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Abstract

The calculation of Dirac brackets (DB) using a symplectic matrix approach
but in a Hamiltonian framework is discussed, and the calculation of the DB for the
supersymmetric extension of QED (super-QED) is shown. The relation between the
zero-mode of the pre-symplectic matrix and the gauge transformations admitted by
the model is verified. A general prescription to construct Lagrangeans linear in the

velocities is also presented.



CBPF-NF-002/99 2

Introduction

The quantization of singular field theories can be formulated, following Dirac [1], in the
framework of a Hamiltonian formalism, by mapping the so-called Dirac brackets (DB)
into quantum commutators. In a more recent work [2], Faddeev-Jackiw (F.J) showed that
using a Lagrangean formalism, in which the Lagrangean is of first degree in the velocities,
these DB can also be obtained as the elements of the inverse of the symplectic matrix
of the model. In [3], Barcelos-Wotzasek (BW) showed how the FJ approach can also
be consistently used to obtain these DB even when the model under consideration is
constrained from the geometric point of view!. The ideas presented in [2, 3] provided a
useful framework for further work too, as for instance the quantization of singular systems
in superspace [4], and establishing the connection between the gauge invariance of a given
model and the zero-modes of its pre-symplectic matrix [5].

In this paper, the calculation of Dirac brackets using a symplectic matrix approach
but in a Hamiltonian framework is discussed, and the calculation of the DB for the
supersymmetric extension of QED (super-QED) [6] is presented.

The exposition is organized as follows. In sec. 1, it is shown that the symplectic matrix
of a model can be obtained directly from its Hamiltonian, hence without having to de-
scribe the model in terms of a Lagrangean of first degree in the velocities (as is implicit, for
instance, in [10]). This possibility is then exploited in sec. 2, where we work on super-QED
in a Hamiltonian framework by first explicitly determining the form of the gauge trans-
formations admitted by the theory from the zero modes of the associated pre-symplectic
matrix. The gauge is then fixed and the DB of the model are obtained. In addition, for
when a Lagrangean description is preferred, in sec. 3 a general prescription for obtaining
a first degree Lagrangean equivalent to another given one is shown. This prescription
is independent of the original Lagrangean’s degree in the velocities, and appears as an

appropriate alternative when working with singular models defined in superspace.

I'This case occurs when the model has second-class constraints in the Dirac approach, and was not

covered in [2]
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1 Symplectic matrix and Hamiltonian formalism for

singular systems

Consider a system with N degrees of freedom described by a singular Lagrangean L(¢;, ¢;),
i.e., a system with the Hessian matrix rank R < N. After defining the momenta, we can

express> N — R momenta p, (p: R+ 1 — N) and R velocities ¢, (a: 1 — R) as in [7]
Qa R fa(qivpbvq‘p)v (1)
Pr R 9p(qis ) (2)

where 2 : 1 — N and b:1 — R. We will call the ¢, invertible and the ¢, non-invertible.

Following [7], the Hamiltonian can then be written as®

H = po fulqispos 40) + 95(Gis 640 — L5, falqisPo, 40)s o) (3)

and the corresponding Hamilton equations as

oH . Oy,

e N — — 4
q apa ql) apa ( )
) . dg, OH
. R - )
p qp aqa aqa ( )
dor(gispy) . 09, OH .
R e A R (6)

Defining the N — R primary constraints ¢, of such a model as

bp = 1Pp — 9o(Gis pp) = 0 (7)

the Poisson Brackets (PB) of ¢, with the Hamiltonian and between themselves are given

by
dg,0H 0g,0H OH

7H = _———I_——_—v
{(ép } dqy Opy Opy Oqp an

(6,6, = 2299 99,09 09, 09
S Oqy Opy Opy Oqp a(h an

hl)

PP’V

2The definition of weak equalities used along this paper follows that given in [1].

3Throughout this paper we use the convention of sum over repeated indices.
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Roughly speaking, the strategy in Dirac’s method consists of substituting the expressions

(4) and (5) into (6) to obtain a description involving only the non-invertible velocities:

Ppygy = —h, (9)

Now, when trying to invert this system to express the velocities ¢, as functions of the

coordinates and momenta, we encounter two different cases [7].

