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ABSTRACT

In this paper we give a generalization of the model of nuclear reactions
proposed by W. Von Oertzen in the framework of molecular orbitals. The dif-
ferent equations leading to the cross section are derived and discussed. It

tums out that the helicity scheme is the most appropriate one.

Some emphasis is given to reactions including elastic scattering and

elastic transfer for which this approach is well suited,

We discuss both the unadiabatic and Coriolis coupling terms which appear
in the equations, and we show how these terms are partly calcelled if one

takes into account one part of the recoil effect.

* To be published in Nucl. Phys.

*% On leave of absence from Centro Bras.ifeino de Pesquisas Fisicas, Rio de
Janeiro, with a fellowship from the French Government.




1. INTRODUCTION o

Many new expefimenta1 data on heavy 1oh?$cattéfin§ have been}obtained
recentiy and among thpse, we are specially 1nféréstéd'in elastic and inelastic
scattering, transfer of one nucleon or hole, of ﬁué]ei whfch may be described
with an inert core surrounded with.va1ence nucleons. -

What we céll'a core ih‘thesé feaqtioﬁé may be understood qualitatively in
the fol]owing way:' |

If we describe each nucleus by its central average potential, the scatter-
| ing process may be ana]yse& in terms of a two-center-nuclear shell model in
which the distance betweeﬁ'the two centérsvis approximately the separation
between the two col1iding-nuc1eiﬁ‘ Dué mainly to'thévcoulonb repulsion and to
absorption the reaction is genera]]y»peripheral’]; this means ihat only the
nucleons sitting near the surface of‘each nué]ei will be involved in the process
and that the relative distance of approach R of the two nuclei is bounded by a

minimum value Rm For this closest distance of approach the potential wells

in’
are as shown on fig. 1.

For the lower shells, the prabability of tunneling 6f the nucleons from one
nucleus to the other one is very small. They are therefore assumed to be not
perturbed in the collision process. These shells, which are closed shells,
form the cores. The other shells, generally the upper shells, in which the
nucleons or holes can move from one nucleus to the other one are called the
valence shells, The composition of the cores depend on the energy of the scat-

tering.

In this model, we shall assume that the antisymmetrization between one

nucleon belonaging to one core and the other ones belonging to the other core




>

may be neglected, except if the cores are identical. In that case a new sym-

metry which corresponds to the exchange of the cores occurs.

In this paper, we shall restrict ourselves to the analysis of the reactions
in which one of the interacting nuclei is described in terms of a core plus a
valence nucleon (or cluster) x, the other one being a bare core. Such reactions

may be written as

(C+ x)*+8 (1-a) (elastic or inelastic
scattering)
C+x +8B
*
A , (B+x) +¢C - (1-b). (transfer of the parti
B e h cule x)
D v

where the star indicates that an excited state may be reached.

In general, both channels are present. They aré very often calculated by
different methods: optical potential analysis, diffractionnal methods, G1auberr
theory, etc. ... for the elastic channel, mainly DWBA for inelastic and tréns-
fer channels. However, these channels may be strongly coupled and {t is impor-
tant to consider them on the same footing. Furthermore, if the cores B and C
are identical, the two channeis defined in expressions (i-a) and (1-b) become
1ndiscernab1e and interfer. This'feature has been shown in several experiments,

2,3 4 and F!? + Q%8 5 in which the

such as C'? + C!3 , Si%% + 8§23
oscillations observed in the angular distribution are not of the diffractive
type. It is interesting therefore, to all these respects to have a model which

includes these physical situations.

A first approach may be to consider the complete antisymmetrization between

all the nucleons. This has been done for light nuclei by the groups of K.




Wi 1dermuth 6, H. Hackenbroich 7. - Works are in progress for heavier nuclei in

which only a part of the antisymmetrization is taken into account as discussed

above 8.

A second approach may be borrowed to molecular physics for low energy
reactions 9. In this case, one part of the antisymmetrization is simulated
phenomenologically while the exchange of the transferred particle x between the
two cores is taken into account more correctly. This mechanism has been discus-
sed recently both from an experimental and a theoretical aspect by W. Von Oertzen

10 12

et a1 32 10 4. v. park et a1 ! and two of us

The qualitative idea is the following. When the two nuclei A and B approach
each other slowly, the field of the core B distorts the wave function of the
motion of x around the core C to which it is bounded. This distortion is such
that the particle x may be trapped in the field of B. In that situation x moves
around both cores B and C faster than the cores themselves in their mutual ap-
proach. This adiabatic description of the process is very similar to what occurs
in molecular physics so that an analysis in terms of nuclear molecular orbitals
seems very well suited. In the asymptotic states both the elastic (or inelastic)
and the transfer channel may be reached according as whether the particle x
moves around the core C or the core B in the final state, as it is shown

schematically on fig. 2.

According to this mechanism, the particle x can perform several revolutions
around the two cores before it "chooses" to stay either with C or with B; this
is a multistep process, in the meaning that x is exchanged several times between
B and C. Contrarywise if the relative velocity of the two cores is larae with
respect to the orbital velocity of x, then the wave function of the nuclei
involved will just be distorted weakly leading to a one step transfer process

well described by the DWBA.




This argument does not mean, indeed, that the DWBA may not be well
appropriated for low energy scattering, since the validity of the DWBA is
roughly related to the ratio of the exchange to the core-core potentials. If
this ‘ratio allows a treatment of the exchange potential to first order only,
one expects that both methods will lead to equivalent results, as it has been

]3. In fact, the

shown in simple situations by G. Baur and C. K. Gelbke-
reactions discussed in ref. 2, 4 have been also successfully analysed with
the DWBA 15 14,

It is therefore interesting to extend the model which has been put forward

3

by W. Von Oertzen to situations in which the nuclei may be excited to

compare it with the DWBA and to look for possible "nuclear molecules”.

Due to axial symmetry around the axes joining the two cores, it will be
very usefull to introduce an intrinsic frame of reference bounded to B and C.

1 1° of deformed nuclei, the total spin

As it happens in the unified mode
projection on this axis of symmetry is a good quantum number (except for the
Coriolis effect). Since this axis becomes parallei to the relative momentum
of the two cores in the asymptotic final state it will be very convenient to

work in the helicity scheme.

This model will look like an extension to scattering problems of the
unified model of Bohr and Mottelson for bound states, the intrinsic wave func-
tion describing strongly deformed nuclei with a two center potential. Indeed
the so called vibration coupling terms will be here very important and will
lead to unadiabatic effects. Furthermore, microscopic descriptions of this
situation may be undertaken as it has been done for instance by W. Von Oertzen

10

and N. Norenberg We shall not discuss this microscopic approach at all.




In the next section we shall recall our notations and sketch the general
ideas of the model. In section 3, we shall discuss the relative motion of the
two cores and section 4 will be devoted to the analysis fdf the coupling terms,
mainly the kinetic energy coupling and the Coriolis coupling. In this Tlast
section; we shall recall some properties of the molecular orbitals and derive

simple approximations to illustrate our discussion,

2. DESCRIPTION OF THE MODEL

2.1 - GENERAL CONSIDERATIONS

To simplify the presentation of our model, we shall neglect the antisym-
metrization between the nucleons of the core and those of the cluster x and
furthermore, to reduce the algebra, we shall assume that only one parentage is
important.

Let |y> be the wave function describing the scattering state corresponding

/A + B
TAC+D
solution of the Schrodinger equation

to the reaction A + B , where A=C+ xand D =B + x. We look for a

—Ai
Hlp > = (2, —

2m1.

+z'i<j Vij)|w> = Ely > (2.1)

which may be written as

lv> = T xag (Rag)lJp 955 S Me>+ xpc (Rpo) [9p Ics S¢ Me >  (2.2)
SfMe SeMs SeMe

with the boundary conditions




f [3) Jp3 S M, >
S¢Sy 9y a0 Se e
Me M. J,
or - . o
: e1kf RDC
> — I : 6 s g 195 dcs SeMe> (2.4)
Rp> = s_M, 4! Rpc Fin |
. £ M¢ Jp Me M, 3y

Since we have neglected exchange effects, we can label the nucleons of each core

and write
Srcx  “RaB
H = HC + HB + HX - Z'E "'2m + Z_iec V'IJ + ZieC V'IJ + z"iEB V'IJ + ZieB V1J (2.5)
AB jeB Jex jex Jex

where HB(C X) describes the intermal motion in each core. For instance, we have

A
= - -
B =" Tieg 5 * Ticy, qeB Vi (2.6)
i.e. " qu
Jg> Mg g, Jg» M
Hg |¥g (0g) > =gg Iy~  (2g)> (2.7)
ere ¢.~ s the binding energy and Ig% (EB)> the internal wave-function of

the core B, and so on for HC and Hx‘ Multiplying eq. (2.1) by the complex

conjugate of the spacial part Ygs Yo of the wave function of the cores B, C,

¥y
x and integrating over all intermal spacial coordinates we are led to

Arex  SraB - -
0= o T Vea(Reg) * Vex(rewd * Vau(Tgx) tEc t g e T B)le> (2.8)
here 27X AB
o> = f mi %ig My 4 P5c M 4 Py Weip) Ve ) ¥ (o, IV > (2.9)

and
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Vyg ™ Vg Vg by [Ziey Vg (R * (o = p)lvg v ¥y > (2.10)
JeB \ '

