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ABSTRAGT

The invariance properties of localized fields under transformation
groups involving arbitrary functions are studied from the point of view of
the Agtion Principle. Such invariance implies in the existence of a set
of identities at each space-time point, where the field is defined. These
identities can be used as sélection ruleg for the determination of the La-
grangian density of the field.

It shown that the invariant Lagrangian density for coupled-field is
defined in a local affine connected space (the space where the inter-
action takes place), with a greater number of dimensions than the usual
Minkowski space.

It is also studied the relations which can be obtained between an
infinitesimal gauge group and other infinitesimal discrete groups of
invariance, such as the Lorentz group. This is done for the case of
electrodynamics. |
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12

1. INTRODUCTION
This paper was written with the intention of being a general
review of the so called gauge-like field theory.

We have stressed the uniformity of presentation of the several
examples, so that the same physical situation is presented in each
case under a different mathematical form. This shows that there is

an uniform and general way for treating these gauge-like field

theories.

The treatment is obviously based on the field theoretic prineciple
of action, and in the conditions under which there are invariance

under a given function group of transformations.

The three baslc cases of functions groups in physics which deserve
importance, namely the electromagnetic, the vector iso-vector theory
of Yang and Mills ‘and the gravitational gauge-like theory are discus-

sed., We treat free fields as well as the interactions.

The first part of the work lays down the general theory of
eovariant fields with respect to given functions groups. The remain-

ing sections are devoted to examples of such theories.

The section 4 treats with a slightly different approach, namely
the study of the relations which may be obtained between a funetien
groups and a discret invariance group. This is done to the first

order of approximation.
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2. THE SECOND NOETHER THEOREM FOR LOCAL FIELD THEORIES

Consider a system described by the functions y,(x)(A=1...N) by
means of the Lagrange-density function 1

L(x; yp(x)s vy o(x)) = Lx, y(x)),

X = (x'...xn); P =1 +eo Dy

w=[ra.
Q

Since any given physical situation can be described in different
coordinates systems, as well as by different set of "field functions"
(as for instance by different gauges) we can consider the transforma-
tions,

y;(x') = £a(x5y)

xt%= £5(x) .
Which are assuméd to form a continuous group with the identify
transformation. These transformations defined in the Y and X spaces,

can be or can be not correlated one to the other.

The infinitesimal form of these transformations will be written
as,
]
yA(x') = yalx) + 6yA(x) ’

o
X1 = x %+ §x (x) .

(1)

The Noether theorem is a general staetement about the structure
of the Lagrangian density of a given system under a certain group

of transformations, continuous with the identity transformation.

Such groups can be divided into two main types, the first one

being the conjunct of all transformations which depend on a set of
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given parameters: {Gp} (for p parameters). The other part, is the

conjunct of all transformations which depend on a set of given
functions, they are called as function groups: {Goo q} for q func~

tions at each point xeX). z

The invariance of the Action integral of the system under Gp
amounts to the conservation of a set {Sp} of functionals of yec Y,
which can be in every case identified as some physical variable
assoclated to the system, The invariance of the Action integral
under {Gw q}, amounts to a set {Iq} of identities involving the

fleld functions ycY on each fixed point x eX.

The second Noether theorem treats with the set {Gboq} and there=
fore with such set {Iq} of identities. These identities represent
"selection rules" which can be used for the determination of the
funetional form of L. We will see that such method can be applied
both, to free or to interacting fields, with the same generality.

The Gooqc{Gooq} cen be described by some set of q functlons
Ei(x), 1 =1 ... q by means of,
JoxB = ety 3

. . (2)
[7a(x) = £xdy,,(x) + €7

”~ P
o(x) 1gy(x)
We shall restrict to first order derivatives of € (x) in 8y, since
this approximation is suffieient for all known applications in
physics, the introduction of higher derivatives i1s nevertheless a

matter of straightforward procedure.

The condition that yl(x') must satisfy in order that the field

equations in the new representation be equivalent to the old ones,
is:
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fL(x; y(x))ax EJ L(x*; y'(x*))ax! +§Q° dZP

or, the two Action integrals differ at most by a surface integral.
The QP which are in general functions of (x3 y(x)) are quantitiles
of the same order as §x, §y. They are the generators of the
transformation, if we treat such transformation in terms of

canonical pailr of variables.

Since we are not going to use the canonical functions we can
make use of the arbitrarity of choosing L up to an arbitrary
divergence in order to write the above relation without the

generator.

