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1 Introduction.

In this paper we study two problems:

1. How to include the running coupling QCD constant in the BFKL equation {1];

2. The contributions to the solution of the BFKL equation which originate from infrared
and ultraviolet renormalons. :

To demonstrate why these two problems are important for the low x physics, we review the
main points of our strategy in perturbative QCD approach. We start with perturbative QCD
( pPQCD ) in the kinematic region where the parton density and coupling QCD constant (a,)
are small. Each physical observable (i.e. gluon structure function) can be written in pQCD as
following series:

2G(2,Q%) = Zpeo Cnla,)” - (L™ +apn1 L™ . a0) , . (1)

This perturbative series has two big problems:
1. The natural small parameter «, is compensated by large log (L). The value of L depends
on the process and kinematic region. For example in deeply inelastic scattering (DIS):

2
L = loga% at Q* > Q: but z ~ 1

L = log(l/z) at Q*~ Q% and z — 0
L =logQ? -log(l/z)at Q* » Q% and z — 0
L =log(l-2) at Q*~ Q% and z — 1

Of course it is not the full list of scales. The only that we would like to emphasize that L
depends on the kinematic region. Thus to calculate G(x,Q?) one cannot calculate only the
Born Approximation, but has to calculate a huge number of Feynman diagrams.

2. Cny — n! at n » 1][2]. Means that we are dealing with an asymptotic series and we
do not know the general rules of what to do with such series. There is only one rule, namely to
find the analytic function which has the same perturbative series. Sometimes but very rarely we
can find such analytic function. For this case, this is the exact solution of our problem. However,
the general approach has been developed based on Leading Log Approximation (LLA). The idea
is simple. Let us find the analytic function that sums the series:

zG(m,Qz)LLA = LazoCh (0, - L) . (2)

Usually we can write the equation for function zG(z, @?)rz4. The most famous one, the GLAP
evolution equation {3], sums eq.(2) if L= log(Q2/Q3). However, it turns out that for the region
of small z the most important is so called the BFKL [1] equation. It gives the answer for eq.(2)
in the case when L=log(1/z).

Using the solution of the LLA equation we build the ratio:

zG(z, Q?)
2G(2,Q%)LLa

This ratio is also asymptotic series, however here we calculate this series term by term. Qur
hope is that the value of the next term will be smaller then the previous one (;’:‘:—; < 1) for

R(z,Q% = = Tpa=o™ = Zpop (L1 + @n1 L2 4 ag) . (3)
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sufficiently large n. However, we know that at some value of n = N, ;iﬂ_Ll- ~ 1. The only thing
that we can say about such situation in general, is that our calculation has intrinsic theoretical

accuracy, and the result of calculation should be presented in the form
R(z,Q%) = £r=l1r, 27y . (4)

The size of N depends mostly on how well we chose the LLA, and how well we established the
value of scale L in the process of interest.

In the region of small x the natural value of the scale L is L = In{1/z) and the series of
eq.( 2) can be summed by the BFKL equation. We have reached substantial understanding of
the main properties of this equation during the last two decades ( see ref.[4]). The last major
~ advance in such understanding was made by A.Mueller {5] who introduced the correct degrees of
freedom - colour dipoles, in terms of which the BFKL equation got the partonic-like probabilistic
interpretation { see also related papers [6]). However one problem with the BFKL equation is
still open,namely we do not know how to include the running QCD coupling constant in it.

There are two aspects of the problem. The first one is of the fundamental importance. Indeed,
only the BFKL equation with rurning coupling constant can turn into the GLAP equation at
large value of virtualities Q?. We discuss this issue in the next section. The second aspect is
more practical one. The first attempts to take into account the running coupling constant ( og)
in the BFKL equation [7] show that the behaviour of the solution at low x which is power-like {
zG(z,Q%) « (1)“0) becomes much slower ( the value of wy is significantly lower ) than for the
original version of the BFKL equation with fixed ag. In section 2 we will generalize the BFKL
equation for the case of running as.

The question arises: can we guarantee the accuracy of the BFKL equation with running asg
knowing that the calculation even the correction of the order of ag to the BFKL equation is a
very difficult task, which to date has not been performed even by the great experts in the field
{8]. To answer this question, we have to discuss the second problem in the perturbative series,
namely the n! rise of coefficients C, ( see eq. 1). : -

By now we have known three sources of the n! behaviour of C,: infrared (IR) and ultraviolet
{ UV) renormalons which are intimately related to the running as and instanton contribution.
In this paper we concentrate our efforts on the first two, because the instantons at high energy
give negligible contribution { see refs. [9] for relevant discussion). The n! behaviour of C,
from IR and UV renormalons originate from running as and real parameter which governs the
inclusion of ag is ag nl.

In section 3, we study the first correction to the BFKL equation due to running as in detail,
and show three principle results. The first one is that we can absorb all uncertainties related
to the contribution of the IR renormalons, which have basically nonperturbative origin, to the
shadowing correction (SC) to the total cross section. It should be stressed that those SC can
be expressed through the correlation length between two gluons, which cannot be calculated in
the framework of perturbative QCD. The second result is the fact that we can guarantee the
accuracy of the BFKL equation with running as summing all terms of the order aZn! in the

series of eq. { 1). The third result is the nonperturbative contribution of the order of \/%T; from
ultraviolet renormalons which does not appear in the Wilson Operator Expansion.

In section 4 we are going to discuss the solution to the BFKL equation with running ag. We
start with the numerical estimates of the first correction to the value of wy due to running as.
We formulate our numerical accuracy in the attempts to solve the BFKL equation with running
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as and find the Green function for it. We show that running o leads to a smaller value of wy
(zG(z, Q%) — (1)*0, than the original BFKL equation with fixed as.

2 The BFKL equation with running QCD coupling constant.

In this section we discuss the BFKL equation [1] with running ag, but start with the original
version of this equation with fixed as, both for the sake of completeness of the presentation and
to clarify the main steps in the derivation of the BFKL equation. It should be mentioned that
we will follow the original derivation of the BFKL equation in the momentum representation
since we found it more economic to include the running as than the Mueller approach [5]. We
firmly believe that it could also be duplicated in dipole picture, but leave this job for further
publication.

2.1 The BFKL equation in the lowest order of as.

The BFKL equation was derived in so called Leading Log (1/x) Approximation, in which we
would like to keep the contribution of the order of (aslog(1/2))" and neglect all other contribu-
tions, even of the order of as log(Q?/Q3). So the set of parameters in LL(1/x)A is obvious:

1
og Iog; ~ 1;

2
as Iog%g < 1; _ (5)

as € 1;

Let us consider the simplest process: the quark - quark scattering at high energy at zero mo-
mentum transfer . All problems of infrared divergency in such a process is irrelevant since they
are canceled in the scattering of two colourless hadrons (see, for example, ref. [5] for details).

In the Born Approximation the only diagram of Fig. 2.1 contributes to the imaginary part
of the scattering amplitude (A). It is easy to understand that the result of calculation of this
diagram gives:

dzkt Cgag dzkg

BA(, 5 — - 9 = kY2 =

2Im{A"(s,t=0)} = (2‘”)2|M(2 2; ag | s,t ki) | S —1 e (6)
where M(2 — 2; ag|s,t = —k?) denotes the amplitude in the lowest order of ag for quark -
quark scattering at transfer momentum ¢ = ~&? through one gluon exchange ( see Fig.2.1), N

is the number of colours and C; = %zﬁl One can recognize the Low - Nussinov mechanism
{10] of high energy interaction in this simple example.