We note that vaB is a ]dca] potential. Would have we included exchange effects,

all the potentials in eq. (2.8) would have become non local. However, as said

above, these exchange effects are small because of the peripheral character of

our process. Nevertheless they may be simulated if one thinks that the

potentials V introduced in eq. (2.8) are equivalent to the non local ones and

are therefore energy dependent. Furthermore, there is no coupling equations b

because we neglected core excitations. In our model, it tums out that the

functions ¢JL,J'(~'~'CX) describing the relative mbﬁon of the cores C and the cluster

x are solutions of the reduced equation

Aer

S+ Vox (e Oec,gx (Toxd = (Ba = 5 7 Sdyx fac,ixllex) (2.11)
Cx

In writing eq. (2.8), we have made an arbitrary choice of independent
variables; this choice is not unique and we can as well choose the sets
(xBx’ RCD) or (r, R) which are shown on fig. 3. The transformation of eq. (2.8)

obtained with these new variables is straightforward since

becx PR %Bx Rep ar AR
- - 2 = ———- = o e— - — (2.12a)
ZmCx ZmAB 2me szD 2m 2M
where
m, Mg mx(mB + mc) My Mo
Myg = ——— , M = , M=—
m0t+mB mg + me + m Mg + Me

The different relations between these variables are easily derived. We have




.

o

11

"‘BcR
L*agmu:mx
Yo
e
ox +mBCR R 2.12-b)
Mex Mec
n St

Since the potentials in eq. (2.8) have the cylindrical symmetry around the axis
joining the two cores B and C, it is interesting to introduce explicitely the

variables R and r in the equation and to solve the problem with these variables.

To summarize, assuming that nuclei are described by one parentage only, that
there are no core excitation, that the exchange of nucleons belonging to two
different éores may be neglected or simulated, our problem reduces in solving eq.

(2.8), written with the variables r and R, with the following boundary conditions

Se M T Kemey IR T me KeR
|o> ———  JSO°F U (rc,)exp 5 exp 8;¢
R+ o alB ' mC m
3 AB
: ./1 Kf"'BCR Sfo : Moy mBC‘ ])
_ f + 9 (rp,) x gexp | iK R+ —Ig 213
+ —exp S.S g ‘wBx) * R f e S.S
R Mag i°f me R mCD i°f
‘e , \\! M
where —xl L [
SM ) g My A
Sarlley) = I s ]“’z(“(:x”B“ﬁ’j 19¢ "‘c>,J |95 mg>, (2.14)
Jx £ - ! X l A
- - <5

or
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S

Jor
8¢ Yx Jony d
D) p 307 X (2.15)
a'dpdgt~Cx" 5 % g AM . m M| o' Jy, J
BC Yx \'BC Mx A* B
MBC My
where . my
J J J. +Jdpp +dg +Jy & < JCJB BCL.a'; - 1
BC*°C_ § .y %X °BCTTBTCAG 3 6% (re ) Isu>p
d)alJB ‘JC = . ( ) BC “A l:JAB »JX A/ 2 Cx J JX '
Jp Jp (2.16)

- 19¢ Jg3 Ipc Mge >

The index o stands for all the quantum numbers necessary to caracterize the
state. The phase which appears in expression (2.13) corresponds to one part

of the recoil effect.

2.2 - INTRINSIC-WAVE-FUNCTION

Since we restricted ourselves to the situation in which the relative
motion of the cores B and C is very slow compared with the orbital motion of
x, we look for the solutions of eq. (2.8) which can be projected on the wave

functions corresponding to fixed values of R. These functions may be written

o> = 1 x(R) log(r, B) > (2.17)

where l@n(rv, R) > are solutions of eq. (2.8) corresponding to fixed values of

R.

An

As it is done in molecular physics, in order to make explicitely apparent
the different symmetries which may occur, we introduce a moving frame of

reference as sketched on fig. 4.

The Euler angles defining this moving frame are (a,8,0) where o and B are
the angles defining the position of R = BC -33 in the laboratory fixed frame

of reference, see fig. 4a. In the moving frame, see fig. 4b, r is defined by
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the spherical coordinates (r, ©, ¢). Since the three vectors L Yoy anerij

are in the same “vertical" plane, they are.defined with the same ¢ angle.

In this moving frame these functions lth(.(; » R) > are solutions of

A A A
#yl2,"(ry R) > = E (R 8, (1 R) > (2.18)
A A '
):CI ¢, (rs R) > = A|<I>n (r, R) > (2.19)
where
4 Bp -
4 = - — + V. + V (2.20)
e om C Bx

ZC is the projection of I on the ¢ axis of the moving frame, and I = ’-];B +

+Jc t4+.8,, %being the angular momentum associated to the variable r.

A . .
The energy Eng(R) is the molecular exchange potential. In this moving frame,

it is only a function of R. Eq. (2.19) holds because it is easy to check that

P@e, Zc_,! = 0 (2.21)
If furthermore the cores B and C are identical, the molecule has a center of
symmetry. In that case, the parity which changes r » = r commutes with %,.
We can Tabel the wave functions with an index p such that

(=ry R} > = (-"1)" lod (v, R) > (2.22)

A, oA
ﬂléngp(rv’ Rl > = |®n’p —p n’p\,%w

These wave functions are the intrinsic wave functions. They must satisfy the

following boundary conditions:

A
opelrs R}y —— 0 . | (2.23)
r—+ oo, R fixed
A A
|® =(r, R) > —_ |3 (r..) > (2.24)
ns R > , rey fixed S sarvlx
X
A LA
[055(r; R) > >~ |og ,(rp,) > (2.25)

R-+ By fixed




14

where | ¢;\a(r) > is the function (2.14) expressed in the moving frame. The
index S labels the total spin of these asymptotic nuclear states, i.e. for
instance _ _
i
2 -
% olre > = s(seneg (rg,)> (2.26)
where S = JB + Jc + sﬂ + QC , Where zc C A-PCx The indexiA_1s not

changed in the asvmptotic state because it is easy to check that

For each value of R, these intrinsic wave functions are orthonormalized accord-
ing to
{dr <9

5 >

(ro R) ol (r, R) > = 6 (2.28)

AA' 6‘nn‘

We notice that these intrinsic wave functions are not eigenstates of £ but
that only their asymptotic expressions are eigenstates of $%. This is the

reason for which we introduced the label S.

In order to simplify the writing, the index n will stand throughout the
paper (except when necessary as in eq. (3.28) for instance) for (n, s). These
intrinsic states depend explicitly only on the modulus of R. They indeed
depend implicitly on the angles defining R because the frame in which they are
represented depends on these angles, as it is discussed in section 3.1 and the

appendix.

We want to mention a difficulty due to specific choice of intrinsic wave
which we have made in eq. (2.18). When R + = withArCX(or er) fixed and from

expressions (2.12), eq. (2.18) reduces to (R is fixed):
/ Arex | A A
i‘- om * VCx I(Dn(f:’ ®) > = Er{\(‘”) I'(Dn(r’ ®) > (2.29)

\\

However, the equation which leads to the asymptotic expressions [@A >

S ,0 WCX)
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is eq. (2.11) which is-different from eq. (2.29). This would mean that
. A . .
i) En(w) is different from (eA - €0~ ex)

i) |q>ﬁ(r, ») > does not fulfill the condition (2.24, 25).

Nevertheless it is shown in section 4.4 that in the LCNO approximation one can

use a new basis in which this problem does not occur.

Eq. (2.18) describes nothing but a strong]y deformed nucleus whose average
potential is a two center potential, with a continuous deformation parameter R.
Such a problem has been solved many times in nuclear physics, either using an

exact solution for harmonic potentials 16, or a more sophisticated Hartree-Fock

17 18

procedure or even using the JWKB approximation

In this paper, we shall not look for exact solutions of eq. (2.18), but
for rather simple approximate forms which will allow us to discuss in a simpler

form the different coupling terms.

In order to fulfill the boundary conditions, we shall look for a solution
which is a linear combination of nuclear orbitals (LCNO) as it has been first

proposed by G. Breit 19.

