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Abstract

A nonexhaustive review is presented of the limits of the impressive and vastly

known success of Boltzmann-Gibbs statistics and normal thermodynamics. These

limits naturally open the door for the research of generalized formalisms that could

enlarge the domain of validity of standard statistical mechanics and thermodynam-

ics. A possible such generalization (recently proposed by the author) is commented

along this perspective.
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1 Limitations of Boltzmann-Gibbs Statistics

1.1 Introduction

The qualitative and quantitative success of Boltzmann-Gibbs (BG) Statistical Mechan-

ics (and, naturally, of its particular cases, the Fermi-Dirac and Bose-Einstein quantum

statistics, with their common high temperature asymptotic limit, the classical Maxwell-

Boltzmann statistics) is so ubiquitous, persistent and delicate that not few physicists and

chemists have a kind of strong (not necessarily rationalized) feeling that this brilliant for-

malism is, in practical terms, universal, eternal and in�nitely precise. A more balanced

analysis reveals some of its speci�c limitations and inadequacies, and consequently the

fragility or nonuniversality of some of the basic hypothesis of its foundations. Among

these foundation stones, a privileged position is detained by the entropy S, as introduced

and used by Boltzmann and Gibbs (S = �kB
R
dxf(x) ln f(x) for classical distribution

laws f(x) de�ned in phase space), further generalized by von Neumann (S = �kBTr� ln �,

� being the density operator de�ned in Hilbert or Fock spaces), with its diagonal form

(S = �kB�
W
i=1pi ln pi, pi being the probability of the i-th among W microstates, and its

famous equal-probability particular form S = kB lnW ) as �nely discussed, in the context

of Information Theory, by Shannon.

Let us explicitely state, at this point, a property of S (extensivity or additivity as

frequently referred to) which will play a critical role in what follows. If we have two

systems �1 and �2 (with respective probabilities fp
(1)
i g and fp

(2)
j g; i = 1; 2; ::;W1 and

j = 1; 2; :::;W2) which are independent (in the sense that the probabilities fp(12)ij g of the

system �1U�2 satisfy p
(12)
ij = p

(1)
i p

(2)
j ;8(i; j)), then

S (�1U�2) = S(�1) + S(�2) (1)

Obviously, if we have N independent systems f�sg (s = 1; 2; :::; N), Eq. (1) is generalized

into

S
�
N

U
s=1

�s

�
= �N

s=1 S(�s) (2)

We can now start quoting, in the words of their authors, the inadequacies of BG statis-

tics, or the precautions that have to be taken in what concerns its domain of applicability,

or even some intuitive hints.
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1.2 Astrophysics and the Gravitational N-Body Problem

A.M. Salzberg, in his 1965 \Exact statistical thermodynamics of gravitational interac-

tions in one and two dimensions" [1], writes \The exact equilibrium statistical mechanics

of one-and two-dimensional gases, in which the particles interact through gravitational

forces, is obtained. It is found that these systems are characterized by nonextensive ther-

modynamics leading to behaviour somewhat reminiscent of the formation of a star from

interstellar dust", and also \One interesting complication which arises in these gases is

the nonextensive nature of the thermodynamic functions".

H.E. Kandrup, in his 1989 \Mixing and \violent relaxation" for the one-dimensional

gravitational Coulomb gas" [2], writes \One obvious point is that, whereas no statistical

equilibrium exists for a three-dimensional system [thus, e.g., the canonical and micro-

canonical distributions are not de�ned), one can in fact make sense of an equilibrium for

one-dimensional gravity".

L.G. Ta�, in his 1985 \Celestial Mechanics" [3], writes \The nexus of the problem

with the application of kinetic theory, of statistical mechanics, or of thermodynamics to

self-gravitating systems is contained in Eqs. 12.27 and 12.28. Because the interparticle

potential u is equal to �Gm2=r, there is trouble at both ends of the domain of integration.

(� � �) Both of these problems are due to the nonsaturation of gravitational forces (Levy-

Leblond 1969). This means that the total energy of any �nite collection of self-gravitating

mass points does not have a �nite, extensive (e.g., proportional to the number of particles)

lower bound. Without such a property there can be no rigorous basis for the statistical

mechanics of such a system (Fisher and Ruelle 1966). This result is not a consequence of

the 1=r2 nature of the gravitational force but rather of its unshielded character [cf. Dyson

and Lenard (1967) for a discussion of the electrostatic case]. Basically it is that simple.

One can ignore the fact that one knows that there is no rigorous basis for one's computer

manipulations, one can try to improve the situation, or one can look for another job".

W.C. Saslaw, in his 1985 \Gravitational Physics of Stellar and Galactic Systems"

[4], writes \This equation of state (30.9) also illustrates another important general aspect

of gravitational thermodynamics. When interactions are important the thermodynamic

parameters may lose their simple intensive and extensive properties for subregions of a

given system. (� � �) In order for the thermodynamic limit to exist rigorously a system must

have an equilibrium ground state. For such a state to have a minimum free energy it should
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be \saturated". This means that an increase of N would leave the free energy per particle

unaltered. Saturated free energy is therefore proportional to N . If the free energy increases

with a higher power of N , then, in the thermodynamic limit as N ! 1, the binding

energy per particle also becomes in�nite. Thus the ground state would become more and

more condensed as N increases. From a slightly di�erent point of view, N could increase

and V decrease inde�nitely, making it impossible to achieve a thermodynamic limit with

�!constant. Gravitational systems, as often mentioned earlier, do not saturate and so do

not have an ultimate equilibrium state. A three-dimensional purely gravitational system in

virial equilibrium (not a state of ultimate equilibrium) has a binding energy / N2. (� � �)

These heuristic results, applied to relativistic fermions, were found in the early studies

by Landau and Chandrasekhar of the stability of white dwarfs and neutron stars. They

have been made more exact and derived rigorously by examining the thermodynamic limit

of quantities with the form N�7=3F (T; V;N) in the ground state (� � �) The main di�culty

is that in three dimensions no one knows how to sum the partition function exactly in

a closed form. So we shall have to make do with a more open form which connects the

partition function with kinetic theory".