It follows to first order that,

GPLFy, + Y LF Yo * (LOxP) g =0,

where oL
2L —- ?
2L =— ;08 = ;6=6-GX°"a—x-o;
byA . ?)yA,P
We can as well to write this identity as,
8y, + [P =0, (3)
P

where LA is the Lagrange derivative of L with respect to Yao

*=0tr -y,
P
and [P is a short for,

P =18xP + (2% 1) 5 Yy o ()
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The mathematical structure of Noether's second theorem is given by

the equations (2), (3), (4) together with the property that G,,,
is a Lie group.

We now proceed to substitute (2) into (3),
= A_1 N
EiE.A(VAi = Tap ;’i) - (LAWK_,L),P] + l:(aAP L) dyp+L € YﬁfLéxJSO.

Since Ei(x) are arbitrary functions, the identity sign holds only if

PP | i 1
each of the coefficients of £, G,P, E’Po'
conditions can be consistently obtained by setting,

vanish separatelys; these

A Ay _
L0y = Ya,u 800 - anﬁi I =0, (5)

[(’oAP L) 8y, + Ae frgi + Léxp] =0 (6)

equation (6) is now separated into the three identities representing
i i i
the null coefficients of £, 5’& s € ﬂxp°
p Ap + _ mP 4B =
(t g Ty 2T L - T By =0, (7)

A o ‘ A =
L% 7y + MaAPL-TP gﬁ +(7r @L)’{i 0, (8)

AﬁL+?’(3 Ar=zo0, (9)

where
o)

- (o)
T = (o8P L)y, = 8 b -

The equations (5), (7), (8) and (9) represent the mathematical
content of Noether's second theorem in this approximation of
considering only first derivatives of the ¢ 1(x) in the transforma=-
tion law for the field variables y,(x). 4
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The identity (5) represents q relations among the N Euler Lagran

ge equations for the field, they are sometimes called in the

literature as the Bianchi Identities 5, a name borrowed Relativity,

which is one of the domains of applicability of this theorem.

3. APPLICATION FOR FREE FIELDS

3.1 TIhe arbitrary group of transformations of coordinates in a
four dimensional Ricmann space

The field variables are the ten components of the metric tensor .

in four dimensions. The permisible group is the one correspondent

to general coordinate transformations,

§x* = e%(x) .

Then
’ %Léf 5 q=4 .

The transformation on Yy = g, are those induced by the transforma-

I
tion on the x%;
ax™  2xP
o RPYS
IxIt g g«x@ - g}w(X)- (gwsy * glvép )8,01, ’

g’:\/(X') =

_ ! _ ol oy A o
e = g (1) g, () =g 85+ 80006 -ENRy, g

Therefore, the symbols in equation (2) are here,

YzAi -—’Vpo; =0
—y = e e N - P
A T ALV

The Action integral for gravitation has a Lagrangian density which

contains up to the second derivatives of the field variables, but is
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linear in these derivatives, a fact that allows us to separate a
divergence in L,
- o
L =L'+ K,o-

where L' depends only on the first derivatives of S,N'

Our results should apply to L' but not to L. Nevertheless,
the Action W' assoclated to L' is a function only of g pv and [;f ’
and therefore is not invarlant under G, ,e This emounts to the
necessity of the consideration of a sub=group which satisfy the

boundary conditions,

E‘Ioo4 ) =0 3 x| =00
5°"}4(x) - 0
Then,
AW = §W! .

Under this G, , 8W' is permissible. Now, the identities (7) to
(9) do not hold anymore (since they came from a divergence contain-
ing €, and ¢ l‘) end we have only the Bianchi identity (8), which is,

'PV Uy c
-L + E. + ] 20 (10)
8 mp oup By * 8,p 8] 20 »
where,
L P = gFOL VP L p
The identity (10) can be brought to a familiar form if we write
explicitly the expression for L! uy?
Ly =/ Oy

G)w being the Einstein's tensor,
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R}N - % g}w R,
w = 67 Bupyd -
Bquation (10) is,
GB;H =0
which is the well known property of the Einstein's tensor. We have
proved that it comes due to the invariance of the Action integral

(4%

under 6604'

3e2 The first kind gauge trangformation in Minkowski space

We consider a vector field AP in the four dimensional Minkowski
spacey, and we look for the form of an\invariant L=:L(AP, AP’V),
under the transformation,

Aﬁ(y) = Ap(y) + €
| sxf =0,
which we call first kind gauge transformation. We are going to

IJ 3

prove that we can reobtain by means of the previous identities, the

correct Maxwell Lagrange density.

Here, q = 1, and the 5, Yy ¥ symbols have the rather simple

form,

§@= 0,
=0
- &P
(4 6/“

Also,
g’AF =61:.)u

since no coordinate transformations are involved.
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Therefore the identities (5), (7), (8) and (9) are,

Lf =0, (11)
Y
LM +<M 0, (12)
PP
2L
oL + =0 . (13)
aA)lw aAV:}i

Note that (5) and (7) are presently the same identity.