In the next order we have to consider a larger number of the diagrams, but we can write
down the answer in the following general form:

2Im{AVB4(s,t = 0)} = (7)

i=3 dap:'

=19 E! T

J@r 691 +p2 - 4 ~ By - )l M2 =35 P T
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J@r69(p +p1 — 1 - P) -2 Re(M(2 — Z0d) - M7(2 - % a5)}IiZE (—2-;‘;34’;'?5 :
where g is coupling constant of QCD ( as = {%); M(2 — 3;¢%) is the amplitude for the
production of the extra gluon in the Born Approximation, and is given by the set of Feynman
diagram in Fig.2.2 while M(2 — 2, o) is the amplitude of the elastic scattering in the next to
leading Born Approximation ( see Fig. 2.3) at the momentum transfer k;.

Two terms in eq. (7) have different physical meaning: the first one describes the emission
" of the additional gluon in the final state of our reaction, while the second term is the virtual
correction to the Born Approximation due to the emission of the additional gluon. It corresponds
to the same two particle final state, and describes the fact that due to emission the probability
to detect this final state becomes smaller { we will see later that the sign of the second term is
negative).

In the both terms of eq. (7) we can integrate over p3’ as well as over the longitudinal
component of §j (7). Finally, we rewrite the phase space in the following way:

. d°p! 1 1 dzy [ d°pd*ph
45(4) T '.—-3_&.._=_._./ _éf__J.L_‘
j(21r) ] (Pl +P2—-PpP1—Pz2—q H::]. (21)323: ar s Jo m2 zga (21‘_)4 '

mns==T,

f(2?r)‘6("(p1 +py — pj - p3)- M=} (21;‘;-——3%—, = —;- : ng!‘); ; (8)

where z is the fraction of the longitudinal momentum carried by particle. the value ofzzm,-,,

depends on the reaction. For example in the deeply inelastic scattering zmin = 5 = 19‘-1 In

the case of the quark scattering zp,in = '—“;- where m, is the transverse mass of produced quark.

From eq. (8) one can see the origin of the log{1/zn,) contribution: it stems from the phase
space integration, if M(2 — 3) does not go to zero at za3 — 0. To sum the diagrams of Fig.
2.2 in this limit we can use two tricks. The first one is for each ¢- channel gluon one can rewrite
the numerator of the gluon propagator at high energy in the following way:

PruPn t Pl 1’12
. = 4+ O — g
Iu -2 ( 3 ) ( )

The second trick is based on the gauge invariance of the QCD. We look on the subset of the
diagrams of Fig. 2.2 pictured in Fig. 2.4 as the amplitude of the interaction of gluon k with
the quark p. { see Fig.2.4 ). Since all particles in amplitude M, except gluon k are on the mass
shell, the gauge invariance leads to the relationship:

koM, = 0. (10)
Using Sudakov variables [11] we can expand vector k as

k, = arpr, + Bepau + ki
and rewrite eq. (10} in the form:

(orpr + Bepas + kew ) M, = 0., (11)
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We note that all particle inside M, have a large component of their momentum on p;. It means
that we can neglect the projection of vector M, on py, or in other words

M, = MOp, + M®py, + M
and M) & M%), Thus we can conclude from eq. (11) that

k yMp .
p]yMp = - "_ . (12)
ok
Using both tricks of eq. (9) and eq. {12) one can easily see that only diagram of Fig. 2.4 (1)
contributes in LL(log(1/x)A. Indeed, let us consider for example the diagram of Fig. 2.4 ( 2 ),
the dominator of the quark propagator (pz + k)? is equal to

12
e+ kP = s + K2 = B g2 B
3 T3

Since due to eq. (12) the polarization of gluon k& is transverse we cannot compensate the smallness
this diagram at zz — 0. Using the same tricks with the upper parts of the diagrams of Fig. 2.2
we arrive at the conclusion that that the set of the diagrams of Fig. 2.2 degenerates into one
diagram of Fig. 2.5 with specific vertex for gluon emission:

2 k‘ﬂ k;v
apBps
where 7,,, is given by the usual Feynman rules for QCD.

Substituting eq. (13) into the first term of eq. (7) we get the contribution of the emission of
one additional gluon to the next to Born Approximation in the form:

aiC3 v d*k, Nas d2k!
(A%} = sty [y [ o T Kemivsion(boK) gy (1)

log(1/2min and the kernel K (&, k}) is equal to
k3 kg
(ke — ki )?

[, = iyfabc' Yuor s (13)

where y' = log(1/z3), ¥

Ifemiuitm(kh k:) = (15)

To calculate the virtual correction in the next to Born Approximation (M(2 — 2;a%) ) we
have to estimate the contribution of the set of diagrams of Fig. 2.3. The log (1/x) contribution
is hidden in the real part of the amplitude M(2 — 2;02), and easiest way to extract this log.
is to use the dispersion relation:

M(2 = 2;02) = %,{/M{M(f’—: 2.; rad)bs o Im{M(f’—_* i;aé)}udu, }. (16)
We calculate In{M(2 — 2; o})}, and Im{M(2 — 2; o} )}, using unitarity ( see eq. (6)):
Im{M(2 ~ 2;0d [t = -k )}, = (17)
&2k,

! RelM(2— % s | 8,8 = —kP) M(2 > 2 as | 5,t = —(k: — k)?)} .
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The difference between eq. (17) and eq. (6) is that the Born amplitude for one gluon exchange en-
ters these two equations at different values of momentum transferred ¢. The explicit calculations

give:
Im{M(2 — 2;0f |t = -k} )}, = s C,wE(K]); (18)

Im{M(2 — 2; 63 |t = &)}y = 5 - Cur S(2);
*R) = w Ry

Using the dispersion relation of eq. (16) one can reconstruct the real part of the amplitude and
the answer is

Re{M(2 — 2; 0% |t = =k%)} = s(Cu ~ C,)-Z(k?) -logs (19)

The colour coefficients have a very famous relation between them ( see Fig. 2.6 } which gives, for
the difference of the colour coefficients in eq. (19) the same colour structure as for the diagram
of Fig. 2.3 ( 3). Thus Re{M(2 — 2;a |t = —k?)} has the same colour structure as one
gluon exchange in the Born Approximation. This fact makes it possible to rewrite the second
term in eq. (7) as the correction to the gluon trajectory, e.g. instead of gluon with propagator
fg - 3 we can introduce the new propagator

1 a
ot () (20)

oS = 1 - o:sN / k,d‘zk{ =1 asN j k2d2k,
(ke — K )1E2 2x? [(k: — kL) + kiZ)kE

The answer for the second term in eq. (7) can be written in the form

aiC? dk
{48 = sy [ (o%0) - 1)-2- 55 (2)

We can get the full answer for the amplitude in the next to the Born Approximation (a2 by
summing eq. (14) and eq. (21) and it can be written in the form:

In{ANBA(s,t = 0)} = ﬁc_zj y,/ d’k:.a:N - K{ky, k) - d2k§ (2

where y = log(1/Zmin and

1 1 k2

A Y AV ] 1
ORI I R (R o A

1
K(kh k;) " E

Using egs. (22)-(23) we can introduce function q&(k’) and rewrite the total cross section for
quark - quark scattering in the form:

asC. dkz
0w = ooz [ow ) T (2¢)
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For ¢ eq. (22) gives the equation:

80,8 = 8 [ ay [ KK (k) 40 KD (25)
where '
, _ 1 k?
K(ki$kt)¢(k¢2) = m 'ﬂk?) - (kt _ ki)a[(k:- k‘)g T k{)] '¢(kt2) - (26)
and
om = 2C2 (27)

¢

2.2 The main property of the BFKL equation.

From the simplest calculation in a3 order one can guess the BFKL equation [1] which looks as

follows: d loa(1 52 N
-_ 3 o :
#(y z’( [z) k) _ > ']K(kg,ki)cé(y,k?)d’ku (28)

where kernel K'(k;, k}) is defined by eq. (26). This equation sums the (aslog(1/z))" contributions
and has "ladder” - like structure ( see Fig. 2.7 ). However, such "ladder” diagrams are only
an effective representation of the whole huge set of the Feynman diagrams, as explained in the
simplest example of the previous subsection. The first part of the kernel K(k,, k]) describes the
emission of new gluon, but with the vertex which differs from the vertex in the Feynman diagram,
while the second one is related to the reggeization of all t-channel gluons in the "ladder”.

The solution of the BFKL equation has been given in ref. [1} and we we would like to recall
some main properties of this solution.

2.2.1 Eigenfunctions of the BFKL equation.

The eigenfunction of the kernel K'(k;, ki) is ¢y = (k7). Indeed after sufficiently long algebra
we can see that

= [ KK ) 6560 = (1) 648D (29)
where
X() = 29(1) - ¥() - ¥(1-f) (30)
and
Wy = 572,

[(f) is the Euler gamma function.

2.2.2 The general solution of the BFKL equation.

From eq. (29) we can easily find the general solution of the BFKL equation using double Mellin
transform:
dwdf

@—T?jgewy‘ﬁf(k?) Cl{w, f) (31)

Bk = [ gre ol k) =
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where the contours of integration over w and f are situated to the right of all singularities of
#{ ) and C(w, f). For C(w, f) the equation reads

N
wCw f) = ==x(HCW,f). (32)
Finally, the general solution is
1 ag¥ -
b kD) = 5 [ dfe S U-g(p) (33)

where $(f) should be calculated from the initial condition at y = yo and r = In{;‘g- ( 43 is the
value of virtuality from which we are able to apply perturbative QCD ).

2.2.3 Anomalous dimension from the BFKL equation.

We can solve eq. (32) in a different way and find f = 7y(w). 9(w) is the anomalous dimension
in LL(log {1/x)A ! and for 7(w) we have the following series [12]

osN 1 204N%(3) 1

- S i w

ab
1) = + () (34)
The first term in eq. (34) is the anomalous dimension of the GLAP equation [3] in leading order of
as at w — 0, which gives the solution for the structure function at # — 0 and corresponds to so
called double log approximation of perturbative QCD ( DLA).The DLA sums the contributions
of the order {aglog(1/z)log(Q?/¢3))" in the perturbative series of eq. (1).

However, we would like to stress that eq. (34) is valid only at fixed ag while the anomalous
dimension in the GLAP equation can be calculated for running as. It means that we have to
introduce the running ag in the BFKL equation to achieve a matching with the GLAP equation
in the region wherew <« land %% < 1. '

The second remark is the fact that we can trust the series of eq. (34) only for the value of

w > wr , where .
as 1, _ 4Nlin2as
T X( 2 ) = vy )

In vicinity w — wz we have the following expression for y(w):

1) = 5+ | B s (36)

Substituting eq. (36) in eq. (31) we have

dw

#y. kf) = f ori “Y(w, kF) = f %8"’""{"(“’)"1)'3(:9) = (37)

(35)

wp =

dus (w-wp)v+{-%+ ﬁs—) Yr
-2"7';';: € ¢(w).

'From eq. (31) one can notice that moment variable N defined such that N = w + 1.
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Evaluating the above integral using saddle point approximation we obtain

1 r?
2sl¥ 14(3) 493

ws = wr + (38)

which gives the answer:

k2

lnzgz
ﬂy’k‘?) — 12 = -5(“5).1’%:..-22_).8”5?-‘_’%_26«3}’ . (39)
ki %

We can trust this solution in the kinematic region where (In;k; )* < 22X 28¢(3) y. The solution
0

of eq. (39) illustrates one very important property of the BFKL equation, namely k? can be not
only large, but with the same probability it can also be very small. It means that if we started
with sufficiently big value of virtuality ¢? at large value of y = In(1/z) due to evolution in y
the value of k? could be small ( k; ~ A, where A is QCD scale ). Therefore, the BFKL equation
is basically not perturbative and the worse thing, is that we have not yet learned what kind of
assumption about the confinement has been made in the BFKL equation.

Our strategy for the further presentation is to keep k2 > ¢ and to study what kind of
nonperturbative effect we can expect on including the running as in the BFKL equation, as well
as changing the value of wy, in the series of eq. (34).

2.2.4 The bootstrap property of the BFKL equation.

We have discussed the BFKL equation for the total cross section, however this equation can also
be proved for the amplitude at transfer momentum g2 # 0, and not only for colourless state of
two gluons in t-channel. The general form of the BFKL equation in w - representation looks as
follows [1] ( see eq. (31): -

&k,
(u‘.ﬂ - wG(ktz) - wG((q - kf)z) )¢(w1 qs kt) = g_: AR / TtK(‘L kh k;)é(wt! q, k;) 1 (40)
where the kernel X{(q, k¢, k}) describes only gluon emission and

kf
(ke — kD)2 k7

(Q - kt)z ‘1:2
YRRy oy )

AR is colour factor wher Ay = 2Ag = N for singlet and { N? —~ 1) representations of colour SU(N)
group and wé(k?) = a®(k?) — 1 ( see eq. (20) ).

The bootstrap equation means that the solution of the BFKL equation for octet colour state
of two gluons { for colour SU(3) ), should give the reggeized gluon with the trajectory a®(k?) (
or w@(k}) ) given by eq. (20). The fact that the gluon becomes a Regge pole have been shown
by us in the example of the next to the Born Approximation, and has been used to get the
BFKL equation in the singlet state. It means that the solution of the BFKL equation in the
octet state should have the form of a Regge pole :

K(q, ks, k) =

’ Const
¢(w’ 4, kt) - @

prg——Tp)Y (42)
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Assuming eq. (42), one arrives to the following bootstrap equation:

W) - WOD - WC((g-k)) = gff\s f &k (RN AR (43)

It is easy to check that the trajectory of eq. (20) satisfies this equation. It is interesting to
mention that we can use eq. (43) to reconstruct the form of the kernel K(g, k;, k%), if we know
the expression for the trajectory ( see ref.[14] ).

2.3 The BFKL equation with running as in the lowest order.

To take into account the running as we shall deal with QCD having large number of massless
fermions Ny. In this case we can only insert the chain of fermions bubbles in a gluon line in
the Feynman diagrams to calculate the contributions of running as [13]. Indeed, each such
bubble gives the contribution of the order of Ntag(u?), where u? is the renormalization scale
and there are no other contributions of the same order. Due to the renormalization property
of the QCD we have to replace Ny by —2 6 = —[2N ~ N,]in the final answer, to get the
correct contribution of running as in our problem.

