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ABSTRACT

A Galerkin type method, based on trigonometric functions
and Crank-Nicolson discretizations of the time variable, is applied to
compute solutions of the initial boundary value problem associated with

the equation

2
a + a,u U + a.u + xe | 0,1 t > 0.
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Error estimates are derived and a numerical example is presented.

1. INTRODUCTION

This paper is devoted to the problem of computa
tion of the longitudinal motions of a bar with uniform cross-
section and length L, presenting a viscoelastic behavior. Deno
ting by x the position of a cross-section (which is assumed
to move as a vertical plane section) in the rest configura

tion of the bar, by u(x,t) the displacement at time t of the



section from its rest position, by t(x,t) the stress on the
section at time t, by f(x,t) the given external field force at
time t,and by p,> 0 the constant density, the equation of mo

tion 1is

(1.1) Ooutt(x,t) = Tx(x,t) + f(x,t) , xe(0,L) , t > 0.

Assuming the ends of the bar to be clamped for
all times and the initial state of motion specified by given
functions u,(x) and wu,(x) , xe [0,L ], we have the follow-

ing boundary and initial conditions associated to (1.1):

(1.2) u(0,t) = u(L,t) = 0 » te [ 0,2) ,
(1.3) u(x,0) = u(x) , xe[0,L ],
(1.4) u (x,0) = u,(x) , xe [o,L].

The medium is characterized by a stress-strain

relation of the form

a

(1.5) T = au o+ ?;(ux) + a,(uy), >

t

with a, >0 , a, > 0 and a, > 0, which describes, in the

. . 2 . .
terminology of Duvaut-Lions , a material with "short memory".

We shall be concerned with approximatiéns of the
solution u(x,t) of the mixed boundary-initial value problem

represented by equations (1.1) — (1.5).



A theory of this type of equation was first
developed by Greenberg, MacCamy and Mizel®'. Under a smooth-
4
ness hypothesis on the initial data, precisely u, € Cc (0,L),
and uls:CZ(O,L), and for f=0, they show the existence of a
. 2 _ _
unique ue C ((0,L) x (0, *«)), such that e 5 U 3 Wy and

u satisfies (1.1) — (1.5). Furthermore, for this "classical"

solution, there exists a constant M which depends on

J =7 (max | Diuo(x)l + max | Diul(x)[) ,
i=0 xe[0,L] xe [0,L]

and tends to zero as J goes to zero, such that

i
max 3 ulx,t) <M, te[b,W).

2 i
(1.6)  Jllulll © =T 3 i
120 k=0 xel0,L] | axtTFatk

1

Moreover,

(1.7 1im {JJull| (£) = 0.
Tt
To prepare the ground for this work on approxi-
mations, in [4] the first author discussed "weak" solutions of
(1.1) — (1.5) in Hz((O,T) x (0,L)), for any T>0. They were

obtained as limit of semi-discretized Galerkin approximations.

Now, for the full numerical treatment of the
problem, we use the trigonometric function space
Jmx

ocj sin== ocje R} ,

=
"
——
"~z

j=1



and a discretization in the time variable defined by

T
to=mAt , At =g, 1= 0,1,...,M,

Here N and M are positive integers and T is a fixed time level.
We shall consider approximations only on [ 0,L ] x [0,T ], spe

cifically, at the levels nAt.

When we have any function S,defined at the times
nA\t , n=20,1,...,M, including those previously defined for

all times, we denote by Sn the function at t = nAt, and define

= L
Sn+—%— ) (Sn+1 8

- - 0,1
Sp,e = 05,1 * (1-26)S_+6S . , O [0,1] ,
9.5 = -—-———Sn+l _ Sn
t n+y At >
82 g = Sn+l B 2Sn * Sn—l

- ’
t "n 2

(AT)

§ S = Sn+l _ Sn—l - 3tSn+—;— * atsn—% .
tn 2At 2

If we write ¢j(x) sin1%§ , the approximations

we shall propose to the u(x,tn) is a sequence of functions Un(x)

characterized by the following Galerkin-like conditions:
(1.8) (1) U € #H , n=0,1,...,M

(1.8) (ii) <Uo,¢j> = <u L, 6.> , J =1,...,N;



