ��)

(43)

8In (41) (m;n) : 0! 3 and the space-time signature is (�1;+1;+1;+1).

9The rule for omitted contracted spinor indices is  � = � = �� �, � �� = �� � = �� _� 
_�.
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The canonical Hamiltonian is then given by

H = 1
4
vi

2
A�A

�

�
+ 1

2
ie
p
2A�

�
�ab 

a
�
�b + 1

4
e2vi

2
A+A

�

+

�1
2
ievi@iA

�

�A� + 1
2
eDA�A

�

� + 1
2
ievi@iA�A

�

� � 1
2
eDA+A

�

+

+1
2
ie
p
2A�� _a_b

� _a
�
��
_b � 1

2
@iv

j@jv
i + 1

2
@iv

j2 � i@i � _a
�
��i_aa 

a
�

+
�
i�a�ia _a@i�� _a

�
+ 1

2�i
2 � F�F

�

� � 1
2ie
p
2A�+�ab 

a
+�

b

�1
2
ie
p
2A+� _a_b

� _a
+
��
_b + @iA�@iA

�

� + 1
2
ievi@iA

�

+A+ � 1
2
ievi@iA+A

�

+

+1
2evi

� _a
�
��i_aa 

a
�
� 1

2ev0
� _a
�
��0
_aa 

a
�
+m�ab � _a

+
� 
_b
�
� 1

2evi
� _a
+��

i
_aa 

a
+

+1
2ev0

� _a
+��

0
_aa 

a
+ � i@i � _a

+��
i
_aa 

a
+ + ��1 � F+F

�

+ + 1
2i�1ev

0A��

+@iA+@iA
�

+ � 1
2
i�1ev

0A�+ + 1
2
i�ev0A+ � 1

2
i�ev0A� +m�ab 

a
+ 

b
�
� �i@iv

0

�m(A��F
�

+ +A+F� +A�F+ +A�+F
�

�)� 1
2D

2 + ��1;

(44)

where the convention for the indices used throughout this section is: (i; j) : 1 ! 3,

while (a; _a; b; _b) : 1 ! 2, and ��� =

0
@ 0 �1

1 0

1
A. We now set up the pre-symplectic

32� 32 matrix of the model10, here denoted F (0), by writing the corresponding Hamilton

equations as described in sec. 1: Z
F (0)

��
_�� d

3~z � @H
@��

; (45)

where � is the �eld matrix, whose transpose is given by

[v0; vi; A+; A
�

+; A�; A
�

�
; D; F+; F

�

+; F�; F
�

�
;  c+;

� _c
+;  

c
�
; � _c

�
; �c; �� _c; �i; �; �1; �; �1]

(46)

10This number 32 is related to the fact that vi and �i have three components each, and

 c+;
� _c
+;  

c
�

; � _c
�

; �c and �� _c have two components each.
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and the indices (�; � ) : 1! 32. Due to the simultaneous presence of �elds having integer

and half integer spin, F (0) is symmetricwith respect to some of the values of its indices and

antisymmetric with respect to other ones. The elements of F (0) for which F (0)
�;! = �F (0)

!;�

are given by

F (0)
(2;26) = F (0)

(3;27) = F (0)
(4;28) = F (0)

(5;29) = F (0)
(6;30) = F (0)

(7;31) = F (0)
(8;32) = ��3(~z � ~y)

(47)

while the elements of F (0) for which F (0)
�;! = F (0)

!;� are given by

F (0)
(14;16) = F (0)

(15;17) = F (0)
(18;20) = F (0)

(19;21) = F (0)
(22;24) = F (0)

(23;25) = i�3(~z � ~y)
(48)

All the elements of F (0) not mentioned above are identically zero. Calculating the zero-

modes of F (0) and using them as explained in sec. 1, we obtain the following constraints

@H
@v0

� @H
@F+

� @H
@F �+

� @H
@F�

� @H
@F ��

� @H
@D

� 0 (49)

The time derivatives of these constraints are used to enlarge F (0) as shown in sec. 1,

leading to a 38 � 38 matrix, F (1), whose elements are such that, for (�; � ) : 1 ! 32,

F (1)
�� = F (0)

�� , and the antisymmetric elements related to the new columns and rows are

given by

F (1)
(5;33) =

1

2
ie��3(~z � ~y); F (1)