J. Binney and S. Tremaine, in their 1987 \Galactic Dynamics" [5], write \Ogorodnikov

(1965) and Lynden-Bell (1967a) show that this calculation leads to the conclusion that S

is extremized if and only if f is the DF [distribution function] (4-116) of the isothermal

sphere. However, the isothermal sphere is a system with in�nite mass and energy. Hence

this calculation shows that the maximization of S [entropy] subject to �xed M [mass] and

E [energy] leads to a DF that is incompatible with �nite M and E. From this contradiction

it follows that no DF that is compatible with �nite M and E maximizes S: if we constrain

only M and E, con�gurations of arbitrarily large entropy can be constructed by suitable

rearrangements of the galaxy's stars".

S. Tremaine, M. H�enon and D. Lynden-Bell, in their 1986 \H-functions and mixing

in violent relaxation" [6] provide a hint for solving the above problem. They write \In

collisionless systems Boltzmann's H-function �
R
Flog F dxdv is only one of a variety of

H-functions of the form �
R
C(F )dxdv, where C is any convex function". They deplore

\Lynden-Bell (1967) argued that violent relaxation leads toward a unique statistical equi-

librium state which might be identi�ed with the observed stellar distribution in elliptical

galaxies, and used the methods of statistical mechanics to determine the distribution of
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stars in the equilibrium state. Unfortunately, the resulting equilibrium state has in�nite

total mass".

These and similar arguments make us to understand why R. Balian, in his 1991 \From

Microphysics to Macrophysics"[7], writes \Important developments have taken place in

mathematical physics. The conditions for the validity of the thermodynamic limit (x 5.5.2)

have been established, showing under what circunstances the entropy is an extensive quantity.

This enables us to understand the limitations that exist, for instance in astrophysics, on

the stability of matter". On more general grounds, but within a somehow related phi-

losophy, J.L. Lebowitz, in his very recent \Boltzmann's entropy and time's arrow" [8],

writes \Boltzmann's stroke of genius was, �rst, to make a direct connection between this

microscopically de�ned function SB(M) and the thermodynamic entropy of Clausius, Seq,

which is a macroscopically de�ned, operationally measurable (also up to additive con-

stants), extensive property of macroscopic systems in equilibrium. For a system in equi-

librium having a given energy E (within some tolerance), volume V and particle number

N , Boltzmann showed that Seq(E; V;N) � SB(Meq) (2), where Meq(E; V;N) is the corre-

sponding macrostate. By the symbol \�" we mean that for large N , such that the system

is really macroscopic, the equality holds up to negligible terms when both sides of equation

2 are divided by N and the additive constant is suitably �xed. We require here that the

size of the cells used to de�ned Meq, that is, the macroscale, be very large compared with

the microscale". In other words, the problem might be far from trivial if the elements

of the (macroscopic) system interact across distances comparable to (or larger than) the

linear size of that system!

1.3 Black-Holes and Superstrings

P.T. Landsberg, in his 1984 \Is Equilibrium Always an Entropy Maximum?"[9], writes

(in the Abstract) \A systematic development is given of the view that in the case of

systems with long-range forces and which are therefore nonextensive (in some sense) some

thermodynamic results do not hold. Among these is the relation U � TS + pv = �N and

the Gibbs-Duhem equation. If a search for an equilibrium state is made by maximization

of the entropy one may obtain misleading results because superadditivity may be violated.

The considerations are worked out for a simple gas model, but they are relevant to black

hole thermodynamics. Rather general conclusions can be drawn which transcend special
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systems". He also writes \The failure of some thermodynamic results, normally taken

to be standard for black hole and other nonextensive systems has recently been discussed.

(� � �). If two identical black holes are merged, the presence of long-range forces in the

form of gravity leads to a more complicated situation, and the entropy is not extensive:

(� � �)Sb(2X) 6= 2Sb(X) (1.7) where an obvious notation has been used. In the merged

black hole system one has to use 2M; 2J; 2Q and the relation between Sb(2X) and Sb(X)

has to be investigated. It can in fact be shown that Sb(XA + XB) > Sb(XA) + Sb(XB)

(1.8). This means that entropy is \strictly superadditive", and this is consistent with

(1.7) if one takes XA = XB = X. (� � �) The circumstance that the main variables of

thermodynamics in the absence of long-range forces are intensive or extensive, cannot be

deduced from the so-called \laws" of thermodynamics. Nonetheless it is a very important

characteristic of \normal" thermodynamic systems, and that is why it was recognized

as such long ago, before the advent of black holes. (� � �) In any case, any treatment of

\normal" thermodynamics should rule out long-range forces early on in the discussion.