1.1 Case det P #0

The simplest case occurs when the matrix P is invertible (not all the h, are weakly null),

and we have

Gy = —P71 0, (10)

Using this result, the time derivative of an arbitrary function A(g;, p;,t) can be expressed

as

i A
Am (A H) = (A6} P (6, H) + 90 (1)

Dirac bracket between A and H

and the definition of Dirac brackets can be seen as an extension of the formula above for

the case of two arbitrary functions A; and A,:

{A1,A2}D - {AlaAz} - {A17¢’V}P_1’W){¢P7A2} (12)

These brackets, in turn, are the cornerstone both in the Dirac and the F.J methods. Now,
still in a Hamiltonian framework, if instead of removing the invertible velocities as done

in (9), we work with all the velocities, as in the F.J approach, and rewrite equations (4),

(5) and (6) as

ag . oH

0 8_qZ —0pq qa Er

—99y 99y 4 99p _ 99y |l | 22
9qa dqp + dq 9pa o | ~ dq (13)

) . aH

B 99p o9H

ba Ipy 0 Pa Ipy

FOO) Ny Ryx(N+R)
we directly arrive at the symplectic matrix (F©) above) for such a model. Actually, from

(8), (12) and (13), it follows that

(F(O));i; = {Yo,¥u}p (14)
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where {y,,y,}p are the Dirac Brackets for y,, vy,, (o,w): 1 — N+ R, y; = ¢; and

YN+a = Pa-

1.2 Case detP =0

The interesting case is that in which the determinant of P is weakly null; that is, the
system is constrained from a geometric point of view, and P has M < (N — R) null
eigenvectors. In such a case, multiplying both sides of (9) by these eigenvectors, we

obtain M relations (constraints) of the form
Differentiating these expressions with respect to time and using (4) and (5), we obtain

Xa & {xa, H} + ¢, {xa,0,} =0 (16)

These M expressions can be used to extend the system (9) as follows:

{¢P7¢’V} {H7 ¢P}
i) ~ 17
<{XA7¢W}> ("‘q : <{H7 XA}> o
—— — (N-R)x1

CO) (N R4 MYX(N—=R)

Although C(© above is not a square matrix, it is possible to add M columns to it with

the purpose of making it square without altering the content of the system, via

<{¢pv¢w} JpB ) (%) ~ <{H7¢p}> (18)
{xa,0,} Kap 0 {H,xa}

where B : 1 — M, and J,p and K4p are arbitrary. Now, to obtain the generalized
antisymmetric Dirac brackets, we proceed as in [1] and take J,5 = {¢,, x5} and Kap =

{x4,xB}, so that C' becomes

(19)

C - ( {4507 ¢w} {¢07XB} )

{xa. 071 {xa,xs}
Using (, (or (,) to represent any of the constraints ¢,or x4, the system (17) can be

written as

{Cu HY + {Gu: G} = 0 (20)
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and provided the model has no gauge invariance, by repeating the steps represented by
equations (15) to (19) it is always possible to extend C so as to have det(C) # 0, in turn

leading to
Q/) ~ _C_lpu{CuvH}v (21)
0~ C™ {1} (22)

Using (4), (5), (22) and (21), the time derivative of an arbitrary function A can then be

expressed as

) A
Am (A )~ (A.G)C7 G )+ 2 (23)

Dirac bracket between A and H

from where the DB between two arbitrary functions A; and Ay in the case det P = 0

becomes
{A17A2}D = {A17A2} - {ADCM}C_IMV{CWA?} (24)

To construct the symplectic matrix directly from the Hamiltonian when det P = 0, we
proceed as follows. First, as done in the case det P # 0, we rewrite the system composed
by (4), (5) and (6) as in (13). The resulting matrix F® is now singular*. We then
multiply both sides of (13) by the M null eigenvectors of F'(°), obtaining the M relations
(15). Taking the time derivative of these constraints, we extend our system in the same

way as in (17), obtaining

9g oOH
0 a_qz —bpg ‘ ey
_ 99y _ 99y | %90 _ 29y € 8H
9qa aqp aqy 9Pa . r~ aqy (25)
5 agp 0 ql) @
ba Ipa . Ipp
—oxa —oxa —oxa Pa 0
9qa dgp Ipa

F)( N4 Rt MY x(N+R)

The procedure for turning square the matrix F(!) above is the same as that used for the

matrix C(®) in the Dirac method®: we add M columns without altering the contents of

479 ig called pre-symplectic in order to point out that it is not invertible.