(6;33) = �1

2
ie�1�

3(~z � ~y);

F (1)
(7;33) = �1

2
ie��3(~z � ~y); F (1)

(8;33) =
1

2
ie�1�

3(~z � ~y);

F (1)
(9;34) = F (1)

(10;36) = F (1)
(11;35) = F (1)

(12;38) = F (1)
(13;37) = ��3(~z � ~y);

F (1)
(5;37) = F (1)

(6;38) = F (1)
(7;35) = F (1)

(8;36) = �m �3(~z � ~y);

F (1)
(5;34)

�

= F (1)
(6;34) = i F (1)

(29;33) = iF (1)
(30;33)

�

= �1

2
eA+�

3(~z � ~y);

F (1)
(7;34)

�

= F (1)
(8;34) = i F (1)

(31;33) = i F (1)
(32;33)

�

=
1

2
eA��

3(~z � ~y);

F (1)
(26;33) =

@�3(~z � ~y)

@y(1)
; F (1)

(27;33) =
@�3(~z � ~y)

@y(2)
; F (1)

(28;33) =
@�3(~z � ~y)
@y(3)

;

(50)
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The new symmetric elements of F (1), in turn, are given by

F (1)
(14;33) = 1

2e
� 
(1)
+ �3(~z � ~y); F (1)

(15;33) = 1
2e

� 
(2)
+ �3(~z � ~y); F (1)

(16;33) = �1
2e 

(1)
+ �3(~z � ~y);

F (1)
(17;33) = �1

2
e 

(2)
+ �3(~z � ~y); F (1)

(18;33) = �1
2
e � (1)

� �3(~z � ~y); F (1)
(19;33) = �1

2
e � (2)

� �3(~z � ~y);

F (1)
(20;33) = 1

2
e 

(1)
� �3(~z � ~y); F (1)

(21;33) = 1
2
e 

(2)
� �3(~z � ~y)

(51)

All the elements of F (1) not mentioned above are identically zero. F (1) has a zero-mode,

M , given by

M = [N; @iU; �1
2
iUeA+;

1
2
iUeA�+;

1
2
iUeA�; �1

2
iUeA�

�
; 0; 1

2
iUemA�

�
; �1

2
iUemA�; �1

2
iUemA�+;

1

2
iUemA+;

1

2
iUe c+;

1

2
iUe � _c

+;
1

2
iUe c

�
; �1

2
iUe � _c

�
; 0; 0; 0;

1

2
iUe�; �1

2
iUe�1; �1

2
iUe�;

1

2
iUe�1;

U; 0; 0; 0; 0; 0]

(52)

where U and N are arbitrary functions of the space-time variables. This zero mode does

not lead to new constraints, and, as shown in sec. 2, in such a case the elements of M

can be taken as the in�nitesimal gauge transformations (��� = &M� - & is a in�nitesimal

parameter) leaving the Lagrangean invariant. So (52) implies

�(vi) = &@iU; �(A+) = �1
2&iUeA+; �(A�) = 1

2&iUeA�;

�(v0) = &N �(F+) = �1
2
&iUeF+; �(F�) = 1

2
&iUeF�;

�(D) = 0 �( c+) = �1
2
&iUe c+; �( c

�
) = 1

2
&iUe c

�
;

�(�c) = 0 �(�i) = 0

(53)

Regarding the in�nitesimal transformation �(v0) = &N , (42) together with �(�i) = 0

imply N = �@0U , so that the in�nitesimal transformation rule for v0 is in fact given by

�(v0) = �&@0U . These results are in agreement with the gauge transformations admitted

in super-QED shown in [6].

2.3 Dirac Brackets

In order to proceed further and determine the Dirac brackets of the model, we need to

�x the gauge. We choose to work in the Feynman gauge, adding to the Lagrangean (41)
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the term �1
2
(@nvn)

2. After �xing the gauge, the momentum �0 becomes

�0 � @L
@(@0v0)

= �@0v0 � @ivi: (54)

The new Hamiltonian is thus obtained by adding to (44) the term�1
2�0

2��0@ivi+ 1
4(@iv

i)
2
.

This addition introduces a few changes in the calculations performed in the previous

section, leading to a non singular matrix F (2) - the symplectic matrix for the model.

These changes can be summarized as follows.

