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We investigate the flow of various non-Newtonian fluids through three-dimensional disordered porous

media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our

results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified

permeability-like index and Reynolds number, can be successfully described by a single (universal) curve

over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of

Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that

the interplay of (i) the disordered geometry of the pore space, (ii) the fluid rheological properties, and

(iii) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic

hydraulic conductance of the system at intermediate Reynolds conditions.
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The research on flow through porous media has great
relevance for many problems of practical interest in several
fields, including physics, medicine, biology, chemical and
mechanical engineering, and geology [1–3]. The disor-
dered aspect of most natural and artificial porous materials
is directly responsible for the presence of local flow het-
erogeneities that can dramatically affect the behavior, for
example, of the transport of heat and mass through the
system. Under this framework, the standard approach to
investigate single-phase flow in porous media is to apply
Darcy’s law [1–3], which simply assumes that a global per-
meability k relates the average fluid velocity u0 in the field
with the pressure drop �p measured across the system,

u0 ¼ � k

�

�p

L
; (1)

where L is the length of the sample in flow direction and�
is the viscosity of the fluid. As a macroscopic index, the
permeability reflects the relation between the complex pore
space morphology and fluid flow.

In previous studies [4–10], detailed models of pore
geometry have been used in combination with computa-
tional fluid dynamics simulations to predict permeability
coefficients and validate classical semiempirical correla-
tions for real porous materials. In principle, the original
concept of permeability as a global index for flow in porous
media, however, is only applicable in the limit of Stokesian
flow (linear). Strictly speaking, the validity of Darcy’s law
should be restricted to (i) Newtonian fluids and (ii) flows
under viscous conditions, i.e., flows at very-low-Reynolds-
number conditions, defined usually as Re � �u0dp=�,

where � is the density of the fluid and dp is the grain

diameter. The departure from Darcy’s law due to the con-
tribution of inertial forces (convection) to the flow of
Newtonian fluids has been the subject of several studies
in the past [10–12]. In particular, it has been experimen-

tally and numerically observed that the breakdown of
condition (ii) can take place even under laminar flow
conditions, i.e., before fully developed turbulence effects
become relevant to momentum transport.
In order to understand the physics of important problems

like blood flow through the kidney [13] or oil flow through
porous rocks [14], for example, one has to overcome the
restriction (i) mentioned above by explicitly considering
the nonlinear behavior of these fluids under shear, namely,
their specific non-Newtonian properties. Although these
fluids have been known for a long time, technological
applications which directly make use of their anomalous
rheological behavior have come into focus only recently.
For instance, shear-thinning solvents are present in drop-
less paints [15], and shear-thickening fluids are currently
used as active dampers and components of enhanced body
armors [16]. While the physical properties of Newtonian
fluid flow through irregular media are theoretically well
understood and have been confirmed by many experi-
ments, non-Newtonian systems [17–19] lack a generalized
description. In this Letter, we investigate the flow of non-
Newtonian fluids through three-dimensional porous media
by direct numerical simulation of momentum and continu-
ity equations. To the best of our knowledge, this is the first
time that nonlinear effects coming from both rheological
and inertial aspects of the fluid flow are considered simul-
taneously in the framework of a disordered three-
dimensional pore space.
The porous medium studied here is a three-dimensional

realization of the Swiss-Cheese model [20]. Spherical
particles (solid obstacles) of diameter dp are sequentially

and randomly placed in a box of length L in the x direction
and square cross section of area A. Particle overlap is
allowed and the allocation process continues up to the
point in which a prescribed value for the porosity (void
fraction) " is achieved. The mathematical formulation for
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the fluid mechanics in the interstitial pore space is based on
the assumptions that we have a continuum and incompress-
ible fluid flowing under steady-state and isothermal con-
ditions. Thus, the momentum and mass conservation
equations reduce to

� ~u � r ~u ¼ �rpþrT (2)

r � ~u ¼ 0; (3)

where ~u and p are the velocity and pressure fields, respec-
tively, and T is the so-called deviatoric stress tensor given
by

T ij ¼ 2� _sij; (4)

where _sij ¼ 1
2 ð@ui@xj

þ @uj
@xi
Þ is the strain rate tensor. The vari-

able � is the dynamic viscosity, for which a constitutive
relation must be provided in order to describe the specific
non-Newtonian behavior of the fluid. Here, we investigate
the flow of two different types of rheologies, namely, the
cross-power-law fluid and the Bingham fluid. The consti-
tutive relation for a PL fluid can be written as

� ¼ K _�n�1; �1 <�<�2; (5)

where the constants �1 and �2 are the lower and upper

cutoffs, _� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
_sij _sij

q
is the effective strain rate, K is the

consistency index, and n is the power-law exponent. For
n ¼ 1, we recover the behavior of a Newtonian fluid.
Fluids with n > 1 are shear-thickening, while shear-
thinning behavior corresponds to n < 1.

