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Abstract

We present an anisotropic correlated electron model on a periodic lattice, constructed

from an R-matrix associated with the Temperley-Lieb algebra. By modi�cation of the

coupling of the �rst and last sites we obtain a model with quantum algebra invariance.

yPermanent address: Instituto de F��sica da UFRGS, Av. Bento Gon�calves, 9500,

Porto Alegre, 91501-970, Brazil

zPermanent address: Centro Brasileiro de Pesquisas F��sicas - CBPF, Rua Dr. Xavier Sigaud, 150,

22290-180 { Rio de Janeiro, RJ { Brazil

e-mail address:

(a)angela@if.ufrgs.br , (b)jrl@maths.uq.oz.au, (c)roditi@cat.cbpf.br.



{ 1 { CBPF-NF-001/97

Since the discovery of high Tc superconductivity there has been a great interest in the

area of integrable highly correlated electron systems. Notably for many years the Hubbard

and the supersymmetric t� J models, which are both exactly solvable in one dimension,

stood as the prototypes for such types of models. Subsequently other correlated electron

models have been formulated [1{3].

In this letter we present a new q-deformed integrable electronic model following the

approach of [4], which consists of using the Temperley-Lieb (TL) algebra to obtain so-

lutions of the Yang-Baxter equation. In [3] this was achieved utilizing a 4-dimensional

module of Lie superalgebra g`(2=1), here we proceed along the same lines by investigating

the corresponding module of Uq(g`(2=1)) in order to obtain a representation of the TL

algebra.

The procedure adopted in [3] involved a symmetry breaking transformation so that the

resulting Hamiltonian, de�ned on a one-dimensional periodic lattice, was not invariant

with respect to g`(2=1) but rather its even subalgebra g`(2)
 u(1). For the present situ-

ation, the usual impositon of periodic boundary conditions has the e�ect of also breaking

the Uq(g`(2)) 
 u(1) symmetry due to the non-cocommutativity of the quantum algebra

generators. However we will show, following the methodology of [5{8] that a quantum

algebra invariant closed system can be de�ned by the introduction of an operator coupling

the �rst and last sites into the expression for the Hamiltonian.

Let fjxig4x=1 be an orthonormal basis for a four-dimensional Uq(g`(2=1)) module V .

The quantum superalgebra Uq(g`(2=1)) obtained by deforming g`(2=1) has simple gener-

ators fEi
ig

3
i=1UfE

i
i+1; E

i+1
i g2i=1 which act on this module according to

Ei
i jji = �

�
�ij + �j4

�
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E3
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�
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�
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where

[x]q =
qx � q�x

q � q�1
; x 2 C :

The quantum superalgebra Uq(g`(2=1)) carries the following parity

[Ei
j] = ([i] + [j]) (mod:2) ; (2)

where [1] = [2] = 0; [3] = 1, and by consistency the parity of the basis vectors is chosen

to be

[j1i] = [j4i] = 0 [j2i] = [j3i] = 1 (3)

Associated to Uq(g`(2=1)) there is also a co-product structure

� : Uq(g`(2=1)) ! Uq(g`(2=1)) 
 Uq(g`(2=1))

given by

�(Ei
i) = I 
 Ei

i + Ei
i 
 I i = 1; 2; 3

�(Ei
j) = Ei

j 
 q(E
1

1
�E2

2
)=2 + q�(E

1

1
�E2

2
)=2 
Ei

j i; j = 1; 2 (4)

�(Ek
` ) = Ek

` 
 q(E
2

2
+E3

3
)=2 + q�(E

2

2
+E3

3
)=2 
Ek

` k; ` = 2; 3

Everywhere we shall use the graded-tensor product law, de�ned by.

(a
 b)(c
 d) = (�1)[b][c] (ac
 bd)

Following a strategy analogous to the one employed in ref. [3] to contruct an hermitian

Hamiltonian, we now consider the operator

T = j ih j

where j i in an unnormalized vector of V 
 V de�ned by

j i =
�
q�1=2j4i 
 j1i + q+1=2j1i 
 j4i

�
(5)

+
�
q�1=2j3i 
 j2i � q1=2j2i 
 j3i

�

and

h j =
�
q�1=2h4j 
 h1j + q+1=2h1j 
 h4j

�
(6)

+
�
�q�1=2h3j 
 h2j + q+1=2h2j 
 h3j

�

A straightforward calculation shows that

T 2 = [2(q + q�1)]T (7)
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and, using the fact that j i spans a 1-dimensional submodule of Uq(g`(2=1)) (see [3, 4])