The symbol LI' is the seme as L* for & =p.
Identity (12) implies that,
oL
— 2 O
24P
and so, 2L
P=f =
B/ -
Bp/ 0P

The identity (13) implies that L depends on the derivatives of Aﬁ
only through the antisymmetric combination,

Bpyy - A»ap = Py
which together with (14) gives '
L= L(F}N) .
Finally the Bianchi identity (11) by using (15) can be written as
p 9
& ='3PP( . " 2% =0
! (). ) ' oF
P PP

These are the steps on which we can fix the form of L, and we must
only to add to this scheme, the requirement of Lorentz covariance;

which gives along with (17),



L=-—F FPP, (18)
2

and by (15) and (17),

LY =k ap FPH . (19)

The constant k depends on the system of units we choose. The Bian-

chi identity is then,

DHVF}“)E 0.
The field equations are therefore,

L“=kaPFP“=o )

ﬁpy= AP’V - AV?P °
Which are the Maxwell's equations (for a free massless vector
field). We have seen therefore that the field must be massless for
the invariance under the gauge transformation be maintained; a
condition which comes directly from the identity (14). Such identity
will be violated whenever the vector field has a rest mass differ-
ent from zeroj a conclusion which comes immediately from the Lorentz

Invariance of L,

ULy

which we see directly to be non-gauge invariant.

L =

This is a first example of the applicability of this theorem;
nevertheless, we did not obtain any now result, since the Maxwell
equations are a more familiar result to the physicists then an
involved theorem as the present one; and they are constructed in
such a way that we see immediately the gauge invariance, without

the need to go through elaborate methods to prove it. Nevertheless,
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this is a trivial example of the range of applicability of this
theorem; we have worked out a general prescription for obtaining
the form of L, given any function group. In principle this is
a stralghtforward procedure, which can be or can be not handled,
depending on the particular difficulties of each given transforma

tion group.

4, THE GAUGE GROUP AND THE DISCRETE INVARIANCE GROUP OF ELECTRO-
DYNAMICS
The gauge group of electrodynamics thought as a function group
contains an infinite number of discrete parameters. These para-
meters may be represented by the coefficients of the arbitrary
function A(x) when this function is expanded as a Taylor's powers

series of x around the origin.

1 2 A
/\( ) =/\(0) + Xd<-’0—/\°—‘> + - Xa'xp ———> + s00 (20)
0x~ /o 2 2x%x /o

The variation in the four-potential of the field being given by the
gradient of A

AF(X) = AF(X) + /\ap(X) o (21)

In order to preserve the Lorentz condition on the four-potential we
impose that A(x) be a solution of the wave equation 0OA= 0, over

all the infinite demain of x. From equation (20) it follows that

OA(x) = (D/\(x))o + x“(—%ﬂA) + = x% xP{ ——DA} + ...
0x o = x> oxP o

Thus, OA must vanish at the origin simultaneously with all its



23

derivatives.

@n, = o

(o) -
o
[/

<’0:°“be DA)O =0

00 COGOOEDOOOOESIOSTDS

From here on we consider the situation where A is an infinitesimal
function of x. We want to discuss the relations which may exist
between a function group such as the gauge group and the discrete
invariance groups of the theory. We consider as the discrete
invariance group, the homogenous infinitesimal Lorentz group, which
i1s given by the transformation matrix, |

x'P - pr d_V

L”y =6C+ EPV
.Epvz ng EP;\ = -Eyﬂ

where the Eware six first order infinitesimal parameters. We are
going to prove that a gauge transformation on the potentials of a
free fleld, satisfying the condition OA= O, can be directly related
to a Lorentz transformation. To mrove this we consider the transformation

on the four-potentials generated by the Lorentz transformation matrix
o

' 0
A 1 T ovmm— =
’J(X ) 0;;:}4 A“(X) (6

o ol
"l -&P) éo‘(X)

- - [+'3
-AP(x) .E /JAoc(x) .
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We can write to the first order in EP
2A
v o oate Oy sl VY = a oy K
1) = = + —— .
AR(X) Ap(x+<€vx) Ap(x) E"x<'c)x°“)g‘0

Thus

p b B

In order to write this variation in a form similar to equations

0
(20) and (21), we expand A, (x) and —-E-> o in Taylor's series
E=
about the origin and replace this expansion into relation (22).

0A
¢ _ a yf o7 2
A (x) -4 (x) = —va<—-;>= - € Aa(x) .