>The procedure used here to turn F a square matrix is also equivalent to the one adopted by Barcelos-

Wotzasek [3] in order to enlarge the pre-symplectic matrix in the context of the FJ method.
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the system, via

d . dH
0 aiqi _5ba % Ga a_qb
_ 99y _ 99y + 99p 09y Oxa q Al
9qa aqp 8‘17 Ipa 8‘17 L ~ 8‘17 (26)
Bha e N o o
Ipa Ipp @ Ipp
—0xa —0xa —0xa
9qa dgp Ipa 0 0 0

F<1)(N+R+M)><(N+R+M)

Now F() is antisymmetric. If the model has no gauge invariance, either F(!) is invertible,
or enlarging F'") as explained, again, a finite number of times, will lead to the required
invertible matrix. The resulting matrix is the symplectic matrix of the model, and the
elements of its inverse are then the fundamental DB (see [3]). If the model has gauge
invariance of some type, we then need to remove it by fixing the gauge (i.e., introducing
related terms in the formulation of the model), after which the procedure just explained
will render the symplectic invertible matrix we are looking for (see sec. 2).

The procedure outlined shows how the symplectic matrix (13) can be built directly
from the Hamiltonian, as opposed to setting up a first degree Lagrangean (FJ method).
This amounts to working out a constrained system having secondary constraints, using a
Hamiltonian description, but involving all the velocities, instead of just the non-invertible
ones as in Dirac’s method. Furthermore, using equivalent arguments, one can work out
the system using only the non-invertible velocities, but describing the model with a La-
grangean of first degree in the velocities. In summary, from these considerations, what
appears relevant is the choice of whether or not to work with all the velocities, as opposed

to the choice between a Hamiltonian or Lagrangean framework.

Example

As an example of the use of the technique just described, consider the case of a relativis-
tic point particle. This example is interesting because the description is gauge (scale)

invariant; the Lagrangean is given by ©

L:—m\/U02—U12—U22—U32, (27)

“The space-time signature is (—1,+1,+1,+1).
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where v, = CZU—T“, and 7 is the arbitrary monotonic parameter [8]. In this model, there are

three relations of the form (1) and one relation of the form (2):

uy A Pus w A _p1u3 w A _p2u3 (28)
_|_
P ox - \/p02 —pt? = p¥ —m? (29)

where 7 = (po)2 — (pl)2 — (}72)2 —m?. These equations lead to the canonical Hamiltonian
(3): H = 0. The related Hamilton equations are: those shown in (28), of the form (4);
three other ones of the form (5)

—~0, —=0, ——=0 (30)
and one of the form (6)

20 o adp

P dr —P E—I_p dr ~ 0 (31)

From these equations, the pre-symplectic matrix F(*) (see (13)) is given by

o 0 0 0 1 0 0 g 0
o 0 0 0 0 1 0
Uy 0
o 0 0 0 0 0 1
0 1 2
0O 0 0 0 _rr Uz 0
VZ VI V7
pO Usg ~ 0|, (32)
-1 0 0 — 0 0 0
V7 CilLO 0
7 T
p
0o -1 0 —— 0 0 0 1
NG T 0
P’ 2
0 0 -1 7 0 0 0 [ |%E] |0]
F(0)
F©) is singular and has one null eigenvector
0 1 2
p p p
- ’ ’ ’ 17 07 07 07 33
Vi V7 V7 %)

Multiplying both sides of (32) by this eigenvector does not lead to new constraints. This is

so because the model is gauge (scale) invariant, so that to proceed further we need to first
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fix the gauge. This is done here as in [8], by introducing xq — 7 &~ 0; the corresponding
new equation is up = 1 and leads to the addition of one line to F(®. The system of

equations then becomes

o0 0o o 1 0o o | [,
o 0 0 0 0 1 0 || w .
0 0 0 0 0 0 1 ||
o .1 2
o o0 o o P r P 0
V7 N7 V7| | w .
0
p
1 0 0 2 0o o0 0 || w |~ . (34
V7 0
010’)1000%0
NG - 0
P
o 0 -1 -2 o o o |7 0
V7 dp?
L dr |
-1 0 0 0 0 0 0 | -1
F(1)

