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The present monograph is based on the post-gra-
duate lecturss given by the author during the firet samester of
1970. The motivation was to introduce some basic aspects of
airong interaction phyeice and symmetry principles in suffiocient-
ly comprehensive fashion which may facilitate olear wnder-
standing of advanced topics of research in particle physioce.
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LORENTZ AND POINCARE GROUPS

The 1inear space of reai 4-vectors XM (x®, x*, x2, x3) with scalar
product * | !
Xoj-c x“y"gw=x°y°-x‘y’-x’y2 - x? y? ‘ (1)
is called Hinskowski Space. Here gW is the (y,v) componen; of.thé metric

matrix:

0 1 0
1 -1

6 = - (2)
2 -1
3 0 -1

Real linear transformations in this space defined by
X (3)
*
with
| R
v Ay A B o8 (4)

are called Inhomogeneous Lorentz Transformations (IHL} and will be denoted

by (A, a). The (4 x 4 ) matrix acting in fcur dimensional Minskowski Space

* Summation conveation on repeated indices is used.



in the sense of ordinary matrix multiplication are of the type

0 Aul Anz Aos
" Alo A%; Al Al
Az (A ) - . . (5)
A
1
0 Asl A'z A’S

and differ from the matrices defined by using the elements Au“, Auv ete. *
Transpose matrix AT is defined by (AT)"v = (A)“u.

Equation (4) can be rewritten as:

ATGA=G | (6)
since
v
Mg =9t g =(6A),
and

T
AY o (68)5 = (A )"‘u (6 4),4

The condition (4) or (6) ensures that the scalar product is preserved
under Homogeneous Lorentz Transformations (HL) (A, 0):

xl-h y\)l q - nu A\’ g Xp yc

p O
- o o 9 X"y (7)

-gpo_
The invariance of scalar product may be used as alternative definition

of Homogeneous Lorentz Transformations (HL).

In addition to the contravariant vectors x" we can also

* The firat index represent row and the second the colum.



introduce covariant vectors xuin our four-space defined by

v
X, =9, X (8)

and correspondingly a metric g”“ to raise the indices defined by
o _ M L
9 97 = g%, = &%, (9)

we find that the matrix formed by elements g“¥ coincides with G. The scalar
product can thus be written as

llVg

X"y

- wo_ e = yd yi_ 3 ¥

w XYy 9 X"y, =X y-xy
Here X = (x!, x%, x3) = (=X,, =X,,-Xg).

Inhomogenous Lorentz Transformations (A, a) form group called
Poincare Group,

We readily verify that

{Ays 3)(A;, 3,) = (A) Ap, A, ¢+ A 2,) (8).

The inverse and identity are *

(4, a)7= (A7, - 47" a) (9)

1= (10

From equation (8) we show

(A, a) = (1, a)(A, 0) (10)

Translations (1, a) themselves form a group called translation Group

* From equation (4)
Aot s
o B af
or

A %A e %

v 8 8 gso that (A-,‘)uv - Avu - gup Apo gw



T, and so do the homogeneous transformations (A, 0) which constitute Homo-
geneous Lorentz Group.£. In fact T is invariant subgroup of ®@; (A, a){l,a')
{A, a)7'= (1, Aa'), and the Factor or Quotient group of P by the translation
group T is just the group¢£=( ?'). The groups ©, T,o£ are Lie groups and

thus can be generated from successive infinitesimal transformations.

From equations (4) or (6) we find det A=+ 1 and g,y = 1 = (A%)? -
- g (A‘j 0)? leading to (A%)? 2 1'which implies A°) > 1 or A%, ¢ -1, The
Hog;eneous Lorentz Group £ has four disconneeted pieces, each of which is
connected in the sense that two Lorentz Transformations in the same piece
can be connected to one another by a continuous curve of Lorentz transforma-
tions, but-no Lorentz Transformation in one piece can be connected to

another piece. The four pieces are characterized by det A and sgn A° 0

-

.f:: det A=+ 1 . sgn A% =+ ] contains 1
£_+: = -] a + '!. contains I,
.f:: | sl | _' -- ‘I_I contains I_,
08_+: = =1 == contains It

Here, the Lorentz Transfomations,ls (Space inversion), I, (time -inversion)

and 1., (space-time inversion) are defined by:




and

Clearly o£_* is mapped one to one into .€++ by I, LY onto .8: by 1, and
L' onto £ by l,. Al A forwhich A% 3 1 are called orthochronous ,A
for which det A .= + 1, proper and A for which (sgn A°) (det A) = + 1,
orthochorous. It is sufficient to show that.ﬂ_: is connected and a proof

may be found in ref. { 1 ).

The following (homogeneous) sub-groups can be built from the above

pieces:

Proper Orthochronous Lorentz Group or
of : Restricted Homogeneous Lorentz Group
(RHL)

% 4 +
L =L v, Orthochronous Lorentz Group
+ +
L,=L'udL, Proper Lorentz Group
.fo ﬂ.f:U .8_+ Orthochorous Lorentz Group

Associated with.@f is the group of (2 x 2) complex matrices of
determinant one denoted by SL{2, C). To any 4-vector x" we can associate

(2 x 2) matrix



where

] |
and ¢® = ( 0). ' .
0 -1 |
M a g tr(x & | (15)

For x* real X is hermitian; if X is hermitian equation { ) yields a real
four-vector. Also det X « x X, and %— [det('x + Y) - det X -det !] =
u _

. . - *-
=Xy, . If'A is any (2 x 2) matrix of determinant 1, then:

X'=AXAY; detAai (16)

defines a real linear mapping of fourvectors x* onto four-vectors x™'

which satisfies

This mapping is thus a homogeneous Lorentz Transformation, say, denoted by
A(A). Actually, A(A) is restricted Lorentz transformation for we can vary
A continously until it is identity while the corresponding A(A) varies con-

tinously to reach theé identity. We can easily show

A(A) A(B) = A(AB)

17
CA(1) = Y ()
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and note also A(-A) = A(A)} and that A{A) = A(B) implies A = + B. Thus
A -~ A(A) is a homomorphism of SL{2, C) onto J:. It is a non-unitary

representation of the homogeneous proper orthochronous Lorentz group.

The matrices A due to condition det A = 1 depend upon 6 parameters,
Just as the Lorentz transformations (see latter). The generators of the
group SL(2, C) are represented by six matrices:

-
J =

3 K = % i$ (18)

M| —

+ -+

where J are hermitian while K are anti-hermitian. There satisfy the com-

mutation relations:
[J‘I’ J_j] =i e‘ijk Jk ’ [K'I’ Kj:[ a - i e'ijk Jk and EJ,‘, KJ:I- =

= 1 g Ky (19)

-

Since J are generators of group SU(2) (the 2 x 2 unimodularunitary group},
SL(2, C) embeds SU({2). In fact, from (16) we see that, if, A is also
unitary: tr X = tr X leading to x°' = x° and X-J = X+y which implies that
A > A(A), when At = A" 1, is a homomorphic mapping of SU(2) onto the rotation

(sub-group of : in 3-dimensjonal space).

We also note from equation (16) that A(A*) = A(-A*)= A{A) = A(-A)so
that matrices <+ A and t A* correspond to the same Lorentz transforma-
tion. In the case,A belongs to SU(2) A and A* are equivalent representa-
tions from: the quantum mechanical point of view. In fact, any matrix of
SU(2) can be written as A = RS with same real vector 3. Consequently,
A* =€ 139" 2 £ A C where € = do,, C* = C? and we have used €' 3 € =

= -g*, Thus so far as space rotations.are concerned the matrices A and A*



"

are equivalent 2 x 2 matrix representations. This'%; no more true for the
group SL(2, C) representing a general Lorentz trané}ormation. We can write
any matrix of SL(2, C) as 13, Gi(d;+ i?z)-E,_gl and 3, being real vectors
equation it is obtained by making the parameters '3’ of the Lie aTgebré of
SU(2) complex. A* and A cannot be equivalent any more since a is no  more
real and the.proof. given above does not go through. They constitute two
different representations of the Lorentz group acting upon two‘distinct two-
dimensional vector. spaces. We may take these two independent representa-

on .
tions to be B« s e1($1+ id,) 0
and

D) () = carc™? « ol (810 13,)0 (20)

The vectors g, and n (as @ = = 1/2) called spinors of the two (distinct)
vector spaces on which . n‘i)(n) and D'*(A) act respectively transform under a

Lorentz transformation as:

" (%)

L= Dg g andnt el _n_ (21)

a8 B

It is easily shown. that n— transforms 1ike (Cf*) and that for rotations
D(*)(R) =D (é)(R) The 1ndex %— is to remind that these representations
are complex extensions of spin 1/2.5U(2) representation of the rotation

group to a representation of the Lorentz group.

It {s possible to use only one of these two representations (e.g,use
2-spinors) for particles without parity. However if we want. to represent
parity operation {in addition to the transformations aé_+) we need both

the representations and the basic vector space is now four dimensional.




12
" This is seen as follows: the parity operation commutes wit:h_- rotation group
7 so that if a (z\x.z).matr;x representations. of parity operaﬁon .be possible
it will commute with all the (2 x 2) matrices of SU(2) representing rotations.
By Schur's Lemma, then, the (2 x 2} matrix representing parity operation
must be proportional to identity matrix and thus commutes with any (2 x 2)
matrix of SL{2, C) representing Lorentz transformation. This implies that

parity operation commutes with Lorentz Transformation which is clearly not

true.
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2

e—
INVARIANCE PRINCIPLE, TRANSFORMATION OF. STATE VECTORS AND OPERATORS

UNDER POINCARE GROUP

1. INVARIANCE PRINCIPLE

We will now study the action of Lorentz transformation on
physical state vectors *. We recall that a physical system can be
represented by any. vector eikla > where {a.> is.a staté vector of a Hilbert
space and A. is an arbitrary phase. Transition probability fromastate |a >
to state |g > is given.by |<B|a>|? . An invariance principle or symmetry
operation is a one-to-one correspondence which assigns to each physical
state [o > another.state | o'>, in another Hilbert space, such that all
transition probabilities are preserved i.e. |< 8'|a’'>|? = |<B|a>|? .
Consequently, there. is a correspondence between the observables in the two
alternative descriptions. Wigner has shown that the invariance of the
probabilities is possible if the symmetry operation is realized by means of
a unitary or an anti-unitary operations. The essential features of the

two cases are:

(1) nitary symmetry operation:
Iu >.» |a' >m U|G> = |UCI > (])

U(Ale>) = A.Uja >

Ulay> + lag>) = Uley> + Ujay>

* Heisenberg state vectors to be precise. A Heisenberg state vector

deascribes a gystem throughout all time.
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and

< B'la' > = < Bla>
implying

i u=wta

For the definition of conjugate .operator for linear operators we have

< B|U+|u > = <B|U+a >= < UBla > = < a|U|B >
For any (linear) operator @

< Bl0la > = < BJUT U QU™ Vo> = < B'|0'|a’ >

where -1
O'=100T0
If the operator &7 is invariant-under the symmetry operation U, then
AKX/ or b,og] =0

< B|Oja > = < 8'|Pla’ >

i1) antiunitary symmetry operationm:

e >+ |a'> = |Ax > = Ala >
MY = ATA =1
A(A|a>) = A* Ala > (antilinear operator)
Mlay> + la, >) = Ala, > + Ala, >
and

<Bg'la' >= < Blo>* = < alg >

(2)
(3)
(4)

(5)
(6)

(7)
(8)

(10)

(11)

For the definition of conjugate operator for antilinear operators * we have

. ® TFor antilinear operators the parenthesis notation is more convinient,

See the chapter on Time Raversal operation.
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<glAtla>=<slata>< Agla> = <alalg> (12

For any (linear) operator {7 we have

< B|Oja > = <B|A" AR Ao > = <B'[(AR”N)]a'>"
= <o [(ART)[g'>= <a' 0|8’ > (13)

where ' is the operator linear

0 .= (AonYy? | (14)

giving the transformation of operators under antisymmetry transformation. If
© is invariant under the transformation that is &' = @, then

@t = apa? | (15)

and

< Bl0la > = <a'|OB" > (16)

The case of antijunitary transformation is applicable for transforma-
tions that can be reached contihuous]y from the identity transformation.
The identity transformation is unitary which cannot be linked continuously
to an antiunitary operator. In case the transformation is not continuous
with identity, for example, space inversion, time reversal etc., it will
be necessary to investigate if case (i) or (ii) has to be used taking into -
considerations the physical requirements. For the case of Poincaré trans-
formations ¢3++ unitary transformation has to be selected. In what follows,
unless indicated otherwise, we will understand by Lorentz Transformatioq,

an operation belonging to the group @:.