Anyone who wants to check carefully which parts of thermodynamics may, or may not, be

used when long-range forces play a part will �nd little in the archival literature".

Along the same lines, D. Pav�on, in his 1987 \Thermodynamics of Superstrings" [10],

writes \Likewise, superstring entropy is neither homogeneous, Ss(kEs) 6= kSs(Es), nor

concave, but it is superadditive. Superadditivity means that the entropy of a composite

system must be greater than the combined entropies of the subsystems making up the total

system".

1.4 L�evy Flights, 1=f� Noise and Fractals

E.W. Montroll and M.F. Shlesinger, in their 1983 \Maximum Entropy Formalism, Frac-

tals, Scaling Phenomena, and 1=f Noise: A Tale of Tails" [11], write (in the Abstract)

\In this report on examples of distribution functions with long tails we show that the

derivation of distributions with inverse power tails from a maximum entropy formalism

would be a consequence only of an unconventional auxiliary condition that involves the

speci�cation of the average value of a complicated logarithmic function". They also write

\Hence the wonderful world of clusters and intermittencies and bursts that is associated

with L�evy distributions would be hidden from us if we depended on a maximum entropy

formalism that employed simple traditional auxiliary conditions".
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E.W. Montroll and B.J. West discuss, in their 1987 \Fluctuation Phenomena" [12],

the connection with fractals: \Thus, scaling and power-law distributions are intimately

related; both imply a lack of a fundamental scale for the underlying process. We note

that in the laws of Lotka, Zipf and Pareto there lurks such a scaling property, if only the

process is viewed in the proper manner". Further discussions on the connection with 1=f�

noise can be found in [13].

1.5 Vortex Physics

We can by no means state that vortex and turbulence physics have been shown to have

a connection with nonextensive statistical mechanics (due, for instance, to long-range in-

teractions between the vortex). However, many suggestive hints can be found here and

there. Let us illustrate this by quoting fragments of the excellent 1980 review \Two-

dimensional turbulence" by R.H. Kraichnan and D. Montgomery [14]. They write \Fluid

and plasma turbulence is ubiquitous in nature, at all scales from co�ee cup to universe.

Two-dimensional turbulence has the special distinction that is nowhere realised in nature

or the laboratory but only in computer simulations. Its importance is two-fold: �rst, that

it idealises geophysical phenomena in the atmosphere, oceans and magnetosphere and pro-

vides a starting point for modelling these phenomena; second, that it presents a bizarre

and instructive statistical mechanics. (� � �) The enstrophy constant leads to equilibrium in

which a large fraction of the energy is condensed into the largest spatial scales of motion,

a situation closely analogous to the Einstein-Bose condensation in an ideal boson gas. But

the present condensation involves negative (higher than in�nite) temperatures. At a crit-

ical value of negative temperature there is evidence for a supercondensation phenomenon

� � � (� � �) to investigate formally the dependence of cascade dynamics on a continuous di-

mensionality parameter d. (� � �) They �nd unphysical behaviour for d < 2... (� � �) In

three dimensional ows the analogy between sub-grid scales and thermal agitation already

is imperfect because the turbulent motion in fact has a continuous distribution of scale

sizes. (� � �) It is probable that the excitation of sub-grid scales by explicit scales and the

subsequent reaction of the sub-grid scales on the explicit scales also involves coherent,

phase-locked phenomena that are intrinsically unsuited to any statistical treatment".
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1.6 Granular Matter

The macroscopic stability of powder mixtures and other forms of granular or �bre matter

might be associated with fractal sets (e.g., the set of grain point contacts of a sandpile

[15]). Under these circumstances, there is no reason for having a relevant \thermody-

namic" energy proportional to a standard power of the mass of the system. Consequently,

nonextensive phenomena could be present. In fact, A. Mehta and S.F. Edwards [16] have

used \a new formulation of the statistical mechanics of powders to develop a theory for a

mixture of grains of two di�erent sizes". Also, they \discuss the insight a�orded by this

solution on the \thermodynamic" quantities of interest in the powder mixture" (see also

[17]).

1.7 Neural Network and Learning Curves

Neural networks (e.g., perceptrons, Hop�eld model and others) are arti�cial devices or

computational models which can perform human-like tasks such as recognizing, gener-

alizing and learning. Their \statistical mechanics" is very rich and is being intensively

studied nowadays (see [18] and references therein). With extremely rare exceptions (e.g.,

[19]), the entire \thermodynamical" discussion is done in terms of BG statistics (hence,

with a Shannon-like entropy), and, for dynamical purposes, in terms of Langevin and

Fokker-Planck equations (the stationnary solution of which is the BG equilibrium distri-

bution). There is however no imperative reason for such a limitation (remember that jets

y quicker than any biological being!). More than that, there are in fact indications in

the opposite sense; for instance, simmulated annealing with a Cauchy machine is much

faster than with a Boltzmann machine [20]. This area of research could become a very

interesting �eld of applications of nonextensive physics.