The matrix (! is not a square matrix, but it is possible to make it so by adding to it one
column without altering the content of the system. We choose the elements of this new
column so that the resulting matrix, #®, is antisymmetric. It now turns out that F(?)
is invertible; hence, no more extensions are required and F'? is already the symplectic

matrix of the model, and the elements of its inverse
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o0 0 0 0 0 0 -1
1 1
P P
o000 =% -1 0 S
2 2
P P
L -
7 7
o0 0 0 £0 0 0 —£0
P P
1 2 \/Z (35)
o L L Y2 9 o 0o o0
Pop P
o1 0 0 0 0 0 0
o0 1 0 0 0 0 0
1 2
7
(I £0 0 0 0 0
L |

are the fundamental DB for the problem

Pv
{puvxl/}D = —Yuw + gqu_Ov (36)

{puvpv}D = {x;mxu}D =0. (37)

These results are in agreement with those shown in [8] obtained using the Dirac method.

2 Dirac brackets for super-QED

In this section we derive the Dirac brackets for super-QED as the elements of the inverse
of the symplectic matrix, in turn built directly from the Hamiltonian, as explained in
the previous section. Besides, super-QED is a supersymmetric gauge invariant model,
and hence it is not possible to set up the symplectic matrix until this gauge invariance
is determined and fixed. This obstacle is reflected by the fact that the pre-symplectic
matrix /() has null eigenvectors which do not lead to new constraints. For such a model,
it has been shown [5] that there is a relation between these zero modes of F(®) and the
gauge invariance of the theory. We then proceed as follows. First, for completeness,

this connection between zero modes and gauge invariance is briefly reviewed. The gauge
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transformations admitted by super-QED are then derived and the gauge fixed. Finally,
we use the technique explained in the previous section to obtain the symplectic matrix of

the model and compute the DB as the elements of its inverse.

2.1 Zero-modes of the pre-symplectic matrix and gauge invari-

ance

Consider a system with N degrees of freedom described by a singular Lagrangean L(g;, ;)
(rank R < N). As shown in sec. 3, such a system can always be described by a Lagrangean

LM linear in the velocities”

LY, G p) = Pada + 9p(0i, p0)d, — H(py, 4) (38)

When the system has secondary constraints, its pre-symplectic matrix F(® is singular, so
that we proceed as explained in [3], enlarging F'®) by using its null eigenvectors until the
enlarged F(©) (denoted as F'") in equation (26)) has no more null eigenvectors or such
eigenvectors exist but they generate no more constraints. According to [5], we then write

the functional variation of the action in terms of F'V) as

68 = /5yw (Fu(;ir)ycr - §—> dt =0, (39)
Yw

where (o,w) : 1 — N+ R, and y, represents both ¢; and p;. If the matrix FW is singular

with n zero modes V(”), taking 6y, = gVuEn) (¢ is an infinitesimal parameter) we have

oH (n) oH
Syp— = Vo —
Y Y., N Y.,

Recalling that these V" don’t lead to new constraints, a transformation 8y satisfying the

jam)

(40)

above is by definition a gauge transformation with V") playing the role of the infinitesimal

generators.

2.2 Zero-modes and gauge invariance in super-QED

Following [6], we write the Lagrangean for the four-dimensional supersymmetric gener-

alization of QED (W7 gauge) in terms of the field components of the supersymmetric

“For the symbols and indices entering (38) see the conventions introduced with equations (1), (2) and

(3).
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multiplet as®

L = iD* —iv,, 0™ —ida™Ou N+ FuFy + FLF*_ + ATDAL + +AT DA

(0,4 0™y + Ontp -G ) + jev, (Y ™y — h ™))

+Lico " (A50, Ay — 0, A% Ay — A* 0, AL + 0, A AL)
(41)
Lo/ Aub h — AT A — A\ 4 A7
7ieV2(Agpy TVRA — AP A ATepA)