(1.8) (iii) <U, ¢j> = <F(.,At), ¢j> > ) = 1,...,N,

F(x,At) = ug(x) + Atu(x) + (At) {[él +
¥ az(Duo(x))z] D*u (x) + a,D u, (x) +

+ f(x,0)}

. 2
(1.8) (iwv) p0<8tUr1 5 ¢j> + a1<(Un,-i—)x 5 (¢j)x>
a, _ s
+ 3 <I_(Un)xj ) (¢j)x> +

We remark that
<f,,f,> = B E (0F,(
10 B> = S0 £, (0f, x) dx

that F(x, At) is the Taylor approximation to u(x,At) with
utt(X’O) evaluated in the differential equation (1.1), and that
(iv) is a second order correct in At scheme for the canonical

weak form of (1.1).

Taking into account the orthogonality properties
X Jmx

jm
of the family {sin lf_ » COS =T~ | § = 0,1,2,...} and introduc-

ing the representation



(1.9) U (x) = ¢l 9.(x)  , n o= 0,1,...,M,
n 3073

we derive from (1.8), by a straightforward calculation,

following equivalent relations:

0 2
(1.10) C. = = <u o>
] L 0 2 j b
1 2
(1.11) C; = T <FC,At) 5 95>,
2 2 2
n+l [boL . .z(asﬂ At , am (At) ) -1
(1.12) c’ = T (=7 =T )
- 2 2 2
L 312 L 2 (a3ﬂ At ) am (At) ) 1 on-1
S I L 8L 1S
- 2 2
am (At) 0
+ npoL STy A Cj -
2
azﬂq(At) N . r
- 3. I ike l_a i}
24L i,k,L=1 ikl [£-3]

-+

+ <fn s¢j>} ]

Slimk|, e+ Slaex],|e-31 " 5!i+kl,|£+jl}

the

nn-n
Cickcﬂ +

where j = 1,2,...N, n = 1,2,...,M-1, and, for p,q = 0,1,250.+

P.q =
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Equations (1.9) — (1.12) give us an explicit al
gorithm to compute step by step the approximations at the various

time levels.

The object of this paper is the analysis of algo
rithm (1.9) — (1.12). We shall prove a convergence result which

indicates the asymptotic behavior of the error, namely

2 1
sup || uC.,t ) - Unll1 = O[%At) + TT] ,
0<n<M

where we have to assume some minimum natural smoothness for u

and || .||, is the norm of the Sobolev space H'(0,L).

The proof of this result will be presented in
section 3. In section 2 we discuss two stability iemmas and a
result from the theory of approximation of functions by trigono
metric polynomials. In section 4 we present results of numerical

experiments performed with this algorithm.

2. STABILITY AND APPROXIMATION LEMMAS

The functions considered here are real valued and
measurable, and C will denote a generic constant. We adopt the

usual notation

<f,g>= fuL F(x) g(x) dx



m . ,
<f,g> = I <le,Dlg> +<f,g> , m21,
S F31
lell = REF
Lell, = EE,
| £ = sup | £ (x|
® xe [0,L]

for functions f and g defined on [0,L].

A priori estimates for equations (1.10)—(1.12)
will be derived. For the analysis we shall need some results
from the theory of Sobolev spaces which we state now. Proofs

are given in [5].

Let

L = {u:[0,L] »R]| [Ju]l <=},
" = {ue L2] Diue L , 1 = 1,...,m},
H =1,

m
L®(HD) = {u: [0,T]+H™| esssup || u(t)|| < =}.
0<t<T m
m . .
The space H is a Hilbert space with scalar product <u,v> , and
m

oo, I . .
L"(H") is a Banach space with norm ess sup |l u(t)[h. The follow-
0<t<T



ing two propositions are true:

(i) If ue:Hl, there exists a constant C, independent of u, such

that

1 1
(2.1) lul 2 cllull® lu |2 s

k
(ii) Let £e C(R) , k>1, with £(0) = 0. If ueL°(H) then

£(uw) e L°(HS), and

(2.2) [ f(u(t))[l1 <M ||u(t)||1 ,

or

(2.3) |l £ < e+ Jueo) 7N o],
k -1

if kx> 2 ,where M and C, are constants.