Such a solution will be accurate in our problem,
because we expect that the cores of the colliding nuclei will stay apart from
each other, as we discussed it in the introduction, and G. Reidmeister 17 has
shown that the LCNO is a good approximation of the exact solution in the asymp-

totic region. We set:
otz B > = T (D ConlR) 1958(xc,) > + I cqneR ety 0> ) (200

on
7

SA
B,Nn

indices which specify the states of the nuclei A(C + x) or D(B + x) and n

where R is a fixed quantity and CgAn(R) and CJ" (R) are parameters; o and B are
L]

specifies other quantum number necessary to define the intrinsic wave function.



16

The functions [QEA(ECX) > and chgA(rBXP are given by expression (2.14) or

expression (2.15).

If the two cores are identical, the wave function IQQ(L, R) > must fur'the';-
R
‘Z_s
it tums out that changing r - -r induces the transformation ey < " ey It is

more fulfill the condition (2.22). Since in that case rp, =r -7 > Mgy = r+

easy to show therefore that the combination
(183 (r,) > + (P Te3(rg) >)
A SA o wUX ot..bX
o, P(rs Ry > = I T C(R) (2.30b)
ssn @ /2

satisfies the required condition if 7 is the parity of the nuclear state, i.e.

SA

SA
a (fv':Cx

o

| ) > = (-7 [ (re,) >

Inserting expression (2.30) into eq. (2.15, and using the Ritz variational
principle we obtain very easily 20 the solutions which we are looking for. W.

Von Oertzen and ai. 3, 10

have given some general properties of these wave
functions in simple situations and we refer to their papers. In section 4 we
shall give some examples of this procedure and shall recall some properties of

these 1nitrinsic wave functions.

2.3 — THE RELATIVE MOTION WAVE FUNCTION
Once we have solved eq. (2.18) with the proper boundary conditions, we Tlook

for solutions of eq. (2.8) expanded on the intrinsic wave functions
[WR, 1) > = T xMRIENR, 1) >, (2.31)
T J v .

X,j,\(ﬂ) describing the relative motion of the two cores in the fixed frame of

reference. The index n inciudes all necessary quantum numbers to specify the
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state. particularly JBC’ the spin state of the two cores B and C asvit is seen

in expression (2.16).

Inserting expression (2.31) into eq. (2.8) and performing the scalar
product on the variable r one obtains, after taking into account the transforma-

tion (2.12)

A

R A
~— =~ (E~-€ep =€, =€) x.(R) - <9
ZM B C X n’M 'Z‘l

i

A
A | R A A
— ¢ > X «(R) -

Ay A
<o [Vgo log > + | (2.32)

1 Ajg - 40 A
WLl G T ® e T

+ Eq(R) Xp(R) = 0

This equation and its solutions will be discussed in section 3, while the dif-

ferent coupling terms will be analysed in section 4.

The physical origin of these different coupling terms are unadiabatic
terms:
* the so-calied Corioiis coupling (due to the fact that the transfer
is analysed in a moving frame)

m
X

* the kinetic energy coupling (which depends on the ratio ——— as
mc + mg

well as on the relative energy as it will be discussed in section 4).

- the potential coupling terms correspbnding to excitations due to the relative
motion. The term Eﬁ(R) is the molecular potential which is produced by the
revolution of the particie x around both the éores B and C. It must be noted
that the terms depending on A wiil lead to coupling on the angular momen tum of

the relative motion as it will be discussed in the next section.
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In order to solve eq. (2.32), we must specify the boundary conditions which
we require for XQ(R)». The physical boundary conditions are given with the
variables «BAB oerC, but not R (see equations (2.3) and (2.4)). From expressions

(2.12), one sees that if m, << Mg and m, << Mo, We would have

= - Rep

R=Rp
so that the boundary condi tions on er]\(&) wbuld be those given by expressions (2.3)
and (2.4). This would occur if we neglected the recoil effect. If this recoil is
taken into account, we can still use expressions (2.3) and (2.4) in which we
replace ~BAB (or «BCD) by R(-R) provided that we multiply the intrinsic wave func-
tion by a phase factor as sketched in expression (2.13). In this case eq. (2.32)

is modified in a manner discussed in the next section.

2.4 - DISCUSSION

The previous model is buiit to describe elastic and transfer reactions by
taking into account the possible deformation of the colliding nuclei both in the
outgoing and ingoing channels, due to their relative field. This continuous
adiabatic deformation is contained in the continuous transformation of the
nuclear wave function q)n(l:(:x) into the intrinsic wave function [<I>n(R, r) > as a
function of R. This slow deformation aliows a rotation of the transferred
particle x around the two cores, constituting an intermediate molecular state
corresponding to several exchanges of the particle x between the two cores. This

is what we call a multi-step process.

This model is borrowed to molecular physics where such situations arise
frequently. There are however differences due to the difference of the forces

involved in both cases and to the ratios of the masses of the cores and the.
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orbiting particle which are very different. The consequences are
- non adiabatic terms more important .
- interactions due to the spin of the cores more important

- recoil effect must be included.

The recoil effect is appeared in both the intrinsic wave function and the
relative wave function, but as it will be seen later, there is a kind of

compensation between these two contributions,

The domain of validity of this model is discussed in section 4. It turns
out to lie around the Coulomb barrier. It is related both to the dncident
energy and to the energy of excitation .of the first level of the colliding
nuclei. The larger the masses of the cores are, the smaller the recoil effect
will be, but the Coulomb barrier being‘higher, the relative energy must be
increased, increasing the non adiabatic terms. There is therefore an optimum

which has to be estimated.

3. RELATIVE MOTION AND SCATTERING AMPLITUDE
" As stated in section 2, we Took for a solution of eq. (2.8) given in terms of

the expression (2.31).

Inserting this ansatz into eq. (2.8) and taking into account eq. (2.18), we
obtain, after taking into account the transformation (2.12):
2M N

A _ | :
EA l} '—R+ VBC( ) + EA(R)] Xﬁ(&” @{"\(r\? R) > =

(E-ec-eg-og) IOX(R) logrs R > (3.7)
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3.1 - ANALYSIS OF THE LAPLACIAN OPERATOR
Since IQﬁQK’ R) > is expressed in the moving frame, the action of AR on
this wave function must be studied carefully. We know that
(I R
AR:E ;‘?—;R-;; (3.2)
where L2 contains partial derivatives with respect to the angles of R, but

for fixed values of r in the fixed frame. This operator does act therefore on
21

Iéﬁ(rﬂ, R) >, Using the arguments of L. Landau and E. Lifchitz ©', it is
shown in the appendix that
2 xR lelir, R) > = (£~ )72 BRI ol(r, R) > (3.3)

where :é is the angular momentum of the rigid body formed with the cores B and
C and the transferred particle x if they were fixed in the moving frame; & is
the angular momentum of the transferred particle in the moving frame; an equiva-

lent expression appears indeed also in the collective model of deformed nuclei.

The relation (3.3) is not the most appropriate one. In fact I‘I’ﬁ(f’ R) > is
not an eigenstate of JLZ, it 1s an eigenstate of ZZ as it has been discussed in

section 2 (cf. eq. (2.19)).

If we introduce J = £ +Jdp *dp +.5,, 1.e. the total angular momentum of

the rigid body in the moving frame, eq. (3.3) may be re-written:

2 odRledr, Ry > = (2 + 2225+ 9) PR 1edr, ®) > (3.4)

From this transformation, one sees that it is convenient to look for a solution
of eq. (3.1) which may be written as

£1(R)

(R = ] @) Dy (0,8, 0) (3.5)




o
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where DﬂX(a,B,O) is the well known rotation matrix.

Inserting expression (3.5) into eq. (3.1) and taking into account eq.(3.4)

one obtains the coupled equations:

32 J(J+1) - 2A2 :

[- — 4 —— + 2M EMr) - k2] D (R) =

aR R oo

d 3 p 8% <nA|ZE[n'A>

Y <2<nA|—|n'As —+<nA";-—]n'A>’— ’ fﬁ.J(R)
n' 3R 3 3R? ’ R?

M ‘ * ’ .

Jo '

- = (@) Alg. < nd [Dy Vgo Dyyln'at > ()

)
R n n'J

1
+ — z| { Y(J+M1)(J-A) < nA | Z_|n'A+1 > fAH(R) (3.6)

~

+ /(3-M1) (J+A) < nAJZ [n'A-T > fﬁjg(R{}

y? |np > stands for [Qﬁ(r_, R)>* and, k2 = ZM(E-eC-aB-eX).
As it is discussed in the appendix, the term 2%-J D&A(a,B,O)InA > yields
* g 2
2A0% DJ a,B,0)|nA > and not zero because the operators -Q— and —a—z- which
MA N Ll o
are part of £ % and fg act not only on D‘h],IA(oL,B,O) but also on the wave

where X =3I 14 %
& X

function Iéﬁ(n, R) > yielding the terms in A. In fact, it is shown in section 4
(see eq. (4.23) and (4.43)) that in a representation which diagona'lisés a sym-
metrized hamiltonian in the LCNO representation, several coupling terms cancel.
In eq. (3.6), the different coupling terms éppear explicitly: The first type

is diagonal in A and couples only different orbitals with the same value of .
This type includes the kinetic energy coupling terms and the diagonal part of

the Coriolis term < nA| Z2[n‘A >,
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The'second type is not diagonal in A. It includes mainly the non diagonal part
of the Coriolis coupling, < nAlz_J;ln'Atl > and if VBC(R) is not central a coupling

due to the optical potential of the two colliding cores.