—|—%eD(Aj_A+ —A*A_) — lezvnvn(Afl_A_|_ + A" AL)

4

+m(ALF_ + A_Fy —bpb_ — b + AL + AT FY)

where m is the electron mass, D is a real scalar field, v™ is a real vector field, v,,, =
Oy — Opv, Foy F_, Ay and A_ are complex scalar fields, 14, ¢_, ¥_, 4, A and

A are Weyl spinors (2 components), and o™ are the Pauli matrices®

. Now, instead of
proceeding by setting up a Lagrangean of first degree in the velocities, we will work on

the model using a Hamiltonian description, for which we define the momenta

~ 9L _ 1. .0 A% * ~ aL 1.0
T R FEeay = glev AL+ Op AL R GEayy T T3l Ay + oAy,
~ aL _ ] 7 . ~ aL _ - 0 ©\a
Ti ~ a(aovi) - alv + aov ﬂ-/\b ~ 8(80:\5) = 0 ab)\
oL ) a oL ._0 a
T N o = L0y T =4 ~ —=— = 0
U (009t b,a¢+ U 3(Bop?) b,a¢—
~ oL _ _1:.0 4% * ~ oL _ 1;..0
K R FmeaT = Talev A* 4+ 0y AX Ki R 55an = 3iev A_+ 0pA_
(42)

and note that the following momenta are all primary constraints:

0 = oL _ oL _ oL _ oL _ oL _ oL _ oL
= 30 T 300 @) 3eky) . 9(eat) | a(aewt) | 0%k
_ oL _ AL

B(BFY) —  B(9oFT)
(43)

8In (41) (m,n) : 0 — 3 and the space-time signature is (=1, +1,+1, +1).
9The rule for omitted contracted spinor indices is 11 = gip = 9%a, 7 = G = [ap®.
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The canonical Hamiltonian is then given by

H o= LPA_AT 4 LievV2AT et N 4 Leto A, AL
—%ieviaiA*_A_ + %eDA_A*_ + %ieviaiA_A*_ — %eDA+Aj_
—|—%Z'€\/§A_6dé7z)d_5\é — %&'vjajvi + %&'vﬂ — i@ﬂ/ﬁ&éad)i
+ (1A"0 a0 AY) + Imt — FLF — Lie/2A  cappi N
—%ie\/ﬁA+6déJ)j‘_5\é + AL AT + Liev' 0, AL AL — Liev' 9 AL AY (44)
Flevt ol t — Levgth? 69 1b% + meuibt b — Levptal bt
+ievglol vt — i0ipios W + 7T — FLFT 4 Sike0® AT
+0;ALO AL — %irlevoAj_ + %irevofh_ — %mevoA_ + meab@bi@/}b_ — m;0;0°

—m(AZF; + A F_ + ALFL + ALF") — $D? + £k,

where the convention for the indices used throughout this section is: (¢,5) : 1 — 3

. 0 -1
while (a, @, b,b) : 1 — 2, and €,5 = . We now set up the pre-symplectic
1 0

32 x 32 matrix of the model'?, here denoted F©), by writing the corresponding Hamilton

Y

equations as described in sec. 1:

. .. OH
/ FO, € & ~ e (45)

where £ is the field matrix, whose transpose is given by

[vov viv A-I—7 Aiv A—7 Atv D7 F—I—7 Fiv F—7 Fiv 77Z)-C|-7 J)-CH 77Z)37 J)iv )‘cv 5‘67 ﬂ—iv T, T1y, K, Kl]
(46)

10This number 32 is related to the fact that »* and #' have three components each, and

Y5, 1/:f|_, ¥, ¢, A° and A¢ have two components each.
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and the indices (A, 7) : 1 — 32. Due to the simultaneous presence of fields having integer
and half integer spin, F(© is symmetric with respect to some of the values of its indices and
antisymmetric with respect to other ones. The elements of FO) for which fc(r?u), = _F(f)?c)r

are given by

0
F((Z,)ZG) = ‘7:(3,27) = F(4,28) = ‘7:(5,29) = F(6,30) = ‘7:(7,31) = F(8,32) =

_«3
(47
while the elements of F(© for which Fc(r,ou)) = fw?g are given by
Foaney = Foam = Fatay = Foomy = Faay = Foan = 6°(EF—7)
(48)
All the elements of F(® not mentioned above are identically zero. Calculating the zero-

modes of F(©) and using them as explained in sec. 1, we obtain the following constraints

g° T 9F, ~ 9Fr ~ 9F. ~ 9Fr = 9D (49)

