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ABSTRACT
The indirect interaction between localized magne;ig.'moments in

insulators and semiconductors is calculated at T = of?il This interaction
arises from virtual excitations of the valence electrons to the conduction
band and is oscillatory as a function of distance. The passage from the case
of small gap semiconductors to insulators is studied in detail, as a function
of the energy gap and the effective masses. The Bloembergen-Rowland inter-
action ig derived as a limiting case for insulators. Pdssible applicatioms

are also discussed,

* Instituto de Fisica, Universidade Federal do Rio de Janeiro.




T, INTRODUCTION

It is well known that the localized magnetic moments of ions 6r of
nuclei in metals are indirectly exchange-coupled through the conduction
electrons 1 2, The proper calculation including both diagonal and off-
diagonal effects was given by Kasuya 3,4 and a little later by Yosida 5.
This interaction, because of its long-range and oscillatory nature, can
give rise to complex ordered magnetic structures as shown, for instance, by
rare-earth metals and alloys. However, in its original analytic form the
theory necessarily involved several important approximations. This problem
has been considered in detail by many authors - it is impossible to make
justice to all of them - we shall mention only those really connected with

this work. (See reference 6.and references therein).

In insulators there exists a similar interaction Which.arises from

virtual excitations, through the energy gap, of the valence band electrons ’.

An evaluation of the integrals involved in a realistic case is not
elementary, so 8loembergen and Rowland 7 calculated the interaction by
invoking drastic approximations, the most important being that the energy
gaps were assumed to be much greater than the valence baﬁd.width. This

necessarily excludes semiconductors.

The purpose of this paper is, essentially, to extend the

Bloembergen-Rowland formula to intrinsic semiconductors, for T = 0%.

Besides tHe study of NMR linewidth in insulators and semiconductors
(where the localized moments are nuclei) the indirect interaction studied
here may play a role in the interpretation of the properties of magnetic

semiconductors like Eu chalcogenides where the Tocalized moments are the 4f
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shells (Eu0, EuS, EuSe and EuTe) 8,9, 10

2. FORMULATION OF THE PROBLEM
>

We begin by considering a system of localized spins Sj in a semi-
>
conductor at the positions Rj, which interacts with a valence band electron
with spin §, and wave function |

> > 1 >
<xlk>=_....u+ (x (M
/—k.)

<

through the potential
H=-Y2r(X- R)(33)
J
(% - R j) 1s the exchange interaction between 3 and S Now, in order to
treat e111pso1da1 energy surfaces, we can formally transform [ and R spaces.
into 7 and p-spaces such that K-R = B+p by defining
ke

Iz1.=—1—-and o, = /AT R, i=1,2,3

:

Furthermore we shall assume that the dispersioﬁ relations e(k) in
the valence band and €'(k') in the conduction band depeqd only on }Ei and
lE'l say E(E) = k2 and e'(g') = p'2, i.e. are constants over ellipsoidal
surfaces. This will enable us to perform the integrations over the angles

> -+
in k and k'-spaces. We shall comment on this approximation later.

In a straightforward way, second order perturbation theory gives
> >

~
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(m, my my my My m.)

Aij = B (2)
(2.")'; K2 pp'

f is the volume of the elementary cell

de' Ig(k, &) (3)

kT 2 kk' sin ko sin R'p!'
B=-J' dk[
0 0 k2+kl2+e
+> >
If rs(k, k') is independent of k', the integral in p' is analitic,
that is
' 1
pZ k3 j 1/2 L
Bza-Tp T j dx x sin(gx) exp -p'(k% x2 + ¢€)
2 q2 0 l

2.
= e E i
€ prgl (Eg is the energy gap)

q=Fkro
<> - . > > .
I (k, k') is the so-called exchange interaction parameter. If I'(x - Rj) is
.
a delta-type interaction PG(I - Rj) (the Fermi contact interaction), this

reduces to PS(E, E') = P'QE(O) VE.(O) which may be assumed to be independent
of k and k' (this corresponds to the Wigner Seitz approximation).

3. COMMENTS ON THE APPROXIMATIONS
The simple derivation used here involves perturbation theory, so it
is only valid provided that PS(E, E') is much smaller in magnitude than the

characteristic energies of a conduction particle. This is of course true if
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one is considering the problem of indirect interactions of nuclear moments
(which, by the way, was the problem originally studied by Ruderman-Kittel

1 2 3,4

and Bloembergen-Rowland)., We tshall assume, as usua that this is

also true for localized electron shells.

In principle, of course, one may use a double integral to evaluate
the interaction for arbitrary (k) and e'(p') instead of p* and p'?. In a
real situation where S(E) and €(E') depend on the direction in L-space, a
better estimate of the total energy may be obtained by & weighted sum over
the Brillouin zone
v -»>
e =1} P:ei(k)
1‘
Pi being proportional to the'degeneraqy and the relative volume in the
Brillouin zone of a particular direction for which the energy is assumed

to depend only on ;E{.