k
We are ready now to go through our basic lemmas.
Lemma 2.1 Any possible solution of (1.8)(iv) satisfies
2 2
A [N [ N LI [
2 x
n 2
+a, ;;lAt]kétUj)X[l < C,

for n = 1,2,...,M-1, where C depends only on the data.
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et o T
Proof: We multiply equation (1.8)(iv) by ] . and
2 At

sum in j from 1 to N to get

2
p <23_U ,GtUn>+a1<(U

) (§, U ) >
0 t "n n ,%—X > t n’x
a
2 3 2 _
+ N < (Un)X , (8,0, >+ aslI(StUn)xll =
= <fn s 6tUn>
Since
s U - 3tUn+1 * atUn-1
t n 9 >
2y 3,U 1 - 3,.U 1
t n ?

we have from the above equation

1 2 2
(2.5) o {[po 1o I+ el J _

- ool vns 1T w2l o 1F ]

2 az 3
tagll G up NI+ 5 <Wnde o (8,U) >
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By Cauchy-Schwarz and the arithmetic-geometric inequalities,

IoAt<f,, 8 L 3
t <f. U.> < = I t || f
n n
v = 1At flsu.l <= I atl£]”
j=l j=l J
1 D 2
t 5 E At HatU Wl

Hence, multiplying (2.5) by 2At and summing from 1 to n:

2 2
(2.6) 0, HBtUn+%|[ + alll(Un+%)XH

2 2
=0, Wagupll = a il o U1

2
At]l(étUj)Xll +

+

N

QO
nm™MY9

1

2 n 1 3
+ 5 a L At S (UL) (§,U.) dx
- 0 1 x t 17«

AN
noMy

Defining the new variables

A= A(3) = (U.L)

jx o2
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Bh = AN = (U, ) - (UL D

the sixth term of the left hand side of (2.6) can be written as

nx a2 1X

ATAN) dx - =2 S (3 A ANdx
0 3" =0

with

Because of that and Gronwall's lemma, (2.6) becomes

Hm™M3

2 2 2
pollatUn+%]| + a1”(Un+%)x |+ 2a, At[K&tUj)XII

j=1

<clo |00 l|” +a | (wp ||° g At £,
0 a + .
= 0 't';— 1 ‘%’X 3=1 ]
o LoCT T AT ANdx)
A=0
which implies the estimation (2.4).
Lemma 2.2: Any possible solution of (1.8)(iv) satisfies

(2.7) I| (u_d

axll <0G,
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for n = 0,1,2,...,M, where C depends only on the data.

2 2
. . . 1 : n+1!_n-1
Proof: If we multiply equation (18)(iv) by - = E79_ (Cj +Cj )
L

and sum in j from 1 to N, we get, in view of (1.9),

U + U
( n+) 1'1‘1)

2 XX

2
p0< atUn s

7=
of 5
h]
N
~~
c
3
Nt
»
 A—
N
a
3
o+
N
o
1
vl—'
v
-+

+
)
w
A
~
(e
(e
h—
AY
Py
o]
+
(=
3
|
-
~s
A\

U + U
( n+i n—l)

:<f
n

Integrating by parts in x where appropriated

2 ) T N ETPN
(2.8) 7ht © (Un+1 - Un—l xx 2 XX
Po Un+1 n-1
At atUn+% atUn—; > 2 )xx g
U
-<f , (At n-iy



1y

U
n+l! n—1
-a < (Un,%)xx , ( 5 )xx >
U
] n+1 n-1
-8, < ax(;(Unx) > ( 2 )xx >
83
* where G(S) = = -

The last three terms of the right hand side

(2.8) can be estimated in the following way:

(21T Tnmny L coqfle f1F s |
’ 2 XX - n

+

n+1)XX”

w1

n-1 XxXx

2

Un+1 * Un—l C{ (U )
( ), >l el Wnd ]

Ia1<(Un,-,+1-)xx ’ 2

R I A R T [ 2

n+i1 xX n-1 XX

) Un+1 + Un—1 c 1l ¢ ) 2
a, < 5§(3(Unx) > ( 2 )xx >If ” Un+1 xx”

2
) [}

| ) ;
Sl | I QUSSD S | B e lQU

nx

2 2 2
<cdlaw I+ i, o o T,

of

by (2.1)—(2.2). Hence, collecting the above inequalities into
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(2.8), multiplying the resulting expression by 2At an

as
from 1 to m-1, we get
2
2
(2.9) H(Um)xx” < ”(Uo)xx” + H(U1)xx“ +
4o m-1 U.,, +U
+ =2 5 < 3,U..; - 3.U (L= 1= >
3 j=1 E ity HR L -
M m
+ CljilAt eI+ c,.zg ot llaup i