The time derivatives of these constraints are used to enlarge F(© as shown in sec. 1,
leading to a 38 x 38 matrix, F(!), whose elements are such that, for (A\,7) : 1 — 32,

fﬁ) = F,., and the antisymmetric elements related to the new columns and rows are

given by
(1) Lo s (1) L. S S
Fosy = 5@67’5 (Z—1), Fl6.33) = —5167'15 (Z—1),
(1) L. 3> - (1) Lo g =
Flrosy = —§ze/<;5 (Z—1), Fs.3) = 5@6/4315 (Z—1),
(1) _ (1) _ (1) _ (1) _ (1) >
F (0.34) F10,36) Faizsy = Fizas) = Flsan & (7 =),
1 1 1 1 I
7:((5,)37) = 7:((6,)38) = 7:((7,)35) = 7:((8,)36) = —m &7 —y), (50)
1) = 1 1 - (1 * 1 > o
‘7:((5,)34) = ‘7:((6,)34) =t ‘7:((23,33) = ZF((33,33) = _§eA+53(Z —7),
® * _ I ( N oo
‘7:(7,34) ‘7:(8,34) t ‘7:(31,33) =t ‘7:(32,33) 5614—53(2 — ),
o 08E=y) g _ 08%(F—y) (1) 96%(Z — i)
]:(26,33) gy ]:(27,33) oy ]:(28733) oy 7

—

(7 —9)
)
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The new symmetric elements of F(), in turn, are given by

! Sy 2 _ i 1 (2 > = 1 1 oL
Fliaz FrVSE =G Flia LedP8%(Z =), Flos = —sedl8(Z—9),
Fillay = =10 =9, Fily = —3dV8E—g),  Fll, = —taPeE-p,
Flomy = 3089, Foly = 1e?8(E-7)

(51)

All the elements of F) not mentioned above are identically zero. F® has a zero-mode,

M, given by

M =[N, o,U, —%iUeA.H LiUeAr, LiUeA_, —%iUeA*_, 0, LiUemA*, —%iUemA_, —%iUemAj_,

2 +7 2 ’ 2
%iUemAJr, %iUe;/;i, %iUe;/;i, %iUe;/;i, —%iUe;/;é_, 0, 0, 0, %iUeT, —%iUeTl, —%iUeli, %@'Uem,
U, 0, 0,0, 0, 0]
(52
where U and N are arbitrary functions of the space-time variables. This zero mode does
not lead to new constraints, and, as shown in sec.2, in such a case the elements of M
can be taken as the infinitesimal gauge transformations (6p, = ¢M, - < is a infinitesimal

parameter) leaving the Lagrangean invariant. So (52) implies

5(1/) = <oU, O0(Ay) = —%giUeA.H 0(AL) = %giUeA_,
§5(v%) = <N o(Fy) = —%giUeF_H O(F-) = %giUeF_,
(53)
6(D) =0 o(vy) = —%giUe;/)j_, o) = %giUe;/)i,
6(X°) = 0 o(mi) =0
Regarding the infinitesimal transformation §(v?) = <N, (42) together with §(m;) = 0
imply N = —dyU, so that the infinitesimal transformation rule for v° is in fact given by
§(v°%) = —cdoU. These results are in agreement with the gauge transformations admitted

in super-QED shown in [6].

2.3 Dirac Brackets

In order to proceed further and determine the Dirac brackets of the model, we need to

fix the gauge. We choose to work in the Feynman gauge, adding to the Lagrangean (41)
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the term —%(anv”)z. After fixing the gauge, the momentum 7y becomes

oc
o ~ W = —aovo — aZUZ (54)

The new Hamiltonian is thus obtained by adding to (44) the term —%Woz—ro&vi—l—i(&vi)Q.
This addition introduces a few changes in the calculations performed in the previous

section, leading to a non singular matrix F® - the symplectic matrix for the model.