1.8 Economics

Of course, like arti�cial neural networks, Economics does not belong to the so-called

\Physical Sciences". Nevertheless, it can constitute an interesting area for applying nonex-

tensive concepts developed in Physics. This is, in particular, the case of the theory of

�nancial decisions (e.g., stock market and similar operations involving \risk" and \un-

certainty"). In fact, the cross-fertilizing interaction between Physics and Economics is
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not new: an illustrious such example is the 1947 von Neumann and Morgenstern seminal

work on game theory [21]. In the words of J. Dow and S.R.C. Werlang in their 1992

\Uncertainty aversion, risk aversion, and the optimal choice of portfolio" [22]: \With a

nonadditive probability measure, the \probability" that either of two mutually exclusive

events will occur is not necessarily equal to the sum of their two \probabilities". If it is

less than the sum, the expected-utility calculations using this probability measure will re-

ect uncertainty aversion as well as (possibly) risk aversion. The reader may be disturbed

by \probabilities" that do not sum to one. It should be stressed that the probabilities,

together with the utility function, provide a representation of behavior. They are not ob-

jective probabilities". Also, in the words of M.H. Simonsen and S.R.C. Werlang in their

1991 \Subadditive probabilities and portfolio inertia" [23]: \Uncertainty means, in fact,

incomplete information about the true probabilities. (� � �) The attractiveness of the con-

cept of subadditive probabilities is that it might provide the best possible description for

what is behind the widespread notion of subjective probabilities in the theory of �nancial

decisions". See also [24].

The possible connection of these subadditive probabilities with the generalized statis-

tical mechanics discussed in Section II will become obvious later on. Let us just anticipate

that the generalized mean value (of an observable Ô) is calculated with �W
i=1p

q
iOi (q 2 IR),

hence fpqig play the role of probabilities in standard Theory of Probabilities, but �W
i=1p

q
i

generically equals unity if and only if q = 1 (q > 1 yields subadditive \probabilities", e.g.,

(p1+p2)q � pq1+pq2). On the other hand, the reader should be aware that, in [22{24], Cho-

quet's mean value, rather than the present, is currently used. The most striking di�erence

is that if we consider a real positive constant �, the Choquet expected value of � yields �

(as with usual probabilities), whereas the present expected value yields < � >q= ��ip
q
i ,

which is generically smaller than � if q > 1 (it equals � only if q = 1 for all fpig or

if fpig = f1; 0; 0; � � �g for all q). Which expected value better describes mathematically

human behavior within a theory of �nancial decisions might be a controversial matter.

In our favor let us mention that we exhibit in Section II.7 how the present mean value

enables a well de�ned prescription for operationally dealing with this kind of problem.



CBPF-NF-001/94 9

2 Looking for a Way Out

2.1 Entropic Forms

Generalized forms for the entropy as a measure of information are commonly discussed

within the communities of Information Theory and Statistical Inference. The �rst attempt

was done, as far as we know, by Sch�utzenberger (according to Csiszar [25]) and by Renyi

[26] who introduced

SSR
q �

ln
WX
i=1

pqi

1� q
(q 2 IR) (3)

This expression: (i) recovers, in the q! 1 limit, that of Shannon, for q = 2, that of Pielou

[27], and is proportional (through a conveniently chosen coe�cient) to those introduced

by Varma (see [28]) and by Nath [29]; (ii) is extensive, i.e., satis�es Eq. (2), 8q; and (iii)

has not necessarily a �xed concavity for all fpig and �xed q. After this generalization,

many others followed as possible information functions for statistical inference and related

purposes. Let us mention [30]

SHCD
q �

1

1� 21�q

"
1�

WX
i=1

pqi

#
(4)

introduced by Havrda and Charvat and by Daroczy (it recovers, in the q! 1 limit, that

of Shannon),

SSM �
1

1� 21��

8<
:1 �

"
WX
i=1

p�i

#(��1)=(��1)9=
; (� > 0; � 6= 1; � > 1) (5)

introduced by Sharma and Mittal [31],

SA �
R

R � 1

8<
:1 �

"
WX
i=1

pRi

#1=R9=
; (R > 1) (6)

introduced by Arimoto [32]. Van der Lubbe et al [33] have generalized all of them by

considering three families, namely

SLBB
I � ��log2

"
WX
i=1

p�i

#�
(logarithmic measure) (7)

SLBB
II � �

8<
:1�

"
WX
i=1

p�i

#�9=
; (linear measure) (8)
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and

SLBB
III � �

8<
:
"
WX
i=1

p�i

#��
� 1

9=
; (hyperbolic measure) (9)

(� > 0; 0 < � < 1 and � < 0, or � > 1 and � > 0). More about these vast classes of

information measures (and their particular cases) can be found in [34].

2.2 Generalized Statistical Mechanics: Introduction

Curiously enough, as far as we know, no attempts have been made to explore the richness

of the above mentioned functional forms in the sense of looking for possible connections

with Physics, and ultimately with Nature.