Since this expansion is multiplied by edp in (22), all its terms

will be of first order, but nevertheless we will have an infinite

number of terms

0 Y J &(0 )
A =A = -
W) =)= =% 8, (0) -x ¢ ax e (
4 2
- xy xy\ 8% _’a.__f—l:‘. + }. 601, .._a._._..A—cf
» Nox2mr /o 2 P \3x"xP o
plia (2 BT e Am) .
@ x X -— S—— ose
R A oaP) o 31 A \oxexoxPo

This equation now pbsess a similar form to that of the variation
given by (20) and (21). This means, both variations are entirely
written as power series expansion of X. By equating the coeffi- -

cients of the terms with the same power in those equations, we

obtain
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) e () L, (B
2xhax”/ o v ax"‘)o F\oxY /o

2 2 2
_UA ) s [ 2R r [ 2 ‘*A>
1x*)x9xP /o o\ 2x29x ? Jo P\ cx%9xf/o

However, the last terms on the left are three symmetric terms over
all indices where the R.H.S. terms are not symmetric. Thus we
need to symmetrize this terms. We obtain

2 o \
— S - A 0) (2401)
('JXP)o ¢ M oc(
1. (o) _ 1.4 (o)
- - —£ 2
( %ﬂ> 26 v Sy T3 u St | (24.2)
93" a0 1A (o) 140
T, =--&" %&ﬁ == 8 T Ep&xﬁ

¥ N
ix* 1xPx 7x /o T X TPART pALY
(24.4)

P
N = _2’. A gte) + g glo)
7zl 2xHP o RoTAp eeep H TAp eecHpa
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where the S(}fz are fully symmetric expressions inw lving the
derivatives of AF(A) at the origin,

sto) - OA\ - /aAO‘> (25.1)

}‘“ 2x% Jo K’Oxl" ()

2 2 2
so) [ 2 M) [2 A 224 (25.2)
pAY 21x19x% /o 2% %M /o 272zt /o
k-1
A
(o) _ 0 Kk 25.3)
ey T () - @
)"lgeae}-lk @x oaalax It O

Here Z ' means sum over all the permutations of }J,.,. Pxe

19c00
Now, it 1is egsy verify that the expansion represented by expansion (20)

where the coefficients are given by the relations (24) is a solu-
tion of the wave equation over all the infinite domain of x.

Indeed, from (24.2) we obtain:

(@A), = 0 (26)
as consequence of the fact that Slfli) is symnetriec. From (24.3)
we get
1
- _ A (o)
(I BN = = =&y S35 (27)

and from (24.4),

1 1
= _ oA (o) T A (o) &
in general, we will get
L\ 4 5(0) “
(o7 DA) | = - -—-4 °)... +
’J,.ge? M 0 <n+2> € /,(l )12 /Jn?\oc (29)
beh o) %, 5(0) x

Mo Sk ooy €l S Fieo« Ppog 2™
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.
It is simply to verify that Sﬁiz.. Fk°£ vanish as a consequence of
the field equations
DAF(x) =0
{ -
’JFA} (x) =0

which hold for all values of x. Therefore, all derivatives of OA
at the origin will vanish. This along with equation (22) shows
that DA vanishes for all value of x. Thus for free fields, we

can relate a gauge transformation to a Lorentz transformation.

5. INTERACTION BETWEEN FIELDS
5.1 = The second kind gauge transformation

Consider a complex matter field.6 with arbitrary spin, in
the Minkowskl space, this amountsto leave N arbitrary and to set

n=4,

The Lagrangian density is 1invariant under the one-parameter
phase transformation,
zp' _(peiél
€ = constant
Such trivial invariance property gives rise to the conservation of

the "current of probability",

j}l = -5;2;‘-_ ZP - (p* aL*
i 2
:/.l a’/'f

(for spinor field * means adjoint conjugate).

However, this invariance breaksdown if € = E(x)j% but since

this arbitrary choice of phase at different points, has no
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physical significance we must look for some new Lagrangian who
could be able to maintain the invaricnce under such transforma=
tion. Indeed, the introduction of a new ficld in L, such that
its variation cancels out all terms proportional to %H, can
reduce this problem to the case where € = constant 80 This
procedure being the converse of what we have done up to here,
since we have postulated a given transformation and tried to
find out the invariant Lagrangian density. Following this line,
9

we postulate a coupled transformation between the field A# and
the matter field, and look for the invariant L, this will be the

Lagrangian for the comnlex system.
Physically we may say that only the counlad cysitem as a vihole
is able to evertaken the arbitrary choise of phases £ =& ().
The transformations ares,
?Pﬂ = ?pelé(X)
Ql'* :?l/* e-ié(X)
», ) -
2% - , - ‘(-
Fooorm
which we call by sccond kind gouge transformaiion. Thel,
v, T4 *, A
o Uy
6:&‘3: C
VR
§4