These changes can be summarized as follows.

oH

, 5.5, which was before taken weakly null (49), is now

1. Due to the fixing of the gauge
not null, so that we don’t need to enlarge F(©) with the derivative of this constraint
as was done in the previous section. Hence, all the elements of F(® in equations

(50) or (51) related to % ~ 0 (i.e., those with line or column number 33) are just

not present in F?.

Y invertible, so that it is necessary to incorporate

2. The fixing of the gauge also turns v
7™ to F@® and to the field matrix' (46); we inserted 7% in position 26, before
the 7°. The introduction of 7% in turn leads to a new element different from zero,
.7:(2)(1726) = —&6%(Z—1). Now, the gauge fixing process led to the addition of one line
and column at position 26 and the removal of one line and column at position 33.
Hence, all the elements of F© having column number between 26 and 32 appear in
F ) with this number incremented by one (e.g., .7:((227)28) = .7:((;)27)); this is the case of

all the elements of F©) entering (47).

3. For the same reasons, all the elements of F(®) shown in (48) are present in F?) in
the same position (all of them have number of line or column less than 26), and
the same happens with all the elements of F©) appearing in (50) not having line or

column number 33.

With these changes, the matrix F® is not singular anymore, from where the elements of
its inverse are the Dirac Brackets of the model,

-1

{po(t. @) 0t )} = (FO) 7, (55)

1'We recall from (13) that the momenta entering the field matrix are those associated to the invertible

velocities.
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The expression of these DB in terms of the fields of the supermultiplet and the momenta

is given by!?

{vmvﬂ—m}D = 53(1_;_?;))7
{Ar,7ip = {Awlp = &(F —9),
{Fimyp = {Foomlp = —-m& (@ -7,

{@Z)j—qu)-cl—}D = {¢37¢3}D = Z53(f_?j) 5cc'7 (56)

{AS, j\é}p = i53(:ff — ) e,
e L
D, nip = {D, 7}y = —§A+53(1‘ —¥),
€ — —
D, kiyp = {D, k}p = 514—53(1‘ —¥),

All the DB not shown above are identically zero.

3 Linearization of Lagrangeans

When using the FJ method, the starting point is a description of the system using a
Lagrangean linear in the velocities [2]. Such a linear Lagrangean is built from the standard
Lagrangean by introducing auxiliary coordinates. In the case of a quantum theory, both
Lagrangeans will be equivalent if the standard one can be obtained from the linear one
by integrating all the auxiliary coordinates in the functional generator of the latter. In
the case of a classical theory, that equivalence is assured if, after removing the auxiliary
coordinates using their equations of motion, the resulting equations for the physical fields
are those that can be derived from the standard Lagrangean.

The method usually suggested in the literature for setting up a linear Lagrangean (see
for instance [3]) works well with Lagrangeans quadratic in the velocities, and basically

consists of replacing the quadratic terms as in
¢’ — 24T — 17 (57)

where 7 is an auxiliary coordinate introduced in the process. We note however that there

is another possible prescription for linearizing singular Lagrangeans which is independent

2In all the DB of (56), {¢a(t,Z), ¢y (t,¥)}p is represented by {a, v, }p.
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of the degree in the velocities, and also seems to us more convenient for dealing with su-
persymmetric models. In this case, (57) may not be enough and additional considerations
may be required. Our idea is based on the observation that, for a system of N degrees of
freedom described by a singular Lagrangean [ with rank of the Hessian matrix R < N,

the corresponding Routh function (here denoted by () satisfies”

G(pavqivq‘p) = pafa(qivpbvq‘p)_L(qivfa(qivpbvq‘p)vq‘p)
= H(pv, q:) — 9(4i5 1) (58)

where, as in equation (2) 7 : 1 — N, (a,b) : 1 - Rand p: R+ 1 — N. From this
definition, and no matter the degree of L in the velocities, G will be linear in the ¢,;
hence a possible linear Lagrangean for the model in terms of the canonical Hamiltonian

is given by
Lf(pav qi, q2) = paqa - G(pa, qi, Qp)
= Pafa — H(ps, q:) + 9,(ai, po)dy (59)

This prescription generalizes in some sense what we usually do in the case of non-singular
systems, where the linear Lagrangean can be written directly as L¢(pi, ¢, Gi) = pigi —

H(pi, q:), with the p; playing the role of auxiliary coordinates.