The principle of Lorentz invariance, that is the invariance under

proper, orthochronous Lorentz transformation, asserts that the laws of
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physics are invariant under these transformations which relate the space time
coordinate of the same physical event as it is observed from two different
inertial frames. This implies then that there exists a unitary operator
relating the state vectors and the observables which represent the physical
system in the two descriptions. This formulation of relativity principle is
called the "passive" formulation. It relates the description of the same
physical system as seen from two coordinate frames. An alternative point
of view, called "active" formulation, changing the object, is, however, more
convinients and equivalent to the "passive" interpretation. Instead of
considering two different coordinate frames (or observers) related by a
Lorentz transformation we may consider the coordinate frame (observer) fixed
and consider two physical events which are related by the same Lorentz trans
formation as the two reference frames in the passive formulation. The active
interpretation implies that if |o > is a possible state of the system, then
[a'> = Ula >, where U represents a Lorentz transformation is alse a possible
state of the system as seen in a fixed reference frame. The observations

are now made on two physical systems which are related by a Lorentz trans-

formation.

For transformations of.geometricai nature such as the one discussed
above it is ffasible.to test the corresponding invariance principle via
both of the interpretations and establish their equivalence. For transforma
tions like spa-e inversion, time reversal changed conjugation etc., we
can 1in effect only test the invariance principle in its active formula-
tion, since we cannot realize the "inverted" observer. This, however, does
not impede in giving. in some cases a passive interpretation through

coordinate transformation. The mathematical operation will not be physical
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1y meaningful unless it represents a real invariance principle. A non-
invariance operation in the active formulation will correspondingly lead to
states outside the {physical) Hilbert space under consideration and may be

some times a.non-physical state.

For our.discussions.we.will mostly adopt the active point of view

and always use the operators in active formulation.

We note also that the requirement of the invariance of the transition
probabilities under a symmetry operation can be expressed as the equality
between the.squared modulus of certain S-matrix elements. In the active
formulation symmeLry operation yields relations between the S-matrix
elements corresponding to.different.physical (experimental) processes. This
in turn combined with other general properties of S-matrix leads to rela-
tions between different measurable quantities which can be tested experimental
ly. We do not need ta know the explicit form of S-matrix to derive such

relations.

9 - POINCARE .INVARIANCE: We will now discuss specifically the
invariance _under.Poincare transfonmationﬁ?++. A transformation (A, a)

jnduces a unitary transformation U(A, a) on the normalized vectors

o > ——>|a' > = oy A, o> |
l l e'? u(p, a)l an
uta, a) = U(A, a)”

*
where w is an arbitrary phase . The product of two Lorentz transforma-

% Note that a physical state is represented by a Tray.
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tions (A, a;) and (A,, a,) is again a Lorentz transformation:

(A, a) = (A, a)(p,, a,) = (A, A, a  + 4 a) - {18)
It follows then
{0, + w, -w)
U(A, a)[a>=e U(A,, a)) VA, @ )|a > (19)

Wigner * has.also shown that,.in the case of Poincare group, we can

choose the transformation U(A, a) such that we can get rid of the phase to

ensure

U(A, a) = U{A;, a,) B(A,, a3) \ (20)
or

U(A,, ;) U(Ag, a2) = U(A, Ay»a, + A a) (21)
It follows: |

U(A, a) = U(L, a) U(a, 0) : (22)

= U(a) .U{A)
where we write
U(a) = U(L, 2) : (23)
U(A) = U(A, 0) (24)

We also verify
U(A,) U(A,) = U(A, A,)
U(a) U(a') » Ufa + a') =U(a') U(a) , (25)
U™l () = ua™h)

The operators U(A, a) having the same algebraic properties as the Poincare

* Wigner, E. P., Ann, Math. 40, 149 (1939).

Halpern, F. R. Special Relativity and Quantum Mechanics Prentice Hall
(1968).
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transformations constitute a unitary representation of the Poincare group.

The unitarity of U{a,A) together with the fact that it is continuous
with identity allows us to consider.infinitesimal Lorentz transformation
from which a finite transformation is generated by interaction of succes-
sive infinitesimal transformations.. The number of independent parameters
characterizing a transformation (A, a) due to restriction in equ. {1.4) is
ten;six corresponding to homogeneous transformations an& four_for transla-

tions. An infinitesimal (A, a) can be expressed as:

xHto= XM auv x” + e¥ + 0(a?,e2) {26)
thus
M e gt o+ o+ 0(a?) (27)
Equatioh {1.4) leads to
% = T % (28)

The corresponding infinitesimal transformation U{A, a) can likewise be

expressed as
- i Wy W
UA, a) = +2a MY+ i P gyt oo (29)

Here MY = - M are the six generators of homogenous Lorentz transforma
tions and four Prare generators of translations. From unitary of U{A,a)
it foliows that the ten generators are hermitian operators. The finite
transformations are then expressed by
;M
U(a) = e1P 3,

if2 MY
U(A) = e @, ~ (30)

iPH a  qz2 MWV
U(A,a) = U(a) U(A) = e He &
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The commutation relations satisfied by the generators will now be derived.

From U{a) U{a'} = U(a') U({a) we find, say, considering infinitesimal
transformations

P, P - 0 (31)
The [M, M] commutator can be found by considering
U(A) UGA') UTP(A) = uqaa® A7%) (32)

for infinitesimal transformations and comparing the coeficient of cross

term (aa') on the two sides. The result is
[MW, Mpﬂ 20 (MHP @Y7 4 WY gHP L WY MO | T gVR)  (33)

Finally from the identity
(A, a)(, a')(A, a)" = (LAa’) (38)

which implies the relation
U(A) U(a) UTM(A) = U(Aa) (35)
or

u - i pV
*
it follows

u(a) P* U (a) = (Y, Y (36)

Similarly, we can show

U(A) MV U (A) = (a7 (™Y, WP (37)

1
* Naote that (Aa)v_- gvu(Aa)u =8, Aup aP = &y, A¥ o sp P a,

Av ap (A ) v ‘p
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Equation (36) implies that pH transforms as a four-vector. Consider-

ing infinitesimal transformations it leads to

(9,2 9s i % - P ) (38)
Define
1 jk
i = =3 Soijk Ml (39)
1'
Ky = Mg = M0
where € vph is the usual completely antisymmetric tensor with 3129 =

,_0123. L. o= s
3 + 1 and E1Jk Eoijk‘ Then the commutation relations for Ji’

K. and P* are deduced to be:

1
[P“, P"]' -0

EJ,I, #.] .0 | (40)

[K." Pk] = 1 Po g.lk = - i Pﬂ 61k

[Ki. Po] L 1 Pi

["1' JJ] =1 eqyr
A ERETILS (41)

we will also adopt the notation:

and
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>
3: (9,5 3,, 9,)
-
R: (K, K, K)) (42)
but -
P: (P}, P2, P?)
and

->
X: (X', X2, X%)

-

Space rotations are generated by J. The above commutation relations

-+ - -

show that P, K and J transform as vector or pseudo-vector operators while

-

P, transforms as scalar operator under space rotations. In fact J is a
+ +

pseudo-vector, while P and K behave as vector operators.

3 - MATRIX REPRESENTATION OF POINCARE GROUP GENERATORS A (2 x 2)
matrix representations of 3 and E satisfying the commutation relation in
equations (40) and (41) is given‘By equations (16) and (18) and the cor
responding group is the SL(2, C) as discussed before. A (4 x 4) matrix
representation is easily found by considering transformation properties

of the four-vector X!, For infinitesimal transformation (A, 0):

xHMax* v XV 4.,
v
= (&, + XY+ Ll (43)
i AP\ UV
= (1 + 5o, MO X
Thus
TR Py M
%y 2 o (MA ) v
or

v © %'alp (Mlp)uv (44)




23

leading to:
Y . = ifaH AV _ gl gV
M0 (6% 67 - 8°,87,)
or ’ (45)

M-V A~ itard gV L GVA (M
Noting that ¢®° = g°¢ =5%, and gi%ag* a- 6%, the (4 x 4) matrices for
- -+

J and K are

(9:)* (46)

A W A
(K;) 0" " (87,8, + 5°p 85) -

The matrix K is antihermitian:

(K3

1

- (k*ThA *0 *®
o= (K ') 0 = (K; )%= + (K) 0

A
- (k)

while (Ji*')lp = + (Ji)lp is hermitian. We can further derive:

o (47)
and (n-d)? = (R-J) while (R+K)® = - (A-K) if % is a unit vector.
These relations allow us to write
+-+ -+ -+ -
el(Jm)e |:1-(J-'n')2]+ (J-R)2 cose + i(Jen) sine

> + + + (48)
et{ken)e E + (K-'ﬁ){l - (K*n)? cos+ 1(K-n) sinh¢
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To obtain a matrix representation of the ten generators of the
inhomogeneous Lorentz group we introduce five coordinates X°, X!, x2, x°

and X* so that:

1
U A L P LR AR L s

A B (49)
= (A, a) g where A, B= 0,1, 2, 3, 4.
Here xA==(x°,x1,x2,x3.x“) and (A, a)AB is (5 x 5) matrix such that
(A, a), = A, (A, )Y, = aF,
v v (50)
(As a)“u= 0 (A, a)+, =1
L (4x1)
A Maxa)y | "2
R A Gl (51)
o(1x8) 1 4(1x1)
cltearly,
X+ s X* (52)

From infinitesimal (A, a) we find that (5 x 5) matrices MY can be

chosen to be extended by zeros, viz,

(M““)*A S okt S (53)

The (P")A are (5 x 5) mtrices with the non-vanishing elements given by -
- (P*)e, = (P*)Y , = (P®)? = (P*)* =+ i. The commutation relation
of the matrices may be verified to be the same as given in equations (40)
and (41). If should, however, be noted that these finite dimensional

-

-
matrix representations of J, K, P¥, since K is anti-hermitian, lead to a
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non-unitary finite dimensional matrix representation of the generators of
Poincaré group. In fact, the unitary representations of Lorentz group are
infinite dimensional as we will see below. Thus these finite dimensional

representations do not lead to a unitary representation we are looking for.

The matrices corresponding to Is' It’ Ist can also be easily constructed:

t " o (54)

4 - MOMENTUM EIGENSTATES - From equation (31) it follows that the
hermitian operators P can be diagonalized simultanously. We can label
the states |a > by the eigenvalues p¥ of pH which form 2 four-vector p

and other quantum numbers to be discussed below.
PHlp,.. > = p¥p,.. > (55)

A translation (1, a) will thus be represented by
~ip-a
U(a}|p,.. > = e [ps.. > ' (56)
Thus the eigenvalue of P¥ is left unchanged on translation on the other
hand a Lorentz transformation (A, 0) acting on the above state will
generate a new state with momenta (Ap). It follows easily from equation

(36):
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PYU(A) [ps.. >) = UGAYUT (A) P¥ () |p,.. >
< Uy A Plpae. > = (8 ) U R,.> ) (57)

= (Ap)* (U(A) [p,.. )
while

UEAYPH U7 (A)(U(A) [p,. . >) = pR(U(A) [p,.. >)

Also, it shows that, under Loreptz transfqrmation (A, 0) the value of
N2 = (P* P,) is not changed. We may thus.identify. the operator P* with
the energy momentum operator and )Lz with the square of the total centre

of mass energy i.e. (mass)? of the physical system. In fact, we can show

E(_z, P"] -0 E{f , M”‘j =0 (58)

implying that {2 is a Casimir operator of Poincaré group {and is
consequently proportional to identity operator). 1Its eigenvalues can be
used to characterize irreducible representations of the Poincaré group. In
the case of the state of a.single partic]el{2 = m? ]: where m is the mass

of the particle.