Below, we shall see how these coupling terms induce transitions on the
orbital momentum of the rélative motion of the colliding cores. In section 4 we
shall discuss these terms in more detail, and show that there are some cancella-

tions among them (see eq. (4.23)).

In this representation, we see that except for the couplings in n, there
is no more than three coupled equations in A. Even, due to symmetries between
A and -A, this number may be reduced in some cases. In the regular representa-

tion, one may have more coupled equations.

3.2 = ASYMPTOTIC CONDITIONS AND HELICITY AMPLITUDES

In the fixed frame one imposes the asymptotic condition (2.13). As it has
been discussed in section 2, the molecular orbitals have the nuclear wave func-
tions as a limit. Considering first collision without rearrangement and neglect-

ing the recoil, the condition (2.13) may be written as

. ikR"

where I@E.(ICX) > is referred to the laboratory fixed frame of reference. If one
expresses IQg'(»er) > in the moving frame, it can be easily derived from the
properties of the rotations, that -
. *
ikeR/ .M M J A
e~ ~|og(re,) > =1 (2041) egy(kR)Dy,(a,B,0)] §s(£Cx) > (3.8)

where dA
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g SJ\ /8 S }
eMNkR) = T(ae)i* 5 (kR) ( > (-1nAM (3.9)
. 0-MM/ \0-AA
One notes that
| M -A-M
eAlkr) = ed™ (kR)

From the previous discussion on the Laplacian operator, one sees that these

functions egg are given by the set of coupled equations

2 ’ 2
1 d J(J+1) + S(S+1) - 2A° .\ M )
- — R + - k*| e (kR) =
R aRZ R2 SJ

A R ——
= /(J “A) (J+A+1) (S-A) (S+A+1) eA s M(kR)

& /(34h) (9-A+1) (SHA) (S-A+1) eés]’M(kR)t} o (3.10)

In fact, inserting eq. (3.9) into eq. (3.10) one obtains the well known equation
for the Bessel function jz(kR) by using the recursion formula:

/j i, 3,

[2 mm, + 3, (3,+1)-3,(3*1) Js(Ja'*'])] \
m, -

m m m1

VAT A 3,
2|

l: (3;+1) =m, (m +1)] [3 (3,+1)-m (m2+1)] + (3.11)

m-m, m+1 -m-1

VAR
(32 (3p41)-m, (m, -1)]?
m, -m, m, -1 -m, +1

j2 j3

N o

+ [ja(jaﬂ)-ml(ml.—]j'

We show in section 4.3 that
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-
<(nS)A[Z?] (n 'g')A > ———-,»[S(S«F'I) + R%< nA| __Zf__ [n'p> Gnn' § , +2M SE
Roeo aR? _
(3.12a)
1
<(nS)A [zl (n's")A > — [(st0) (s FM1)]% 6,1 b (3.12b)

and
d
<nAl — | n'A> — 0.
oR
where SE is an energy correction correspondingv to the recoil effect and which
can be included in Eﬁ(R) by a suitable change of intrinsic wave function (see
sect. 4.4). Therefore, eq. (3.10) is the Tlimit of eq. (3.6) outside the range

of the nuclear potential.

In analogy to the plane waves, the full wave-functions can‘be expanded as

follows in the asymptotic region:

*
o= 1 i) PG kGR) 0700800 | e (e > (3.13)

where JAS'

. . {253 \ [2'S'd
FIRCU(KR) = T (-2 5 A M a0 00y 20141y it | M) < \ J(;R)

ok Lom-m/ | 0a -a)¥
S'S
(3.14)
and wdz-l(kR) being the standard scattering wave function in the asymptotic
regiorSL'S

The expansion (3.13) is not exact in the interaction region, because as it
has been emphasized in section 2, the molecular wave functions are not eigen-

functions of I2. In this case they are labelled by

A A
o5 > ——1] o5 >




i T -
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In order to establish the connection with phase shifts, we should examine
equations (3.13) and (3.8) in the asymptotic region R+ «. Asymptotically eq.

(3.8) becomes

ikR e TkR

*
ikeR| .M e M J A
e~ 2o > —> J(2J41) { & - Oqeet —— | Dy, (a,8,0)| & > (3.15)
S 3k M 2ikr 955" 2ikr /M S
where
AM (2 SJ) [aS'Jd <

The asymptotic behaviour of the components of the wave function (3.14) takes on

the standard form in terms of the S-matrix, i.e.

1 \ P \ .
¥ 1y (kR) —— i +1[je R p0g - (=Y s, e‘kﬁ] (3.17)
S'S R+ e 2kR S'S 'S
Inserting this expression into eq. (3.13), we get
W —— T (241) | - o ) s " 0 (0.8,0)] o, > (3.1
+ -0 . + a8, O, > 3.18
P Raw ISST iR TS pqkm | MA S
wh Mo, a ,
ere ojgqi is defined by expression (3.16) and
. —_ LS Jy /2 sty ,
sike = 1 i Sy @) sJ / ( )(-)2+S'S +A-M
! c\om-m/ Lo a-

Since each LCNO has a determined nuclear orbital |<I>‘g > as limit, one can
identify eq. (3.18) with eq. (3.7). Taking into account eq. (3.15), the scatter-

ing amplitude is written as follows

SM > S A(a,B) =) (2J+1) aJSS' DMA(a,B,O) (3.20)
J
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where MM s
M Jss' “MA '
gt = —-——E;;————- “ ‘ (3.21)
is the helicity amplitude. The fact that the radial part of the asymptotic
expansion of the LCNO contains the helicity amplitude of scattering has the
following kinematic origin. When R » =, the axes offthe molecule tend to the
direction of the scattered particle in the exit channé], which is parallel to

the final relative momentum.

As our principal concern is to describe the collision of heavy ions near the
Coulonmb barrier its interaction effects must be included. In this case the
solution of eq. (3.10) is:

1 . 2SS J /2SS J _

edlkR) = — T (2241)i% 1% Fo (Y3 kR) / ( (-nAM (3.22)
kR 2 OM -M ‘-\OA-A

where % is the Coulomb phase shift and F2 the regular Coulomb wave function.

Equations (3.13) and (3.14) are still valid if expression (3.17) is replaced by

1
J X -
stg R>> 2kR 5's 5's
+ iop ) ) .
where U = (G2 * Fz)e and G2 is the irregular Coulomb wave function.

Proceeding as above, one obtains for the nuclear scattering amplitude

A Jss* ~ Pyss
&hass' = - . (3.24)
2ik
where
— - £S5 J\ 2SS Iy )
s - 1 /a0 ( | \ | &M (3.25)
2 '0M-M" \0 A -A/
and
3 ] - e /94 s J ,Q, S| J .
Hlagr = 1 8 (ST fapany 2eteny )i s, e%i% (3:26)
e \oM-1/0 A-p

* Note that this phase convention is not the standard onme.
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The scattering amplitude is then given by

' M J%; .
fom > srp (@0B) = Fr(0,B)dgq 1+ ) (20+1) a jss Dyp(esB:0) (3.27)

M J

3.3 ~ COUPLED SCHRODINGER EQUATIONS

Instead of eq. (3.6), it may be interesting to write an equation which
exhibits explicitly the relative angular momentum of the two cores. For
plane waves the relative wave function exhibiting the relative angular mo-
mentum is jz(kR). Expression (3.14) is therefore the ansatz which allows to

transform the well known Schrédinger equation into de helicity representation

and coversely.

By analogy, we shaii iook for a solution of (3.6) which reads

- SR LA \ /ljf, S J\ ;/S('ISn J\
F[En\d(kR) o 3 (enk SN e 2 A1y i ‘\ pd,, (kR
’ m 0 M-M/L0 A -0 L
(ns")s
(3.28)

where S' is the spin of the nuciear state which is the asymptotic limit of the
moiecular state IGﬁ > (see expression (2.24)). Although this expression looks
Tike expression (3.14), it has a different meaning because wi»l (kR) does not
describe exactly the relative motion of the cores in the ¥2iéésframe during
the interaction. It is related to the function describing this relative motion
by the expression (A-10) shown in the appendix. It turmns out that &' is the
anguiar momentum of the relative motion only in the asymptotic region. Never-

theless, as it is shown in the appendix, when R + «, the Timit of the function
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wz is the function wz 2 appearing in eq. (3.14) so that both functions have

]
S
éhe Qame asymptotic expressions and the previous formulae can be used.