Examples

We illustrate here the use of the prescription (59) to construct linear Lagrangeans in two
examples in which (57) may be of no help or require additional considerations. As the

first example, consider the singular Lagrangean of arbitrary degree N in the velocities

a . b . .. )
L:§q12—|—§q22—|—cq1q2—|—hq3N, (60)

where a b = ¢* and a, b and & are functions of (g1, ¢2, ¢3). The momenta for this model

are given by

PR aqgtcq

13For the definition of the Routh function see for instance [9].
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P2 = cq+bgs (61)

ps = NhQ3N_1

Here the rank of the Hessian matrix is R = 2 (either ¢y or ¢ cannot be expressed in terms

of (¢, pi)) so that equations (1) and (2), when applied to this problem, render

i~ (pl —C 42)
a
. P3 >ﬁ
~ (£ 62
i ~ (4 (62)

a
= — P
c

From the above and (58), the Routh function for this example is then given by
1 c (N =1\ /[/pY Ee
G=—p? = “prpg+ N 71 — | [ = 63
24" o1 + ( N )( c ) (63)
and hence, for arbitrary IV, a linear Lagrangean L; equivalent to L is given by

. . 1 c . _1 (N-—-1 B 1
Ly=pigi+psgs — %}h? T PG N™r= (T) (7 'ps™) . (64)

That L; above is equivalent to (60) can be verified by calculating its equations of motion:

ppo= 0 (65)
agr—prtegp = 0 (66)
ps ~ 0 (67)

. p3>(N—1)_1
— (= ~ 0 68
i — (1 (68)

Solving (66) for p; and substituting into (65) eliminates the “auxiliary coordinate” p; and
leads to one of the equation of motion one can derive from L; solving (68) for ps and
substituting into (66) eliminates ps and leads to the other equation of motion one can
obtain from L. As a second example, consider the case of a Lagrangean density defined

in superspace given by

g Lo (2080 060 o 1067 ¢ i
L=t 5 <980_980>¢+—280 oo~ V%) (69)
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where 0 e § are Grassmann variables and ¢'(¢,8,0) are supercoodinates. The momentum

here is defined by

oL i (04 (x) 06 (x)
szaq.si—%qﬁ(x)—l-Q(@ T e ) (70)

In such a case, it is not possible to use the momenta as auxiliary superfields since it is
not possible to express the velocities qbZ in terms of the 7; [3, 4]. This obstacle is removed
by introducing auxiliary superfields Y; satisfying 007; = é@qﬂx) Proceeding with the
building of the Routh function, the resulting linear Lagrangean equivalent to (69) is given

by

V(e). (1)

L= [QGTZ' 4 % (08@(1') . 08@(1'))] v lé@’rQ N 18¢z a¢z

90 90 o) = 50000+ 555 29~

4 Conclusions

In this work, the DB for super-QED were calculated as the elements of the inverse of the
symplectic matrix of the model, in turn calculated directly from the Hamiltonian. This
model is interesting, among other things, due to the presence of gauge invariance, which
was shown to be directly connected to the existence of null modes in the pre-symplectic
matrix. As regards the FJ and Dirac methods, it was shown that a symplectic matrix can
be set up directly from the Hamiltonian, and the same argumentation actually supports
the use of Dirac’s matrix of constraints (8) but in a Lagrangean framework. From all
this, we conclude that the difference between these methods is somehow restricted to the
choice of the matrix to work with (of constraints or symplectic) instead of to the choice
of the framework (Hamiltonian or Lagrangean). More concretely, it was shown that the
options are to work with all the velocities or just with the non-invertible ones, and this is
actually what turns the symplectic and the Dirac approaches different.

Finally, a simple prescription for linearizing Lagrangeans, based on the setup of the
Routh function, was shown; the advantage is that this prescription works correctly with
Lagrangeans of arbitrary degree in the velocities and with Lagrangeans defined in super-

space.
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