1. Due to the �xing of the gauge, @H

@v0
, which was before taken weakly null (49), is now

not null, so that we don't need to enlarge F (0) with the derivative of this constraint

as was done in the previous section. Hence, all the elements of F (0) in equations

(50) or (51) related to @H
@v0

� 0 (i.e., those with line or column number 33) are just

not present in F (2).

2. The �xing of the gauge also turns v0 invertible, so that it is necessary to incorporate

�0 to F (2) and to the �eld matrix11 (46); we inserted �0 in position 26, before

the �i. The introduction of �0 in turn leads to a new element di�erent from zero,

F (2)
(1;26) = ��3(~z�~y). Now, the gauge �xing process led to the addition of one line

and column at position 26 and the removal of one line and column at position 33.

Hence, all the elements of F (0) having column number between 26 and 32 appear in

F (2) with this number incremented by one (e.g., F (2)
(2;28) = F (0)

(2;27)); this is the case of

all the elements of F (0) entering (47).

3. For the same reasons, all the elements of F (0) shown in (48) are present in F (2) in

the same position (all of them have number of line or column less than 26), and

the same happens with all the elements of F (0) appearing in (50) not having line or

column number 33.

With these changes, the matrix F (2) is not singular anymore, from where the elements of

its inverse are the Dirac Brackets of the model,

f'�(t; ~x); '�(t; ~y)gD = (F (2))
�1

��
: (55)

11We recall from (13) that the momenta entering the �eld matrix are those associated to the invertible

velocities.
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The expression of these DB in terms of the �elds of the supermultiplet and the momenta

is given by12

fvm; �mgD = �3(~x� ~y);

fA+; �gD = fA�; �gD = �3(~x� ~y);

fF+; �1gD = fF�; �1gD = �m�3(~x� ~y);

f c+; � _c
+gD = f c�; � _c

�gD = i�3(~x� ~y) �c _c;

f�c; �� _cgD = i�3(~x� ~y) �c _c;

fD; �1gD = fD; �g�D = �e
2
A+�

3(~x� ~y);

fD; �1gD = fD; �g�D =
e

2
A��

3(~x� ~y);

(56)

All the DB not shown above are identically zero.

3 Linearization of Lagrangeans

When using the FJ method, the starting point is a description of the system using a

Lagrangean linear in the velocities [2]. Such a linear Lagrangean is built from the standard

Lagrangean by introducing auxiliary coordinates. In the case of a quantum theory, both

Lagrangeans will be equivalent if the standard one can be obtained from the linear one

by integrating all the auxiliary coordinates in the functional generator of the latter. In

the case of a classical theory, that equivalence is assured if, after removing the auxiliary

coordinates using their equations of motion, the resulting equations for the physical �elds

are those that can be derived from the standard Lagrangean.

The method usually suggested in the literature for setting up a linear Lagrangean (see

for instance [3]) works well with Lagrangeans quadratic in the velocities, and basically

consists of replacing the quadratic terms as in

_q2 ! 2 _q� � � 2 (57)

where � is an auxiliary coordinate introduced in the process. We note however that there

is another possible prescription for linearizing singular Lagrangeans which is independent

12In all the DB of (56), f'�(t; ~x); '�(t; ~y)gD is represented by f'�; '�gD.
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of the degree in the velocities, and also seems to us more convenient for dealing with su-

persymmetric models. In this case, (57) may not be enough and additional considerations

may be required. Our idea is based on the observation that, for a system of N degrees of

freedom described by a singular Lagrangean L with rank of the Hessian matrix R < N ,

the corresponding Routh function (here denoted by G) satis�es13

G(pa; qi; _q�) = pafa(qi; pb; _q�)� L(qi; fa(qi; pb; _q�); _q�)

= H(pb; qi)� g�(qi; pb) _q� (58)

where, as in equation (2) i : 1 ! N , (a; b) : 1 ! R and � : R + 1 ! N . From this

de�nition, and no matter the degree of L in the velocities, G will be linear in the _q�;

hence a possible linear Lagrangean for the model in terms of the canonical Hamiltonian

is given by

Lf(pa; qi; _qi) = pa _qa �G(pa; qi; _q�)

= pa _qa �H(pb; qi) + g�(qi; pb) _q� (59)

This prescription generalizes in some sense what we usually do in the case of non-singular

systems, where the linear Lagrangean can be written directly as Lf (pi; qi; _qi) = pi _qi �
H(pi; qi), with the pi playing the role of auxiliary coordinates.