For example, in the Born Approximation for quark - quark total cross section we have to
teplace the diagram of Fig. 2.1 by the sum of diagrams of Fig. 2.8 , inserting fermion bubbles
in two gluon lines in t-channel. Such a procedure leads to the answer in Born Approximation:

2Im{APA(s,t = 0)} = / “5(’“2)‘12"“ . (44)

In the next order to Born Approximation we have to:

1. Introduce the fermion loops in the amplitudes for production of one additional gluon (see
Fig. 2.2 ), and to the virtual correction diagrams ( see Fig. 2.3) in eq. (7). Which means that
one should calculate the sets of diagrams of Fig. 2.9 and Fig. 2.10 respectively.

2. Take into account the additional contribution of produced quark - antiguark pair in the
final state ( see Fig.2.11) in the unitarity equation ( see eq. (7) ).

Using the technique developed in ref. [8] we are able to calculate the diagrams of Figs. 2.9
and 2.11, however we have not yet finished these calculations and we intend publishing them
elsewhere. Instead of the direct calculations of these sets of diagrams we chose the alternative
approach, namely to calculate the contribution due to running as only to the virtual correction
diagrams of Fig. 2.10, and to use the bootstrap equation { 43) to reconstruct the form of the
kernal of the BFKL equation with running ag.

Repeating all technoques that we have used in eqs. (16)—(20) we end up with the function
Z(k?) which is equal the diagram of Fig. 2.8 att = —k? 2 :

2 as(k?) as(( k — k;)*) K
E(k) = 1|.' / (kg-'k )2k:2 . (45)
Comparing eq. (45) with the Born Approximation ( eq. (44) and Fig. 2.8 ) we get
d*k}  as(k2) ag((k: — K)?) ki
Gre2y — 1 = Ww@(k2y = — t, OS\Rg Jas\\ Ry — & )) t )
a®(k) - 1= WO() = —de2r [ e T

*We absorb one power of as in the definition of £(k?) with respect to eq. (19) to make easier the counting of
the power of as.
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Therefore, we have established the form of the trajectory of reggeized gluon in the next to
Born Approximation calculation. In the next subsection we will show if we assume that the
reggeization of the gluon is so general property of the BFKL equation that it also holds in the
case of running as, than the knowledge of w(k?) is enough to get the kernel for the BFKL
equation with running oas.

2.4 The BFKL equation with running as from the bootstrap equation.

The bootstrap equation ( see eq. (43) ) gives the relation between gluon trajectory and the kernel
of the BFKL equation. It is complicated functional - integral equation which relates w®(k?) and
K(gq, ki, kL), but in ref. [14] it was found that the solution of this equation can be parametrized
in the form:

n(k.) + {ge = ke) _ 7(9)
n(k) (ke — k) * n(ge - ki) (ke — k)  n(ki) n(e - &)

where the function 7 is related to the trajectory w€ by a nonlinear integral equation:
A 4%k {q)
G\ — 8 ,[ t nig
w = —— . 48
@ = =52 | = k- (48)

One can check that egs. (47)~(48) satisfy the bootstrap equation ( 43 ).
Comparing the equation for the gluon trajectory with running ag that we have calculated
in the previous subsection ( see eq. (46) } we get

K(Q? kh :) =

(47)

g = & (49)
as(g?)

Finally, the BFKL equation with running ag for the total cross section ( ¢ = 0 ) has the form:

de(y, k2 N !
dgy_ 2 T f dk( K (ke k)o(y, K72) (50)

where we can get the expression for kernel X substituting eq. (49) into eq. (47)% :

K (ko K)O(K}) = | (51)

as(kP) as( (ke = K)) , 1 @
e B (v oy R R e TR Ay Ma

The initial condition for eq. (50) in the case of quark - quark interaction looks as follows:

k) -

2
= ——=12 2

3We absorbed the ratio F*;" in the definition of ¢ to make a clear correspondence with the BFKL equation at

fixed ag (see eq. (28) ).
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2.5 The matching with the GLAP evolution equation at z ~» 0.

In this subsection we are going to demonstrate that eq. (50) naturally gives the double log limit
of the GLAP equation in the kinematic region where not only ag log(1/z) ~ 1, but also the
virtuality k7 is large enough ( as log(k?/g3) ~ 1). This limit corresponds the integration over
k¥ & k}in eq. (50). The BFKL equation ( 50) has a very simple form in this kinematic region:

do(y.k3) N1 (&
T = su [ sttt a? . (53)

It should be stressed that the gluon structure function can be written uising the function ¢ in
the following way [15]:

as(@)26(=,@%) = [ as(k?)- dn(1/2), Ky di? (54)

Using this equation we can rewrite eq. (53) in the form of differential equation with respect to
zG(z,Q%:

8(zG(2, Q%) _ N / Q* ag(kf)dk} 2
8‘1‘1(1/3) _— k? * (zG(z? kt )) . (55)
Taking into account the explicit form of running as, namely
L

k) = 56
as(k®) bln% (56)

we can derive the double differential equation for 2G(z, @?) which looks as follows:

#*(2G(=,@%) _ 2N, 2

3‘1’1(1/3) 35 - ) \zG(a:,.Q )) ¥ (57)

where £ = Inln(Q%/A%)and b = 3 (11N - 2Ny).

This equation is the GLAP equation in the region of low x. In other words it is the equation
which we can get from the anomalous dimension of eq. (34) taking into account only the first
term with running as.

3 The first correction to the BFKL equation due to running
5. :

3.1 General formula.

As was discussed the BFKL equation describes a generalized “ladder” diagrams ( see Fig. 2.7 ).
In this section we are going to calculate the first correction due to running as in such a “ladder”.
The procedure how to take into account this correction is very simple, namely we have to insert
the kernel K'(k, k;) of eq. (51) in one cell of the “ladder”, while in all other cells the kernel
remains the kernel of the BFKL equation with fixed as ( see eq. (23) ). Fig. 3.1 illustrates
this procedure and gives the graphical picture for the expression that will follow below. We will
denote K, the kernel of the BFKL equation with running ag ( see eq. (51) ) and use the notation
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K for the kernel of the BFKL equation with fixed ag so as to avoid any misunderstanding in
further presentation. The analytic expression for the diagram of Fig. 3.1 looks as follows:

1] 2 , d2q d’q; ' A2 2 ' 7 2
My, Q% = fdy — = $(y -, Q% &) K-(g:,9) ¢(¥' - 30,9t %) - (58)
Substituting in eq. (58) the solution of the BFKL equation with fixed egs in the form:

S Q) = [ S ORI g, (59)

where vy(w) is given by eq. (34), one can get the following answer for ¢lil:

N [ dindo, dg d*q:

&ll(y’Qz) = @) (2xi)? =«

¢1(w1) ¢2(w2) e (v—v') +wry’ . (60)

':r(wl)fﬂ%z' v(wn) rnf as(af) as((e: — ¢i)*) 1 -
{e e as(¢?) @ (w - )

2 2
eﬂr{wa)fﬂ% e"r(wz)fﬂ;é' as(qt yas((q - q:)z ) o 1
as(2?) Fla-drsal

It should be stressed that ¢y (wy) = dy “:‘ satisfies the initial condition for ¢(y — ¢, Q%,¢?) =

5(In(Q?/4?) at y = y' for upper part of the diagram of Fig. 3.1, while ¢;(w;) can be found from
the initial condition related to distributions of gluons in the hadron (or in the quark ) at ¥’ = yo.
After integration over y’ one gets w; = wq and eq. {60) can be reduced to the form:

(5, Q% = (61)

8 5 () o) T T e Relateiasa®)

N [ dw dq -
Q2% J 27i wql

where the kernel K.{7(w); as(gf?)) is equal:

Bolrtonyaste) = [ L2 asasllo —df) (ool _y m (g

3.2 Simplification of K (v(w1); as(q®)).

We now discuss the contribution of infrared and ultraviolet renormalons to the kernel
K (y(w1); as(g®) ), but let us first simplify the expression for this kernel.