Howe?er we shall use s(g) = 1% and s'(ZA) = p'%, which are not
very strong assumptions. It is reasonable to assume that the interaction
is not very sensitive to the details of the conduction band structure. This
comes from the fact that in perturbation theory the most important matrix
elements are those connecting the top of the valence band to the bottom of
the conduction band. In these regions the dispersion relations may be
assumed to be parabolic. In metals a computation of the indirect inter-
actions using non-spherical Fermi surface 1 has shown that the details
of the dispersion relations are not very important in the final result
and that the parabolic approximation is qualitatively good. Furthermore

the success of the Ruderman-Kittel interaction in the qualitative inter-




pretation of several properties of rare-earth metals and alloys 12, 13
induces us to believe that the Bloembergen-Rowland scheme can be equally
useful fn the study of the magnetic properties of rare-earth non-conducting

13 8

compounds ', specially magnetic semiconductors

4. GENERAL DISCUSSION OF THE RESULTS

The indirect interactioh between 1océTized magnetic momenté in a
semiconductor 1is given by equations (2) and (3). Of course we need to
consider only the interaction in the direction of principal axes, mx'gnd m;
which shall be assumed to be parallel. This results from the fact that the
principal axes are determined by the symmetries of the crystal. So:
202 T, kY

Ay = -

M' % (4)
(2m)® #? '

2

1 ! 2. 2 1/
% s — j dx x sin(qx) exp{-p'(hT X +¢€) }
q®

0
. , '1/2
; me /2 (qx Wy m, m, my mz)
Mv.g(-T) 2 2 2
m m + my +m

and M' = m' in the case of spherical Fermi surfaces, where me=m o=m =n,

m

I_|='=l.
SMy=m, o =m

We shall study numerically this integral in the form

1

. 1 -A ’

¢ = — j dx x sin(qx) e (5)
2

T 9

_11/2

A=qg [y +y?x%




where

For spherical Fermi surfaces y*> indicates roughly the ratio of the

valence to conduction band widths.

E E ,
9 , 9 2
=Y———=Yy
a' E ozET

y'=

T
Eg is the energy gap, and uET is roughly the valence band width. We shall

treat y' and y? as independent parameters.

For a typical intrinsic semiconductor y2 may be

Jdgy?rgl

<
I
and in an insulator one has y2~ 0 and y' is finite. I?-this case equation

5 gives us the Bloembergen-Rowland 7 result

X cos x - sin x
VT FkR) F(x) = -
X

¢=-e

F(x) is the Ruderman~Kittel function 1, 2.

The Bloembergen-Rowland approximation has been used in the study of
the magnetic properties of Eu-chalcogenides 14, 15, 16 and EuB6 ]7. Now if
one intends to apply the indirect interaction to the sthdy of the magnetic
semiconductors, it is important to know which are the relevant parameters,
independently of the approximations involved in‘the bénd structure calcula-

tion.

The relative sensitivity of ¢ on the several parameters involved

can be seen more vividly in figs. 1 to 7.
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® is plotted in figures 1, 2 and 3 for different values of y' and
v?, illustrating the passage from a small gap semiconductor (y'=~ .1) to an

insulator (y* >2).

In fig. 1 one plots & versus g, taking y2 = 0.1.. In general the
interaction ¢ in the small gap semiconductor (y'~x~ .1) is stronger although
for special values of q and in very limited regions, corresponding
approximately to the zeroes of ¢(q), (for instance q ~ 4.9) this may not
be true as can also be seen in figure 1. In figs. 2 and 3 one plots ¢
versus q for y2 = .3 and y% = .6 respectively. The general trend is the

- same as in fig. 1 but now the reiative effect is more pronounced.

In figs. 4 and 5, and 1n.figs. 6 and 7 the interaction & is plotted

against y? and y' respectiveiy taking g as a parameter.

For large values of q the interaction depends'both on y2 and y'
but, for a given q, the dependence with y' is always grater.then the
dependence with +y2, as can be seen by comparing (4a) with (6a) (g = .4) and
(4b) with (6b) (g = 1.9) or (5a) with (7a) (q = 4.9) and (5b) with (7b)

(9 = 9.9). :

Furthermore the dependence of ¢ with y? becomes weaker as y'
increases. That is, the indirect interaction becomes less dependent on y?
in the passage from a semiconductor to an insulator. Finally in an insulator

y' is the only meaningful pérameter, as shown before.
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5. CONCLUDING REMARKS
We have shown that in a semiconductor, the indirect interaction

between localized magnetic ﬁoments'depends on y* a g/a' (o is the effective

aﬁz k2

Zm
the conduction band) and y' = Eg/q' (Eg is the energy gap), but the varia-

mass in the valence pand as defined by E = and o' corresponds to
tion with y' is always daminant. This is a very interesting result, for it
shows that the details of the valence band, which determine o, are 1less
important than the energy gap and the structure of the conduction bard or,
more exactly than Eg/a‘, in the variation of the magnetic properties of

rare earth semiconducting compounds.

This shows that in band structure calculations one should emphasize
the detailed structure of tne bottom of the conducti&n band and the values
of the energy gaps. Furthermore this analysis shows that the Bloembergen-
Rowland approximation already contains the relevant parametérs for

insulators.
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