Inserting expression (3.28) into eq. (3.6) and using the recursion

formula (3.11), one is led to

o eram1) 5 J |
- BRZ + Rz - k lpzzu(kR)= %' VM n,Q,"R;| wzl‘(kR) +

ns 0 - nS
+ ¥ J J J
n'g' (Ann' *W ot Cnn' ) Yog' (kR) (3.29)
lezl uﬂ,"ﬂ,' zllgl nls
where
" T2 TV A
VMan"z' = TEDY T e s 1 | 2Me™(R) (3.30)
A \ 0 A A, \0 A -A H

is the molecular exchange potential expressed in the fixed frame,

/e sty JE AN B p) )
AL e TR M ey | \ b d2<nh — [n'A>  — +
2"2! A \ 0 A "A,"’ 0 A "A/ L SR BR
52 1 ]
+<nt | — [n'A> - — <npls?2 - S'(S'+T)n'A > ¥ (3.31)
aRZ R2 = ’ ‘

-

is the non adiabatic coupling potential, which can be readily simplified as shown
in equations (4.23) and (4.33), if I% is carefully analysed.
J M

: T_pMg A ;2" ' J L' St 4
W o' =T 1 ()% R A(22“+1)& j ( ) X
5} gugt 4n AL -0 0 A=A

X < nAMJlVBC(B)]n'A'MJ > (3.32)
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is the nuclear equivalent potential in the fixed frame,

1 ‘o "oty
C;,]n- =—1 (-)* 7% (2em41) (2 )J'/ (J+A+1) (3-A) [< nAlZ_|n'A+1 > -

gngr R A 0 A =-A L

\ L' ! J — ) .
= S'+A+1)(S'-A) / > ) +/ (I0+1)(3+D) < nAZ,n'A-1 > -

\ 0 A+1 -A-1
— (% S Y
- (ST (314A) (3.33)
0 A-1 -A+1 :

is the so-called Coriolis coupling term expressed in the fixed frame (we recall
that the index n stands for (ns'). This equation shows some interesting features.
First we note that all the terms depending on A induce tensorial operators which

are not diagonal on &, as one expects.

Secondly in one particular case the coupling in & disappears, namely
if one restricts oneseif to molecular states in which only the j = 1/2 states of

the two nuciei contribute (ex : C** + C**). 1In that case, since the potential

Eﬁ depends only on the absoiute vaiue of A, it can be factorized and

J

, A .
vMO noatgr 2 MEL S (3.34)

2t

This shows that the moleculiar potentiai EQ(R) is a true scalar. This point has

been also observed by W. Von Oertzen et al. 22

in a different way. Further-
more, as it will be discussed in section 4, all the non diagonal Coriolis

coupling term vanish since, in that particular case

< nAIZ;:!n‘AiT > = (s'xA;l)(s“FAf
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3, if one as-

Our equation becomes equivalent to the equation of W. Von Oertzen
sumes, as it is generally the case, that the potential - VBC(R) is a scalar,

spherically symmetric.

Instead of solving eq. (3.6), one can solve eq. (3.29) in which the

functions by o (kR) have the asymptotic expressions given by expression (3.17)

%
ns')s v
or (3.23),( the helicity amplitude being obtained by the sum expressed by

(3.19).

3.4 - IDENTICAL CORES AND CROSS-SECTION

In that case the function |y>, see eq. (3.13), must be symmetric or
‘anti-symmetric in the interchange of the two cores (i.e. position and spin) ac
cording as these cores are bosons or fermions. Therefore

l‘p(ﬁ’ B) > = (=) chl‘IJ(rj B) >

where Jc is the spin of one core. In that case, it has been shown in section 2
that the molecular wave functions are furthermore eigenfunctions of the parity,
that is
| oP(r. R) > = ()P] op(-rs R) >
The expansion (3.13) is repiaced by
M
|

MP J* p
v(rs R > = T (2041) FIECL(R) Dy, (0,8,0) 9%, > (3. 35)
JAS'P

The exchange of the spins of the cores induce a phase factor for each core spin

2JC+JBC

state Jg. equal to (-) The operation R+ -R is expressed in the fixed

I
frame by the operator R such that
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A * *

R, Digy (0,8,0) = D;A(a b, m - 8 0)

On the other hand (cf. eq. (2.30b)

oh. (1) > + ()7 og.(2) >

1 AP AP
" (r, R) > =z Ceer(R) (3.36)
s w7 g SS N
R
where w is the intrinsic parity of the nuclear orbitals, and ] = r --“2— and 2 =
R . A - ’
=r+ ;—w; Thus R1|¢SAP(1) > = |¢5AP(~2,) >. Since the spatial symmetry depends

on the spin JBC of the cores, we write expression (3.35) as follows

*
M MP J AP
WsRor) > = T W, (Ror) = ] (2041) Fiq.(R) Dyy(e,8.,0)| oy >
d BC™ Jo~ A S! BC
BC BC
J P (3.37)
where |<I>AP > is given by
SJ
BC
d Jor J, | S J
ot > = ] ( BC “x 8 2¢ %> (3.38)
BC Jy my \”BC m, A
Jpc Ix
where |9 o >is given by (2.16).

Then the correct symmetrized function is expanded as

1 2 J * ‘
M . c = = AMP J P
I‘ps(ﬂ’ r > =— [j] + (-) PCB] L (2d+1) FJSS'(R) DMA(oc,B,O)lcbé.J >(3.39)
yZ ' BC
JAS'P J
BC
From expansion (3.36) we have, for the asymptotic nucleonic wave functions,

gy () >+ ()P e, (2) >
Iq)AI;IJ (I", R) > — BC BC
BC

Ror o /7

(3.40)
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Therefore, if the Coulomb interaction is not included,

-ikR ikR
1 i e e
pAMP L _ Amp + gAMP ]

(R > o Scct (3.41)
asst(R) == — Jss' Sss 35S

A?gs' and ngg. are given by expressions identical to eq. (3.16) and

R R

where o
eq. (3.19), but with restricted values of & given by the following selection

rule (cf. appendix)

J +mT~P
W2 BC
(=1)" =(-1) (3.42)
On the other hand, eq. (3.9) becomes
e1'kR e-ikR ]
AMP AMP AMP
€ e (kR) —> —_— y" - o v 6 —_— — (3.43)
JS Roco R Jss! Jss SS! R 25k
where
. / ' J
Y JSS* = Z /(22""1) (-)A ( i ! Gssl (3'44)
2 ‘0 M "M/ \0 .A. -A

with the restricted values of & given by the selection rule (3.42). We then

introduce
G amp
MP Jsst ~ YJuss®
gt = ——— (3.45)
2ik
and
p * ,
fow o sop (@08) = I (20+1) aBf% . 02 (0,8,0) . (3.46)
J

Due to the restriction rule (3.42) fzs. depends on JBC' Inserting eqs. (3.40),
(3.41), (3.43), (3.44), (3.45) in eq. (3.39) and making use of

" 2 J.+d
- A A C "BC -
Peg 195 g @) > = log 5 (1> = () | qss"JBc () > (3.47)

(cf. eq. (3.38), one finally obtains, after the summation over p = 1 and 2.
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M M ik+R WUBC M -ik+R

R, > —— d 1) > e vt (—‘;)v lcp ‘ (g) > 8 ua e

N)S( r) R = 2 P S JBC(M) BRI s '»JBC | I
e S

+

+ — ) [(1"1 + fz)SM*S'A () lq’gl’JBG(‘l) ,>’ + (‘_)Tf(fl‘- fz)SM—*S'A(a)l@jS\'JBC(E)>,‘l+

J| R
(3.48)

. , ‘ -] e
A

#(=) BC [(F41) gug_p(ma) [, 3y RPHAT P gy_p(n-o) o5, JBC<,1)>f f

To derive the cross-section for the reaction in which t.he initial nucleus has the

spin JA and the final one the spin JD, it is advantageous to change'the coupling

scheme in which we worked up to now, i.e.

d+dcdp
dp tdg > S

This is done by the unitary transformation

!—@’S\.J >= ) < Jg Je(Uge)ds S'A[Igdci(dp)s S'A >'|<I>’S‘."J > (3.49)
- > Jpc J B
BC
where the transformation matrix elements are g1ven by 23
J +J cti j+S"* .« |d, d
<Jpdc(Jpc) 358 Al dgd i (dp) sio=(-) B ¢ /7&1 1) (23541) .B ¢ Ba.. (3.50)

i s'dp ]
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the curly bracket being the Wigner's 6-j symbol.
Substituting (3.49) and (3.50) into (3.48) we get

fom o sy (Nl) = <¢S.J6(1)|¢g‘ 3 > =

Ja J

D
1 S'-S B YC BC
'E’/(ZJ 141)(23,41) (1) Z (ZJBCH){ o }
D
J J Jp et -
.B k B(} lj(f1+f2 () + () (fl'fz)sm»s'-A("'a)J
J SM>S A
In the same way, we obtain
, M L
fom » S:A(Z)\a) = < 054 54(2) [ug JA> = fom o S:A(l)(ﬂ—a) (3.52)
I Ip D Iy I

and the cross-section, which is given by

do I i . 2 -
— = ) [IfsM > SIA(])(G)I + IfSM > S.A(Z)(ﬂ-a)lZJ
an 20,+1)(2Jd,+1 Mi 25+1 ! | '

(2op#1) (20g+1) WA - (25+1) i 9 NN

(3.53)
can be written

do 200 +1 ¢ i | 0 . J Jo J. Ao J
¢ 2Jg + 1 ai (25+1) | Jpe i S J, D{ "smusip

where
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Jac Vg B 1 gl
?SM* gy @ = (FHfgu o gpe) + () = (PP (770)
| | B o | © (3.55)
From this general ékpressioh. we can deduce the simple following

results in some particular cases
1) fordg =d, =0, J=1/2 Sy = f]D =-1/2 (say C!2 + C!® + C12 4+ (13)

the only possib]e‘vﬂues of S, S' and Jgc afe S =5"'=1/2, ‘JBC =.0,; we get
after summation over M and A

2
do 0 : .