In the case of Bingham fluids, the rheology is commonly
approximated by the Herschel-Bulkley model [21,22]
which combines the effects of Bingham and power-law
behavior for a fluid. For low strain rates, _�< �0=�0, the
material acts as a very viscous fluid with viscosity �0. As
the strain rate increases and the yield stress threshold �0 is
surpassed, the fluid behavior is described by

� ¼ �0 þ KB½ _�n � ð�0=�0Þn�
_�

; (6)

where KB is the consistency factor and n is the power-law
index. Here, we restrict our simulations to the case of
Bingham fluids n ¼ 1; i.e., the fluid is still Newtonian at
large strain rates, with a viscosity � ¼ KB.

Nonslip boundary conditions are applied along the entire
solid-fluid interface and end effects on the flow field, which
become significant at high Reynolds numbers, are mini-
mized by attaching ancillary zones at the inlet and outlet of
the two opposite faces in the direction of the flow (i.e.,
x direction). At the inlet, a constant inflow velocity in the
normal direction to the boundary is specified, whereas at
the outlet, we impose gradientless boundary condition.
Finally, the four remaining faces are considered to be solid
walls.

For a given realization of the porous medium and a given
set of flow and constitutive parameters of the fluid, the

numerical solution of the partial differential Eqs. (2) for the
local velocity and pressure fields in the fluid phase of the
void space, head, and recovery zones is obtained by dis-
cretization using the control volume finite-difference tech-
nique [23]. An unstructured grid with up to 3� 106

tetrahedral cells is adapted to the geometry of the porous
medium. For comparison, entirely consistent numerical
solutions have also been calculated with a finite-volume
scheme [24]. Finally, from the area-averaged pressures at
the inlet and outlet positions, the overall pressure drop can
be readily calculated.
In Fig. 1, we show a three-dimensional plot of a typical

realization of the porous medium through which a power-
law fluid flows. Clearly, the complex geometry of the pore
space induces preferential channels on the flow whose
localization and strength are significantly dependent on
the rheological properties of the fluid as well as on the
imposed inlet-outlet boundary conditions. For PL fluids,
this intricate interplay between geometry and flow can
nevertheless be macroscopically quantified in terms of an
analogous to a permeability index, namely, a hydraulic
conductivity, defined in terms of Darcy’s law as kD �
K1u0L=�p, where K1 is a reference viscosity taken as
the consistency index for n ¼ 1. As shown in the inset of
Fig. 2, the general behavior of kD is qualitatively similar
for different values of the exponent n. Moreover, it fol-
lows the characteristic trend of a simple Newtonian fluid
(n ¼ 1), namely, that kD remains essentially invariant for
low Re values up to a crossover point Re� where it starts to
decrease due to the onset of nonlinear convective effects on
the flow [7,10,25]. Quantitatively, however, we observe
that both the upper limit for kD and Re� are strongly
dependent on n.

FIG. 1 (color online). Non-Newtonian (power-law) fluid flow
through a typical realization of the Swiss-Cheese pore space
(" ¼ 0:7). The fluid is pushed from left to right. The solid lines
with arrows correspond to trajectories of tracer particles released
in the flow, while the contour plots give the velocity magnitude at
different cross sections of the porous medium. Their colors
ranging from blue (dark) to red (light) correspond to low and
high velocity magnitudes, respectively.
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Darcy’s law has been generalized to power-law fluids in
previous studies [26–28]. Here, we define an hydraulic
conductivity as

kn � u0K

�
�p

L

��1=n
: (7)

As shown in Fig. 3, this generalized index when calculated
at low Reynolds numbers, namely k0, can be consistently
correlated with intrinsic properties of the fluid and porous
medium by means of the following semiempirical expres-
sion [26,28]:

k0 ¼ 12

25

nð75krÞ1=n
3nþ 1

dðn�1Þ=n
e

3ðnþ1Þ=n "
2ð1�nÞ=nKðn�1Þ=n; (8)

where de is the only fitting parameter corresponding to an
average effective pore diameter, namely, the average pore
size (in units of dp) of the system calculated as if it were a

packed bed consisting of identical spheres [26,29]. The
parameter kr corresponds to the value of kD calculated
for a Newtonian fluid (n ¼ 1) under very-low-Reynolds-
number conditions, i.e., the porous medium permeability
according to Darcy’s law.