5 - INVARIANT SPIN OPERATOR. LITTLE GROUP - To find other quantum
members which together with p* describe the state vector we consider the
sub-space of states of a given mass 'm’ which is characterized by a fixed
value of fourmomenta p" e.g.

pulms'ps o 2

P*im, p, .. >

}Czlm, Py .. >

(59)

m|m, p, .. >
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where p? = m?2 > 0 and p°® > 0,

The sub-set of Lorentz transformations (A, 0) that leaves the eigen-
value p* of P* invariant constitute a sub-group.of ¢g++ called the
"Little Group" associated with the four-momenta p". These transformations

are thus restricted by

e = pH (60)
For infinitesimal transformation

e et e (61)
with %y " Ty, leads to

oM V=0 (62)

The most general form of ™ satisfying equation (62} can be written as:

; P oo
% " fuvpg PP (63)

where n® is an arbitrary'(infitesimaI) four-vector. The corresponding

unitary transformation of the "Little Group" is thus written as

U(A)=]L+-:Z-e pP nO MWV 4 .. (64)

Hvoo

=1-1n7 W p)+ ...
where

.-l Y P
WolP) = = €hupe M P (65)

are the four hermitian generators of the Little Group associated with
momenta pH. Since the transformations under consideration act on the
momentum eigenstates we may as well write the generators of the Little

Group by
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=+l HV pp
Wy =+ > Eauvp_M_ P (66)

This is the four-vector of Pauli-lubanski. It is readily verified that

[0 P = 0 (67)

M
A finite transformation belonging to the Little Group is given by (e'ﬂ" W

-in® W

H)
and all the states e uim, pH,.. > are eigenstates of P with the same
eigenvalue p¥. A commutation relation similar to equation (38) can be

derived e.g.
et BRI e e (68)

showing that W, is a four-vector like PY. This relation implies (cf. PY).
uga) W U (a) = (aTHY W (69)

There is an important difference in that the components of HU do not com-

mute. In fact, we can show

E‘k’ uc:[ - iy WP (70)

‘Also, there are only three of the components independent in W  due to the
relation

o
W PPa=0. (1)

We also verify that (W_ W’) commutes with all the ten generators of
Poincare group and thus constitutes along with {2, the two Casimir
operators of this group. It_can be shown that these are the only possible

invariant operators of Poincare group.
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6 - EIGENVALUES OF (W, W) -
(I) Non-Vanishing Mase (p® >0) Eigenstates |P¥, J, M,.. >
For non-vanishing mass the momentum four-vector in the rest
frame (or C.M. frame) is p¥ = (m, E). A state with four-momentum p" {s
obtained by a Lorentz transformation L(p) such that any four-vector aV =
= (a°, 3) is related to the corresponding four-vector 3 in the rest frame

through a = L(p)¥ 3" where (/52 = m)

L4l
e

AN = T
3=3+ = + a® (72)
» p* + /p? /
] : 20 o 3 2
a® = — (a° p* + pea)
o7
determine the Lorentz matrix L(p) - the “boost" of 'p'. The inverse L'l(p)
is given by
-> -> =
> - . P p-a a0
a2a+ — ——— -
==
SN (73)
1 + > (2°P)
Eo. — (aa po - p.a) =
75 F
L(p) correspends.to a Lorentz transformation along the direction of
e
momentum P with velocity F = % {and vy = E/m). We note also the

convention L{p) = 1. The eigenstate of momentum p¥ is then given by

[m, ps .. > = U(L(P))(m, P, .. > (74)




since from equation (57)
P*Im, p.. > = p*|m, p >

and

h-ll
v

(W, W) mp,.. > = (4, W) U(L(p))|m,

UL(P)) (W, W)|m,

> (75)

Ot

since (Hu W) commutes with all the generators of Poincare group.

Now, from the definition W,, we find:

2] HY pp k po , uv ok
w‘i - Eeiu\)p” P €ijko Mj P pvk e
2] jk 50 J ok
(76)
= P75 e Ky Py
_ 1 iJ pk _ _ k
or
> - -+ - -
W = (~JP, PP J - K’x P) (77)
-> - -+ &
where J = (J,, J,, 4,), P = (P!, P%, P’) and (JP) = (J, pK ) = - dy Py
_’.
For the state in the rest frame (J = S)
HG]m, Py vo > = W, () [m, B, .. >

where

Hc(ﬁ) = (0, m 3) = (0, m ;) (78)
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For single particle state S is the intrinsic spin angular momentum. Hc

may thus be thought of as relativistic generalization of spin operator.

From equations (75) and (78) it follows from the theory of angular

momentum operator:

W, Wofm,p, ... > = - m2 U(L(P)) S2|m, B, ... > (79)
= - m? s(s+l)im, p, ... >
]

3
where s = 0, -, 1, = .
2" 2

The result in equation (78), for m # 0 case, indicates that the
Little Group associated with p is the space rotation group S0({3) whose
covering group is SU(2). The result is otherwise obvious since any
space rotation will leave p invariant. We can thus specify an irreduci-
ble unitary representation of the rotation group on the rest states. The
states at rest, hence, can thus be characterized by, in addition to
p(and m), s and a projection quantum number mg on a z-axis defined in the
rest frame. The rest states will thus indicated as |[m,s], B, Means >

The states corresponding to four momenta ‘p' are defined using equation

(78), (L(P)P = p and L™ (p)p = P)
[[m,s]s ps m,.. > = UL(p)i[m,s], B, m,.o.. > (80)

Here it should be remembered that
| J, iR Meseo > = mslﬁ, Me,.. >
and (81)
U(L(p))d, U(L™Xp)) |[m.s] .p.m .. > = me|[m.s], ps Mg, .. >

that is the projection ‘m_*' for a moving particle is measured along the

3
axis derived from the z-axis in the rest frame by the Lorentz transforma-
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tion L(p). This convention is quite inconvinient when many particles are
involved, say, in scattering process. An alternative more convinient way
of labelling the spin projection in the form of helicity states will be

discussed latter.

Before leaving the present discussion, we remark that the operators
U(L(p)) W, UL (p)) = H; likewise behave, while acting on state with
momentum p, like W, acting on the rest state. From equation; (69) and (73)
we obtain W, = l-w p® so that N'(p) = 0 against equation (78) giving
W (p) = 0. One-can also veri{y that [9 {p)s W (p)] «igm Hk(p)
a]]owing us to 1dent1fy (H (p)|m) with the angular momentum Operator S
{since H p) = H’ (P)) in the rest frame. It also shows that the Little
group associated with pu is isomorphic to S0(3). In fact little groups at
different points of the orbit  (p? = m?) are seen to be conjugate to each
other, We also show latter that the manifold of state vectors represent-
ing the possible states which particle can occupy. form a representation
space (infinite dimensions) of the unitary irreducible representation [m,s]
of the Poincare group. In other words given the state vector representin§
a possible state of the particle, all other physical state vectors

representing the same particle are obtained by means of a unitary Lorentz
transformation acting on the original state.

From equations (57) and (81) we note that while the state |p, m_ > is
an eigenstate of the "comuting” operators P and J_ (e.g. [?Z,P” 5, m> =
= 0) the state |p, m > is eigenstate of the “commuting" operators P and

3, = UCL(P))J, U™ (L(p)). In fact from equation (81),

] 1
PY 9 lp.m> = mp¥|p,m, > and 3 PHlp, m> = p¥m |p, m, > (82)
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showing that [?”, J;] = 0 when applied on the states |p, m>. These states
are not simultaneous eigenstates PY and Jz' We have, by definition,
chosen to specify the state with momentum p* with the same additional
labels as the rest state corresponding to momentum 5. That is to say we
choose different sets of commuting operators to specify the rest state cor
responding to momentum p ; the operators P¥, P2, W? being common to the
two sets. The latter operators are obtained from the former operators

through a Lorentz transformation U{L{p)).

(I1) Massless Case, (p* = 0, 15'u #0):
In the case P P“ = 0 (P # 0), no rest frame exists. Because

of p°* = B2 1t is clear that by a space rotation we can reach the standard

state with pp =-(p, 0,.0, p > 0). Equation (71) implies

HGP" IPRs «- > = (W, - W,)pgs .. > = 0 (83)
or

H.IpR, v > m H,lpa, . >
Also -
“a HUIPR, e > m - (Hx‘-r Hz‘)[pR... >= - p’lpR. e > (84)

where p is a Poincar® invariant. From the commutation relation of Ha we

also derive:
["1’ sz |pR... >a { g ,,4(W PY-W P')|pR... >=0

[H,, W, lpR_,.. >a 1pH,|pR, .o > (85)

["’.’ H’..J IpRniF >= - P HIIpR’ e ?
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e.qg. E\ll, H{] = 0; [HA,; H‘] = ip Hz; [Hs, Hz] =2 -1p “1’ in the state
vector space under consideration. Also

Wo = Wy = p MIZi W = (M20 - M23)p: W = (-M°l+ M2%)p,  (8)

Thus the Little Group corresponding.to pR.is the two dimensional Euclidean
group E(2) in two dimension E(2).= SO(2) A T(2) (semi-direct product) "
- W, and W, representing two translation generators along axes 1 and 2

while (W /p) the generator of rotation in (12) plane.

It follows that (W,2+ sz) that is p? can take any value. In fact,
in the case of S0{2) A T(2) the. irreducible unitary representations are
either infinite dimensional or one-dimensional.. In the latter case the
two “"translations” e.g. W, and W, are mapped on zero so that p = 0 and
the 1ittle group is effectively only the rotation group of the plane. Its

irreducible unitary representation.are one-dimensional characterized by a

I+

projection quantum number which takes values o, = 1/2, = 1. For
integral values the representation is single-valued while for half
integers it is double valued. Now in nature there are no physical states
corresponding to continuous spin, sc that we restrict the physical massiess

states to be such that.

W, [pps.. > = HzlpR, e >=0 | (87)
L HUIpR, ..>=0 eg. p=0

We may thus »-ite
Hul pR, Al. >z - l PulpR. A.. > (88)

* See for example: J, D, Talman, Special Functions, W. A. Benjamin (1968).
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Utilizing the fact that Hu’ like.Pu, is a four-vector we can write using
equations (36) and (69)
Hulp,l e &= = A Pulp’ Aoo > (89)
”a H°|p,A, >

Here A is an invariant quantity with the dimensions of angular momentum
and could be used to characterize the state of a massless particle in ad-

ditfon to the four-vector 'p'. . For u = 0 equation (89) reads

+ >
WolPs Ao > = = (JP)[p, .. > = = dp,ipsh .. > (90)

or : -+

-> N
JeP
——-} IP> A,e. > = |p, AL >
]
+ >
J P

It shows that for massless states the "Helicity" operator — h(;)
representing the projection of angular momentum operator 3 along the
direction of ﬁotion is an invariant operator and. its eigenvalue A can be
used to characterize the spin state just as (J,M) was used in the non-
vanishing mass case. In the present case the intrinsic angular momentum
state is, however, described by a single number A{ = 0,  1/2, 11,..)
e.g. there is only one spin state unlike in the nonvanishing mass case
where for each J (or S5) we had a.set of {2J+]1) states. |A] 1is often
called the spin of the massless.particle. We must remark, however, that
for A# 0 if the particle has definite parity both helicity states ) =
= +|A| are possible e.g. there are two states possible for a given
spin |x|. This is seen from the fact that under parity operation the
helicity operator is pseudo-scalar (3 + - 3, 3 + 3), thus changing A to

- A. This is not. in.-contradiction to invariant character-of A, since

parity operation does not belong to proper Lorentz group discussion
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above. If the particle does not have definite parity, only one helicity
state is allowed. The examples for the two.cases are y having AY = £ ]

and v with Av = - 1/2 while ¥ with AG' =+ 1/2.

(I11) Other cases:

In the case of space like four-vector-p11 the corresponding
Tittle group is the non-compact rotation group SO(2, 1) while in the case
of well vector (p“ = 0) the little group is -the homogeneous Lorentz Group
50(3, 1). The representations in these cases and in the case I and II
have been reviewed and generalized by Salam et al. (Partial wave analysis,

1C/67/9).
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HELICITY FORMALISM

3.1 - HELICITY STATES FOR MASSIVE PARTICLE

We saw in the last chapter that any massive particle is characterized
by its mass 'm' and spin ‘S'. The latter is identical to a proper angular
momentum in its rest frame. Spin can also be concieved as a four-vector Hu'
For massless particles this four-vector must be parallel to the four-
momentum. The constant of proportionality allows us to define a ‘spin' for
massless particles. However, massless particle has only two or one spin
states according to its being or not an eigenstate of parity. For massive
particles we could use the states |[m,s], p¥, mcs.. >,with the known trans-
formation properties under Poincaré group to describe experiments and the
S-matrix. An alternative representation called Helicity representation,

however, is more convenient in that it allows us to put the treatment of

massive and massless particles on the same footing.

