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Abstract. – We provide numerical indications of the q-generalised central limit theorem that
has been conjectured (Tsallis C., Milan J. Math., 73 (2005) 145) in nonextensive statistical
mechanics. We focus on N binary random variables correlated in a scale-invariant way. The
correlations are introduced by imposing the Leibnitz rule on a probability set based on the
so-called q-product with q ≤ 1. We show that, in the large-N limit (and after appropriate cen-
tering, rescaling, and symmetrisation), the emerging distributions are qe-Gaussians, i.e., p(x) ∝
[1−(1−qe) β(N)x2]1/(1−qe), with qe = 2− 1

q
, and with coefficients β(N) approaching finite val-

ues β(∞). The particular case q = qe = 1 recovers the celebrated de Moivre-Laplace theorem.

Introduction. – The central limit theorem (CLT) is a cornerstone of probability theory
and is of fundamental importance in statistical mechanics. This important theorem implies,
roughly speaking, that any sum of N independent random variables will tend, as N → ∞,
to be distributed according to a certain law (which behaves as an attractor in the space
of distributions). When the distribution of the individual random variables has any finite
variance, the attractor for the sum will be a normal (Gaussian) distribution [1], and this is
the result usually known as CLT (from now on denoted G-CLT). Several extensions of the
CLT exist, such as the one due to Gnedenko, Kolmogorov, and Lévy [1] (from now on denoted
L-CLT), widely known in physics because of its relation with anomalous diffusion [2]. This
extension states that the sum of independent infinite-variance variables will be attracted to
Lévy distributions. The G-CLT explains the frequent occurrence of normal distributions in
nature. Its first manifestation in mathematics was due to Abraham de Moivre in 1733, followed
independently by Pierre-Simon de Laplace in 1774. The distribution was rediscovered by
Robert Adrain in 1808, and then finally by Carl Friedrich Gauss, who based on it his famous
theory of errors [3]. A central result is the fact that the binomial distribution approaches,
for N → ∞ and after being appropriately centralised and rescaled, a Gaussian. This can be
considered as the first historical manifestation of the G-CLT. It is frequently referred to as the
de Moivre-Laplace theorem. It is this relation that we aim to generalise here by allowing for
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the presence of scale-invariant global correlations (previous attempts along similar lines are
reviewed in [4]). We thus suggest an explanation of the frequent occurrence of q-Gaussians in
natural and artificial systems [5,6]. The basic statistical-mechanical program is still essentially
Boltzmann’s program in fact, until now only partially fulfilled despite a common belief to
the contrary. It consists of i) constructing, from microscopic dynamics, the probabilities of
occupancy of phase space for a given (typically large) time t and a given (typically large)
number of elements N , and ii) deriving, from these probabilities, the attractor in distribution
space, the entropy, and all other thermodynamical quantities. The present paper addresses a
relevant aspect of the second step only, namely the N → ∞ limit for fixed (typically large) t.

The q-Gaussians are distributions that naturally emerge within the framework of “nonex-
tensive statistical mechanics” [6]. They are defined by p(x) ∝ e−β x2

q ≡ [1−(1−q) β x2]1/(1−q),
where β is a positive constant characterising the width. They optimise (1) the entropy

Sq ≡ 1−
∫

dx[p(x)]q

q−1 (with S1 = SBG ≡ − ∫
dxp(x) ln p(x), where BG stands for Boltzmann-

Gibbs) under simple constraints [7]. It has a compact support for q < 1, recovers the Gaussian
distribution for q = 1, and decays asymptotically as a power law for 1 < q < 3; p(x) is not
normalizable for q ≥ 3. Its variance

∫ ∞
−∞ dxx2p(x) is finite for q < 5/3, and diverges for

5/3 ≤ q ≤ 3. Its q-variance
∫ ∞
−∞ dxx2[p(x)]q/

∫ ∞
−∞ dx [p(x)]q remains finite for q < 3. It

recovers the t-Student distribution with l degrees of freedom if q = (3 + l)/(1 + l). For l = 1,
hence q = 2, we get the Cauchy-Lorentz distribution.