1. Choosing the renormalization point y® = ¢/? we can rewrite the running as in eq. {62)
in the form:

o = aS(q?) - as(qf“) 63
s(af) 1 + %as(q;z)fn;—% 1+ &S(Q?)In;q?z (63)
as((q - ¢)?) = as(4’) = as(a?) _

1+ fas(e?)inlilE © 1 4 ag(gf)in{eogl
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Using eq. (63) we can integrate over angle in eq. (62):

as({e — a)*) _ o0 i d¢(q")-# -
Jao= B < as(aPymia(-1)as(al & ),1,-0 == @
7 as(g;)Z320(~ 1)'53(9") (dp.)‘ T — - Py [qu q—?qfll P Fu,py1,2) —
as(g’) 1

- . za3(q?)),
T+ 263(4?)!nLL,,-LJ°’;"’ FETdRR R

where z = g forg? < ¢?and z = f;; for ¢ < ¢%, F(u,p,1,2) denotes the Gauss hypergeo-
+ t )
metric function.

The next trick we suggest to work with the product of eg in eq. (62):
1 1 _
1 + as(g? )!n-—,':; 1+ 2&3(@’)11:13%-‘45‘0—[

1 1
+ e
1+ as(@®)ind 1+ 2ds(e?) sttt

a3(q?) in%; Inliigl
(1 + as(@)ind) (1 + 2as(gp) inldzg)

We can neglect the contribution of the last term in eq. (65), since it is proportional to a? and
both logs cannot be large simultaneously. We have checked numerically that this contribution
is really very small, but it is even more important for us, that this term do not bring any
nonperturbative phenomena in the question of the interest, which have not been included in the
first three terms.

2
Using variable z = -zﬁ which we have introduced we can rewrite the expression for kernel

K, (y(w1); as(af? )) in the form:

(65)

-~ 1+

Eo(r(oniast@®) = ol [ srm— (66)

7|1 = z|
1 1

- {ell=rwi))inz _ L inz
{l + ag(gl?)inz + 1 + 2as(¢?)in|1 - 2| 1} - {e e}

3.3 Infrared Renormalons.
3.3.1 Ki(v(wi)ias(a)) at ¢ < ¢ .

The IR renormalons contribution comes from the kinematic region ¢? < ¢2. Let us simplify
€q. (66) in this kinematic region introducing the new variableu z = e*:

E(r(wnas@®)lgeq = o3 [ dug (67)
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e=(1=7w))u _ -u + 26s(@)in(1-e"") - [e-(1=7D)u _ o=u] }
1 ~ as(q?) u 1 ~ 2as(¢?) In(1 - e=) ]

Changing the variable of integration in the second term of eq. (67) 1 — e=% — e~ % we can
rewrite eq. (67) in the form:
E(r@)iod@®)lgcp = os@?) [~ du g (68)
r » ISt q; < g7 t o 1 — as(q‘z)u
e—(1=vlw))u _ o= + las(gP)u (1 - e=$)-vw) _ (1 - c'*)]}
1l - e—=® 2 1 — e~ % ]
Eq. ( 68) can be rewritten in more symmetric way for the difference
. 1 -
AK, = m%(‘:r(wl);f-rs(q{’))quq;2 - as(g) x(7(w1) ) g2 <2 (69)
_ © g0l e oo
- as(q?)L du 1 Z as{(g)u { 1 - e-u
1[(1 - e ¥yp-vwn) _ (1 - e}
AL ) )1y
- F

where x{v{un)| @< is the contribution to the kernel of the BFKL equation ( see eq. (32) )
from the kinematic region ¢f < ¢f2.

3.3.2 IR renormalons: uncertainty of the perturbative series and relation to the
shadowing correction.

In this subsection we are going to show that AK, contains terms of the order of ag n! which give
the natural limit for perturbative calculation since these contributions originate from integration
over small value of g;. To see such terms we can expand eq. (69) with respect to u and e~ * or
e~z. Indeed, AK, can be written as the following series:

Af{rqu(q? = 03(9;2)}3“12&0 &g(q?) : (70)
ng(e=(1rt=tw))w o 1 (@) + 1) e G O
[[duu {(em(+i=vled)s o 2 T((w)) +'!)I!e ) =(r=0)}]

2r Zp=1 D=0 [ (%

b
l T{y(w1) + 1) (258(#))n+1 T+ } + {y=0}] =

3 T + DO T+1

as Ln=1 D=0 &5 Rag

o T(n+1) +

In eq. (70) the integral representation for Euler gamma function has been used, namely

=)
I(n +1) =/0 " e~ tdt
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Eq. ( 70 ) is a typical asymptotic series which is no longer reliable, starting from critical order
n = N which can be found from the condition:

o (@) Rny = o Ry, (1)
as has been discussed in the introduction. The answer for the AK, can be written in the form:

One can check that the largest uncertainties originates from { = 0 in the series of eq. (70) which
leads to the value of N equal:

B e C VR 4
N = &s(q{;)l = (1 = y(w1))-Ing5 .

The corresponding uncertainty in the perturbative expansion is given by

_ - A%l
S(AR ) gcqn = as(@?)y/r(l - 1(n)as(e?) {Z} bl (73)
t
Substituting eq. (73) in eq. {61) one can calculate the uncertainty in ltl:

sl = N fdw dq-

ay g+ v ) h-%?—
T oxQ? J 2xi rq’“ |

L1 (wr) do(wr) e (74)

as(@) /7 (1~ 1 ))s(e®) { = Ty raten)

The fact that 641} is proportional to the QCD scale A indicates the nonperturbative origin
of the uncertainties. The physical meaning of this phenomena is well known [18]. Indeed, the
typical value of the momentum ( (gess)n ) essential in the integral for I'(n) in eq. (69), is equal
to:

(G5p)n = 47 & T (75)

and at large value of n this momentum can be very small, so small that we cannot use the
perturbative QCD in our calculations ( gess =~ A ).

Of course we cannot trust the value of eq. (74), we consider this equation as the indication
that we should examine the nonperturbative contribution with the same {Q? dependence as is
given by eq. (74). In the case of the ete™ - annihilation the uncertainties from IR renormalons
can be absorbed in the nonperturbative value of the gluon condensate ( see refs. [18] ). What
nonperturbative phenomena can be responsible for the uncertainties in our case is the subject
that we now discuss.