The single particle states of a massive particle can be described by

. 2 u H’_N Hu H
the commuting set of observables P2 = P™ P , - ° =t , P* and one of

B m
the (non-vanishing) components of 1/m l.-l'_l (or a linear combination
W W W W
a, T% + a, a%.+ a, ﬁ§ +a, E{). The eigenvalues of the last operator

are, however, not known except. in the rest frame where it is simply a

projection of the spin operator. We may thus start from the rest frame and
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obtain the states for arbitrary momentum by an appropriate Lorentz trans-
formation. The classification of the rest states is equivalent to the
well known classification of the irreducible representations of S2 and,
say, the component S,. The (2s+1) linearly independent states denoted by
{|[m,s], P, m, >; Mg = =8, - {s-1) ... + s} form a complete set in the
rest frame of a particle with spin s. The relative phases between these

states are defined as usual by

S:,:lii;ms S=: /(S'-Rns)(sms-l-'l)'l P; mst'l > (1)
where 5, = (S %1 Sz) and
Syl+Ps mg > = mc|-p; m > (2)

Under a finite rotation R{a, B, y) these rest states transform according
to a (2s + 1) dimensional unitary irreducidble representation of the rota-

tion group SO(3):

m'=+s

S .
U(R(e,8,Y)) | [m,s], P, mg >= ] Dé?’m (2:8,v)| [m,s].p.m] > (3)

ms=-5 $ 8
where

-id,a -iJ,8 -idyy
U(R(a,B,Y)) = ¢ e e (4)

and *

4 (R(a8.1)) = D8I (as8.1) = <d m*[U(R(a.8,m)) |m >

- e7Hmatm) 4d) (g (5)

* See for example: K, Gottfried, Quantum Mechanics, Vol. I. X
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with the real rotation matrices
. -1d, B
did) (8) = <gm'le " T[im> (6)
Starting from a state at rest we may obtain the states in

motion. We define = (see also equations (17) and (19)):

[[m.sT. B mg> = U(R(848, =6)) U(Ly(v)) UT'(R (6,0,-6))| [M.s], F, mg>

(7)

U(L(p)) | [m,s], B, mg >
(defined already in equation (2.81)) and
{[m.s], Ba A >2 U(R(s, ©,-0)) U(L(¥))I[Ms], a2 > (8)

Here (©,4) are polar angles of P and V = l% . The Lorentz transforma-
P
tion L,(v) along the axis can be expressed in terms of infinitesimal
generator K, as {c = 1)
iK,

¥
L(v) = e i3 D<Y<w (9)
where v = tanh ¢, p%=m cosh¢ and |P] = p = m sinh ¢. The Lorentz trans
formation along v (or 3) is obtained to be

1K, ¢ T —y

R(s, 0,-0)e  * R'(s,0,-0) =e Y «L(v)zL@B) (10)

the rotation operator is taken to be * R {¢, ©, -¢) so that R{4,0,-¢)=1.

The states in equation (8) are called Helicity States since they are
>
simultaneous eigenstates of helicity operator 3.F « h(P), P2, W2 and PV,

=

That they are eigenstates of PY with momenta pt follows from the

vector character of PH; it may also be verified to be so by direct

* Note that both the operators R L, R ' and RL, take p to p.
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calculation using commutation relations of the generators. That they are
eigenstates of helicity operator follows from the observations: (1)[@(3),@]:
= 0 eg. h{p) is invariant under space rotations and (2) h{P) remains
invariant under pure Lo}entz transformations along the direction (%)
(unless such a Lorentz transformation transforms beyond the rest system
and thereby changes the sign of P and consequently that of h(p)). This
is a special case of the commutation relation E;’-'r?, Eﬁ’] = 0 e.g. the
spai:e rotation around an axis n commutes with the Lorentz transformation

along the same axis. In fact, we have

ngﬁs A> = llﬁs A > '
()

. iK, ¥
Applying the "boost" U(L,{v)) = e > and using EJ,,' K,:I = 0 we find,

writing ph = (p®, 0, 0, p > 0)

l.*-’
A . .
—— ) IPgs A >=J,lpp, A>= Alpps A > (12)
[Pgl
where :
1'I(31IJ -
|pR: A>=e lﬁ’ A> (]3)

Now applying a rotation U(R(¢, ©, -¢)) so that pE goes over to p' with

p pointing along (O, ¢) we have

JePpy . = R
U(R($+05 -6)) TE_T U (R(6,0, -8))[Bsn> = A[BaA > (14)
But 'R
U(R(o,, ~8)) 37 U (R(,8, -9)) = I+ (R) (15)
so that . ‘ )
Je .
—E|R»=xﬁ.x> (16)

1]
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Wwith A = -5, - (s=1)...(s+1), s. Alternatively,

>, ++ gk
Qig-lﬁs x> = U(R(4,0, -¢)) a= e ’wlﬁ, A >
Ipi Ip]
Ke¥ _
= U(R(4,6,-¢)) J, e ~ [P, 1> (17)

+
= Alp, A >

Still another way of arriving at the helicity operator is to simply (cf.
equ. (2.81)) note that if Ap is a Lorentz transformation such that

Ap P = p then from equ. (2.57),

PR(U(A,) | [m.S]5 B, o) = U [ [sTs B, a > ) (18)
Defining
[m.s]s pao> = UA) (.5 ¥, a >
(19)
P [m,s]5 pia> = p|M,$]; P> a >

If the rest state is also an eigenstate of J, with eigen-value o e.g.

Jyl[m,s]; P, a > = af [m,s]; P, a > (20)
it is clear that

U(Ag) 3y U™ (A1 [m.s]5 pua > = af [.sT5 Py @ > (21)

For the choice Ay = R(4.0, -¢) L (v) (in place of A, = L{p)
= R($,0, -¢) L (v) R"'(4,8, -4) we obtain, using equ. (15},

38

-1 "1 -1 - -1 B —
UlAp) Jy UT"(Ag) = U(R) U(L,) J, U7} (L,) UT'(R) = U(R) J, UTP(R) H
(22)
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The difference between the helicity states and the states specified by m

lies in the choice of Ap operator.

The relation between the two sets of basis vectors is seen to be

[[,8T5 B3> = UR) U(L,y) U™ (R) U(R) | [B.,s]; Ba A >

+$
) D§;) (R(4,8, -4))|[m,s]; B, m> (23)
m =-s s
|81 B,omg > = ] DJ(\;z. (R™(8,0, -0)) | [,5]5 Bok > (24)
A

and we remind that (see equations (2) and (7)):

U(L(P)) Iy UTH(L(PY) [m,sT; B, m > = m | [m,s], B.mg > (25)

Unlike the case of massless particles where helicity A is an
invariant parameter characterizing the state, in the case of massive
states it is not so. The transformation of massive states under a Lorentz

transformation will be studied latter in this chapter.

We next define helicity states with momenta pointing along
]
negative Z axis that is for states with momenta pp = (p%, 0, 0,-p) where

p>0. Itwill be taken to be (e'™2 Py = - Bp)

' > - 'iTTJz -
| [.5] 5pp.2>2| [,8] 5-Bgor>=(-1)° ‘e \m,s] sPps A >

-ind iKsy :
SR e e @Sl B A > (26)
i Kew
me  |[MS], B - A>



The last equality follows from *

-1
s=eSAS

imd

e Kye "2 a- K (27)

ind
. ‘ISl B A= (15 f[ms], By - A >

The last result follows from the well known results in angular momentum

theory,
-1-TT|J3 _ : '
e fm>=f diamim > § (1) Ms L an's
m m' ’
_ (28)
= (<135, -m>
and -+ .
"'i (ZH)J'F" 2j
e [qm > = (-1)¥ |jm > (29)
We also verify for helicity state that (3& a - Eh)
JPR . .
- I[:mssj;-pR’A>=-J’IEnssj; -pR’X>
|pg!
-iKap - -
= = 'Jg e |E‘sﬂ; Py, =A> = llﬁﬂ,ﬂs = pR’A> (30)

The result in equation (30) is not surprizing since the helicity operator
for state with momentum (eﬁh) is (-d,) while it is (+ J,). for state with
momen ta Bh). Thus we start with a rest state which has eigenvalue (-A)

of J, and then impart momentum p along -ve Z axis through the boost

=imJp —imJ inJ, inJ.

% Note also e = K,. and that the states Ii;k,k>

3.
are eigen-states of J, with eigenvalues #,
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EiK’q’. We also note with our phase conventions
Iﬁn,s],-'ﬁﬂ-rﬁ',k>=l[m,s],'ﬁﬂ+0++,-5\> (31)
For A = s > 0, the maximum value, we obtain
|s]s - Bpo sl = 8% (s B s (32)
By analogy we define for the massless states ¥
m 0, - B 3] > = 8™ m = 0, B, ] > (33)
im0, = B = > = (12 &m0, B - )
In case it has a well defined parity, state with - |A| is also possible

and can be reached by parity operation to be discussed latter., The states

with momentum (-p) are then obtained by applying the rotation operator

U(R(¢,0, -9}).

‘3.2 - TRANSPORMATION OF MASSIVE STATES UNDER POINCARE GROUP

We consider the action of Poincaré transformation on States of

massive particles. Since U(A, a) = U(a) U{A) it leads to

*  Then

2!1' EiﬂJz

+
In = 0, By, [A] > = ¢-1) lm =0, = {pgls |2} >

- eiﬂJz lm - 0’ - ;R’ I}‘l >
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U(A,a)} | [m,s]s5p,..> eiP 2 U(A} ]| [m.s]s ps.. >

ua) UTHa) e ua) [ [masds pae. > (3)

U(A) eip'(na)lﬁh,il; P, .. >

We can thus dispense of translation and consider only homogeneous Lorentz

Transformations. Now

U(A) | [m,s].8, mg > = U(A) U(L(p)) | [Mos], By m, >
(35)

= U(L(Ap)) U(L™"(4p) AL(p))|[m.s], B, mg >

Clearly,
R(Ap.p)= (L™'(Ap) AL(p)) (36)

is a rotation since, for example, L'I(Ap) AL(p)p = L*l(hp)(np) p=por
R(Ap, P) P = p. It follows from equation (3)

U(R(Ap, p))|[m,s], P, my >

- .)1:1; omsis,},s (R(Ap, p)| 5], B, m! > (37)
whence
+5
UM BTE mg >« 3 0fF) (RAp.R)) | [u] o, m > (38)
mén-s s

The rotation R{Ap, p) is called Wigner's rotation.

The transformation of helicity states follows from equation (18):
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U(A)Y[|m,s], By A >

= lgls Er:ls' Dn(':i (¢ses"'¢) Dlslzlzls (R (ﬂ.p,p))IEﬂ,S], Ap, I'IISl .>

* zu Dﬂ(ﬁ))k (L.-I(Ap) AL(p) R(¢,0, "¢’)|[m35]s Ap, mg >
ms <

L ofs) (7 p)AL(pIR(4,0,-0)) 05;3 (R™ (6,0, -¢)| [,s], Ap, v >
= E “Sx’ (R™' (6,0, -0)L"*(Ap) AL(p) R(4,8, -0))| [m.5] Ap, u >
y E 0{$) (R7(s,0, -0)) R(AP, P) R(4.0, -0))| K], AP, 1 > (39)

We also note from equation (10)
L(B) R(6.8, -¢) = R($,8, -8) L,(v) (40)

Combining with equation {28) we obtain essentially a unitary operator
representation of U(a,A). In fact if we define the norm * of our state

vectors in invariant fashion

< [m,s]; p', mg | m.s]; P, m > = (2n)%2p® §3(p-p') 6’“5“'; (41)

and a similar definition for helicity states, we can show that

wt=uty =1 (42)

%# See next gection.
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For example,
<[m,s]; p', mglu*(n, a) U(a, a)|[m,s]; B, mg >
- é'i(P'-P)OAa <En’s]; El’ msl IUT(A) U(A)lﬁnssj3 'ﬁ’ me >

. &1(p'-p)ha ml’Imzugg,s. (R(p*, p*) 02} (Rp, p)) -

» < Enssj; A‘E'a mzl@!s]; ﬁ_ls, ml >
The Lorentz invariance of p*s*(p-p') and the relation

oidhry = oUMRT) = BH)RY)  teads to
" ()t ) I n,f,i,?,ltk"(np, p)) o,,‘,j,?,sta(np. P))

= (2m)® 2p%8%(p-p') & ..
ms ms

(43)

implying the relation in equation (42). Thus these states constitute a

basis {infinite dimensional) for an irreducible unitary representation of

the Poincaré group.