The frequent occurrence of these q-distributions can be easily understood if some new CLT
(from now on denoted q-CLT) exists. The already known theorems do not explain this quasi-
ubiquity. Indeed, the convolution of N independent such distributions leads, for N → ∞, to
Gaussians if q < 5/3, and to Lévy distributions if 5/3 < q < 3. Therefore, these N variables
must be strongly correlated for the q-distributions to be stable under convolution, i.e., to
constitute attractors in the space of distributions. In other words, a new theorem would be
very welcome. Such a possibility was already discussed in [8] and recently conjectured in
detail [9]. In the light of the arguments in [10], it seems natural to think that strictly or
asymptotically scale-invariant correlations will yield a suitable q-CLT. We have not shown so
far that it is so, but we present here a q-generalisation of an important manifestation of the
G-CLT, namely the de Moivre-Laplace theorem.

Model. – Let us consider the simple case of N identical and distinguishable binary
random variables. These variables are not necessarily independent, and we denote by rN,n

the associated probabilities. We have N sets of probabilities with (N + 1) elements each,
and n = 0, 1, 2, . . . , N as the variable index within each set. We construct these sets with a
special correlation relating the (N + 1)-set to the N -set, in such a way that the system has
a particular scale invariance. The probabilities are correlated across different system sizes,
the marginal probabilities of the N -system being identical to the joint probabilities of the
(N − 1)-system. More particularly, we impose the Leibnitz rule, soon to be defined.

The trivial case is that of independence. Consider the Pascal triangle, a number triangle
whose rows are formed by the binomial coefficients

(
N
n

)
= N !

(N−n)! n! . The set {(N
n

)
/2N}

constitutes a probability set for any fixed N . In the limit of N → ∞ and after appropriate
centralisation and rescaling, this set approaches a Gaussian distribution. As mentioned earlier,
this is known as the de Moivre-Laplace theorem. If each one of the binary variables has

(1)To be more precise, they maximise (minimise) Sq whenever it is a concave (convex) function, i.e., for q > 0
(for q < 0). For the microcanonical ensemble, this corresponds to equal probabilities, ∀q. Let us also mention
that i) for q < 0, only states with nonzero probability enter into the calculation of Sq ; ii) the H-theorem stands
consistently as q dSq/dt ≥ 0, ∀q (see, e.g., [5]).
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probabilities p and 1− p, the elements of this triangle for fixed N will be given by {(N
n

)
pN−n(1−

p)n}. The previous simple case (Pascal triangle) corresponds to p = 1/2. As for one of the
systems studied in [10], we now construct our probabilities by imposing the following rule:

rN,n + rN,n+1 = rN−1,n (n = 0, 1, ..., N − 1; N = 2, 3, ...). (1)

This rule, already referred to as the “Leibnitz rule”, is the one used to build the Leibnitz
Harmonic Triangle [11]. Note that every probability from row N − 1 is the sum of two
probabilities from row N . Furthermore, the Leibnitz rule ensures by construction that for any
set of N variables, the sum of the probabilities (each one multiplied by the degeneracy factor
given by the appropriate binomial coefficient) will always be equal to the corresponding sum
for the previous row. This means that if the (N−1)-th row sums to unity, so does the N -th row.
We thus verify that

∑N
n=0

(
N
n

)
rN,n = 1 (rN,n ∈ [0, 1]; N = 1, 2, 3, ...; n = 0, 1, ..., N).

Within this procedure, the knowledge of all the elements in row (N−1) and any element of
row N completely determines the other N elements of row N . Using eq. (1) we can analytically
calculate all the probability elements of all rows and obtain

rN,n =
N∑

i=N−n

(−1)i−N+n

(
n

i − N + n

)
ri,0 , (2)

where each rN,0 is an arbitrary probability value.
The only remaining question is how to choose the set {rN,0}. In the case of probabilistic

independence we simply have rN,0 = p × p × . . . × p = pN (0 ≤ p ≤ 1; N = 1, 2, 3, ...) and
thus rN,n = pN−npn (n = 0, 1, 2, ..., N). The generalisation we shall propose here is based on
the q-product [12]:

x ⊗q y ≡ [x1−q + y1−q − 1]1/(1−q) (x, y ≥ 1; q ≤ 1). (3)