It is very instructive to compare S¢t] with the first diagram ( see Fig.3.2 ) for the shadowing
correction [16) [17]:

W = o j dy’ /  H =9 @) B “SWZ)N D) = gy (O

as(g2)N dg” ‘r(uu)hQ; + [rlon —w) + -r(w')llne;.;

/M 451(“’1.) Fo(wn — o) ') e ¥ x* gt

(27)?
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_T gy oS(@INdg? 1 ‘r(wz)fﬂst';-[h(i‘,l—-z]ln'n
vk L ) BY() e T <,

where we substituted ¢ from eq. (31) and integrated over o’ using steepest decent method. ¥ is
the value of triple "ladder” vertex and R? is the two gluon correlation length inside the hadron
( all other notations are clear from Fig. 3.2 ). One can find more detailed calculations of the
SC diagram in refs.[16][17].

Comparing eq. (76) with eq. (74) one can see that the shadowing correction to the structure
function gives the contribution which looks very similar to the nonperturbative uncertainty from
IR renormalons. Indeed

[1] 1 uwr) fn%j- +[27(%)-1] ,ngg_
¢ @ e t 9
while 3 )
4
6¢[1] x _1_ e‘r(wl) In%;- + [ r{wa)=1] lné’ -

Q?
However, one can conclude from the above expression that the SC correction is always bigger
than the uncertainties due to the IR renormalons contributions, since 2y(*3} > v(w1).

We therefore conclude. If we take into account such nonperturbative phenomena as the
shadowing correction we can forget about uncertainties due to the IR renormalons contribution
in the kernel of the BFKL equation with running coupling QCD constant.

However, we should be very careful with the above statement, because there is an uncertainty
from the second term in eq. (69) which gives the value of ¥ '

1 1, g2
N = = = .lpi
%) 2 A7

This N generates the uncertainty in ¢[1]
2 o
6¢[1] « _Q% e‘f(”l}!ﬂ%{ + %fﬂ—"g- ‘

This uncertainty is bigger than the shadowing correction for 2¢(%) < 3. It means that we
cannot trust our ca.lcula.tlon of the shadowing correction at w > w,, where w, can be found from
equation 27(%¢) = 3. In other words, for such value of w the nonperturbative corretions to the
BFKL equation with runn.ing ag can be bigger than the SC contribution. The rough estimate
for the value of w, from the first term of eq. (34) gives w, = Mﬁ—}

It should be stressed that we have found the contribution to the gluon structure function
which behaves as \/; and which does not appear in the Wilson Operator Product Expansion.
It originates from the small value of the momentum of emitted gluon { ¢¢ — ¢¢ — @ in Fig.
3.1 ). We suspect that this contribution is closely related to our fundamental hypothesis on
the completeness of the wave functions of the produced hadrons in the final state of the deeply
inelastic processes. This hypothesis allows us to reduce the calculation of the deep inelastic
structure function to parton ( quark and gluon ) degrees of freedom. However, the slow hadrons
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in the current jet can interact with the slow hadrons in the target jet and such an interaction
can violate the assumed completeness of the wave functions of produced partons. We would like
to draw your attention to the fact that the ratio of the mass of the current jet of hadrons to the
value of Q% is equal to 5, where 4 is the mass of the lightest hadron. However, we have not
found the theoretical description of this nonperturbative contribution and consider it as a good
subject for the further investigation.

3.3.3 IR renormalons: singularities in the Borel plane.

Let us go back to the asymptotic series of eq. (69) and try to sum this series. To sum asymptotic
series, means to find the analytic function which has the same expansion as the asymptotic series.
The general procedure of how to guess the analytic function is to use the Borel representation
for the divergent, perturbation expansion for

AR’ lq?(g?(QS(Q?)) = o3 E1'l=1 El'=1'.'l &g R‘n,l .
Instead of this expansion we define the function:

bﬂ
AKP @2<g? = Zn=1 Bi=o Rni1y P (77

It is widely believed that this series has a finite radius of convergence in the b - plane ( see
refs.{18] for detail discussions how it works in the case of e*e™ - annihilation ). AK B is the
Borel function corresponding to AK, |2 q:z(as(qu)) and we get

Af{r |qf<q:’(a5(§{2)) = Aer(!?(q:J(O) = L db AKrB |q?<q{z C“Z’; . (78)

Eq. ( 78 ) is certainly correct order by order in perturbation theory, but in general there are
two known reasons why this cannot be true for such asymptotic series.

1.The b - integral in eq. (78) does not converge at b — oo [19]. However, this singnlar
behaviour comes from the mass spectrum in the exact expression for the physical observable
and is irrelevant for the function AK, [g2 ¢ n(0s(¢f?)) for which we have only a perturbative
expression.

2. There are singularities of AKZ on the positive real b - axis making the integral in eq. (78)
ambiguous [19] [20] . Indeed, substituting R,; from eq. (69) in eq. (77) one can see that AK?
has the simple poles in b

1
b - by
where ‘
bot = a® (79)
o =1+ 1~ y(w);
a® =141,
@ = 1L+

2 1
Therefore the singularities in the Borel plane are as shown in Fig. 3.3 { we want to mention
that we introduced the Borel transform with respect to &g but not with respect to as ).



=19~ CBPF-NF-001/95

These singularities lead to ambiguities in performing of the Borel integral. However we
have discussed these ambiguities in the previous section and drove to the conclusion that the
uncertainties related to them are smaller than the contributions of the shadowing corrections.
It means that we can absorbed all uncertainties related to errors that we can make performing
the Borel integral in the vicinities of the the poles on positive b - axis in the nonperturbative
gluon correlation ( R? ) length in the expression for the SC correction ( see eq. (76) ).

We choose the following prescription for the definition of the integral

o ghe” % tim| {/fm—e dbe™ % © dhe ¥ ()
——a T m |- 3 —
fo b — b <=0 5m+bo,+¢b—bol}

= —e-%‘g Ei(f:—m-) .

as

The Ei(z) is very good analytic function and it solves our task: to find the analytic function
which has the same expansion as our perturbative series.

3.3.4 AK; for qf < q.

Finally the answer for AK, in the region ¢ < ¢/ is:

as

Awir = AR, |acn = 3 T (81) .
- lin 1+n as - Mnoden 1+n—1(w1)) as )
% Ei (1) - - e E e
{(e i % w il ¢ i P + A 1- (@) +

1 T(y(wn) +1) ( 26s 3 o (n+ 1) ) }
2 T(v(w)+1)n! \n+1 &s

The series of eq. (81) is well convergent, since the general term of this expansion at any given

value of ag falls as 1/n2. Figs. 3.4 and 3.5 show the numerical estimates for AK, versus y{(w;)

at fixed s = 0.2 ( Fig. 3.4 ) and versus ¢ = &Ls at given 7 = §. We would like to draw your

attention to the fact that for as < 0.33 the correction to the value of the BFKL kernel with

fixed as ( agx(})) is smaller than 12% ( ﬁ; < 12%).