Now the third term in the right hand side of
(2.9) can be handled by summation by parts in j, Cauchy-Schwarz
estimation for the resulting boundary terms and integration by

parts in x for the sum. The following inequality comes out

Lo m-1 U + U.
0 J+1 j-1
(2.10) — I < 93, U.,; - 9, U. ; ( ) >
85 4=1 tiity Tty 2 XX
2 2
<C {sup | 8, U. 1|l + e sup [1€U3) xx ||
0<j<m-1 T2 0<i<m
m-1 2
+ % At [a UL ]l 3,
j:O t j+_2- X
for any € > 0 arbitréry.
Formulas (1.8)(ii) — (1.8)(iii) imply bounds

for [[(U ) |l and (U || in terms of the data so that if we

choose € in (2.10) conveniently, carry it over (2.9) and take

d summing
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lemma 2.1 into consideration we obtain

bt Ul

[IKu_ )

| <c+ C'
m’ xx :

J

[ e =1

0
where C and C' depend on the data. This inequality, by Gronwall's
lemma, implies (2.7).

To conclude this section, we now present a result
on the error of the best least squares approximation by elements

of HN. For any function geILZ, let

1

) L

w,(g3;8) = sup é% f}’[g(xﬁAX) - glx)| ax |?
|Ax] <8

2 .
denote the L -modulus of continuity. We remark that w,(g3;d8) is

a non-decreasing function of 6, and that lim w,(g;8) = 0 for
§+0

any geIf . Hence the following lemma is true.

Lemma 2.3: Assume ueCl(O,L), u(0) = u(L) = 0, and that Du

is absolutely continuous with D¥uel’. Then, for each positive

integer N, there exists a trigonometric polynomial uNeHN, name-

N
ly uN(x) = I < u,%.> ¢.(x), such that
3=1 J ]
2
. w,(Du; %?)
(2.11) || l(u-yp || € K ———=

2_
N ~J
for all 0<j<2 ,

where K is a constant.



17

Proof. We first extend u as an odd function to [ -L,L ], get-
ting the conditions DIu(-L) = DIu(L), 0<j<1l, and then apply

theorem 5 from [1].

3. CONVERGENCE

In this section we shall go through the con-
vergence analysis of owr algorithm, establishing an uniform bound
for the errors associated with the approximations at each time

level. The following theorem summarizes the question.

Theorem 3.1 - Suppose the exact solution u of (1.1)—(1.5) is

twice continuously differentiable in x and four times in t over

(0,L) x (0,T). Then there exists a constant C, depending on the

i+
data and the derivatives &= |, i = 0,1,2, j = 0,2,3,
axTatd
4, such that,
(3.1) {1} 3, [uc ) - U ]||2 | uc )-U |]2}"1f
. sup u(.,t_,1) - 1 + uC.,t 31)- 1 +
0<n<M-1 t i n+- n+= ? n+=- n+> 1
M-1 2 1 2 -1
+ Lz atlls Cul.,t )-UE‘ Il Y2 <cC f:(At) + N :]
- n n|x -
n=1
Proof. We write the equation for the exact solution at t = t

in the weak finite difference form
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: +1 n-1
(3.2) po < o 3 s ¢ >
' At
+ < Eu (.t ) + Ly (.,t ) + j;Ll (.,t ) o >
! T > "n+1 2 >n b “x "’ 'n-1" ? X
a - 3
+ 2 < tl( ’tnﬂ s 0>

with the initial conditions

(3.3) ulx,ty) = uo(x) R
(3.4) ulx,t,;) = F(x,At) + B(x,At) ,
where

H: = closure of C?(O,L) in H1 R

2
and  A_(x,At) = 0(At®), each n, B(x,At) = 0(At’), At>0, as L=

valued mappings.

The corresponding equations for the approximations
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Un(x) are, from (1.8),

(3.5) p, < atUn > ¥ > + a; < (Un,%)X ,lPx>
a, 3
g Wy s> tay <08 U s>
= < f :‘\b> s IPEHN )
n=1,2,...,M-1,
(3.6) <Uy » ¥> =<u ,9> ,u)eHN 5
(3.7) <U, , ¢> =<F(.,At),w>,weHN.