(g2l
~

The symbols %, 7,7’ are
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My = 1%, 'Y.:’;x" 0
T]zP* = = 1 @*,7;3 =(3,up
1L =1 =0, el=o0
The equations (5), (7), (8) and (9) are
2L 2L
pPes = poayf — \ =0, (30)
0@,{3 Y ,'P)/”ﬁ
7L 2L 1L '
2(3(2 >+ LP’ +1 V-1 ?ﬁ* — = 0 (31)
A ¥
P’p /)4(’”‘ QV’F
L 2L
2 + =0 (32)
Mpp Ppp
= * oo
1L¢’V—LU’ L?‘t*-Lw-O (33)

Here, szis a short for,

2L " 1M
L,= =—— =3 _[— 1,
viooapx "4',0»)

\\

with a similar expression for L,y
: v

Presently the identity (33) is the Branch identity from (31)

we get
2L
j +—=0 (34)
A
where
2L L
jﬂ:i-—-—— V-j_@* —~ o (35)
7,, s,

The identity (32) which is formally the same for the free. case
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implies that,

. A . £ 6)
L = L%, U*, @9;:2 f‘&@}u? A!ug F’}“,) (3
Using (35) we rewrite (%0} zz.
9i:j i
But,
P L /LN L 1 2L
el T e 2 el )
] ? [ i
A.J 3 ﬁ,ﬁ@/ v 9 PU
Then,
3 . L
T = £ e °
9% I %A
N\ aJ
And the identity (37) is,
) PR \
’&ﬁ{ ’“m‘g“‘#’}jijriioo (37%)
; \aﬂﬁj [
For the Bianchi identity we have
b T ;[ 2k (331)
i ?m?*Lg,?mé’h ram—— EO )
P
Therefore we have reduced the identities to only three independent
ones,
12 Ff&‘[b
Ferszo,
ﬁAﬁ

E E 3

L=1L (%% ﬁ;%wa Yo AF; gpy> 3 (36°)

)
3

(L, V=% ) [T 0
de (Ly U= % Ty, = 0 1 =)= 0 4
v A e & 7A

P

the identity (34) means that Ap appears always pair-wise with jFo
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Now we incorporate In this scheme the requirement of Lorentz
covariance, this allows us to separate explicity the dependence

of FFV in L’
L = Ly (%; ¥+, ?// ;Y " A+ £(F,)

k y
r(FPV) == F}w F/‘ + waﬂv(ga, u*) P
The first part of f(F)”) being just the free massless Lagrangian
density for the spin 1 flelds. The second part represent a coupl
ing between va and the antisymmetric second rank tensor

Quf Y Y*) build up with the field variables of the matter 10,

Examples being as follows,

Spin 1/2 ‘Q’pv= M v [
Spin 3/2 Q=T o ¥
Spin 1 51}“,:?’}“,
{with mass) ‘
Spin 2 AQ.IUV= 0, we have only Q‘pvpcrﬁ 0

(without mass)

Such interactions in the non-relativistic 1limit give rise to

anomalous magnetic moments to these particles.

The identity (34) can be interpreted as giving an interaction
j},AH, but we can do a little more of algebrism in order to
bring this identity to a more familiar forms:

Define ’
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a’;p =2P’H -1 A’Jw’

(38)
* 3 %

?p;F —?P,P +1a9
Then,

2L Mm%, L

-— - Y
aﬁp 3%¢ a%p Z%F
2L oL
* * ?

9¢,H 2 Y

2L AL Y L w* 2L
_ n'+9-* Y _ pe 1 0 2,

%y W, 9A}! %o VA w’p w;y
By using the definition of jH, and the two first relations written
previously

' ? 7L

jP = 1 — (/j - i?p* -——? L

2L
Combining this with the 5;— calculated above, we see that the
¢

identity (34) is satisfied.

Thereforey we have proved that AP appears in L only through the

combination (38)3; which is the usual gauge invariant prescription
of doing,

?F¢_>(a/»‘~ i Alu)y')
* *
a -’(a + i A ) °
p @ L ¥
Finally, the Bianchi identity has the meaning of the conservation

of the total charge of the matter field if the equations of these
fields are satisfied,

Ly =Lys =0 DPJP=0.
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Note that such conservation law does not call for LP = Q.

The correct factor involving the charge e is obtained when we
take,
€(x) = e x(x)
which is equivalent to replace i by ie in all previous relations.

Another interesting property, comes from the fact that the
electromagnetic interaction is obtained by the replacement of —

AxF
by @;P, which looks like some kind of "covariant derivative", in

3 ¢

¢
the same sense that we need to replace — (if ¥ is not a scalar)
axH
by the covariant @,p when we go to consider gravitational inter-
’n
actions. The same analogy will be present in the case of the

Yang Mills interaction.