In order to substantiate the non-Newtonian aspect of the
fluid, it is also necessary to redefine the Reynolds number
as [29]

Re n � kn0�u
2�n
0

2Kndp

1� "

"3
; (9)

where the term ð1� "Þ="3 has been adapted from the
classical Kozeny-Carman equation [1]. It is worth men-
tioning that Eq. (9) breaks down close to the critical
percolation porosity [30].

In the main plot of Fig. 2, we show that all data sets of
kn=k0 against Ren, with k0 obtained from Eq. (8), collapse
onto a single curve for the entire range of (modified)
Reynolds numbers, independent of the numerical values
of " and n. Despite the details of the model porous medium
geometry employed here as well as the complexity of the
fluid rheology, this remarkable invariance of behavior sug-
gests that the resulting flow properties of the system remain
in the same universality class of Newtonian fluid flow in
disordered porous media.
Next, we present results for flow through three-

dimensional porous media of Bingham fluids with rheol-
ogy given approximately by the Herschel-Bulkley model
Eq. (6). The proper way to quantify inertial and viscous
forces in this case is to define the Reynolds number as
ReB � �u0dp=KB. In Fig. 4, we show that the linear

hydraulic conductivity, defined as kB � KBu0L=�p, re-
mains constant up to a certain crossover that is proportional
to the threshold �0, Re� � �0. Below this crossover, since
the fluid has Newtonian behavior with high viscosity �0

everywhere in the pore space, the flow can be macroscopi-
cally described by Darcy’s law. Above this crossover, the
presence of low and high strain rates zones in the flow leads
to a nonuniform spatial distribution of fluid viscosity,
therefore increasing the overall permeability index kB of
the system. This behavior persists up to the point in which
inertial forces become relevant. While the specific fluid
rheology investigated here tends to enhance the flow at
high ReB, the effect of inertia is to reduce the permeability
index under the same conditions [7,10]. As a result of this
competition, a maximum hydraulic conductivity can be
observed at an intermediate value of ReB that is also
dependent on the threshold �0. As shown in Fig. 4, this
effect is better illustrated when we observe contour plots of
the local ratio j ~uj=jrpj calculated at the middle cross
section of the porous medium. To the best of our knowl-
edge, this condition of ‘‘enhanced flow’’ through dis-
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FIG. 3 (color online). Dependence of the hydraulic conductiv-
ity at very-low-Reynolds-number conditions k0 on the power-
law exponent n for two different values of porosity ". The solid
lines are the least-squares fits to the simulation data using Eq. (8)
with de=dp ¼ 0:35 and 1.58, for " ¼ 0:5 and 0.7, respectively.
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FIG. 2 (color online). Flow of power-law fluids through three-
dimensional porous media. The inset shows the variation of the
ratio kD=kr with Reynolds number Re � �u0dp=K1 for different

values of the power-law exponent n and " ¼ 0:5. The resulting
data collapse presented in the main plot confirms the adequacy of
our rescaling procedure in terms of the modified permeability
index kn=k0 and the modified Reynolds number Ren (see text).
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ordered porous media represents a novel regime of mo-
mentum transport that could have potential applications in
practical problems, e.g., chemical reactors, chromato-
graphic columns, and switches for flow. Finally, at suffi-
ciently large values of ReB, the viscosity of the fluid is
uniform and therefore the local permeabilities become all
the same, regardless of the value of ReB and �0. In this
situation, all curves of kB collapse.

Summarizing, in spite of the nonlinear nature of the fluid
rheology and the complex geometry of the interstitial pore
volume, in the case of power-law fluids, we have shown the
remarkable fact that the flow behavior can still be quanti-
fied in terms of a universal curve extending over a broad
range of Reynolds conditions and power-law exponents.
Our results for Bingham fluids are even more striking.
There, the pore space geometry, fluid rheology, and inertia
can combine to generate a particular condition of ‘‘en-
hanced transport’’ which should be found in experiments.
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FIG. 4 (color online). Flow of Bingham fluids (Herschel-Bulkley model) through three-dimensional porous media. The plot shows
the variation of the ratio kB=kr with Reynolds number ReB for different values of the parameter �0, as defined in Eq. (6). Here, kr
corresponds to the lower limit of kB at very-low-Reynolds-number conditions. The presence of maxima in all cases is a distinctive
result of the competition between rheology and convective nonlinearities. The contour plots in (a), (b), and (c) show the spatial
variation of the magnitude of the local ratio j ~uj=jrpj calculated on the cross section through the middle of the porous medium parallel
to the flow, for � ¼ 0:1 and ReB ¼ 3:5� 10�2, 1.7 and 35, respectively. Their colors ranging from blue (dark) to red (light) correspond
to low and high values of j ~uj=jrpj, respectively.
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