This generalised product has the following properties: i) x ⊗1 y = x y; ii) x ⊗q 1 = x;
iii) lnq(x ⊗q y) = lnq x + lnq y, with lnq x ≡ x1−q−1

1−q (ln1 x = ln x) being the inverse of ex
q ;

iv) 1
x⊗qy = ( 1

x ) ⊗2−q ( 1
y ). If the probability distribution in phase space is uniform within a

volume W , the entropy Sq is given by Sq = lnq W . Property iii) can then be interpreted
as Sq(A + B) = Sq(A) + Sq(B), where A and B are subsystems that are not independent
but rather satisfy WA+B = WA ⊗q WB . This fact connects the present work with [10].
The possibility of a correspondence between this q-product with a q-CLT has already been
conjectured [9], and some efforts along this line already exist in the literature [13].

Let us now proceed with our q-generalised de Moivre-Laplace theorem. We choose

(1/rN,0) = (1/p) ⊗q (1/p) ⊗q (1/p) ⊗q . . . ⊗q (1/p) , (4)

hence
rN,0 = p ⊗2−q p ⊗2−q p ⊗2−q . . . ⊗2−q p = 1/ [Np q−1 − (N − 1)]1/(1−q) . (5)

For 0 < p < 1 we see that rN,0 = pN = e−N ln(1/p) if q = 1, whereas rN,0 ∼ 1
[(1/p)1−q−1]1/(1−q) ·

1
N1/(1−q) ∝ 1/N1/(1−q) (N → ∞) for q < 1. Combining eqs. (2) and (5), we obtain

rN,n =
N∑

i=N−n

(−1)i−N+n

(
n

i − N + n

)
p

[i − (i − 1)p1−q]
1

1−q

. (6)

Note that (q, p) = (0, 1/2) reduces to the usual Leibnitz triangle (i.e., rN0 = 1/(N + 1)) [11].
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Fig. 1 – ln−4/3
p(x)
p(0)

vs. x2 for (q, p) = (3/10, 1/2), and N = 1000. Two branches are observed due to
the asymmetry emerging from the fact that we have imposed the q-product on the “left” side of the
triangle; we could have done otherwise. The mean value of the two branches is indicated in dashed
line. It is through this mean line that we have numerically calculated qe(q) as indicated in fig. 3.
In order to minimise the tinny asymmetry, we have represented a variable x slightly displaced with
regard to n−(N/2)

N/2
so that the center x = 0 precisely coincides with the location of the maximum of

p(x). Inset: linear-linear representation of p(x).

Results. – We studied our model numerically as a function of the index q for typical
values of p and N � 1. To calculate the probability values rN,n from eq. (6) we used an
arbitrary precision library [14] in order to overcome the effect of the alternating series (i.e.,
subtraction of almost equal large numbers), whose relative error grows very rapidly with the
number of elements N . For example, for N = 300 and N = 1000 we used, respectively,
150 and 500 significant decimal digits. For p = 1/2, N � 1 and q ≤ 1, the probabilities(
N
n

)
rN,n neatly approach (see figs. 1 and 2) the qe-Gaussians p(x) = A(qe)

√
β e−β x2

qe
, where

A(qe) is determined through normalization, and x ≡ n−(N/2)
N/2 is a conveniently centered and

rescaled variable. The value of qe is obtained by plotting lnqe
[p(x)/p(0)] vs. x2 and finding

the value of qe which produces the largest linear correlation coefficient (see fig. 1). This is
repeated for typical pairs (q, p). We see that there is some asymmetry in the distribution.
More precisely, the x > 0 and x < 0 branches lead to the same qe, but the corresponding
slopes β are slightly different. This asymmetry depends on (q, p,N). Our main focus being
the index qe, we calculate the mean of both branches, and then we fit as illustrated in fig. 1.
In fig. 2 we illustrate the dependence of the distributions on size N . The q-dependence of qe

is exhibited in fig. 3. The numerical results are remarkably well described by the following
conjecture:

qe = 2 − 1
q

(0 ≤ q ≤ 1). (7)