1/2 172 (3'56)

dn

ii) for JB = Jc - 172, j = 172, JA = JD =0 (say €13 4 (1% » (13 + cl)

JBC can take on the two values 0 or 1 while S and S' are necessarily restricted
to the values S = S' = 1/2 by the two 6-j symbols appearing in (3.54). We cet

after the summation over M and A'

/2 1/2 (3.57)

111) for Jg mdc = 1/2, § = 1/2, Jy = dp =1 (say N** + C}* = CI% 4+ NY)

JBc can take again the two values O or 1 while S and S' can take on the values
1/2 and 3/2. We get | | |

2
do 0 1 1 1 2 2
—ady 1|lgf 4 —_ $o—_ 2-+l| | - |¥
dq ZMR 713 %, ., 12 ?uzm x(‘?:lzyzl 29‘:/292 ®w »
MA MA M A MA M A

(3.58)
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These formulae cén be compared with the resu]fé of W. Von Oéftzen et éT ]0;
The two formulae (3.56) and (3.57) are strictly the same as formulae (2.23)
and (2.37) of their paper. Our formulae (3.58) looks soméwhat different
from their expression (2.38). However, if one assymes that there is no
" coupling between the spins of the cores and the spiﬁvbf-the-orbiting particle

10

as it is done in reference and as it will be Qenera11y the case, then our

amplitudes are independent of S and S' as well as of and M in that

particular case. We can therefore write

J J
7 <
M

Performing the summation over A and M and adding the amplitude which become

equal we obtain:

‘Fl - F°\ |  (3.60)

which is the formula (2.38) of reference ]0.

In the same line, we can make the comparison with the results obtained in

24

. polecular physics by F. J. Smith for instance.

4. THE COUPLING TERMS AND RECOIL CORRECTIONS

4.1 - DIFFERENT TYPES OF COUPLING

‘There are two classes of coupling terms.. The first one includes the potential
between the two cores, and in eq. (3.29) the exchange potential which is not

diagonal in &', The second class includes the coupling terms describing the non

g
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adiabaticity of the scattering process. In this section we shall-be mainly

~concerned with these terms. Again‘two»typﬂsqu~terms appear:

- The diagonal ones in A,

<nh | & {nn> R . | (4.1)
"R AR T | _ R
<nA | — |n'A > Cd . ‘ e (4.2)
‘ 3R? A v : R |
and |
<nh [EZ[ntAs o _- (4.3)

couple states of identical "nucleonic" angu]ar momentum A.

- The non diagonal ones in A,

<Az [ n'AF1> | (4.4)

which mix states with different intrinsic angular momentum projection. We
shall discuss successively the so-called unadiabatic terms (4.1) and (4.2) and

the Coriolis terms (4.3) and (4.4).

4.2 - UNADIABATIC TERMS
4.2~1 - General Considerations
Before analysing the properties of the coupling matrix elements, (4.1),
(4.2) and (4.3), we discuss the energy domain where the adiabatic approxima-

tion may be used. This can be described in terms of molecular orbitals, in the
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following way. One supposes, in analogy to atomic collision that the period .
of the cluster motion is defined by the gquantity t =’ﬂ/A!-:1.j where AEij is
the energy difference between the states i, j of the nucleonic system in some
nuclear configuration. We denote the effective time of collision interaction
by Tre] = d/vre]’ where d is the effective interaction distance and Vre] is
the relative velocity in collision. When T << Tne'l one has the so-called
adiabatic behaviour. Physically this corresponds to the situation in which
the cluster x moves around B and C faster than the cores themselves in their
mutual approach. This condition imposes the upper limit to the energy of the

incident core
< | ———lh — U (4.5)

where Enel is the relative energy of the two cores and u is the reduced mass
in the channel considered. For elastic scattering AE”(R) may be estimated
by the value at infinite separation, AEij(w) which is given by the energy
]eye]s of the ion. Actually in (4.5), AEij corresponds to the difference

between the energies of two shells and not of two subshells.

On the other hand, the expression (4.5) indicates all the energy levels
which must be taken into account in the coupled equations for a given incident

energy E, in the C.M. system.

We quote some numbers to give orders of magnitude




Reactions Emax MeV Levels to be included for E > E, E, MeV
Li7 + a 6.8 ground state | 0.0
ground state and fir_st level 0.45 {
, , |
016 + 017 k7J GS | 0.0 !
GS and first level 0.8
Ca“? + Ca*? 100 GS

In a1l these cases the matrix elements of the terms (4.1) and (4.2) are
expected to be small. Let us analyse the properties of these elements in more
details. Due to the orthogonality of the "molecular wave functions" |nj >,
these matrix elements have interesting properties. It is easy to show from the
two conditions.
8 "
— <nAln'A> =0
aR

=< nA|n‘A > =0
3R

the following conciusions:
* the diagonal elements of the term (4.1) are purely imaginary:
P

Re <nA — |nk>=0" (4.6)
dR

Since these matrix elements are generally real, they tum out to be nul.

* the real part of the diagonal elements of the term (4.2) are simply
given by
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Re<npA | — |NMA>=-<—npA )} —nd> (4.7)
3R? 3R 3R '

Since these matrix elements are real, this relation will give the matrix

element itself.

* the non diagonal elements of the term (4. T) have the symmetry property

) o
<nAh | —n'A>=-<—npA | n'A> . (4.8)
aR 3R :

If we want to go further on the discussion, we must analyse some simple situa-
tions with simple models. We shall restrict ourselves to the two levels model.

This model works in two different situations:™

a) two different cores, one level (no excitation)

b) two identical cores, two levels (i.e. excitation of one level)

4.2-2 Two Levels Formulae

The situation a) occurs in the reactions

Ci‘d + Oiuib 016 + C;‘is
A 0+7 + Ci2
since the Q of the reaction is - 0.804 MeV. The two reactions may occur at Tow

energy (this is to be compared with the 0.874 MeV level of 0'?. Furthermore

the coulomb barrier are equal in the two channels.

The situation b) occurs in the reactions
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‘16 17 16 17

N\

016 + 07 (0.874)

In both these cases, we write

na > = b (R die,) >+ ch R olyn,) > (4.9)

1
where |¢ i and |¢ jr describe respectively the motion of the valence particle
around the core formed either by one of the nuclei in interaction or by the

- other one.

For instance, in the first example, for A = 1/2 we write (see section 2)

L 1 1 i
/2> Ga(R) Je? () >+ Gr(RIIe gus % (ry) > (4.10)
‘ C

1

where |¢C12 v describes the P orbit of the neutron in Cl? while
1/2

|¢01s % > describes the ds/2 orbit of this neutron in 0!7; for the second
example, taking into account the symmetry due to the identity of the two cores

(see section 2), we write

[nA > =C AP |® oh > + ciP

/2 N7 8/2 P 1/2’n 1/g P (4:.]-!)

where

A

1
%0 >~

A P A
— 195(r,) + ()7 #5(ra) >

> =

Here @As/z. describes the fundamental state of 0%7 and ¢ the first excited

state (assumed to be a pure S, , state).

From expression (4.9), the eq. (2.18) can be solved exactly and we obtain

the two eigenfunctions

1
“,A>=N ¢A+ ¢é\|

(4.12)
YOH -E - A




|2, A> =N cbf- +¢’2\-. (4.13)
H, ~E -4 ) !