3.4 Ultraviolet Renormalons

3.4.1 K(v(wi);as(qR)) at q? > q2

In this subsection we are going to write down the expression for kernel K, in the kinematic
region ¢ > ¢/ which is related to the contribution of so called ultraviolet renormalons. Using
all techniques of section 3.2 and introducing variable z = e~ * we can rewrite eq. (66) for u > 0
in the form: '

(105 g>en = 3@ [ du——- (82)

e~vwlu _ o-u _ 2as(g?) In(e* - 1) - [e=v)s _ e"']}
1+ as(g?) s 1 + 2as(q?) In(e® — 1) ’
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In the second term of eq. (82) we change variable of integration e — 1 ~— e% and the difference
AKX, can be rewritten in the form:

AK, = -&-;-(-lq—?—)_l?,('y(wx);as(qf))lqg),;z = as(g?) x(7(w1) ) [ < o2 (83)
_ oo as(gf) u emTw)e . v
= OIS(‘I?) ./; du 1+ a;(q?)u : 1 - e-t

+3 0001+ edye _ )

In the same way as has been done for the region g7 < g/* we can expand the above expression
with respect to e™* or e~ 7 and derive the following series:

AK,.lq?(q:z = 05(9?)2n=121=0 (-as )“(Q?) ' (84)

® dug® { e (7)) —(+0w 4 1, _ql((en) +1) _gene
[/0 duu” {e + e + 2( 1)—m—-———r(7(u’1)+f)ﬂe 3}

ZTT * Bn= Do [ { (,_—_?,%)j)"“ -T(rn+1) +
l _ )l r(‘?(ﬁ’l) + 1) ( —255(442)
2 T(y(w1) + DO T+ 1 + 1(wr)

as Zpzy Di—g(— s )" Ry, -

J*T(n+1)} + {y=0}] =

The crucial difference between eq. (84) and eq. (70) is the alternating sign in the general term
of the series of eq. (84). Such series can give the well defined analytic function in spite of the n!
growth of the general term.

The physical meaning of such essential difference is very simple, because the value of the
momentum (c;,'f‘f f)n in the integral for I'(n) in eq. (84) turns out to be big, namely

(qgff)n ~ g - o) (85)

and even at large value of n, we are still in the region of the use of perturbative QCD.
To use this as a tool for calculation, let us consider once more the singularities in the Borel
plane.

3.4.2 UYV renormalons: singularities in the Borel plane.

Introducing the Borel image for AKX, qu”a as it has been described in section 3.3.3 we see that
a sum over n at fixed [ leads to simple poles in &:

b + by

where

bt = o) (86)
a® = ylw) + 1;
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a® = 1 41
@ = 1LHI+vw)
2

Therefore, all singularities are located on negative real axis as shown in Fig.3.3. It means that
we can take the Borel integral without any ambiguity. Indeed

b
o dbe-z? ?.I. bm
—_— - 7
e Ei( (87)

Finally the answer for AK, in the region ¢} > gf? is:

: Z, .
Awgy = AR, |54 = a_z ® - (88)

{(el«i"a"' Ei (—13’”’) + n&_fl P Ei(--————-"+gs(”‘)) + n+7(w1))

+
1. i TO(@)+l) ¢ 2as _ ) L mtlty(w)
2( 1)+1F(7(w1)+1)n!( n+ 14+ v{w) ¢ E( 2as ))}

3.5 The first order correction to the intercept of the BFKL Pomeron.

Let us look back at eq. (61) and Fig. 3.1. and try to understand what is the physical meaning of
the AK,. We can neglect at the moment the running ag(g/?) in eq. (61) for the rough estimate
and integrate not with respect to w; and wy, but over ¥(wy) and v(w2). Integrating in a such
way we can see that integral over ¢; gives us §(y(w1) — 7(w;)) and and integration over ' leads
to ¢ in front of the integral. Finally, in vicinity of y(w) = -;- we get for the Al the answer:

AN = AR (v(w) = £ v-4(Q% ), ' (89)

where ¢(Q?,y) is the solution of the BFKL equation with fixed as.

One can see from eq. (89) that AK, is the correction to the value of wz in eq. (35).

Fig. 3.6 shows the numerical calculations for Aws = Awrg + Awpy = Afi’,(as,'y = %)
as function of ¢ = GL“

It should be stressed that the calculation that is plotted in this figure is completely non-
perturbative one even at z ~ 10, One can see this by eye because the perturbative behaviour
should be ;lg at large value of z.

The second remark is that the ratio Awg/asx(1/2) is smaller than 12 % at z > 3.5.

4 The solution to the BFKL equation with running og .

The numerical result of the previous section ( AK,/asx(1/2 < 12% ) we would like to use
reducing the complete BFKL equation with running ag ( see eq. (50) and eq. (51) ) to the

It should be pointed out that the variable z here, is not Bjorken variable for the deeply inelastic scattering
and we hope that the use of the same letter will not be misleading
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equation which is much simpler, neglecting the contribution of AKX, in the complete kernel of
eq. (51). This reduced equation has the form:

do(ef,y) _ N j d’qf
- x T

dy (‘I ) Kae, 1) ¢(q: »¥) (90)

where K{(q,q;) is the kernel of the BFKL equation with fixed ag ( see eq. {26) ). The general
solution of eq. (90) has been found in the GLR paper [16], however we are going to discuss
this solution here for the sake of completeness, and to illustrate the connection between this
solutlon a.nd anoma.lous dimension of eq. (34). Using the explicit expression for the running

as W and the double Mellin transform of eq. (31) we can rewrite eq. (90) for the
functlon ¢ = as(gf) #(¢?,y) in the form:
8C(w,

-w 22 = s cwn). (91)

Therefore the general solution can be given in the form:

St = [ s (3Y [P xprar v oyt (- 1k, @)

where r = In{g?/A%) .
One can simplify eq. (92) integrating over f using the saddle point approximation. The
saddle point value of f = fs can be found from the equation:

es(@®) x(fs) = w | (93)

The solution of eq. (93) is the anomalous dimension of eq. (34) (fs = v(w) ). Taking the
integral over f in eq. (92) introducing new variable of from the equation

as x(f) =

and integrating by parts we derive the answer:

¢(Qt$y) = =

21”

2 By et estd ™ -as)—&\/ms(q) diw,as) gy

dag

The last factor in eq. (94) comes from integ‘ra.tlon over f in the vicinity of the saddle point.
Taking into account that we can calculate 2~ using only the first term in eq. (34) we can get
the following expression directly for function 4;

d o
1 du - wy+ as(q?) 1(”'“’3) :Sé-

Kay) = o [5rdw)e (95)

It is easy to recognize in eq. (95) the usual result of renormalization group approach [21].
Now let us formulate the problem which we desire to solve. We want to find the Green
function (G(y—1yo,7) ) of the BFKL equation with running ag which satisfies the initial condition:

Gy —vo,r=ra) = §(y — o) (96)
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but in the kinematic region where the anomalous dimension y(w, as) is close to the limited value
v =1 (see eq. (36) ). To find such Green function it is easier to use the form of eq. (92) for the
solution.

We would like to stress that we are going to solve the BFKL equation with running as in
usual way for the GLAP evolution equation, starting with the z distribution at fixed initial
virtuality ¢ = qo, r = rg = In(g3/A?) and calculating the deep inelastic structure function at
larger value of ¢* { ¢* > ¢2). It is worthwhile mentioning that the solution of the problem is

#Hety) = /dyoG(y - %0, 7) $in(¥ = %0.7 = 7o) (97)

However, the Green function for the BFKL equation is quite different from the Green function
for the GLAP one in the kinematic region, where the anomalous dimension is close to the value
of ¥ = 1 and we need to take into account the sum of all terms in eq. (34).