Again we have obtained very well known results, which are used
frequently without the necessity of going through elaborated
processes than guessing that the replacement (38) in L, is suffi-
cient for taking care of the invariance of L under the coupled

transformation of ¥, ¢* and A
*

us ¥ N i .
g %5/' giV g ayy '

. *
/

”

a0 -

This fact 1s by no means a draw back to the method presently
reported, the reason being that such method has the real advantage
of its own generality, which allow us to get a more profound in-
sight into the process; for instance it allows to see that ap-
parently all boson fields are coupled to the matter field by the
Similar introduction of "ecovariant derivatives", where the affine

connection is given by the strength of the boson field.
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5.2 = The isotopic gauge of Yang and Mills
As is known, the fact that the proton and the neutron may be

considered two different charge states (positive and neutral) of
what is known as the nucleon, suggests the introduction of an
"isotopic spin" quantum number to characterize these states.
Furthermore, the strongly interacting particles has been grouped
in isotopic multiplets, where the components take values of T3,
the 3-component of isotopic spin or isospin T, ranging from -T to
T,

The conservation of the isotopic spin in strong interactions
holds so far the interactions are invariant under rotation in an

"internal space" called "isospin space".

In what follows, we shall work in the domain of this type of
interactions. Electromagnetic fields will not enter in the

discussion.

Let's begin by noting that the analog of the second kind
gauge transformation can bhe heré obtained as follows: the Lagran-
gian density for the free nucleon field is invariant under rota=-
tions of the isotopic axis. This implies that any orientation at
a given point xf' is physically similar to any other, and 1s

therefore unobservable.

The transformation law of the nucleon field under infinitesimal

rotations of isotopic axis is:

3
bU" = 1 T2 € 1) 0"
c=1
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where ?&c) are the isotopic spin matrices for isospin 1/2 . The
rotation have been made around the iso-vector E’by an infinitesi-
mal amount €. Since g is independent of xf‘, at all points the
isotopic axis will be turned around the direction of € in the

Same way.

Therefore, the rotational symmetry in the iso-space, implies
that the Lagrangian of the nuelon field has an extended or non-

local kind of invariance law.

Since one of the most common concepts of field theory is the
local character of the system, it aﬁpears that such discrimina=-

tion of the fixation of the components of ¥ for all xM is too

strong.

We should like to have a formulation where the discrimination
of proton and neutron is arbitrary at each point, or equivalently:

a local isotopic spin rotation law, under which the Lagrangian is

invariant.

Mathematically this -amount to consider the direction of rota-
tion as function of (xu), and therefore the underlying isotopic
spin space of this local (p-n) symmetric theory is deviated from

its previous euclidian structure.

Similarly to the case of electromaghetic interactions in the
coordinate space, some sort of field must be present in order to
counteract the terms inVQH}l. As we are going to see, such
fileld gives a curvature (locally) to this space.

The complexity of this local theory is comparison with the
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previous situation, is the price we pay in order to avoid un~
physical terms as -é: y in the Lagrangian . Such complexity is
just the same which exists between any Lorentz-covariant theory
and a general covariant theory, where we have the necessity of
introducing non-linear field equations in order to maintain the
covariance (in General Relativity which is an example of a
general covariant field theory, we need to introduce the scalar
curvature-which is quadratic in the first derivatives of the
field variables, as the Lagrangian). In spite of the mathematic
al complexity, these general covariant fields theories have more
physical insight, since they are local in structure (nevertheless,
we are vary for from having a reasonable mastering of the propert

les of these theories), we will return to this point later on.

'Following our liné of approach we look for the possible trang
formation law of this new field. First of all a term EiP need

to be present (as 69 is for eleetromagnetic gauges) which

H
implies that the field has isotopic spin 1 and spin 1, this term

is independent of any rotation of axes; another term giving ac-
count of the rotations must be present, since we have € for the
rotation of iso-spinors, we shall have 2 € for rotation of iso-
vectors; therefore this terms is,

2 §; x ¢

if we call the field by 5; (the arrow means as before, the vector

character in the iso=-space). Then,
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We want to find out the invariant Lagrangian under the coupled

transformations,

§1P“=i€’.%’¥,
8qf=-i{]{.g-€—’
SB}J:‘@-’/J+ZBPX€,
8xH =

the symbols §, VE ¥ are presently

50 =0, B =Faf =0,

73 = -1 % s VplifG%k B}jn ’
i

ﬁ"i’t’i‘?’ Tk 26;381:’

the symbol _ means (T,*) in the iso-space and T in spin times p=
’Yo, we also note that the “-c*matrices are hermitian in the iso-
space; latin indices indicate iso-spin variables which run from 1

i

t
to 3. The symbol € 3k is the permutation symbol for 623 =1, in

this order.