11

where N is a normalization factor (depending on'R); Aij and Hij are the matrix

elements defined by

A'ij = J ¢11@1)¢2J(52)d£1 ? ' : Hij =4 J[ ¢”.(~l:1)%e ¢2j(£2)d£1

The corresponding eigen energies are

E_=E +E (4.14)

where

21 H12 + A]Z H21)

E1 = : (4.15)
-4y, AZI)

A

2
//}A22H11+A11H22 '(Az1 12+A12H21)} ‘4(A11A2§A12A21)(H11 Hy, = Hy, Hyy )
o - 0

Z(A11 p,, =4, A21)

E

From the properties of the matrix elements discussed in previous works (cf. W.

Von Oertzen 3) and C. Beccaria ]Zb) it tums out that
L1mR_’oo Aij s Gij (as an exponential)
L'imR_m H‘ij =0
Hyi
LimR*n-——— = €5, where €; is the binding energy of the valence system x in
A..
ii

the final state i. Therefore, as it is expected,

b

() Ay, ¢A > (binding energy €,)
: 1,3 (2)
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To first order, one may write

e + VR)] 8y = My L
+ ¢k,j (4.16)

iA> &N ¢?j

where i + k = 3 and V(R) is the coulomb potential. From this expression it is

easy to calculate the coupling terms, since we only need to calculate expres-

sions of the type
- )
A * A
Ay = f oy <.__ ) dr.
ik i SR k)

A (¥
Fik=J¢1‘ —_¢k> dr

and

9R?

We notice that the functions ¢£ are function of R in a very simple way, namely

(.t uRe,)
in other words,

9
- =t — i (re .y (4.17)
TR ar KXYz
z
and all the calculations can be performed simply using the recursion formulae

of the spherical harmonics and of the spherical Bessel functions. Numerical

results will be given in a forthcoming paper.

4.3 - THE CORIOLIS TERMS

We shall describe here the procedure which can be used to calculate
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these terms. This method must be used also to calculate the matrix elements

of the spin-orbit potential.

We shall use the expansion (4.9) to illustrate this procedure. In

expressions (4.3) and (4.4) the operators I, and I may be written as

=342

where J' is the sum of all spins involved and L= -i(rMA:y:r) (in the moving
frame). However, in expression (4.9), the wave functions are centered at
the positions of the cores, i.e. qbés(rs) = ¢BIS\(r + Mg R ea) where Hg is a
mass ratio depending on the index which takes on the value 1 or 2, given in

eqs. (2.12b).
We must therefore translate the operator 2. We can write:

"’%"=-1(MEB—UB R§. )A v

Noting that V. ¢(~CB) =N, &(rg), one obtains

"8
A - -
'&’¢BS(IB) =‘&B ¢BS(*rB) +gg8 ¢BS(M):B) (4'18)
where
Lg = -i(rg A”Xrﬁ)
and
&g = 1ug Rie, Aj/:rs) (4.19)

From these results, we can calculate all the matrix elements which we need
for the operators I2? and z,: For any operator o acting only on the intrinsic
variables, we can write from (4.9)

. * A A
<nlofn'h> e D Gy Cgnr < dgs(ro)Io] dgsi(rg)
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The different matrfix elements of interest are therefore
A 2 -Gl i A A 2 ’g A
<¢u5(ra)lz I¢BS'(£B)>"S (S +])Aa8+<¢as(£a)LgBtzé SB + SB Bl ¢BS|> (4.20a)

= '
where "§B _“’%B + dJ! and

<¢$(§a)lzil¢2§(ﬁr§) > a f (S'FAH)(S'tA) AQB +

AT »

A,
+ s (ry) b, | 0g7s (rg) > (4.20b)
the second term of these expressions may be easily calculated using the Wigner-

Eckart theorem and the gradiant formula. The result is
v )2
Ao aylA 2 _ A 1 A
“bgiskpldps> = = RE g < 0lpugl By = — — | dg5 > (4.21)
B ug R

A . A _ A A o7y 35 2 !
Vgrseg b logs gy > = 1< dgisejles gy (D) X

-

’iu g .
XJ" i- 1} /3(341) (25+1)< Ll &t > (4.22a)

|3

- A A - . - . A A _ S"+S'+2"+j-A+l+u
\d)BlS!,ngulchS'R,”j 7= 2 ~ ¢B'S£JI¢B S“Q;“J'> ( 1)

2' lls L]

-

(g 20 1 sho1 s¢ .
X ) /(25"+'I)(2$'+1)< Ll et >
15! S“ jJ <

-A p A

where ' (4.22b)

< 2'"“o£"21| > = UB R < SL""V "2,'>

From (4.21) and (4.20) it is easy to show that




1 1 - -
PAN = < 2 - Tp
o <nA|Zin‘A* > = .nAl\Z((SyhéYSY + SYJY)SY D[n'A' >

82

3R?

+ < nA

r.

n'A' > - < nA|} u; A 8 [ntat > (4.23)
Y Y

- ~ A A
where 8, means 6YI°BS' > =84 |¢B$' and

- 3 9
Bina > =7 X ch (r) +2 - Chn(R) —
B aR2 3R 3R

A
| g5 >
From these formulae, one can easily calculate the asymptotic values of the
expression (4.20, 22) when R > »:  Al1 the terms involving the gradiant
formula vanish as well as all the non diagonal elements. This shows the results

given by egs. (3.12a).

The last term of eq. (4.23) Tooks Tike a correction to the term
2M EQ(R), it is a compensation to the recoil effect. Llet us analyse these

recoil corrections in the next subsection.

4.4 - RECOIL CORRECTIONS
As in DWBA calculations, the recoil corrections consist in taking into

account the fact that the vectors R, Ry, and R. are not parallel (see fig.3).

We have shown in section 2, that this correction has two consequences.
The first one is to take into account the difference between eqs. (2.29) and
(2.11). In fact, one can rewrite (2.29) as

Ar

Cx - 1 1

+ V. +A —— - —]p¢ =E (x)9 3 (4.24)
Cx r n
2 Moy - Cx 2mCX 2m

the correction which we call HCx may be written as




— Ty T
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( 1 . g
H. = -— ] A = = A (4.25)
Cx r 2 r
szx 2m Cx C(m + mC) Cx
We set
Heorr © g{ HY GY (4.26)

In the no-recoil DWBA calculation, this correction is neglected, since it is of

the order of %’é First calculations have shown that if this correction may be

12b

of 10% for very unfavorable elastic scattering » it is much more important

for inelastic scattering where the reference is not the binding energy of x to
the core c,

but the excitations energies. Therefore, we shall show how to take

these terms into account. It is very easy to check that

a ui ~
< nAH_ . In'A> = < np |] — r Sy n'A > (4.27)
y 2 Y
which is the last term appearing in eq. (4.23). This gives the clue of the

method to be used with the LCNO approximation. Instead of looking for eigen-

functions of/ée as it has been done up to now, we shall look for eigenfunctions

of
% ﬁ%e * Heorr (4.28)
where fée and Hcorr are given respectively by eqs. {2.20) and (4.26). Let us
call them ]ﬁf\ >, such that
ok > = A] A > (4.29)

Since #, has the same symmetry as jée, the quantum number A is not changed at all.
The advantage of such a representation is that when R+ « with fixed values of

eq. (4.29) reduces to
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asd

A
r‘ ~A/ ~v
/- —X v V] eb(r, @) > = BNy (eh(r, @) > (4.30)
\oo2m - n

\_ Cx

which is exactly eq. (2.11) so that Eﬁ(w) is nothing but (g, - e - ex) as it
should be. This overcomes the difficulty quoted through eq. (2.29). Then we
rewrite eq. (2.8) as

AR o ‘ |
<- oM +Veg(R) +% - Hegpy | 19>= (e¢ + 5 +e, - E)[0 > (4.31)

A straightforward calculation shows that the term %‘A< r??xlzm Ir?f\ > fr’l\.J(R)

corr
is added in the right-end side of eq. (3.6) and this term is just cancelled by
the last term of (4.23), so that in the new representation with the LCNO ap-

proximation for real radial wave functions, eq. (3.6) reads

|
32 J(J+1) - 242 ~ |
-t + 2M EN(R) - k2J 2 (R)

aR? R?

) L 52 3 =D Inv A

n' T PO | 5 (Sy +by Sy + 56,08, = D In'A > > i y(R) +

¥ 2 <nh | — [n'A> — £ (R) - — (20+1) ] < nA[Dy, VaoDy [n'A"> f ' j(R)+
n'#n 3R sr MY ar? rnt MA'BC™M n'J

.I A ~~ P
+— T 9 S (me1)(9-0) < RAjz_|n A1 > FT(R) +
R2 p! - n

+ A0-m1)(0+0) < hh |z, [nA-1 > £ (R) (4.32)

in which several of the coupling terms have been cancelled. In the same way,
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eq, (3.31) is simply reduced to

~ . g st g\ /et st d 18~ 93
A =T (-nF M e 2 <nil — | na>—-
2"2! A 0 A "A 0 A "A BR BR
- E-z-«m | I (s - s'(s'+1) +o£8 Sg * Sghg)d, - D [ n'A> b (4.33)

Y

The second effect of the recoil appears in the asymptotic expression of as

shown in eq. (2.13).