An alternative way of checking the unitary is as follows. From

the normalization condition we have the resolution of the identity viz:

n
3 Jd“p PRy o(p®) &(p%- m) B, A > <Pl =1
A ™

()



Then
u(a) ut(a) = ueay 1 0T (a)

o(p*) §(p2- m2) I U(A)[Br>BAjuT()
(27)* A

I! d"’p

From equation (32) .

< | 4% ’ 2. m2 (s) R-l *-’
J P an o(p') &(p*- m*) E{E i’ (RORR)[P' W2

*
105 (7R, <P ol }
where p' = Ap, R = g(¢,e, -¢) and Rw = R(Ap, P)

-lvw i em")urhw)z%ghfxm%?m”xm

3
2“) Apo -+, >,
|p'u>< p'o}}
' n ' 12 2 >y *y
- [ av o(p'*) 8(p'%- mt) § 5 [B'w>< B'o |
m)? "o

Since D(R) form a unitary representation
= 1
Thus the unitary of U(A) is tied to that of the representation of the

little group of the four-vector p.

3.3 - HELICITY STATES IN ANGULAR MOMENTUM REPRESENTATION
From the helicity states construgted above as simultaneous eigen-
states of the operators P?, W2, P" and Qég . We can construct helicity

p
states which are simultaneous eigenstates of the commuting operators P?,
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]P| » J%2 and J,. To attain this we make use of the "projection
P

theorem" of angular momentum theory.

Projection theorem: Suppose {|jm v>} be the "standard basis"
angular momentum representation for the set of states {]y>} ; then the

(3, m) projection of the state |y > is obtained by
r =)*
lamv> =iy [ oGl @) 01w > oR (45)

where &= R(a, B, v). By "standard basis" we mean that the operators J2,
Jz and the set {T} of operators which together form a complete set also
constitute a mutually comnutating set. HereiNj is an appropriate normali-
zation factor. The invariante volume element of the rotation group (or
rather of the covering. group SU(2)) b dR is given by dR = da dg dy sing
withD<a<2m,0<g<m 0 < Y < 47, and the integration is taken over

the whole group space of SU(2) (Hurwitz integral). -

We will show now that the constructions in equation (45) of angular
momentum states is adequate by demonstrating that the states so defined,
transform according to (2j+1} dimensional unitany irreducible representa-
tion of the rotation group S0{3) (or rather of the group SU(2)). In fact,
we have

s @) s o my [08) @ wwal > @

-y [ 1o @l e vee v > @
m!l -

* The s:tuat1on is analogous to the expan51on of free particle wave func-
tion elk'r which is eigenstate of P in terms of wave functions

J£(kt)Ym(9 ¢) which are simultaneous eigenfunctions of IPI, L? and L,.

** See for example: J. D. Talman, Special Functions, W. A, Benjamin Inc.
(68) Hammermesh:
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Under the rotation ®'(a',8',y' )} the Euler arngles (a,B,y) transform to
(a", B", ¥") such that

2(aBy)
da dg dy sin 8 = da" dR" dy" —~———————r sing
a(all Bll Y“)
The Jacobian can be shown to be
o{aBy) sin g"

3(&" Bn ,Yu) sin 8
so that

dR = d(R'R) = d{RR') (46)
€.9. the volume element remains invariant under a rotation. Thus

) e =iy 1ol @)™ [ ol e vy > a w
or in view of equation (35)

Uy @) 13m > = I L v 0gd) (@) (47)

In case the states |y > are eigenstates of Jys» S3Y Jylo > =
= Mly > so that U(R(a,8.Y)}}v> = U(R(0.8,0))[¢>8 ™Y we find [jmy > =
iy W . "
- I, J D) "(c.8,0) U(R(.8.0)) oy ' ™ MY 4y dg dy sin g

= N Sy [ p{3) * (a,8.0) U(R(0,8,0))[¥>y da d8 sin B

Writing ¢ in place of o and © in place of B

] = . (‘j) * >
jgn y > = Ny [ 05} ™ (0.0, 0) U(R(8.0, 0))] >y dn )

- ¥, J D,f,f,) " (6,8, ~4) UR($,0, -6)) ]y >y 42
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Here (6, ¢) are the spherical polar coordinates and the solid angle dq =

= sin 6 do d¢.

Applying this result to the helicity states lsh, A > the (J,N)

projection is given by

m Bl: M3 > D(J) " - - [ >
Hm,s], fpls 9 M A > =Ny | D8~ (6,0,-¢) U(R(s,0, ¢)}|Pgs A > da

ty [ o) “(es0, -0) 51, B 5 2 > d (49)

Ny I &7 (8.0, -0) | Bl [Blewin > dn

The normalization factor NJ will be calculated below.

3.4 - NORMALIZATION COMPLETENESS RELATION :

Since we have used a set of mutually commuting hermitian operators
to specify the state of a single particle they are orthogonal with
respect to the corresponding eigenvalues. For momentum eigenstates under
consideration A2 = m2= p? takes discrete (fixed) values so that only the
spatial part E of p¥ is needed to specify p¥ e.g. the point on the orbit
p? = m? The inner product of states belonging to p* and p'H (with the
same value of m) must then contain a factor Y(P, m) 6’(343') where

Y(?, m} is so chosen that vy 6’(B¥3') is Lorentz invariant. From (Ep =

= + v/ p% + m?) the relations,
d®p .

1'fd%a%3-ﬁ)=fﬁg P2 By )
(50)

= [ 4% o(p®) s(p2- m2) -2 o g2(3-3)
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it follows that 2p° 6’(3—3') is invariant under proper orthochronous
Lorentz transformations. We will adopt thus the following invariant norma-
Tization

< [m,s], B, mg, of[ms], B m, o>

(2m)°

3 -b_-’,
" 2 Ep 8°(p-p') Gmsmg 8gg" (51)

Here o refers to the additional set of quantum numbers to specify the
particle e.g. iso-spin, hypercharge etc. For, helicity states me m;
are replaced by A, A' and 8,5+ appears in place of Gmsmg' The factor
nl is defined to be

nl = 1 for bosons

L " {52)
=2 m for fermions

Explicit covariance of the normalization adopted can be also

seen from writing it as follows

- 1T "
<P, m[p', m > a%(p) = 84 (p™ ™) 8y (53)
n
where
a*(p) = 2ne(p*) &(p2- m2)
8(p°) (54)
= 27 s(p* ~ E)
2 E, P

For two particle states
l[m151] [mzsﬂ; -61’ 32; Ay A, > EIE‘I‘IISJ, 31 WAy > ® lE“zszls i;z’ A,> (55)

the normalization condition is

* For m=0 fermions one may give a finite mass. The physical quantities

do not depend on it and the limit m + 0 is the same as putting m = 1.
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<5, 15,05 8,8,5 A0, 1 Bys I [ps,s 31 B3 5 AL g >
e #G B & ) 6 (%8)
nll nlz 1 S S )

The completeness relation then reads

R S E LR

+1

nl nl d? d3
1 2 p1 P2 -
J I31 P A‘1Az><31 3; A1Azl+ e

(2n)" 2E.  2E
P P2 (57)

n >
= |vac> <vac| + § —L II PA> 8(p°) 6(p*- m2) d* p <P A

(27)?
My ", > . . . .
+ 7 FrEvE lel Pz;lllz> G(Pi) o(p!) &(p2- m?) &§(p2- m2)
(2m) :
d‘*pl d"pz < 33 B'z; Al Azl + . (58)

We remark also that, with the invariant normalization of states a matrix
element of a covariant operator @, viz, < aJ@|b > is also a covariant

expression.

The density of momentum states with the above normalization is

given by *

* This is clear, for example; from the completeness relation.
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n| d*p n|
(2m?® 26,  (2n)°

[ Lo stp-myan )

which is clearly an invariant expression.

3.5 - NORMALIZATION OF ANGULAR MOMENTUM HELICITY STATES
We will now determine the normalization factor NJ. The invariant

normalization of momentum eigen-states reads

<[m,$],B:NMm.s], B's A' >=<[m,s], Bl ©, o:a|Mys], [P'), €' ¢35 2" >

(2m)?

2 E) 8 (FB) &y,
n|
= N, 8([B1 - 1B'1) sla-0')sy,, (60)

where

§{2-Q') = 8{cosd - cose') 5(¢~¢')

and p2 = p'? =« m? with p°, p*' > 0 are understood and

(2m)* 2E
- ) *? (61)
Tll |p]2
we define by analogy
<[ms].lpl, 9* M X |[m,sT, 1Bl 9 MA >
-+ <,
L NP 6(|PI = |P |)6kl. GJJ' GMM' (62)

Now
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-+ >

Ny Nyt Ny 8(1B] - 15'1) [[ dadar 0T det 000 0 (0u00-005;,,
= NN Ny SUL - 810650 [ a0 0D (as, -0) 0 * (a0, -4)

4
6 1 6 1
(20+41) W' "

INle Np 6(I-I;“I = ﬁ?'l) 511' *

on using
4n

(2041)

[ 40 0 (a.0, -0) 0§ (8.0, -0) =

830 Sy (63)

We obtain
2Jd+1

4

N2 =

We choose the convenient arbitrary phase convertion to write

2J+1

64
J 4n (64)

3.6 - CLEBSCH-GORDON COEFFICIENTS: INVERSE RELATION:

The matrix elements <3',A'|[EIJ M A >can be easily calculated:
< p'fe'e's A'|[Bl oM >
"
- 0y [ aa o) (e.n -0) < [B] 0'*sn Bl ewin >

= Ny N SCIBI - (81 D) (a0, 600y, (65)
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The normalization condition for the states ||p|JM;A> implies a completeness

retation of the type

del -
FEL|—— 1Bl oMsa><[pl IM;a a1 (66)
J M Np

where I on the righthard side is the formal identity in the Hilbert space
of one-particle states under consideration. The relation can be checked

for example, by multiplying both sides by ||B| J M; A >.

We can use this relation to obtain the inverse relation expressing

states |P, A > in terms of the anguiar momentum states ||B] J M; A >.

h -]
L]
pW
v
lit

|IBI Ielzolkl >

Dlamimonasd < ama@een s
P

51 W ol (6.0t et) (1Bl I M > (67)
J M

With the normalization conditions adapted above we can verify easily

2Jd+1
T

8(cose-cos0')8(¢=¢") = g( T) D,(d’ (6,0, -¢) D,S.‘i)(«b,e, ~$) (68)

and note the formal relations:

<0 ¢' A"} 9¢A>=601-QWGMJ

(69)

< lJ'M'All \} M A >= GJJI GHMI GAA.

For spinless particles A=0,J=2%, Mzm, || =p ,
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* . . (2) -
lp>=11 o Tno’ (%ps s = g)ipstum >
(70}
m *
“I] lptn> 1] (6, 4,)
on using
4n
L) *
D( a,f) = Ym (B,G .
mo (2:8) 22+] % )
Also, since *
m
Ya(Ops 9p) = <6y ¢ | am >
we have
B>=53lpam><ame ¢ > ()
g m pp
In coordinate space representation (< F]F'> = 8r - r').
-y = -> g m *
<rlp>5¢+(r)=zz<rlpzm>yz (ep’Op)
) 3 e
(2m)® N
Our normalization <3']33 = 2 Ep 6’(945')
implies
N 2E * ¥
8,(%) =4/ 2 !PT (73)
p n
From the expansion
BT L an 11 %5 (or) ¥ (e, o) (0.0) (78)
$m £ £ p* p’ A T?