In 1988 we (independently) proposed [35], inspired by multifractals, the generalized

entropy

Sq � k

1 �
WX
i=1

pqi

q � 1
(q 2 IR) (10)

as a starting point for generalizing BG statistics (k is a conventional positive constant). It

recovers, in the q ! 1 limit, Shannon's expression, it is concave (convex) for q > 0(q < 0)

and all fpig, but violates extensivity. Instead of Eqs. (1) and (2), it satis�es pseudo-

additivity, i.e.,

Sq(�1U�2)

k
=

Sq(�1)

k
+
Sq(�2)

k
+ (1 � q)

Sq(�1)

k

Sq(�2)

k
(11)

and, for arbitrary N � 2,

1 + (1� q)Sq

�
N

U
s=1

�s

�
=k =

NY
s=1

[1 + (1� q)Sq(�s)=k] (12)

Eq. (12) can be rewritten as

ln
�
1 + (1 � q)Sq

�
N

U
s=1

�s

�
=k
�

1 � q
=

NX
s=1

ln[1 + (1 � q)Sq(�s)=k]

1� q
; (13)

but we can easily verify that

ln[1 + (1 � q)Sq=k]

1� q
= SSR

q ; (14)

hence Eq. (13) reproduces Eq. (2) with S � SSR
q ![35] Incidentally, let us mention that

q < 1 implies strict superadditivity as wanted in Section I.3 (whereas q > 1 implies strict

subadditivity). Other relevant properties follow:
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(i) Sq � 0; 8q; 8fpig (15)

(ii) Sq is expansible for q > 0, i.e.,

Sq(p1; p2; � � � ; pW ; 0) = Sq(p1; p2; � � � ; pW ) (16)

(iii) H-theorem: under quite general conditions (less restrictive than detailed balance)

[36-38], dSq=dt � 0;= 0 and � 0, if q > 0;= 0 and < 0, respectively, t being the

time.

2.3 Microcanonical Ensemble

Equiprobability (i.e., pi = 1=W;8i) extremizes Sq;8q (maximal for q > 0, minimal for

q < 0, and constant for q = 0). Its value is given by

Sq = k
W 1�q � 1

1� q
(17)

which recovers Boltzmann's celebrated formula S = kB lnW , in the limit q ! 1. Eq. (17)

implies

W = [1 + (1� q)Sq=k]
1

1�q (18)

This form suggests an important conjecture. Indeed, if we denote by P (fpig) (likelihood

function as sometimes referred to in statistics) the probability of having a set fpig di�erent

from that which maximizes Sq, Eq. (18) suggests (in analogy with the q = 1 case)

P (fpig) / [1 + (1 � q)Sq(fpig)=k]
1

1�q (19)

This relation can be conjectured along a di�erent path (elaborated in a private discussion

with M.O. Caceres), which follows that of Einstein [39] for the q = 1 case. If we think

the macroscopic system as made of practically independent macroscopic subsystems, we

have that SSR
q is additive, which suggests (see [39])

P (fpig) / eS
SR
q (fpig) (20)

If we now use here Eq. (14), we immediately recover Eq. (19). This conjecture (adapted

for the canonical and grand-canonical ensembles, where supplementary constraints are im-

posed, besides �W
i=1pi = 1) was �rst assumed by Chame and Mello [40], who deduced from

it a very general form for the uctuation-dissipation theorem (which successfully repro-

duced, as particular cases, the uctuation forms of the speci�c heat and of the magnetic

susceptibility, already proved elsewhere through completely di�erent arguments).
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2.4 Canonical Ensemble

The optimization of Sq under the constraints �W
i=1pi = 1 and

WX
i=1

pqi "i = Uq (21)

(where f"ig are the eigenvalues of the system HamiltonianH, and the generalized internal

energy Uq a �nite �xed value) yields the following equilibrium distribution [35,41]:

If q = 1 (BG statistics),

pi = e��"i=Z1 (22)

with

Z1 =
WX
i=1

e��"i (23)

� � 1=kT being the Lagrange parameter associated with restriction (21).

If q < 1 (\superadditive" statistics),

pi =

8><
>:

[1� �(1� q)"i]
1

1�q =Zq; if [1� �(1� q)"i] > 0

0 ; otherwise
(24)

with

Zq =
WX
i=1

[1� �(1� q)"i]
1

1�q (25)

where �0 runs only over the levels "i satisfying 1� �(1� q)"i > 0.

If q > 1 (\subadditive" statistics),

pi =

8><
>:

[1 � �(1� q)"i]
1

1�q =Zq if 1 � �(1� q)"� > 0

�i;�=g
� ; otherwise

(26)

with

Zq =
WX
i=1

[1� �(1� q)"i]
1

1�q (27)

where "� � inff"ig("� � supf"ig) if � > 0 (� < 0) and g� is the associated degeneracy;

�i;� equals unity if "i = "�, and vanishes otherwise.

In order to clarify some confusion existing in the available literature, let us detail (after

enlightening discussions with S.A. Cannas, P. Pury and G. Raggio) the equilibrium distri-

bution (Eqs. (22-27)). To �x the ideas, let us assume that the spectrum f"ig present L lev-

els (characterized by ` = 1; 2; � � � ; L;
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�L
`=1g` = W where fg`g are the associated degeneracies), and that its labelling satis-

�es

"1 = "2 = � � � = "g1| {z }
g1 states

< "g1+1 = "g1+2 = � � � = "g1+g2| {z }
g2 states

< � � � <

< "g1+g2+���gL�2+1 = � � � = "W�gL�1 = "W�gL| {z }
gL�1 states

<

< "W�gL+1 = "W�gL+2 = � � � = "W�1 = "W| {z }
gL states

(28)

where both "1 and "W are assumed �nite. In all cases (q�
<
1), we have that limT!�1 pi =

1
W
;8i.

Case q = 1:

For T ! +0; pi approaches 1=g1 if 1 � i � g1, and approaches zero otherwise. For

T ! �0; pi approaches 1=gL if W � gL + 1 � i � W , and approaches zero otherwise.