We must therefore introduce these phase factors into the molecular

wave function, i.e., we look for solutions of eq. (2.8) which reads

Tkoer ~
w>=7 xR e "ol (r,R) >
ni
"y R
with k, = kg, 7= —— Where the index n labels B or C according as the state
™ R i kn-L

n has for limit a nuclear state in which x is bound to B or C. Since e

is invariant in rotations, this factor will only change the equation leading
to the molecular wave functions. Asymptotically, the energy Eﬁ(R) will be
shifted as it should be. The relative motion eq. (3.6) or (3.29) will not be
changed in shape but this correction introduces matrix elements which depend

on the transfered momentum.
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V. CONCLUSIONS

In this paper, we have shown that a theory of nuclear reactions can be
written in the framework of the molecular orbitals description of
intermediate states. ‘This approach leads to an extension of the unified
model of deformed nuclei of Bohr and Mottelson to the continuum states and
therefore leads natuka11y to a description of the scattering process in

the helicity scheme.

If the equations can be written formally in any case, including alT
spin couplings, the solution of these equations can be given only in simple
situation which fortunately appears in'many‘actual experiments. Namely when
the two states approximation as well as the adiabatic approximation can be

used; W. Von Oertzen et al. have given many such examples.

This formalism is particularly well suited for the analysis of the so-
called elastic and elastic-transfer reactions. These are also analysed using
the DWBA formalism 13, 14 and the resonating group method 8 for light
nuclei, leading to interesting comparisons, and to the search for the existence
of "nuclear molecular" states. This method can be used also if the nuclei are
described in the weak-coupling model since core-excitations may be included
simply in this formalism. We have shown that several coupling terms can be
cancelled if one defines intrinsic states which are eigenstates of a symmetrized

intrinsic hamiltonian.

We have also shown how the unadiabatic corrections which are not cancelled,
including the Coriolis corrections could be calculated. They give rise to
transitions in the angular momentum of the relative motion of the two cores.
Finally we have indicated the procedure to take into account the recoil correc-

tions which complicate the analysis.
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These two types of corrections as welll as the strong spin orbit orbit
coupling which accurs in this nuclear problem make the difference with the
analysis of ions-electrons collisions, although the search for Coriolis

~-coupling and recoil corrections are also in progress.
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APPENDIX 1

Using the transformation rules of ref, 21 one gets easily the following
relation

L=L'+Xx-2

Anr s AAe T

where L is the angylar momentum operator R A Pp corresponding to r fixed in
the fixed frame, while L' is the same operator But for x fixed in the moving
frame so that: |

Lok, Ry >0

Furthermore % is the anguipr momentpm'ope_rator of the particle X, ie. & =£Agr

and ) = R,C(z; + cot B £) in the moving frame where R'C =~ —é% and the different

vectors are given in fig. 4 of the text. A straightforward calculation shows that
the sum h‘ + A = o4 is nothing but the angular momentum of the rigid body formed

with the cores B and C and the particle x fixed in the moving frame. Therefore

L=x- L. One must not forget that the operator —z—d; which appears in £ (through

P A

A) acts also on the intrinsic wave functions [d>ﬁ(£) > .
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APPENDIX 2

In deriving the eq. (3.6), we have written the molecular wave function in

the system fixed to the cores. Then, in order to carry ou';c the differentia-
tion with respect to the cores variables the form of the derivatives were
changed as was discuSsed in section 3. Another altemative may can be to
write the molecular wave function in the space fixed coordinate system so-
that the derivatives operators maintain their form. We aim to discuss this

in this appendix.

We still write the total wave function as discussed in section 3.

[W(R, 1) > = ZA xf,\(!}) Iéﬁ(g;, R) > | | (A.7)
: n ‘

with AM
fug(R)

Dy (@58 :0) (A.2)

A, .
(R = (2041)

Developing the molecular wave function in the nuclear-orbitals basis, as

A

) A SA,
o, (xs R) > = I Cou(RI o (r ) > s (A.3)
S,a =1, 2
or in the fixed frame
A n S S,
lq’n(fs R) > = ) CS,a(R) 2 DMSI\,(O"B,O)I@MS(IQ) > (A.4)
S,o=1,2 Ms

We now combine formulae (A.4), (A.3) and (A.2) to obtain the total wave func-
tion
MA
fnJ(R) *

O (2:8:0) Dyep(:8.0)| oy > (A-5)

lW(R, ) > =1 ) (20+1)
nA JM
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Noticing that

o&A(n)Dﬁs,\(m = (- g
LM

J osL) JsL
/2L+1)< ) D,';‘o(sz) ( )
M M m A MO

the eq. (A.5) can be rewritten as

L

A Mg -A MR /g5 L
[W(R, 1) > = (4n) I (S Ve (2041) - ( ) x
| IMSM RO\ K m
MLmn

~fdsL
x Y"™R <’ c™r) (o0 >
; )'AAO> > IMS

In the case of identical cores this function must be symmetrical or

antisymmetrical in the ‘interchange of 'the two cores. Then we must have

[W(Ry 1) > = (-1} CPuclu(R, 1) >, (A.7)
as from (A.6), we have
L+2JC+JBC+P-Tr
Pacl¥(Rs 1) > = (-) R, 1) > (A.8)

Consequently L + JBC + P - m must be even, which is the selection rule (3.42).

Inserting (3.28) into expression (A.6), one obtains:

(4r) 1

1 i /Q/ S J
WRp>e ——— T ety @] o) (3SR 2 ) X
| s | 0 MM,
nimas=1,2
LSt 0N A .
Y™ (R ¢ (KR)| o3 (r) > A.9)
‘m M. -M/ L ( Lea | Mswoc (

s - (nS')ss" ‘




where the function w‘ﬂm
(ns [ )SS n
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cores in the fixed frame is-given by

S'S

~ J
YR wy, (KR) [0

(KR) describing the relative motion of the two

J 2! J Jn /0141
Y oo (KR) =} (-1) Vo 1g (KR) GLz'a(R) 20" +1 (A.10)
(nS")sS™ &' (nS")S S"S
i where
' S'J L s" J
61 o(R) ’Z( | ) < ) CEa(R) . (A.11)
- Sus A 0 A "'A 0 A "A
When R ~ o, it has been shown in the text (see 2.24) that
nh
CS"Q.(R) R - o > 6Slsll 6(! ](2)
Therefore
Jn SLgr Sgign
G oo (®) = —————
ES'%.SO‘ 28 + 1
and
L
n (KR) 0w kR s (A.12)
L — LL POt o .
(nS*)SS" Y 2L+1 S'S
where the function wf . is the function introduced in (3.14) as it can be checked
3. .
immediately, since S'S
. 1/z
(4"T) — St M.~ -
[0(Rs ) > ——s P /2041 (2041 (~)37S ML=
R amms
Lmg

() > (A.13)

Aan
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20

which is exactly the expression given by R. G. Newton in its eq. (15.12)

~
for k = 0. This shows that the asymptotic expression (3.17) given for wi.l(kR)

]
are corrject. (nS')S
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Figure 1:

Figure 2t

Figure 3:

Figure 4:
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FIGURE CAPTIONS

Representation of the two center potential resulting from the super-
position of the potentials defining the two interacting nuclei, when
they are at their closest distance of approach (situation (b) of
figure 2). The inner shells (hatched area) define the two innert
cores. "
a) one particle on the last shell is exchanged;

Ex.: 06 + 017 & @16 4 Q17

b) one hole on the lagt shell is exchanged;
Ex.: 015 + N15 > 015 + N15

Sketch of the adiabatic approximation in the scattering of heavy ions
formed with a core plus valence nucleons.

a) incoming asymptotic state

b) intermediate state: molecular state (multi-step exchange)

c¢) d) asymptotic final states.

Diagram of the different variables used in the text. The letters
B and C label the two cores, x the exchanged nucleon (or hole), GD
and GA the centers of mass of the nuclei D and A and GBC the center

of mass of the two cores.

The different frame of references used in the model

a) The laboratory fixed frame (referred to as the fixed frame in
the text) with the three axis labelled by X, Y, Z. In this
frame the position of the two cores is given by the angles «
and B and by their relative distance R; we have also indicated
the position of the moving frame with the three axis.

b) The moving frame. This moving frame has its axis defined by
the direction BC of the two cores; the axis is always in
the plane XoY (see (a)), this means that the Euler angle y is
set equal to zero; we have sketched the vector r in this moving

frame.
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Sketch of the adiabatic approximation in the scattering of heavy ionsformed of a core plus valence nucleons

a) incoming asymptotic state

b) intermediate state : "molecular state" (multistep exchange)

c)d) asymptotic final states '
Figure 2
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Figure 3
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