Hence, choosing in (3.2) ¢ = wefHJC:}ﬁ

and taking the
difference between (3.2) and (3.5), (3.3) and (3.6), (3.4) and
(3.7), respectively, we obtain a system of equations for the

error functions

en(x) = u(x,tn) - Un(x) , n = 0,...,M.
Such are
2
(3.8) Py < B_ten s P> + a, <(en,%)x R ¢X>
a
2 3 3
t 3 <(uX(.,t ) - (Un)x), y.>
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=<A_,y>, IPEHN ’

n
(3.9) <e,, ¥> =0 , ws;HN,
(3.10) <e ,¥> = <B, P>, we:HN.

As a matter of fact, since wxxe:HN, integration

by parts leads us to the conditions

(3.9)"  <(eg), ¥ >

n
o
<
m
p= g

(3.10)" <Cep) v >

which are complementary to conditions (3.9) and (3.10) for the

error analysis. If we combine them properly we get

<e_1_91p>1 = 7 <B,1P>1 ] IPEHN )
2

1

so that taking yY(x) = EMX’O) ; ulx,ty) UA(X{J +
2

= e;(x) + BL(X)E:HN,

2 2

[ ug(x,0) + up(x,t:) u(x,0) + ulx,t1)
( > ) =« 7 )
-

and applying Cauchy-Schwarz inequality, we arrive at the esti-

mate
2 2 2 2
Il eall, <& | e%l!1 el 8yll, + 1Bl 3,
2 2

with € positive and arbitrary. Choose ¢ = %% and recall lemma 2.3:

there exists a constant C such that



=]
—

(3.11) Il esll, < ci{at® +
2

We shall need this relation later. Now we focus

attention on equation (3.8). Taking y = Gten - étBn = Stu(.,tn)

- 6tUn - (Gtu(.,tn) - étuN(.,tn)k:HN we obtain

Po 2 2
(3.12) AT I 3ten+_;_H -l aten_%ll b+
a, 2 2
+ m {H (en+_21_)XH - ” (en__;_)XH }
2 Y, (8 >
- 0, <3_ten,5_t8> —a1<(e ,% 5 ‘tB)x

2
+ a3[|(6ten)xl| - a,<(8e ), (8.8 >
a2 2 2
t = <(en)X[FX(.,tn) + (Un)x + ux(.,tn)(Un)x], o >
= < Anndie, T 8B >
where o = (6ten)X - (GtBn)X.

Lemma 2.2 together with formulas (2.1) and (1.6)

imply the following estimation for the non-linear term

a 2

2 2 ] l
— <(e ) _ju (.,t ) + (U) + uC.,t)U) {, a>
n’x| "x n n’x X n’ " "n’x] |

(3.13) 3
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<cll e Il dits e Il +

Il ¢s -

tBn)x

Hence, multiplying (3.12) by 2 At and summing

from 1 to m, 2<m<M-1, we reach our basic relation for the analy

sis, which is
2
o Il 3,2 all” + a,ll Ce
2

2
- Dollate%|| - alll(e%)X”

m 2
+2a, © At | (s,.e.) I
j=1 I
m 2
(3.14 < .
) < e jgl At | ¢ Gtej)XH +
ﬁn-l
+ C(e) L.g At IKej+%)XH
j_
m 2
+ 2p0_§ <8_tej ,Qt8j> At
j=1
m
+ 2a, I At <(e. ;
j:l Joy X
m
+ 2a3'§ At <((Stej)X ,(Gt
J=1
m
+ 2 . . -
j§1 At <Aj ,6tej BtB

for any € > 0.

m+%)x”