* DNote <@, ¢_|%m > = it Y:(Q+ ¢,) in order that under time reversal the
r r r r
state transforms in the same way under the coordinate and momentum

space representations.



it follows:

or

where

and

so that

A
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. 2€
<rlpem>=4r jg(pr)ig Y2(9,¢) P (75)
n .
.<r9¢|p£m>=<r|p£><e¢]m> (76)
< oplem > = i* Y] (0,9)
2E
rlpe > = Af—2 4w j (pr) (77)
n
&(r-r'})
<rjrt > = (78)
rr'
<p'eipL > e i ridr < p'tir > < rjp2 >
- [ v ar gyt dyemam® (2, )
0
(2n7)? &(p - p')
= 2 Ep _— {79)
n p?
= Ny 8(p-p’)

Finally, the inverse relation is easily obtained

* < fd|r'0'¢’ > = 6’(;?;') - ﬁi!iill S§(Q-R') suggest us to write

Ir

< 65|0'¢" > = §(R-A'), < r|r' > = §(x-r')/rr' and S|6¢><O¢| 40 = 1
while S|r> r?dr<r| = 1 as completeness conditions.
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pan > = [ 15> ¥5 (9. ;) aa, (80)

3.7 - STRUCTURE OF HILBERT SPACE OF STATE VECTORS:

From the discussion above we see that the eigenstate of P 1s not,
in general, fully spec1f1ed by the eigenvalue P, since Pus may not form
a complete set by themselves. The set of momentum eigenstates belonging
to a giéen p" constitute a Hilbert space which is a sub-space of the

total Hilbert space #.

It is clear that the spaces Hp, on a given orbit (p?2 = m* fixed),
corresponding to different p¥ are isomorphic to each other. This can

be seen as follows. Select one particular 4-vector-ﬁ” on the orbit.

We can reach a 4-momentum p* by
a Lorentz transformation .Ap e.g.
Ap P=p. Since Ap belongs to a
group there exists an unique inverse
transformation A;I such that A;lp s p.
The operator U{Ap) maps Hﬁ into H

p
since

PH(U(APS [ms B >) = pH(U(AR) m; F >)

that is |m;p > = U(Ap)|msp > 5 Im; B > = U(A;')Im; p >

and |
PHim; p > = pH|m; p > (82)
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The inverse U(ABI)- U'I(Ap) is defined so that the mapping is one-to-one
implying that all the spaces Hp are isomorphie to each other. The Hilbert

space to which all the spaces H , on a given orbit, are isomorphic will

P
be denoted by h.

There exists thus a one-one correspondence between the vectors ]ap >

of each space H_ and the vectors |a > of h. The state vectors Iap > of

p
H belonging to a definite orbit may thus be written explicitly as direct
product

m; £> & [m; o> ~ (83)

where {|m;f>} is the space of vectors fully labelled by p''s on the orbit

in question. Such a state is, for example, the wave-packet state

mif > = [ d%p s(pr-n?) e(pt) Fip¥) Im oY > (84)

Here f(p!) is weight factor corresponding to p". Since {|m; p* > }
constitute a basis for the space {|m; f > } the space # is spanned by the
vectors of type *
| ms p* >@ (m; @ > = |m; B> @[msa > = [mypHia > (85)

Here {|m;a >} 'a set of vectors faming a basis in h.
From

PH|m,p"; a > = p"|m, p*; a > (86)
or

P(Im,p> @ Imse >) = pH(ims p¥> @ Imsa >)
It follows, that |m;a> is translation invariant. We define the relation

between the reference state |m, P; o > and the state |m, p; a > by

-> -
% Note |m,p1‘1 >§|m,p > for obvious reasons.
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[mpsa > = U(Ap)lm. P; a> (87)

where A, = p and A;'p = B, Written {n direct product form

[mip >@ Imia > = UAg) (Imip> @ [m;a >) (88)

That it 1s possible to choose the some additionsl labels on both sides
can be seen from the following. Suppose o be the eigenvalue of
operators I which must then commite with P*, say, when acting on the

reference state o.g.
PH(m:p > ® |mie>) = B¥(|m;f> ® |mia >) (89)
r(lmp> @ |ma >) = a(imp> @ [mia >)

It follows then {see above)

P(lmp> @ [mia >) = p¥([mip> ® Imsa >) (80)
but

U(ag) T U(A;)(llm ® Imio>) = of lmip>@ |m;a) (81)

Thus Jabel o on the state [m,pia> refers to the eigan-state of I' =

- U(A,) rU(A';) and not of I' , which clearly does not commute with P¥
when acting on the states |m,p;a >. To describe sfmuttaneously p* and a
on the state |m,pja> we use the commuting operators P¥ and ' while

to specify P and a on the referencs state |m,p;a > we use the commut-
ing operators P¥ and I'. It 1s clear that the algedraic structure of the

operators I'' (similarity transformed) 1s the same as that of the

* We consider hera m 4 0 case, For m = O cass § 2 (p, 0, 0, p). The
corresponding little group has already been discussad.
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operator T .

Now U(Ap)im;ﬁ > = |m;p > 50 that U(hp) leaves |[m3a > invariant, viz,
U(np)lm;a >= |m; o >, However, in general, (writing la > = mja > for
conciseness),

U(A)(imsp > lo>) = |ms p'> @ o' > (92)

Where p' = Ap. The relation between ja'> and |a> can be easily deduced

U(A) U(ai(imsp> @ loo) « U(A ) (Imsp> @ la' )
or

U A U B (m B> @ ) = (Ims B> @ fa'>)  (93)
Thus _

U(A;, A Ap) EU"(AD,) Uga) U(Ap) leaves [m;p >

invariant while transforms |a> %0 |a’>. For time like vectors * under
consideration p? = m* > 0 we may choose p to be the rest four-vector p =

= {m, 0) whose little group is ro*stion group. The transformation is then
a space rotation in 3-dimensiorci space:

-1 - - £ i1
MY A A ERUP, B) 2, (943

is often called Wigner rotation. 1t foilows that once we specify a
unitary representation of the rotation group (a subgroup of Lorenrtz g-oup)
on h we know the transformatign of a general vecto» of H under RIHL. Thus
U(aa)(mp> (B (o) = e Uiy imp> @ le)
g eiPre (Imsp'> @ IG*>)'Eip'.a(|m;p'>® la'>)
(98)

# We consider here m # 0 case. For m=0 case p = (p, 0, 0, P). The cor—-

responding little group has already been discussed.
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and

o' > = UR(AD.P)) [ > = D(R,) |a > (%)

where p' = Ap and D(R) fs a unitary representation of the rotation group

on h.

The normalization of the basis vectors will be chosen to be
Invariant so that

< m,pia[m,pia > = <m.p;alU+(A) U{A) [m,psa >

= <m,p';a’|m,p'ia'> (57)
Noting that
<a'la’ > = < afd"(R) B(R)|a > = <afa> (98)
we have
< miplmip > = < m;p'|m; p* > {(99)

A convinient invariant normalization, as discussed before, is
< m;plmp’ > = (27)° 2p® &%(p - p')
The scalar product of wave-packet states will then be

4

<mig|m;f > = | @*p d*p’ &(p'*- m?) &(p?- m?) o(p®) o(p'?)
g*(p') f(p) < mp'im;p >
=@ [ e [ @ [ 4] s(p- ) 0(p%) 0(p')
§(p'2- m?) 2p'® 6*(-p") g*(p') f(p)

“(2n* [ a' st ) opt) ') F(R)  (100)
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3.8 - TWO PARTICLE RELICITY STATES:

To describe two-particle collision we need to construct helicity
states of two (or more) particles *. Since we will be using S-matrix
formalism the only multi-particle states we shall need are those describ-

ing non-interacting particles.

A non-interacting 2-particie state can be written as direct product

of two single-particle, momentum eigen-states:

|[I'ﬂ151] [mzs;; Hl XI; .32 A2 >
= |[m,s,]s 31 > ® |E"zsz};.3z A, > .(101]

We shall, for simplicity, label it by [, B,; A,A,; v> where y includes

1
the spins and additional quantum numbers needed to describe separate
particles,

Under a pure translation

iP,-a 1P -a
U(a)[P,B,sx, A5 Y>=e ® e 0B, By A, Ay =

i(p,*p,) 8
e

B, B2 25y (102)

following from the definition of 2-particle state. It follows that
TR = pH
PPl Ph =PV ® I+ IQPY)

PUIB, B,s Ay Apsy > = (P+ p)Y 1B, By A As vy > (103)

For helicity states of more than two particles see, for example, G.
Tindle,Phys. Rev. D3, 1468 (1971) and the references contained there

in.
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and that (p,+ p,)? = e®>0 is Lorentz invariant. e defined to be
positive, can be regarded as the “mass of the 2-particle system” and
specifies an orbit, However, in the present case, a continuym of values
are possible = > ¢ » (m1+ mz) in contrast to the single particle case
where it takes discrete values. The direct product states even for fixed
£ do not define an irreducible representatipn * of the restricted
inhomogeneous Lorentz group (RIHL). They do define a representation ;é
{

which can be decomposed into a direct sum of irreducible representation.

For one-particie states an irreducible representation was con-
structed by starting from the vectors corresponding to a particle in its
Irest frame, and defining on these vectors an irreducible representation
of the rotation group. The rest of the irreducible repraesentations can
be obtained via the appropriate Lorentz boost. We, likewise, in the
case of two particles appeal to centre of mass frame of the two

particles,

For two non-interacting particles we could, as we11 describe  the

state by using the operators PY = lﬂ"’l + Pu and k" = (Pu P”) in place

F
of the operators P?, and P. The state is then Tabelled as |

I? ks Ay >s jeap¥ 003 Adas v >
=18, Bas M Y2 E B ® 1B @ v > (104)
where p* = (p + p,)¥, k¥ = -(pl- p,)", © and ¢ are the polar angles of

k with respect to p. We note

* s . g - .
This is obvious, say, by comsidering the case p, = p,= 0 and using the

angular momﬁftum theory,
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'Pu'ﬁ; E? :\il\ét'T') * puﬁ;fi; x];h'i; Y ?

_Ik“lgf; A Ay v > = Klp Ky Ay 2

and “(E () = + /pE & mt > 0)

L
PP=-Ep

{105}

(106)

(m) + €, (m) > 0y K= (p (m)- Ep (m,)) (107)

Froin the relatiors p- = KM ?pu and plz‘ s~ KM+ %— p¥ we can write:

O, B G B = (- B L) sk 3 [55])
| rARY L TN -I r‘.“._"“s. \ LI i )
= 87 (p-P )83 (kK" + = PP ) = 8*(p-p') &¥(k-k')

For the volume -element in .momentum space we note

1 A2 nt. nl. pt: pi’
3'_(le3 p_i ] p‘l H pai pz" pj_}_ d'k dgp, - dl‘k . d’p
(k, k?, k¥; p¥, p¥, PY)

d"p 1 dt ﬁal :

the Jagobian befng unity. The right hand side can be expressed as
d*%p k1€ dJR| da (6,0)

where (9,0) denote the polar angles of K with respect to . Now
(pd)* « |kl +% 15]# + |K]|B| cose +m?
(pY)* = K1 - [BI% « [RFIBl cos & + m}

For § and Q(e, ¢) fixed

Pt dpY = diR|(IF| + 3 IB| coso)

pt dple dIR|+(|R] - 2 [B] coso)

(108)

(109)

(110)
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[i%1p%- k*(3] cos g ot

dp® = dp: + dp:=

Py P
Thus
p p? K|
dk dp = .{; . d*p dn
(K|p®~ k®|p| cos 6)
d'p, &%,
From the fact that e—=— -—— {5 Lorentz invariant we conclude that
2p) 2p}
d*k d%p [k|2 da
- ~ - - * d.p (111)
P} Pl (IKip®- k*|p|cos o)

ts invariant and so is the factor, on the rignt hand side, multiplying
the invariant volume element d*p. In the centre of mass frame {f = 0)

the r.h.s takes simple form:

d*p. d%p, d* d%p I{
: 0 - - e ° ) d%p (112

cm

Furthermore, in the expression
s{Iki-1k" )
x|
é(e=n') S(¢=0"')
s$in ¢

§3(P-') 8% (K=Kk') =&*(P-p*) 8§{2-0')

where

§(N-Q') = 5(cosB+ cos8') §(p- ¢') =

we can use the relation (note § = B', 2 = 0' are fixed)
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§(p°~ p'°)  (IK|p°- k®|B|cose)

s(IKI-1K|") = - e 8(p*- p?)
(ﬂﬂ) . PP
a p?
toobta'in*

(IK[p°-k®|B|coso )
Pt pd k|2

s*(p¥- p*Y) s(2-0') (113)

Finally, for the normalization condition we obtain:

< E.P';B'Q'; A;A;IESP;GQ; AIAZ> a < Eli'; A;A;IE E; Alkz >

] ", 1 ] Y
s Pas A APy o A, >
(2n® 200 200 833 -BN8NT.- D
= pll pz 6 (pl- p1)6 (pz_ pz) 611 A; GAIA;

(2m)® [ 8([E[p*- K*[Blcos o
e

)
§*(p"- p'M) S(R-Q') &, 1. 8, ., (14)
n, n, ) : llll Azxz

The normalization is Lorentz invariant. Calculated in the c.m. frame

the r.h.s. takes the form (§(2-0')_ = 6{cos© - cos 8') &(¢-9')) =

“(2m) [ ap
- - ( 7 5(9—9')) &*(p"- p'H) 6111; Glzki (115)
c.m.

nn,

Here (0,4} are measured w.r.t, a z-axis defined 1in c.m. frame.