The identities of the Noether theorem, are presently:

®PL§+1 T V-1 ¥ 1 + £t x B =0, (39)

A
'&qf’P NP DB;;,P/
2L 2L oL oL
1P +1 NV -1y + gl .kBj +of =0,
« Np qj « aw,p A oBE 28K

ﬂ,P P,F (40)
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2L oL
+ =0, (41)

K "

B 0B
Posp pop
H _
1L TY-17 % L_+ H =o. (42)
' 1 Y-y " i € 5 B) - 1,

The last one being the Bianchi identity. By (41) we see that the
derivatives of Bk appear in L only through the antisymmetric com-

bination, P’OBk OB
gpk =P - -fi (43)
[poF] " 9P " oap Eo,ﬁ]

k k i
wh = B, d therefore is
ere f[-P '3] fl-P PJ is a function only of an

constant through the differentiation in (41).

Therefore, the Lagrangian derivative I{; is,

I,}p{ - -?LE— _éH aL E -?—E— - }-'D,’l 9
k k k 2 k
o ") e T \2pa
2L
=P/ — 1\ .
Lﬁ,P 33'1;

From these relations we verify that the divergence of the identity
(40) gives (39), which means that they are not independent.

Now, from (40),

L 2L -~ 2L , 0L
k+iﬂf 'L‘k'if-iq;%k—:-—-v-&i ik Bf‘ . =0 . (44)
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Define:
b =¥,y - 1T By (45)
lpi}* =q;7}.l P K
Then, {
2 oL %, L 9%, 1 oL C¥w]
= i 0¥ + - %; a =
X . X o, ook 27 k
ZBp D?}H 'DBP @V,F QBP [(pv] 0B
1
"oy - L 1 21 O]
EE R S + —— e -
k k = POk
? tP’P oY 3P z (p[}: V] 2 BI;
substitution of this into (44) gives,
9L 1 ”fr}w]
6P el . BI 4+ = =0, (46)
2k y — 3k 2 X
Py aBP
which can be solved for f%P ;» we find:
i - i J k
f[)JV_]_-ZE jkB}i By.
Therefore (45) takes the forms:
98, 0B,
— M v — —
= - -2 B B (47)
Pl 2 0xH n |

[ < i =
This expression is invariant under the transformation B,—>B,+ 8B,
similarly to what happens with the electromagnetic field strengths

in relation to the gauge transformation of the potentials.

The field EL is contained in L both by means of the "covariant
derivatives" (45) as well as quadratically by means of @Tﬂvﬂ'

This means that the field equations are non-linear in B,.

R
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Now we use Lorentz invariance and recall that the Lagrangian
density for the free matter field is the well known expression
for free nucleons; all this together allows us to write the
complete Lagrangian density:

1

== 7] 5 T B -n Sy,
L--4<9[M<P[’“ -qwi*(a}j it BF)‘E mdy (48)

g
Before going on, we want to stress the analogy between<p[pv]
and the Riemann tensor, in the term §; x §; similar to the term

i B B has the
I’ in R spo” Naturally the linear term B = B, , has

R H 2

same analogy.

Indeed it was this analogy who gave to Utiyama the first idea

on his work about this subject. 8

We see that the "generalized" space where the interaction takes
place,y, has a curvature given bY'¢?}nq3 such curvature comes from

the local arbitrariety of defining the triplet of directions €(x).

Gravitation is not present since we have imposed Lorentz

invariance (the coordinate spacé is a flat space).

Truly speaking, this local generalized space is seven dimension-
alj by the same taken the generalized space where the electro-
magnetic interaction i1s a five dimensional space (x, €(x)) which

has a curvature FPV along the fifth axisal2

Such multi-dimensional spaces have been ccnsidered by some

physicists (for instance Rayski in Poland) for the classification

of the elementary particles.

From (48) the field equations are obtained as follows: 13
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JH=11E7'U’~P.

If they are satisfied, the Bianchi identity (42) implies in the

. 14
conservation of the total isotopic spin of the system:

DFETP= 0,

OT o ]
— —
b},(J“-v-ZB,,st'[PV)'-'O ’
if we call,
The2 s x g D =K,
E7‘4»5,8' is the

(note that, TT“= pr4'by ¢F[Pf]) then j\dB X ,
X 13 is

isotopic spin current for the total system; andQJ d3 x
the total isotopic spin.

Yang and Mills 12 impose the subsidiary condition,
FH
’;)—}-c-lz =0
in order to drop out the scalar part of each one of the three
iso-vectors-mesons (T = 1, S = 1) which are coupled singly to the
nucleons by means of (48),
Lint = 3/:‘511
they are the analogues of the condition,
(I
2xP

of the electromagnetic gauge-.