This of course means that we can rewrite the formula through which we introduced the
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Fig. 2 – ln−4/3
p(x)
p(0)

vs. x2 for (q, p) = (3/10, 1/2) and various system sizes N . Inset: N -dependence

of the (negative) slopes of the lnqe vs. x2 straight lines. We find that, for p = 1/2 and N � 1,
〈(n−〈n〉)2〉 ∼ N2/β(N) ∼ a(q)N + b(q)N2. For q = 1 we find a(1) = 1 and b(1) = 0, consistent with
normal diffusion as expected. For q < 1 we find a(q) > 0 and b(q) > 0, thus yielding ballistic diffusion.
The linear correlation factor of the q-log vs. x2 curves range from 0.999968 up to near 0.999971 when
N increases from 50 to 1000. The very slight lack of linearity that is observed is expected to vanish
in the limit N → ∞, but at the present stage this remains a numerically open question.

global correlations (eq. (5)) as follows: rN,0 = 1/ [Np (qe−1)/(2−qe)− (N −1)](2−qe)/(1−qe), with
qe ≤ 1. If we choose this way of introducing correlations, then of course only one index is
necessary within the theory, namely qe, the index of the N → ∞ attractor in the space of the
distributions. We also notice that relation (7) can be thought of as being the composition of
two dualities, namely the additive duality q → (2 − q) and the multiplicative one q → 1/q.
These are often encountered (see, for instance, [13,15]) in the nonextensive theory (2).

Finally, we studied the dependence of p(x) on (q, p): see fig. 4. It can be seen that the effect
of varying either p or q is similar, namely to modify the location and height of the maximum
of the probability distribution p(x), thus yielding skewness. This asymmetry reflects the
particular family on which we have applied the q-product. Here we have done it on rN0, i.e.,
on the “left” side of the triangle. We could of course do it on its “right” side, or on any other
intermediate positions. This asymmetry is somewhat similar to the one which can occur for
Lévy distributions. A further study of the detailed influence of these parameters is currently
in progress.

Summary and discussion. – We numerically illustrated, by generalising the de Moivre-
Laplace theorem, the q-generalisation of the standard Central Limit Theorem for specially
correlated variables. The correlation is based on the q-product and is scale invariant since
the Leibnitz rule has been imposed. Our main result is that, for the sum of N random

(2)These two dualities appear in fact quite naturally in the theory through the properties lnq(1/x)+ln2−q x =
0 and q lnq x + ln1/q(1/xq) = 0.
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Fig. 3 – Relation between the index q from the q-product definition, and the index qe resulting from
the numerically calculated probability distribution. The agreement with the analytical conjecture
qe = 2 − 1

q
is remarkable. Inset: detail for the range 0 < qe < 1.

variables with N � 1, the distributions are neither Gaussians nor Lévy distributions, but
a different attractor distribution which, for p = 1/2 (and possibly other values of p), is a
double branched q-Gaussian. This result strongly links the possible CLT (conjectured some
time ago; see [9] and references therein) with nonextensive statistical mechanics. Indeed, the
frequent occurrence in natural and artificial systems of the associated probability distributions
would rely on this q-CLT, in the same way that the frequent occurrence of Gaussians relies
on the standard G-CLT. Further exploration of the q-CLT is in progress, addressing among
other things i) the effects of varying p and of imposing the q-product elsewhere than on rN,0;

-1 -0.5 0 0.5 1
x

0

1

2

3

4

5

p(
x)

p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9
p=0.99

-1 -0.5 0 0.5 1
x

0

1

2

3

4

5

p(
x)

q=0
q=0.1
q=0.2
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
q=0.8
q=0.9
q=0.99

Fig. 4 – Probability distribution p(x) for N = 300. Left: for q = 7/10 and typical values of p (the
asymmetry becomes evident for values of p 
= 1

2
). Right: for p = 4/10 and typical values of q.



