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ABSTRACT

An approximate solution of the field equations of Einstein-Maxwell's
theory is obtained for cylindrically symmetric metric due to oppositely

charged clusters of particles moving in circles in counter directionms.
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I. INTRODUCTION

After Melvin' discovered his magnetic universe as a
singularity-free solution to the Einstein-Maxwell equations in general
relativity, Thorne? has considered the physical structure of such a
universe having no matter anywhere. He showed that Melvin universe is
an absolutely stable universe under radial perturbation. Som® has
obtained explicit solutions where matter coexists with cylindrically
symmetric axial magnetic field. But the magnetic field is source-free
in this case too. Later Banerji“ introduced source in the form of a
conduction current in the azimuthal direction inside a perfectly
conducting dust. Though the solution can be matched with an outside
magnetic field solution due to Bonnor®, the Melvin magnetic universe

cannot be fitted with dust distribution in this way.

In the present paper, we propose to study the case where
the cylindrically symmetric axial magnetic field arises solely due to
steady motion of charged particles. The distribution considered here
is in the form of two clusters of oppositely charged particles moving
in circles in counter directions, so that the net angular momentum is
zero and the system as a whole is electrically neutral. In view of
difficulty in finding an exact solution, we have found a approximate
solution. For a particular choice of azimuthal current, the approximate
solution describes a cylindrically symmetric axial magnetic field wholly
within the bounded distribution and outside exterior solution is again

that of Marder®.

II. BASIC EQUATIONS

LS

For regions in which there are both mattertand electromagnetic
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field, the Einstein-Maxwell equations are

Ry - & R/2 = - 8rG(T, + E )/c*, (2.1)
with
e L ege) ¥y i) | (2.2)
and
Lo (B S F i) /() (2.3)
th

where p(i) is the matter density of i~ group of charged particles
having velocity u(i) and uo is magnetic permeability. In the
present case there are only two groups of oppositely charged particles,

so that i = 1,2. The Maxwell equations are

AV
(/9 F )y oy € 7ad (2.4)
o}
and
F =0 ; o 2.5
[uv;p] . (2.5)
we are using
F- =A - A

For the cylindrically symmetric system, we number the coordinates
cty, r, 2z, ¢ as 0, 1,2,3 respectively. So for a purely axial magnetic

field, the only surviving components of Eﬁv are Fbl = - F1y' Equation
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(2.5) s then automatically satisfied, since F,, is a function of

radial coordinate r only. Therefore Ej = -E} and T =T2 =0,

so0 that we obtain
(2.6)

and then the metric may be taken in Wey]‘s canonical form (Synge7)

2R ~ 20, 2B - 20, 2 .20
- € s - € s r e )

i . 2¢,
9w = diag(e ™ , , (2.7)

where o and g are functions of r only. Let us define u. o as

(1)

U o]
U(l) = (U ,09 0, w/c) s
(2.8)
u
u(z) = (UO s 0: Os 'w/c) s
and p(l) = p(z) = p/? and
3
F ==-cB/r . (2.9)

Then from equations (2.2), (2.3), (2.8) and (2.9) one obtains

T, = diag[ o(c? + w® r? =29, 0, 0, - pw? r? 720 ] (2.10)
and

U - -
E, = (2u,) e *P 8% diag( 1, -1, 1, -1). (2.11)
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From (2.4) one obtains
P (eug)” T me (2.12)

where the subscript 1 means d/dr. Since the axial magnetic field is
considered to be only due to the circular motions of oppositely charged

particles in counter directions, the azimuthal current Js must satisfy

the condition

i%= ke o/c " (2.13)

where k = q/m 1is the specific charge of each particle.

III. APPROXIMATE SOLUTIONS OF THE FIELD EQUATIONS

From equations (2.1), (2.7), (2.10) and (2.11) one can write
the field equations explicitly as

(- af + 8/r) €7 [ane/(a, ] B e, (a)

2

(@) +8,,) e 7w gnafou’ v &7+ B &7B/(2u )]/c" and (3.2)

(<20, + af - 20,/r +8,,) € 0o grap et 4 pu® rt ™%

+ B a"ﬂ/(zuo)]/c“ ; (3.3)
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and from (2.12) and (2.13) |,

kap = - 2@~ 2B B,/(u 1) . (3.4)

Combining (3.1) and (3.3) one gets
LR (o e, T )
and from (3.2)
B* =u_ c*(- o +8/r) &*® /(4n6) . (3.6)
Now eliminating p and B from the set (3.1)}to (3.4) one obtains

[e’"‘(m,1 + oy /r)-K B"’J [al (e2® + 242 r’/c?)- wir/cl- kar/czl =0 (3.7)
and

2
kwr [e“‘(a“ + oo /r) - K B] =~ Kc® (™ + 22 r2/c2')B! (3.8)

where K = 47 G/(uoc") .