* This result is rather expected. From the relations p gl - p - |;|2,

mf + m - p1 + p2 - 2(k%%- |k|2) + —-|p| and m - m w2 kp=

- Z(k' p - k-p) we conclude that pu, 6 .and ¢ are. sufficient to specify
p and k.
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Unlike in the case of single particle case a 6“(pu- p;) appears in the
present case. This is expected since p? = (p,+ pz)’ is not any more fixed
and takes on values continuously; in fact, = > p? 3"”1 + ”3)° The
separating out of this factor simply expresses the overall total four
momentum conservation between the initial and the final states. It is

clearly suggested that we may write

les p%5 005 A2, > = ¢ le, P> @ foms A0, > (116)
where ¢ 1is a convinient factor. We will adopt the normalization

<e, p'e, pH > = (2m)%8 (pM- p'H) '(m)

Like in the single particle case the spaces Hp, on a given orbit

e fixed), corresponding to different p“ are isomorphic to each

(p?
other. Denoting the Hilbert space to which all the spaces are isomorphic
by h the state vectors of the total Hilbert space of two particles

(direct product of two vector spaces associated with the irreducible rep

resentations U(‘).and u(2) of two distinct Poincaré groups) are spanned

by the vectors of type (¢ indicating the orbit):

les P> @ lesa>= e, p*s a> (118)
where

PP(les P> @ lesa > ) = pM(les o> @ leso ») (119)

Plie; p¥ > = plle; p¥ > (120)
and

les o > = U les B > (121)
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where Ap p=p. It follows (|e; a > = |a> for brevity)
PHla> = |a > (122)

~ The relation between le, ps @ > and le, P3 @ > is'ggfiggg * as
V(A ([esp> ®-|a >) = {esp> ® .la > (123)
. like in the single particle case implying

U(Ap)lu > = |a > (124)
For general Lorentz transformation A

U(a)(les p> @ | a >) =lesp'> @ o > (125)
which leads tﬁ (p' = Ap) .

la' > = uml;.‘ A Ao > | (126)

-where (A;} A Ap) leaves p invariant. For the pfesent case under discus-
sion p? > 0 e.g. time 1ike and we may choose p to be the C.M. frame 4-
vector p = (p* = ¢ > 0, 3) = p. The transformation (A;f A np) = R{AP,pP) -
is then a, pure 3-dimensional-rotation (Wigner rotation) belonging to
S0(3) whose covering group is SU(2). Thus we need to study simply the
C.M. state |e, p > ® |a > and set up the appropriate SU(2) group
labels or quantum numbers. (so that we know the transformation of | «>

under the transformation U(A) on a general vector |e; p> (® |o>.

- -> - -
It is clear that Pu -:Pél) +'P£g) and J = (J(l) + J(z)) commute
while acting on the C.M. states (p = 3(‘)'+ p(?) - 0) of two particles.

* e.g, the labels o are maintained under U(Ap).
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We can thus nclude among the labels o the labels (J,M} corresponding to

the operators J* and J,. .The C.M. states thus read
C(les P> @ [WMo>) =le |, B; Mo > (127)

where o are other labels to be determined and C, a convinient factor to
be discussed below. These states define an irreducible representation for

two particles in their C.M. frame.
To connect these states with the (|B, A,> @ (B, A,>) we make use
of the projection. theorem of angular momentum theory. We define

o2 Bs Mo > = [ o) (a,8.1) UR(08) B, Bys A, A, > R (128)
su{2)

where 0 < 0 < 27, 0 Yy s 47, 0<B<srand dR = sinB dx d8 dy, the
invariant volume element and the integration {s over the whole space of
SU(2) group . Also Ple, P; JMo > = ) 4 P(‘))Ie, P; JMag>=0
then implies_(since M' is arbitrary)

FU(R)[EF1 BiA A >=0 (129)
for every U(R). This is only possible if

3
PIP, Pps Ay 2, > =0 {130)

-

N R Ipl 32; A, 12 > be aiso 2 C.M. state. To be precise we define:

eBs Moot [ o) (abr) UR@EI, = By 5 = Kgih 3
su(2) (131)

where IR = (0, 0, k > 0) and ‘N is a normalization factor. From the

definitions given earlier of one particle helicity states

* The whola SU(2) group is covered by tazking either « or y vary from 0
to 4m and 0 £ B & W,
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i Kg‘)w >
kg 2, > = e |0, &, >
N S,~A, -'imlgz) N -ixgz)w >
|- kg 2, > = (-1) e kg 22 > = e 10, = A, >

-+ >
and 3f*)(8, A, > = 2,10, A,> while 9{*V0, - 2, > = - 2,00, - 2, >

From the commutator [JE:), I(gl):l = Elgz), ng):| =0 it follows:

1 > .
I AW W [ (132)
and

()i = - i-F

Ak 2, > = - a, - Ky A, 2

The results are otherwise obvious.. For (helicity) state with momentum -':R
the helicity operator is J, while for the state with momentum - kg it is

(-d,)- T!uus

,Ja(_|-|:R Ao ® |-‘|<'R;._2 >) = (ng)+ Jsz))(ﬁaxg ® |-§sz > )

= (- ) kr> @ 1-kgh,>) (133)
Now
3 e
DIEIM' (c,8,¥) U(R(a,B.y} kg, - Kps 2, 2, >
* N i(M-2 +2, )y
= 0li)(@,8,0) U(R(e,B,0)) IRpkps A2 pe 1 (134)

Performing the integration over y gives M 3 -
b S

We can thus write (substituting a by ¢ and 8 by @)
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2r =

r

lesBsaMa>s o yy=h [ [ o) (6.0,0) ur(s.0,0))
¢=0 ©=0

-+ -
lkps=kpsr,A,>sin0 do d¢

NJ J D"(;L_)I (¢ses"¢) U(R(¢’0’-¢)”:R’-:R; A1x2> dQ
(135)

It also follows that

Je x>~ Al A= a0+ 1., (136)
for otherwise Dédg vanishes.

From the fact that helicity remains invariant under a rotation we
verify that the state |¢, p; J M ¢ > is also eigenstate of helicity
operators h(l) and h(zJ allowing us to write

»
= J) . - ik b .
Iesp,\”‘ullz>6u’(11_12)-'-‘“']-J D's’u (d’ses ¢) U(R(¢’99 ¢))IkRs kRs ‘\1"2>' dQ
{137)
We defined for the single particle states

IE A > = U{R(¢,0, '¢))I:R A >

I-E A >= U(R(¢,0, ‘¢))|“" ER A >
so that

3> B 1K, >« 0 (R(8.0,00)) B B U0 (R(6,0,-0)) [-kgh,>

U(R($:0,-6))(kpr,> @ [kg A, ) (138)

Hi
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where © and ¢ are polar angles of E, That is *
le, B3 85 4 & > = U(R(6:0,-¢)) e, 5 0 0; A2, > (139)
Thus we have
N r (J)* - =
les Ps 9 M A, 2, > = N, J dQ DM’(AI_AZ)(¢,9,-¢)|R,-k; A Ay >

J)* et i ’-; H 1
'NJIm khlhf¢e¢”€p% Mk > (140)

Defining the states |e¢; A, %,> in c.m. frame by

lesB:0¢3 A2 = lesp> @ 108 5 Aa, > (141)
we obtain from the normalization condition
<0'¢’3a0) (66 3 Ma, > = a(n—n ) 8, Al 8, AL (142)

Here (©,¢) are polar angles of % in C.M, frame w.r.t. a z-axis in the
C.M, frame. The general helicity state le, pu; 89; A, A, > is obtained
from the C.M. state ]e, P %; A, A, >by (likz labels are maintained).

le, P 8 5 A, A, > {U(Ap)[s, B 005 A4, >

where
-iK, ¥
U(Ap) = U(R(aBy))e

“ The boost gives a momentum along z axis so that p + Py 8t the same
time the polar angles of k(m r.t, Kp ) change to some value (0',3').
R
Additional rotation takes pR to p while changes (6', &’) to (8,%).
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on using < e; p'Mle; p* > = (2n)*6%(p'*- pY).
We likewise define the states |JM; A A,> by

~ - A 4e
les Bs MR, > = s B> @ [dM; A0, (143)

iy 'Elc.m.

We obtain, for these states |o¢; A,A, > and |IM;A,2,> (in the c.m. frame):

*
. - J - .
M0, > = ny [ a 20 oa,) ($0s-0) [owin 3, > (144)
The normalization factor N‘J is determined by requiring:

<I'MOAIA, [IMSAA,> = 8,1y Suan O s (145)
1%2 12 dut MM Oaa %Al
Hence:

Sg00 e = W50 Ny [ e dar oMot 050%) 0" (4,0,-0) s(a-at)

= Ngn NJ f dq Dr(dq;)(¢ses-¢) Dl(df&* (¢se:'¢)
N2 4
= N 6 L] 5 !

or

(146)

defining the convinient phase convention.

The inverse relation can be obtained on using the completeness

relation (with the normalization adopted above):
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TIIL (oM, > < IMa, | =1 (147)
J ML,

Therefore
[80:0,3, > = T1J M3 A 0,> < 3 M5 AA,|e50,3, > (148)

The Clebsch-Gordon coefficients are given by
<@'9' A |9 M A, >
. (J)* - -
N, J dg DH,(AI-X,)(¢’9’ ¢) 6(a-Q") lex; 5121; (149)

= J)* ' ' b
= NJ D’(‘szkj-lz)(¢ s ©, - ) 6111; szl;

Thus
|6¢s A,h,> = ] z*J N; Dﬁ?:l ) (,0,-0) |0 M5 A2, > (150)
and J Ha—J_ 1 M2
N
<803 M, f= [ LN D“s%l,-k,) (4,8,-¢) < J M; A2, | (151)
JM

. Since Dﬁlel_ka) are merely expansion coefficients, Clearly,

le, B: 06 AA, > = ) Ny pid) ($,9,-¢) e, Ps J M Ax,> (152)
172 J "M, (A, -2,) 17%2
JM
Thus expressing the states |e, B; ©¢; A A, > in terms of the set of basis
vectors given by all the irreducible unitary representations of the rota-
tion group (or SU(2) group). Therefore, a representation U(R) is defined

on the set of vectors |e, P; ©¢; A A, > with p, A, and ), fixed (since
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rotation leaves helicities and E = 0 unchanged). In fact
U(R(.B,Y)) e, B; 695 A2, > = e [¢, pi0'e'; MA, > where k' =

= R{asB,Y) K and (@', ¢') are angles of k' (in C.M. frame).

The irreducible representation of the RIHL defined on two particle
state vectors with total four momentum p", on a fixed orbit p? = €2, is

given by the states

|Es p]-l 3 M)\I)\i >

e, P >@ [0 M5 a0, >
U(A)fe, B3 O M, > (153)

where Ap p = p.

Under a general transformation U{A, a) of RIHL
H, - iP-a U,
U(h,a)lep"sd M AX, > = e U(A)|esp™s O M A, >

] ‘ . - l-
= e'P e, > @ UGl An)|IM5A 0,>) (154)

= R{Ap,p) is the Wigner rotation. Thus

where p' = Ap an? A;} A A,

(A,a)|e,pM; I M A, >
<P ew> @ 0 RUBONII NG AN ) (55)

=e'P 2 E- le, p's I M A, > 059% (R(Ap.p))

The unitary can be verified, say, by using the identity:

d*p L PR ']

. B C-H-

I = ) J le,p3dMA A, >< g,p;dMA A |
5 5 §1 X, ! (2m* \  (2m)? 4e b 1(:55)

The normalization of states |e,p; J M A A, > is given by



28

Cuy W MOALK I (m Ry J Mg A >
s
NI IEIM,

Wi, LU

SR PT) Sagc e Sy, San
{187}

The, discusifon for one massless and other massive particle or both

massleasopees w-sipifpr lines. The discussion above starts essentially
from the ufm--jtnn\ﬁa. -.IIR; Ay Ay 2
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A

i

SPACE REFLECTION

We will next investigate the trans formation properties of the
helicity states:under the discrete"transfbrmations of space ref]ect%ﬁn ‘
(parity operation). and time reversal in order to be able to apply these
invariance principles ta the particte reactions. The feur operations
{L, I,
of these fburqtransformations'charactepize one of the four disconnected

It;.lst} -constitute an  Abelian group called Four Group. Each

pieces of the HLG.