2

+
n.MB

2
At II(GtBj)XII

J=1

37>
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The terms in the right hand side of (3.14) still

remaining to be estimated can be bounded in the following way:

m
(3.15) | 2a E At<(e. 1) ,(StBj)X>|

j=1 ]aTi‘

m 2
< Clskp At |Kej+§)x” +

m
(3.16) | 2a, jil At <(6tej)x ,(Gtsj)x> |
oot fKse Il T I°
<e I At |i(8.e.) + C(e) T At |8, B 1
521 t7]'x 521 t7 ] x ?
m
(3.17 . - .
) |2 '21 At < Aj , Gtej atej > |
]
B 4 m-1 2
< C |[(at) + jE At llate]+%|
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m
(3.18)  [|2p, I <3_e. , §.B.> At | =
s = ]
J=1
m
= o L <3,e. ae_i,38.1+as
l 0 521 t It t 13 t ]+2 t
m
<e I <3.e. - 3. e. 9. B. 1> |
0 lj=1 t7 i+ t7i-+ 2 Tt i+
: |
+ I < 93.e d e a,B >
p°|j=1 to3+d ti-3 > %51
m-1 8t83+3 3tBj+_21_
Y l z a.e. 1l At
B > SR A At
+<3€1383>-<8e136i>]
t5 ot tim * Tt me
m+1 3 B- 1"8 B. 3
toi-+ “tPi-2
to |- L At< atej_% , 2 2,
1=2 At
+ < atem+—;- s 3t8m+% > - < 3tezi’3t3%>'
I I+ e 6,8 Il
e d,e .1 + C(e sup B.
”2 m-1 2
tlsenll + oAt |l e.
t j=1 t 145
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In the above inequalities e>0 is, as always, to

be chosen conveniently. If we do this and collect (3.15)—(3.18)

into (3.14) we get

Foe all” + fce . I+ & at [K6,e0 |I°
e + e + ¥ At e, <
t m+% m+2” X 521 t 3§ % =
(3.19) < cC || s,e,l|® | e |l 6. 8.0
. < e_]:. + ‘ e_1- + sSup | .
: ts 2 X 1<jeM-1 © 3
m 2 m—l 2 2 4 j‘
+3oat sl v oAt [l A L + (A1)
j:]_ J ]:l ]

m-1 2 2
+ C T At(]] 3 . . .
|2y el agegall vl Cegp 1)

Applying to (3.19) the discrete version of Gronwall's lemma, we

can conclude that

m 2 1
(3.20) llatem+%u + Hem+%J|1 + [;: At [Kstej)xn ]2

2
< c{at)y + ]Iatg%H + H(e%_&]] +
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By lemma 2.3,

1
sup Il 6t8j|| =0 (),
1<i<M-1 N
M-1 =
roat]) af 8.]” = 0L,
j=1 N
1
rM—l 2 1
tz At ] 8,8 ]| = 0§
]:

as N »- «», On the other hand, from (3.11),
I 8,eyll =0 (L + at®
oL - 2 >
2 N

| Ced Il =0 (& +at®
2

as At>0 , N » o .

Hence (3.20) implies (3.1), and our theorem is

proved.
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b. NUMERICAL RESULTS

We performed numerical experiments with algo
rithm (1.10)—(1.12), taking several different relations between
inertial, elastic and dissipation coefficients. In general we

-1
took N=15 , Py = 1, f=0,L =1and At = 40 sec.

The first computation was done with oy, (x) =
%%x(l—x),ul(x) =0 , M=1480, a = a, = a,= 1. The result was
a rapid decay to zero in TA = 120 At seconds. Fig. 1 shows the

motion of the mid-point of the bar: it just goes back to the

rest configuration. In Figs. 2, 3 and 4 we have the same situa-

tion with diminishing viscosity coefficients a, = 0.2, 0.1, 0.05,

respectively. We can see that oscilations do appear, by virtue
of the increase in the elastic force, with a damping directly

proportional to a,. The decay to zero times are TA = 138 At, TA =

= 254 At and TA = 422 At, respectively.

u{ia,t)

Oolg

Ta t

FIG. I
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Figures 5 and 6 are the results of a computation

with uy(x) = 0, u,;(x) = sinmx , M = 240, a, = a, =1 and

a3 = 1, 0.5. Due to the presence of the initial impulse, a po-

sitive displacement is generated which decays to rest in about

120 At seconds.

U(i72,t)
0.l

A  §

FIG. S

Wis2,t)
olt

(0] -

FiG. 6

At last, in Figures 7 and 8, we have the results
of a computation for the case of non-zero initial displacement

and non-zero initial impulse. We took uo(x) = %? x(1-x), u,(x) =

= sinmx, M = 400, a; = 0.2 and 0.1, respectively. Damped

oscilations occur with decay to rest times TA = 162 At and
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