(T 
 I)(I 
 T )(T 
 I) = T 
 I (8)

(I 
 T )(T 
 I)(I 
 T ) = I 
 T ;

such that T provides a representation of the TL algebra. This can be used to obtain an

R-matrix by the transformation [4]

�R(u) = PR(u) = I +
sinh(u)

sinh(� � u)
T ; (9)

where cosh(�) = (q + q�1) and P is the Z2-graded permutation operator de�ned by

P (jxi 
 jyi) = (�1)[jxi][jyi]jyi 
 jxi ; 8 1 � x ; y � 4.

It is easy to check that it satis�es the Yang-Baxter equation

(I 
 �R(u)( �R(u+ v)
 I)(I 
 �R(v)) = ( �R(v)
 I)(I 
 �R(u+ v))( �R(u)
 I) (10)

A local Hamiltonian can be de�ned by [9]

Hi;i+1 = sinh(�)
d

du
�R(u)i;i+1

����
u=1

= Ti;i+1 ; (11)

where on the N-fold tensor product space we denoted

�R(u)i;i+1 = I
(i�1) 
 �R(u)
 I
(N�i�1) :

Finally in view of the grading the basis vectors of the module V can be identi�ed with

the eletronic states as follows

j1i � j+�i = c++c
+
�j0i ; j2i � j�i = c+�j0i ; j3i � j+i = c++j0i ; j4i � j0i

allowing Hi;i+1 to be expressed in terms of the canonical fermion operators as

Hi;i+1 = qni;+ni;�(1� ni+1;+)(1� ni+1;�) + q�1(1� ni;+)(1� ni;�)ni+1;+ni+1;�

+ q�1ni;+(1� ni;�)ni+1;�(1� ni+1;+) + qni;�(1 � ni;+)ni+1;+(1� ni+1;�)

� S+
i S

�
i+1 � S�i S

+
i+1 + c+i;+c

+
i;�ci+1;�ci+1;+ + c+i+1;+c

+
i+1;�ci�ci+ (12)

+ qc+i;+ci+1;+ni;�(1 � ni+1;�) + h:c:� c+i;�ci+1;�ni;+(1 � ni+1;+) + h:c:

+ ci;�c
+
i+1;�ni+1;+(1� ni;+) + h:c:� q�1ci;+c

+
i+1;+ni+1;�(1 � ni;�) + h:c:

where the c(+)
i� are spin up or down annihilation (creation) operators, the S0is spin matrices

and the n0is occupation numbers of electrons at lattice site i.
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Thus we obtain a Hamiltonian describing electron pair hopping, correlated hopping

and generalized spin interactions. We notice that in the limit q ! 1 we recover the

isotropic Hamiltonian discussed in [3].

By means of the quantum inverse scattering method [9, 10] it is possible to show that

the model is integrable. Basically, by this procedure, the Hamiltonian (12) is related to

the transfer matrix of a graded vertex model [11] (see also [12]), constructed from the

spectral parameter dependent R-matrix. The associated Yang-Baxter algebra implies the

commutativity of the transfer matrix for di�erent spectral parameters, which reects the

integrability of the model.

The global Hamiltonian takes the form

H =
N�1X
i=1

Hi;i+1 +HN1 : (13)

It is not invariant with respect to Uq(g`(2)) 
 u(1) since HN1 6= H1N reecting the non-

cocommutativity of the co-product. However, by modifying the above Hamiltonian we

can obtain a quantum algebra invariant model as follows [c.f. 5- 8].

Let � denote the braid generator de�ned by

� = lim
u!1

�R(u)

= I � e��T (14)

which satis�es the braid relations

(� 
 I)(I 
 �)(� 
 I) = (I 
 �)(� 
 I)(I 
 �) : (15)

Setting G = �12�23 � � ��N�1N , then it follows from the TL relations that

GHi;i+1G
�1 = Hi+1;i+2 ; i = 1; � � �N � 2

We now de�ne

Ho = GHN�1;NG
�1 (16)

which can be shown to satisfy

GHoG
�1 = H12

and set our new Hamiltonian to be

H =

N�1X
i=1

Hi;i+1 +Ho (17)
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satisfying [H;G] = 0 and additionally invariance with respect to the quantum algebra

Uq(g`(2)) 
 u(1).

The details about the Bethe ansatz solution of the present model will be developed

elsewhere.
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