L. G. Moyano et al.: Numerical indications of a q-generalised CLT 819

ii) the results of extending the present procedure from qe ≤ 1 to the entire region qe < 3. This
extension will presumably require, for 1 ≤ qe < 3, a new formula in place of eq. (7).

∗ ∗ ∗

Longstanding conversations on the subject of two of us (LGM and CT) with F. Baldovin,
E. P. Borges and S. M. D. Queiros, and useful remarks from J. D. Farmer,
F. Lillo, S. Steinberg and H. Suyari are acknowledged. We have benefitted from par-
tial financial support by Pronex/MCT, Faperj and CNPq (Brazil), and SI International and
AFRL (USA). MG-M was generously supported by the COUQ Foundation and by Insight
Venture Management.

REFERENCES

[1] Feller W., An Introduction to Probability Theory and Its Applications, Vol. 2 (John Wiley
and Sons, New York) 1971.

[2] Hilfer R., Metzler R., Blumen A. and Klafter J. (Editors), Strange Kinetics, Chem.
Phys., Vol. 284 (2002).

[3] Stigler S. M., Statistics on the Table — The History of Statistical Concepts and Methods
(Harvard University Press, Cambridge, Mass.) 1999, p. 284

[4] Sornette D., Critical Phenomena in Natural Sciences (Springer, Berlin) 2000, p. 36; Jona-

Lasinio G., Phys. Rep., 352 (2001) 439.
[5] Gell-Mann M. and Tsallis C., Nonextensive Entropy - Interdisciplinary Applications (Oxford

University Press, New York) 2004.
[6] Tsallis C., J. Stat. Phys., 52 (1988) 479. Bibliography: http://tsallis.cat.cbpf.br/

biblio.htm.
[7] Tsallis C., Levy S. V. F., de Souza A. M. C. and Maynard R., Phys. Rev. Lett., 75 (1995)

3589; Phys. Rev. Lett., 77 (1996) 5442(E); Prato D. and Tsallis C., Phys. Rev. E, 60 (1999)
2398, and references therein.

[8] Bologna M., Tsallis C. and Grigolini P., Phys. Rev. E, 62 (2000) 2213; Tsallis C.,

Anteneodo C., Borland L. and Osorio R., Physica A, 324 (2003) 89; Tsallis C., Physica
D, 193 (2004) 3.

[9] Tsallis A., Milan J. Math., 73 (2005) 145.
[10] Tsallis C., Gell-Mann M. and Sato Y., Proc. Natl. Acad. Sci. U.S.A., 102 (2005) 15377.
[11] Polya G., Mathematical Discovery, Vol. 1 (John Wiley and Sons, New York) 1962, p. 88.
[12] Nivanen L., Le Mehaute A. and Wang Q. A., Rep. Math. Phys., 52 (2003) 437; Borges E.

P., Physica A, 340 (2004) 95.
[13] Suyari H. and Tsukada M., IEEE Trans. Information Theory, 51 (2005) 753; Suyari H.,

cond-mat/0401541; to be published in Physica A, cond-mat/0401546; Anteneodo C., Physica
A, 358 (2005) 289.

[14] MAPM library for C language.
[15] Nobre F. D. and Tsallis C., Physica A, 213 (1995) 337; Plastino A. R. and Plastino A.,

Physica A, 222 (1995) 347; Tsallis C. and Bukman D. J., Phys. Rev. E, 54 (1996) R2197;
Ion D. B. and Ion M. L. D., Phys. Rev. Lett., 81 (1998) 5714; Tsallis, Mendes R. S. and
Plastino A. R., Physica A, 261 (1998) 534; Naudts J., Chaos, Solitons Fractals, 13 (2002)
445; Robledo A., Physica D, 193 (2004) 153; Wada T. and Scarfone A. M., Phys. Lett.
A, 335 (2005) 351; Mayoral E. and Robledo A., Phys. Rev. E, 72 (2005) 026209. See also
Jund P., Kim S. G. and Tsallis C., Phys. Rev. B, 52 (1995) 50 (eq. (7)).