The region T = 0 is thermally forbidden (physically inaccessible), and the region T 6= 0

is thermally active.

Case q < 1:

If "1 � 0, then T < 0 is thermally active, T ! �0 implies pi ! "
1

1�q

i =�W
i=1"

1

1�q

i ; T 2

[0; (1�q)"1=k] is thermally forbidden, T 2 ((1�q)"1=k; (1�q)"g1+1=k] is thermally frozen

(pi = 1=g1 if 1 � i � g1, and zero otherwise), and T > (1� q)"g1+1=k is thermally active.

If "W � 0, then T < (1 � q)"W�gL=k is active, T 2 [(1 � q)"W�gL=k; (1 � q)"W=k) is

frozen (pi = 1=gL if W � gL + 1 � i � W , and zero otherwise), T 2 [(1 � q)"W=k; 0) is

forbidden, T ! +0 implies pi ! j"ij
1

1�q =�W
i=1j"ij

1

1�q , and T > 0 is active. If "1 � � � � �

"B < 0 < "A � � � � � "W ("B � �rst level below zero, "A � �rst level above zero; the

results for the cases "B = 0 < "A and "B < 0 = "A can be obtained as simple limits of

the generic case "B < 0 < "A), there is no �nite-temperature forbidden region. If "1 = "B

and "A = "W (two level system), then T < (1 � q)"1=k is active, T 2 [(1 � q)"1=k; 0) is

frozen (pi = 1=gW for W � g2+1 � i � W , and vanishes otherwise), T 2 (0; (1� q)"W=k]

is frozen (pi = 1=g1 for 1 � i � g1, and vanishes otherwise), and T > (1 � q)"W=k

is active; if "B = "1 and "A < "W (three or more level system), then T < 0 is active,

T 2 (0; (1 � q)"A=k] is frozen (pi = 1=g1 for 1 � i � g1, and vanishes otherwise), and

T > (1 � q)"A=k is active; if "1 < "B and "A = "W (three or more level system), then
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T < (1�q)"B=k is active, T 2 [(1�q)"B=k; 0) is frozen (pi = 1=gW forW�gL+1 � i � W ,

and vanishes otherwise), and T > 0 is active; if "1 < "B and "A < "W (four or more level

system), then T 6= 0 is active, pi tends, in the T ! �0 limit, to "
1

1�q

i =
P

i:"i>0 "
1

1�q

i if

"i � "A and to zero otherwise, and pi tends, in the T ! +0 limit, to j"ij
1

1�q =
P

i:"i<0 j"ij
1

1�q

if "i � "B and to zero otherwise.

Case q > 1:

There is no �nite-temperature forbidden region in any case.

If "1 � 0, then T < (1� q)"W=k is active, T 2 [(1� q)"W=k; 0) is frozen (pi = 1=gL if W �

gL+1 � i �W , and vanishes otherwise), and T > 0 is active
�
lim
T!+0

pi = "
1

1�q

i =�W
i=1"

1

1�q

i

�
.

If "W � 0, then T < 0 is active
�
lim
T!�0

pi = j"ij
1

1�q =�W
i=1j"ij

1

1�q

�
, T 2 (0; (1 � q)j"1j=k] is

frozen (pi = 1=g1 if 1 � i � g1, and vanishes otherwise), and T > (1� q)j"1j=k is active.

If "1 � � � � � "B < 0 < "A � � � � � "W (as before, the results for the cases "B = 0 < "A

and "B < 0 = "A can be obtained as simple limits of the generic case "B < 0 < "A), then

T < (1�q)"W=k is active, T 2 [(1�q)"W=k; 0) is frozen (pi = 1=gL ifW�gL+1 � i � W ,

and vanishes otherwise), T 2 (0; (1�q)"1=k] is frozen (pi = 1=g1 if 1 � i � g1, and vanishes

otherwise), and T > (1� q)"1=k is active.

Let us conclude with two remarks: (i) In all circumstances (q�
<
1), T < 0 (T > 0)

becomes forbidden if "W ("1) diverges, because Uq would diverge (which is incompatible

with being a �nite constraint); (ii) If q 6= 1, the limT!�0 Sq might be di�erent from zero

even in the absence of any degeneracy (i.e., if g` = 1;8`), in remarkable contrast with

the q = 1 case; consequently, the Third Principle of Thermodynamics might be violated if

q 6= 1.

It can be proved [41] in general that

1

T
=

@Sq
@Uq

(29)

Uq = �
@

@�

Z1�q
q � 1

1 � q
(30)

and

Fq � Uq � TSq = �
1

�

Z1�q
q � 1

1 � q
(31)
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2.5 Mean Values

As already appeared in Eq. (21), the relevant mean values within the present generaliza-

tion are calculated with pqi rather than with pi. In other words, if we have an observable

0̂, the quantity of interest (associated with the density operator �̂) is

< Ô >q� Tr�̂ q Ô = Tr�̂
�
�̂ q�1Ô

�
=< �̂ q�1Ô >1 (32)

and not < Ô >1 as usually. This is so in order to preserve the Legendre-transformation

structure of Thermodynamics [41], or quivalently, in order to satisfy Jaynes' requirements

(duality relations) for a formalism to be acceptable within Information Theory [42].