Examples

We illustrate here the use of the prescription (59) to construct linear Lagrangeans in two

examples in which (57) may be of no help or require additional considerations. As the

�rst example, consider the singular Lagrangean of arbitrary degree N in the velocities

L =
a

2
_q1
2 +

b

2
_q2
2 + c _q1 _q2 + h _q3

N ; (60)

where a b = c2 and a; b and h are functions of (q1; q2; q3). The momenta for this model

are given by

p1 � a _q1 + c _q2

13For the de�nition of the Routh function see for instance [9].



CBPF-NF-002/99 19

p2 � c _q1 + b _q2 (61)

p3 � N h _q3
N�1

Here the rank of the Hessian matrix is R = 2 (either _q1 or _q2 cannot be expressed in terms

of (qi; pi)) so that equations (1) and (2), when applied to this problem, render

_q1 � (p1 � c _q2)

a

_q3 �
� p3
hN

� 1
N�1

(62)

p1 � a

c
p2

From the above and (58), the Routh function for this example is then given by

G =
1

2a
p1

2 � c

a
p1 _q2 +N�

1
N�1

�
N � 1

N

��
pN3
c

� 1
N�1

(63)

and hence, for arbitrary N , a linear Lagrangean Lf equivalent to L is given by

Lf = p1 _q1 + p3 _q3 � 1

2a
p1

2 +
c

a
p1 _q2 �N�

1
N�1

�
N � 1

N

��
c�1p3

N
� 1
N�1 : (64)

That Lf above is equivalent to (60) can be veri�ed by calculating its equations of motion:

_p1 � 0 (65)

a _q1 � p1 + c _q2 � 0 (66)

_p3 � 0 (67)

_q3 �
� p3
Nc

�(N�1)�1

� 0 (68)

Solving (66) for p1 and substituting into (65) eliminates the \auxiliary coordinate" p1 and

leads to one of the equation of motion one can derive from L; solving (68) for p3 and

substituting into (66) eliminates p3 and leads to the other equation of motion one can

obtain from L. As a second example, consider the case of a Lagrangean density de�ned

in superspace given by

L =
1

2
��� _�i _�i +

1

2
i

�
��
@�i

@��
� �

@�i

@�

�
_�i +

1

2

@�i

@��

@�i

@�
� V (�i) (69)
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where � e �� are Grassmann variables and �i(t; �; ��) are supercoodinates. The momentum

here is de�ned by

�i � @L
@ _�i

= ��� _�i(x) +
i

2

�
��
@�i(x)

@��
� �

@�i(x)

@�

�
(70)

In such a case, it is not possible to use the momenta as auxiliary super�elds since it is

not possible to express the velocities _�i in terms of the �i [3, 4]. This obstacle is removed

by introducing auxiliary super�elds �i satisfying ����i = ��� _�i(x). Proceeding with the

building of the Routh function, the resulting linear Lagrangean equivalent to (69) is given

by

L =

�
����i +

i

2

�
��
@�i(x)

@��
� �

@�i(x)

@�

��
_�i(x)� 1

2
����2

i +
1

2

@�i

@��

@�i

@�
� V (�i): (71)

4 Conclusions

In this work, the DB for super-QED were calculated as the elements of the inverse of the

symplectic matrix of the model, in turn calculated directly from the Hamiltonian. This

model is interesting, among other things, due to the presence of gauge invariance, which

was shown to be directly connected to the existence of null modes in the pre-symplectic

matrix. As regards the FJ and Dirac methods, it was shown that a symplectic matrix can

be set up directly from the Hamiltonian, and the same argumentation actually supports

the use of Dirac's matrix of constraints (8) but in a Lagrangean framework. From all

this, we conclude that the di�erence between these methods is somehow restricted to the

choice of the matrix to work with (of constraints or symplectic) instead of to the choice

of the framework (Hamiltonian or Lagrangean). More concretely, it was shown that the

options are to work with all the velocities or just with the non-invertible ones, and this is

actually what turns the symplectic and the Dirac approaches di�erent.

Finally, a simple prescription for linearizing Lagrangeans, based on the setup of the

Routh function, was shown; the advantage is that this prescription works correctly with

Lagrangeans of arbitrary degree in the velocities and with Lagrangeans de�ned in super-

space.
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