In vicinity v — -;- we can use the following expansion for x(f):

x() = X(3) + 1B (f-3) = x(3) [L+x(f-3)] (98)

It is easy to see that such an expansion leads to eq. (36) for y. Substituting eq. (98) in the
general solution of eq. (92) one can see that integral over f can be taken and gives the Airy
function. The final answer for the Green function is

w iy — 9Ly ])
= ei(r=ro), \/__[ u,””)a[r w 70
Gy —yo,7T0) = € el 2 (99)

wmnﬂm-imn

The contour of integration with respect to w in eq. (99) is located to the right of singularities
of the integrant (see Fig. 4.1 ). Therefore, we have to know the singularities of the integrand
in w to take the integral over w and the position in the w - plane of the possible saddle point in
eq. (99). The Airy function is the analytic function of its argument and the origin of singularities
in eq. (99) is the zeros of the dominator. Within good numerical accuracy the zeros of the Airy
function can be calculated using the following equation:

Wokr .1 WL, 373 3
- == =[Z{x . 10
(S22 (o - Zrg] = (5 (57 + 7#)) (100)
One can see that at very large value of k wop & % — 0. The second interesting observation

is the fact that the rightmost singularity (pole) turns out to be considerably smaller than the
value of wr, ( See Table I which shows the value of six first wog).

Table I
woi for the BFKL equation with running as.

WL “og wo1 Woz o3 o4 Los

0.65| 0.3 0.17 }0.12 | 0.093 | 0.075 | 0.064
0.5 | 022 |0.135| 0.102 { 0.081 | 0.068 | 0.055
0.33 ]| 0.17 | 0.115 ] 0.087 | 0.072 | 0.053 | 0.040
0.257 0.14 ; 0.10 1 0.078 | 0.064 { 0.056 ; 0.050
0.20 | 0.122 | 0.09 | 0.071 | 0.069 | 0.051 | 0.046
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Now let us discuss the saddle point in the integral of eq. (99). We found such a saddle point
in the kinematic region where we can use the asymptotic expansion for the Airy function in the
numerator of eq. (99). Indeed, if we assume that

(

we can use the asymptotic expansion for the Airy function which gives

Ai ((wf,rou)é[r - —rg]) - e:p(er n)% [r - —'ro]§) (101)

Pir- 2 —'-"o] » 1
WL rok

~ esp(~( o ar (S

where Aw = w — wg and Ar = ¢ = 7o, To get the last line in the above equation we also

assumed that A A
=y I (102)

[ To
Using eq. (101) we can find the position of the saddle point in w, namely

(&r)?
4&&)5 y2

(103)

Therefore, the final structure of the w - plane looks as it is shown in Fig. 4.1. Evaluating the
integral by steepest decent method we reproduce the solution to the BFKL equation, namely

Ar)d
Gly—yo,r—10) = e 2(7™0). - Y TRy (104)
VTruL(y - %)

We can trust the above answer only in the kinematic region where

(Ar) < 4rwr(y - w). (105)

However, we need to sutisfy also eq. (102). Substituting eq. (105) in eq. (102) we get the
kinematic region where we can consider eq. (104) as a solution to the problem. Namely

i
v=m < (=) = (astro)? (106)

This value of y— yg is still in the region of applicability of the BFKL approach because as(gd)(y—
Yo) =~ (as(qg))‘§ > 1, but both theoretically and practically it is very restricted region.

For larger value of y = In(1/z) we have to close our contour on the poles of the dominator
and we get the solution which behaves as

G(y — yo,7~10) x L (107)

W0

The solution of the BFKL evolution equation with running as is given by eq. (97) which can
be rewritten in the w - representation in the form:

My, q) = G(u T~ 7p) - Pinlw, 7o) » (108)
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where ¢;,(w, ro) is the initial gluon distribution in the w - representation. We can distinguish
two case with different solutions:

1. the initial distribution ¢ & z~* with A > wge. In this case we have to close the contour
on the singularities of ¢in(w) = ;@-X and the solution in the region of small z looks as follows:

By =n(1/s)gl) = $o-Glw=Ar—r)-(3)

2. the second case is A < wogo, when we have to close the contour on the singularities of the
Green function. The resulting behaviour of the solution is closely related to the value of woy and
looks as follows:

#(y = In(1/z),q) = ¢in(‘-9=w00)‘{G(w”""ﬂ)'(w-""‘m)nwﬂo’(%)m =

3

- =)

;
Pin(w = woo) - eé(“fn).e"% (u—:ﬁ—n) (

The above formula solves the problem.

5 Conclusion.

In this paper we attempted to discuss the BFKL equation with the running ag in a systematic
way. Qur results look as follows:

1. We found that this equation has the form of eq. ( 50 ) with the kernel of eq. ( 51 ). The
weakness of the argumentation stems from the fact that we assumed the bootstrap equation to
reconstruct the form of the kernel. It is not clear how general the bootstrap property of the
BFKL equation is. To check this we have to calculate the sets of the Feynman diagrams shown
in Figs. 2.9 and 2.11. These calculations are now in progress and will be published elsewhere
soon.

2. The uncertainties from the contribution of the infrared renormalons in the BFKL equation
with running ag were estimated and it was shown that they are smaller that the nonperturbative
contribution describing the shadowing correction in the deeply inelastic scattering.

3. It was shown that the infrared renormalons give rise to the corrections of the order of

7}9—2 to the gluqn structure function in the region of small z. The physical origin of such sort

corrections as well as their selfconsistent nonperturbative description is still unclear and has to
be clarified in future.

4. The analytic function summing the infrared and ultraviolet renormalons in the BFKL
equation with running og was suggested, and numerical estimates were given which led to
simplification of the answer in the deeply inelastic kinematic region.

5. The reduced evolution equation with the running as based on the numerical estimates
of the nonperturbative contribution to the kernel of the BFKL equation with running as was
proposed and solved. The result of the solution shows much slower behaviour of the gluon
structure function in the region of small z, than it was predicted in the original version of the
BFKL equation with fixed as.

6. The legitimate theoretical region asln(1/z) < (as(g?))} for the BFKL equation with
fixed ag was found.
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We hope that this paper will be useful in understanding what kind of nonperturbative phe-
nomena has been taking into account in the BFKL equation and for more elegant and compre-
hensive theoretical description of nonperturbative QCD in the region of low z { high energies).
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Fig. 4.1 :

The Born Approximation of perturbative QCD for quark - quark
scattering.

The next to Born Approximation of perturbative QCD for quark - quark
scattering: emission of one extra gluon.

The next to Born Approximation of perturbative QCD for quark - quark
scattering: a? correction to elastic amplitude.

The next to Born Approximation of perturbative QCD for quark - quark
scattering: gauge invariance trick.

The next to Born Approximation of perturbative QCD for quark - quark
scattering: the resulting answer for emission 6f one extra gluon.

The relation between colour coefficients.

The BFKL equation.

The Born Approximation of perturbative QCD for quark - quark
scattering for a running coupling constant.

Insertion of fermion bubles in the amplitude of emission of one extra gluon.
Corrections to the reggeization of the gluon due to running as.

Emission of one quark - antiquark pair.

The first correction to the BFKL equation due to running as.

The shadowing correction to the deep inelastic scattering.

The structure of singularities in the Borel plane.

Awrpg versus v at fixed ag =0.25.

Awrgp versus z = &Ls at fixed v = %

1

Awg versus z = Z- at fixed y = 3.

The structure of singularities in the w - plane for the solution of
the reduced BFKL equation with running as.
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