=0



42

Then, they make the quantization, and conclude that these three
isovector vector mesons can have all the three states of charga:
(+ 1, 0y =1) which will be observable when we Introduce external
electromagnetic interactions on the system. We shall have the

vertices of Feynman diagrams.

-~~~ B line

N line

Similarly to the vertices in quantum electrodynamics. But this
is not the whole history since the B field is non-linear, we

can have interactions corresponding to the diagrams

i
|
|
[N /'\
\
/ N // N

which are absent in the electromagnetic situation.

Nevertheless, the mass of the ﬁ; field is not well defined.
From the equations of motion (page (29)) we could say that in
absence of nucleon currents EL = 0y the mass of the E; is zero:
this is not true in general, since BP interacts with itself
(scond term in the equation). Therefore, a line = = = indicat-
ing the propagator for the B field, can have all kinds of
internal lines depending on the order of expansion of the scat-
tering matrix elements in the Interaction Representation; the

Feynman digram being, for instance:
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_— -
- ~ P -

/ \ /
/ \ : . / / \ \

In general,

These diagram give divergent matrix elements, therefore the

determination of 6mB is not well defined.

5.3 = Interaction between the matt field and tern
avitat al field

In our language, matter field is any field in the framework
of the first quantization and therefore nothing has to do with
the sources of gravitation which are in this case the matter in
bulk, we can formally write down the interaction between gravita
tion and the matter field however, as it is clear the gravita-
tional field will be always an external field, and therefore a
classical field.

This interaction is obtained by taking the transition,
Lorentz invariance ————» Generaslized invariance

which is equivalent to say that the aF o coefficients of the Lo-

rentz matrix must go over arbitrary functions,

l“: P p-—?‘P P:P
x a 0 x a 0 X £ (x)

this is just the statement that locally we never will be able to
determine a inercial frame of reference (as we did in restrict

relativity) which is one of the basic ideas of Einstein's 1916
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theory.

Since the choice of reference system turns out to be an ir-
restrict matter of choice, all the theory would be without any
significance unless we have some agent able to overtaken such
arbitrariety. This comes from the requirement of general covar-
lance, which says that the field equations are to be symmetric

with respect to the arbitrary coice of coordinates.

In our language used up to here, this is the statement that
gravitational fields are the agent who takes care of disguising
the non-physical coordinates, in the same very that Ay takes
care of the local arbitrariety in the choice of phases in V¥,
and E} in the arbitrariety in the orientations €.
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1l.

We shall not treat more than first derivatives of yA(x) in L, since there
is no case of interest with such behaviour (non-local field theories will
not be treated here), even the gravitational Einstein's Lagrangian densi-
ty can be brought to this form by neglecting a divergence.

Since all known function groups in physics are also Lie>groups, we shall
restric our discussion to this kind of groups.,

We mention that [‘p is determined up to the curl of an arbitrary second
rank antisymmetric tensor. Presently this is not relevant, since we
always have the divergence of [ P and mot | P itself.

R. Utiyama - Supp. Prog. Th. Phys., number 9, 19 (1959).

P, G, Bergmsnn - Problems of quantization, Note of the Institute of
Mathematics of the University of Rome (1958).

We call by this name any field, with exception of the electromagnetic and
gravitational fields.

*
Since then, the terms (P,F ZLS’P in L are not invariant.
R. Utiyama - Phys. Rev. 101, 1957 (1956).

We are guided by some amount of ’intuition, since it could be possible A
were not sufficient for the determination of an invariant L in this situg
tion we must look for another field. In a quite general situation it
could happen that it does not exist L for any field.

We observe that in this coupling derivatives or ' will give nothing,
since terms as,

% T wy
have a null Fourier transform. This implies that spin O fields cannot

have an anomalous magnetic moment since this is the unique way that such
fields could couple to Fluy.

Such terms have no physical significance, in the same way that the choice
of coordinates in a generally covariant field theory is a matter of irres-
tricted arbitrariety. This new isotopic space of all the directions

-
€(x) is a sort of general covariant theory, where the "coordinates" are
the directions ¢ (x).
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12.

15.

Which the tensor F pv plays the formal role of a curvature, was demons-
trated by S. Mandelstam 15 _ Quantum Electrodynamics without potentials;
and Quantization of the gravitational field. (See reference 15).

Co No Yang, Ro L. Mills - Phys. Rev. 96, 191 (1954).

- »
Note that here we need to impose at the same time: L4’= L$= L = 0,

whereas for charge conservation, only L?l:‘: L-= 0 is necessary. This

¥
comes from the fact that AH has no charge.

S. Mandelstam, Ann. Phys. 19, 1, 25 (1962).