The system of equations (3.7) =~ (3.8) gives rise to two possible

cases:

-

e*® (0, a/r) - KB =0

A)

B =0
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and

al(eza + 2w2_r2/c2) - w?r/c?- kuwBr/c? = 0

B)
kaor [ém(a11 + al/r)-KBz]= - Ke* (e*% + 20’r?/c®)B, |

2(!(

Case A) e (o, +a,/r) =K B

11

where B = const

2

Hence e°% = (K 82/4)(r/£)2[(r/r1)£ + (r}/r)z] , (A.1)

and from (3.6) and (3.5) we get

&8 = (r/r ) (1) [(r/rl a <r1/r>‘]“ (A-2)

and

p=0 (A.3)

where r, , L, r, are constants of integration. The solution

corresponds to exterior field pkevious]y obtained by Ghosh and Sengupta(8).

Case B represents the axial magnetic field due to the distribution we

are considering. Now the system of equations B reduces to, for w= const,
(2% + 2w? rz/cz)[keza + 20® r?/c?) allf]l -
2,2 200 2 2,2 2
-rEn /¢ - ("7 + 2w r°/c”) al/i]

+ sz(ru11+ al)eza /et =0 (B.1)
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where K = kz/(K cz)

In view of diffuculty in finding exact solution, we try an approximate
solution in powers of ruw/c<< 1 which implies that r=r, defines
the range of the distribution in such a way that p(r > ro) =0,

Let us put y = «® r?/c®. Then (B.1) reduces to
200 2q, 200 i
2(e"" +2y) '}.al(e + 2y)] -1 - ZoL1 (e +2y)] +
1

+ 2 (20, + 20, y)e®® = 0 (B.2)

where the subscript 1 denotes differentiation with respect to y. Now

let us suppose
2o =ay+by*+0(y® (B.3)

a constant additive term is unnecessary since for £ = const we find that

£e’® is also a solution of (B.Z) if we substitute y by z = £y and

reinterprete the subscript 1 as d/dz.

Now substituting (B.3) in (B.1) and collecting terms

independent of y one obtains for w = const
a(a +6+2)+4b =1, - (B.4)
The first equation of the system (B) now reduces to

B=wa-1+y(a +2a4+2b)]/k + 0(y?) . (B.5)

Since our solution should correspond to a solution B =0, when k =0

J
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i.e. when the particles are unchakged, we put
a-1= e + O(Kz) (B.6)

and

a? +2a+ab = g + Q(Kz) , (B.7)

where e and g are consténts independent of « . Then (B.5) reduces to
B = ku ¢ wle + gy)/(4mG) + O(y®) + O(k®) . (B.8)
Now from (3.1) one gets
dB/dy = €2k /2 + (1 + 2 ex)y/2 + 0(y2) + O(x")
which on integration gives
e®® = h[1 +y*/2 e y(e s y)] +0y%) + 0(c) . (8.9)

We take the constant h of interation as 1 in order to‘have 9,, = -1

on the axis.

An expression for p is obtained by adding (3.2) and (3.3),
p=w [1-7y+ke+ Zgy)] /(27mG) + 0(y?) + O(k’) . (B.10)
For r -» r, one must have

Bru_ mpur(r =) =ku, ¢ u(ryw?/ct - r* w/c?)/(4n6),  (B.11)
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so by comparison with (B.8) we deduce
and g =-1 (B.12)

the corresponding values of a and b satisfy (B.4) .

The expressions for g , g9,, » p and B correct up to the

order of r /c which appears in the Towest order in x are thus

9., = 1 + (rw/c)” - ‘(rw/c)"' +er(r? - r¥/2)(we)* | (B.13)
g, = -1+ (re/c)® - 5(ru/c)*/2 + cr?(r? - rz/g)(m/c)“ , (B.14)
o= [1 - 7(ru/e)* + k(r? - 2r2)(w/c)2]w2/(2ne) . (B.15)
B=ku_ w’('r: - r?)/(476) . (B.16)

For k ='0, the solution goes over to that of Teixeira and

Som (9) for uncharged distribution.
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