If we introduce the entropy operator

Ŝq � k
1 � �̂1�q

1 � q
(33)

we immediately verify, by using Eq. (32), that

Sq =< Ŝq >q (34)

and that

< Ô >q=< Ôq >1 (35)

with

Ôq �
Ô

1� (1� q)Ŝq=k
(36)

So, the generalized mean value of a standard observable can be thought as the standard

mean value of a generalized observable whose de�nition incorporates the information on

the system! Of course, this statement was already implicit in Eq. (32), but is particularly

striking in Eq. (35).

Let us now address an interesting property concerning mean values. For facility,

we shall work with diagonalized operators. Our system has W states characterized by

the possible couples f(i; j)g (i = 1; 2; � � � I; j = 1; 2; � � � ; J ; IJ = W ) with probability

fpijg (�i;jpij = 1). Our observable attains the value Oij in the (i; j) state. Then,

< Ô >q =
X
i;j

pqijOij

=
X
i

0
@X

j0

pij0

1
AqX

j

 
pijP
j0 pij0

!q
Oij (37)
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If we introduce now the marginal probabilities

pi �
X
j

pij (i = 1; 2; � � � ; I;
X
i

pi = 1) (38)

and the conditional probabilities

p
(i)
j �

pij
pi

(j = 1; 2; � � � ; J ;
X
j

p
(i)
j = 1) (39)

we can rewrite Eq. (37) as follows:

< Ô >q=
X
i

pqi < O >(i)
q (40)

with

< Ô >(i)
q �

X
j

�
p
(i)
j

�q
Oij (41)

Let us consider now the particular case Oij = Oi (degeneracy of the j index). Eq. (41)

becomes

< Ô >(i)
q = Oi

X
j

�
p
(i)
j

�q
= Oi[1 + (1� q)Sq(p

(i)
1 ; p

(i)
2 ; � � � ; p

(i)
J )=k] (42)

hence

< Ô >q=
X
i

pqiOi[1 + (1� q)Sq(p
(i)
1 ; p

(i)
2 ; � � � ; p

(i)
J )=k] (43)

which explicitely exhibits how the information on the j-index a�ects the weight of the

value Oi! This curious e�ect just does not exist for q = 1. We can consider now the

particular case Ô = 1̂ (hence Oij = 1;8(i; j)). Then

< Ô >q= 1 + (1� q)Sq(p11; p12; � � � ; pij ; � � � ; pIJ )=k (44)

where we used the de�nition (33). Hence, replacing Eq. (44) in Eq. (43) we obtain

1 + (1 � q)Sq(p11; p12; � � � ; pIJ )=k =

=
X
i

pqi + (1� q)
X
i

pqiSq(p
(i)
1 ; p

(i)
2 ; � � � ; p

(i)
J )=k (45)

Using �nally that �ip
q
i = 1 + (1� q)Sq(p1; p2; � � � ; pI)=k we obtain

Sq(fpijg) = Sq(fpig) +
X
i

pqiSq(fp
(i)
i g) (46)

which exhibits how is gained the global information if we are informed, in a �rst step, on

the index i, and, in a second step, on the index j. The particular case I = 2 recovers Eq.

(7) of [41], which in turn recovers, for q = 1, the celebrated Shannon property.
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2.6 Some More Properties and Physical Applications

Plastino and Plastino have shown [42, 43] that both the Ehrenfest theorem and the von

Neumann equation are form-invariant for all values of q. This has a very important impli-

cation (private communication of A.R. Plastino), namely, it is impossible to determine q,

for a particular system, through dynamical measurements. However, it can be determined

through statistical measurements (e.g., speci�c heat, susceptibility, equation of states).

Further standard results that have been generalized for arbitrary q are the quantum

statistics [44], the Langevin and Fokker-Planck equations [45], the single-site Callen iden-

tity [46], the Bogolyubov inequality [47], a criterion for nonparametric testing [48], the

black-body radiation Planck law [49], the simulated annealing [50] among others. One-

body and many-body systems that have been studied include the two level system [35, 51],

the free particle [52], the Larmor procession [43], d = 1 Ising ferromagnet [53, 54], d = 2

Ising ferromagnet [46, 55, 56] and, very recently, the localized-spin ideal paramagnet [57]

where, for the �rst time, the existence of a (numerically) well de�ned thermodynamic limit

was exhibited, and where a curious (Bose-Einstein-condensation-like) phase transition was

shown.

At the present moment, two physical systems have been shown to present substantial

advantages if treated within q 6= 1 statistics. The �rst of them refers to the gravitational

e�ect on the polytropic model for stellar systems, as discussed by Chandrasekhar and

others. This model is known to yield an unphysical result, namely in�nite mass, within

BG statistics. This di�culty has been recently overcome by Plastino and Plastino [58] by

considering q 6= 1: if q su�ciently di�ers from unity, the mass becomes �nite.

The second system refers to L�evy ights. This random motion is characterized by

eventual long jumps which construct, if iterated many times, a fractal (with fractal di-

mension ). This jump distribution is long-tailed, and is known to be incompatible with a

variational formalism extremizing Shannon entropy with acceptable a priori constraints.

This problem has been recently overcome, by Alemany and Zanette [59], by extremizing

the generalized entropy Sq; they obtain q = (3 + )=(1 + ). Also, possible (though

yet unfound) applications have been suggested [60] for Condensed Matter (or Plasma

or Elementary Particles or other) droplets the elements of which interact over lengths

comparable to (or larger than) the (linear) size of the droplet.

Finally, an interesting possibility for application in NonequilibriumStatistical Mechan-
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ics appeared very recently (during a private discussion with T. Tom�e). Indeed, a variety

of standard (and important) transport equations can be deduced from a variational prin-

ciple applied to the usual entropy if appropriate time-dependent constraints are imposed

which involve a short memory function (of the type e"t
0

with " > 0 and t0 � 0) [61]. The

whole theory relies on the convergence of the integral (in the interval �1 < t0 � 0) of the

memory function. What happens if we are dealing with a long-memory phenomenon (of

the type 1=(�t0)1�� for t0 << �1, with � � 0)? What are the corresponding transport

equations? Can we deduce them from a variational principle applied to an entropy? If

so, this entropy cannot be the usual one because the above mentioned integral diverges!

The mathematical problems involved in this type of long-duration phenomena look very

similar to those involved in long-range-interaction systems [1{13]. If q 6= 1 statistics can

provide satisfactory issues [58, 59] for the spatial case, is it not reasonable to expect for

something analogous for the time case?

2.7 Approaching the Theory of Financial Decisions

Let us now return to the important �nancial problem related to human aversion to un-

certainty or risk. We shall illustrate the present approach through an example discussed

in a very recent survey of the \Frontiers of Finance" [62], where we read \Would you

rather have $85,000, or an 85% chance of $100,000? Most people would take the money.

Would you rather lose $85,000, or run an 85% risk of losing $100,000? Most people would

take the chance. When Amos Tversky of Stanford University posed people these dilemmas

he was interested in their understanding of, and attitude to, probability, time and risk.

His work has implications for the study of how a �nancial market works. It demonstrates

that people are \non-linear". They are risk-averse when expecting a gain and risk-seeking

when facing a loss".

Let us interpret this text within the present mathematical language.

Gain expectation:

\Take the money"-choice: p1 = 1, hence < gain >(1)
q = 1q � 85; 000 = 85; 000.

\Run a risk"-choice: p1 = 0:85 and p2 = 0:15, hence

< gain >(2)
q = (0:85)q � 100; 000 + (0:15)q � 0 = (0:85)q � 100; 000

A person which prefers the �rst choice (as most do) evaluates < gain >(1)
q >< gain >(2)

q
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hence his (or her) value of q is above unity.

Loss expectation:

\Lose the money"-choice: p1 = 1, hence < gain >(1)
q = 1q � (�85; 000) = �85; 000.

\Take the chance"-choice: p1 = 0:85 and p2 = 0:15, hence < gain >(2)
q = �(0:85)q �

100; 000.

A person which prefers the second choice (as most do) evaluates < gain >(2)
q >< gain >(1)

q ,

hence, his (or her) value of q is once more above unity.

So q > 1 \explains" both gain and loss expectation cases!

Let us now focus the question: How can we measure q? We illustrate this with the gain-

expectation dilemma. To �x ideas, suppose the person prefers the \take the money"-

choice. Then we pose again the dilemma with a value V slightly below 85,000 (say 84,000)

for the \take the money"-choice, and the same conditions as before for the \run a risk"-

choice. If the person still prefers the \take the money" choice, we decrease even more

V . A critical value Vc will be achieved such that the person just changes his (or her)

mind. In this case, it is < gain >(1)
q =< gain >(2)

q , hence Vc = (0:85)q � 100; 000, hence

q = ln(Vc=100; 000)= ln(0; 85), which provides the value of q for that person (for that

dilemma, at that moment). q monotonically decreases from (+1) to (�1) while Vc

increases from zero to in�nity; q > 1 if Vc < 85; 000 (risk-averse attitude), q = 1 if

Vc = 85; 000 (ideally rational attitude), 0 � q < 1 if 85; 000 < Vc � 100; 000 (risk-seeking

attitude), and �nally q < 0 if Vc > 100; 000 (which would be a completely irrational

attitude!).

If we test a large number of individuals we will approach the theoretical distribution

R(q) of that population
�R1
�1R(q)dq = 1

�
. Both statements \Most people would take the

money" and \Most people would take the chance" in the above text, are interpreted with

a single mathematical statement namely

0 <
Z 1

�1
R(q)dq <

1

2
<
Z 1

1
R(q)dq < 1:

3 Conclusion

We tried, in Section I, to convince the reader of the necessity of enlarging the horizons of

Boltzmann-Gibbs statistics and extensive thermodynamics. In Section II we presented,

besides a review of entropic forms that have appeared within the communities of Infor-
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mation Theory and Statistical Inference, a generalized thermostatistical formalism which

(i) satisfactorily connects with a consistently generalized thermodynamics, (ii) seems to

be mathematically coherent, and (iii) of course embraces, as a particular case, standard

thermostatistics. This formalism proved successful for two applications (polytropic model

for stellar matter, and L�evy ights), both of them presenting unshielded long-tailed inter-

actions of the type which cause the troubles shown in Section I. It is obviously premature

to say whether this formalism is the \correct answer" for at least some of the existing

di�culties, but it seems that this possibility should not be excluded. Only further studies

will �x the question.

I have tremendously bene�ted from discussions with very many scientists from Brazil,

Argentina, France, USA and other countries. Their large number makes it not appropriate

to name them all here � � � but they know who they are!: to all of them my gratitude.
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