4.) - PARITY TRANSFORMATION: PASSIVE AND ACTIVE FPORMULATION

Parity. is an important property of many functions.. If £(-7) <
- f(r) we say:f-has even parlty and if f(- *) s - f!r) it has negative
parity. Functions like e -iker do not have any well defined parity. We
can define the parity operations as the passive coordinate transforma-

tion

I: ; I =10 ar’t (1)
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Equivalently, we may describe it as the transformation *

- 2 a +* . > >
= e, e, e, e, = e

where 31 are-the-untt vectors along space-axes. The. veetors e' clearly
form a right handed system of coordinates if 31Fs form a-left-handed
system. In fact"E}rx~3;--'- 8}. “It-can be-easily verified-that any

-

space rotation-ieaves invariant the retation e, x¢, =¢,. Thus the

space reflection or parity operations is not a rotation. This is other-

wise obvious since the  determinant -of the transformation is (-1). The

parity operation thus implies looking at the physical system from the

coordinate frame with opposite handedness. Parity transformation takes
+

> > - . *h > X
any 3-vector V, like x,p etc. to -V while 3-axial vector A, like

(¥ x P), to + A.

Parity operator € describing the-effects of a space (coordinates)

reflection on a point function £(X) is defined by (X' = -X):

f(x') = f(X) = PF(X')

3 L]
-+, T.=1 > +, . .
Note e; = jzl(x )ij ejg go that e; = 'El Rij ej while for parity

+ -+ . - + +
! = -e,. The transformation of e; follows from x = L x e -

el
b 3
- v L
) x; e and x; 2 Rij Xy
%% In case of 4-pseudo vector the parity changes the sign of the time
component while leaving it unaltered for a 4-vector. For an anti-
symmetric tensor of second rank the space-space components behave
as 3-axial vector while space-time components as 3~vector, See for
example: Landau and Lifshitz, Classical Theory of Fields (3rd Edi-

tion).
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or

PF(X) = F(-X)

It follows P2 f(X) = f(x) (choosing the phases in t‘hne’ definition of
such that (2= 1) so that the eigen-value of parity operator Pare : 1
corresponding to even or odd parity functions fe(-I) =_fe(}) fo(-;) =

= - f,(X). That @ must be a (linear) unitary operator is showed below
using active formulation; the results of any analysis are independent

of the two view points of th formulation of parity.

In the active sense formulation of space reflection the space axes
fixed and the "body" (or body axes) is acted on. The active transforma-
tion reflects the physical system * through the origin so that what was .
at point X is now at point (—;). The procedure changes E to -3 but
axial vectors like E = X x 3 are left unchanged. Parity transformation
may also be realized in equivalent way by reversing one coordinate and
rotating through m around the axis of that coordinate, for example,

Ry X = (x*, -x2, x¥)
(2)

g - - . -
e¥' ™, R, X = (-x}, -x2, -x?) = - ¥

The reversing of one coordinate is essentially equivalent to taking the
mirror image of the system in the plane perpendicular to the correspond-

ing coordinate axis. There is no difficulty in taking the mirror

* Note that one particular vector x can be through to -x by a rotatlon
of 180° in any of the infinite families of planes containing X and
—;. However, it is impossible to achieve this for all the vectors
x attached to the body at the same time using a single rotat1on. The

sltuatlon is clearly different in 2-dimensional case.
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image of vectors. Axial vectors (or rather antisymmetric tensors of
second rank) corresponding to magnetic field or angular momentum are dif-
ficult to handle and the easiest way-is to consider the corresponding
vector e.g. a loop of electric curvent . in place of magnetic field. One
verifies that the axial vector components parallel to the mirror surface
reverse their direction in going from object to the image while the
axial-vector component perpendicular to the mirror are unchanged. The ad-
ditional rotation by w of the image in the plane of the mirror turns an
axial vector image into its object e.g. the parity leaves axial vectors

unchanged.

To decide if # is unitary or antiunitary operator consider a single

spinless particle and the position and momentum eigenkets *

>4

7' > =35 >

=11 ]

['x’l > = IIJII s

We choose the phases so that-
f)li' > = ]-;' > @3[3' >w |-$' >

PXEDIX >uPXFX > n XPIX' > = X'|-X'> = -X|-X' >

or

P I .-
Similarly

PEE «-} (3)
Clearly - 5 R

pLot -1

Let us use the geometrical fact that

A indicates an operator acting or kets in discussionm.
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PT@E) = T(-3) P (4)

. -
where T(3) = ¢”'P*? is translation operator. Thus

—iped =1 ip+3

Pe P Pt 2 QP

or PLiPY P! = - ip implying ?i/= i whence P must be a unitary
operator,

PP = ppt a1 . (5)

That (°must be unitary follows also from the requirement that the

energy spectrum is restricted to +ve values. We discuss it below.

We note that ¢? can be looked upon as a complete rotation and as
such, for example, for j = 1/2 states we have ®2 = - 2. This stems
from the double valuedness of spin 1/2 states as a function of the co-
ordinates. However, even in this case we may redefine the parity
operator (- since a phase factor is always at ones disposal in any
unitary operator so as to secure /22 = 1. o physical restriction,

*
however, is obtained on the state vectors by this convention.

Parity of the angular momentum state |fm > can be easily obtained.

For any state vector |a > we can write
fa > = I d® rt {r'> <o s (6)
<o > swa(?') is the wave function in the coordinate space. Like-wise

for the transformed state.

* Contrast this with the situation in time reversal operation case,
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la; ref.>5P|w = f AT |F < Pl = J e T o< =P a >  (7)
since |

< F'I lu, > = <u,| .I.IF')* = <--r"'|c¢ >

Indicating parity operator in coordinate representation by the same symbol
P we may write

P<via>s=c< P e > =< v la; refl.> (8)

*
For the states |&m > we have

[m>=[d9|e¢><e¢| am >
- [ @ o >[1% Yito0)] (9)

Since - has polar angles (m-0, m+¢)

®lim > = J e [ee > [1-2 YJE {n-0, 1'r+¢)]
but _
(1-6, me¢) = PYp(0,0) = (-1)* Yp(0.0) (1)
Thus
lem; refl. > =@lam > = (-1)¥|em > (11)

e.g. the |4m > states are eigenstates of parity with parity (-1)" 1ike

To obtain the conventional phase on time reversal operation we write

<A¢|tm > = i; YT(9,¢) in coordinate representation while <9p¢p|£m> =

- YT(BP, ¢p) in momentum space representationm.
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the spherical harmonics Y?. The same result could also be obtained using

momentum space representation.

The parity of a single object, described by a unique state vector
la >, is a dichotomic variable; the eigenvalues of parity being =+ 1. We
may introduce a 2-dimensional parity space and represent in it the two
parity states by (3) and (?) corresponding to eigenvalues (+) and (=)
respectively of the parity operator represented by 2 x 2 matrix = (é 91)-

A state vector |a > can be then decomposed as

la 22 Jaz 4> @ () + las->@D) (12)
where |a; + > behave as functions (number) only w.r.t. the parity space;
with respect to all other attributes they are still state vectors, with
n/2 components if n is the number of components * of |a >. A state

with both |a; + > # 0 is called asstate of mixed parity. We note

Pla> = la> @) - las > ® (9) (13)
so that | '
lmn()d)-%(h>+]mrﬁ.>)=%(ﬂ+@”u? -
la;+>®(?) a Jf (la > - |a; ref. > ) = -;- (W -P)}a >

are states of definite parity constructed from |a> and |a 3 ref.> .

Under parity operation a ; + > s o ; + > while la3e > —p - |a; =>.

The transformation of spin operator under parity is defined in

analogy to the case of L
- -
Ps P as (18)

The Dirac wave function constructed out of two 2-spinors.
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- - -

so that PIP = J e.g. parity commutes with rotation operator J. This
=

could also be checked from the matrix representation of (P and J already

-+

discussed. The operators K, however, behave as vectors (see also next

section) -
- -1 -

PP =-K (16)

as can be verified by using say the-matrix representations of poincare

generators. The helicity operator is hence a pseud_c:—scalar operator and
-

> +
helicity changes sign under parity operation, _T% 1. . %F]: .
P

4.2 - PARITY OPERATOR ON BILBERT SPACE: SINGLE PARTICLE STATES

We now consider the parity-operation acting in the Hilbert space
# of state vectors. We continue to denete the operator in H (correspond

ing to I.) by ¢°. From the group multiplication law for operators
PuLy e « ety Lt (17)

where L = (A, a) is any element of RIHL and U(L) the corresponding

unftary operator in #. Then.the identity

PUL, L)P™ = PUL) P P u, )P

leads to
eiw(Lle) - eim(l.l) eim(Lz) (18)

e.g. e'®L) form a representation of RIHL by complex numbers. It may
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be shown ¥ that there is only one such representation viz. ei“(L) = 1.
Then
PUL)AT = u(I L I]) (19)

The unitary of (> can also be easily demonstrated. Consider a time trans
lation i.e. L = (T, a) with a¥ = (t, 5). The corresponding operator

1Pot, Thus © e'P't 21, WE, a) = EP't hore a, =
= (2%, -3) and we used 1.(T, a“)I;‘ = (0, a). Let |x > be a state

is U(L) = e

vector which+is an-energy eigenstate with positive energqy E. Then
1}
» ° a
E1P t@lx 5 - pe'lp tlx > = Pe‘]Eth( > = ei"iEtplx 5 (20)

According as ¢ is unitary or anti-unitary operator. If we require Plx >
to be a positive energy state, say, by restricting the energy spectrum
to positive values, P must be a unitary operator. It is also possible

then to choose the phase in the operator so as to secure P2 = I.
. : o~ u . *k
Commutation relation of 7~ with P™ easily follow

. -l P S ’)-1 - -
,.;-;eia P o=t _ ol FP7 - u(1, (7, a) Isl) - u(m, as) - e'ias P

which for infinitesimal translations gives
Pk o7t oL pk PP 2P (21)
We discussed earlier that the Hilbert space H of state vectors can
always be decomposed in terms of spaces on which irreducible unitary re-

presentations of RIHL are defined. We thus need consider only the

problem of defining parity on such an irreducible representation space.

See Wigner:
Halpern:

** For IHL (A, a), Is’ It etc. are represented by 5 x 5 matrices.



Consider vectors corresponding to the particle rest frame (or the
c.m. frame in many particle case). From the commutation relations just

obtained it is allowed to write:

PUmF >@® o) = 5 >@ Ao > (22)

where D(P) is a unitary operator defined on h. Now from the relation
£F3't.l(L)fP-1 = U(Is L I;I) applied for pure rotations to the above state

vectors, we obtain

D) D(R) D(® ™' = N(IR 1;‘) a D(R) (23)

for all the matrices D(R) belonging to the irreducible representation of
’ [+
the rotation group. From Schur's lemma it follows D(®) = Al  and the

cﬁnvention P2= 1 then gives (n = £ 1) for single particle states
P{Inp >® Ja>) =n(Imp> @ la>)

and (24)
®im,p; a>=n|m,p; o >

n 1is called the intrinsic parity.

Now from

|m,p3a > = IU(Ap)lm, p; a> (25)
we have

P |mpia > = 0:’U(Jn'xp)0"10>Im,ﬁ;cc> = né’U(!».p_)G’"l |m,ps0 > (26)
where

P,U(Ap)a)" = W1 Ay 1;‘)

-

. =1 ~ a 0
It is clear that Is Ap Is P =P where p. = (p°, p)-
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We consider, for example, to be explicit, the helicity states. For the

rest state we have (n? = 1)
7210 A > = nj0 A > (27)

where n is the intrinsic parity; the rest state being an eigenstate of

parity operator. For helicity states

K.y
UAy) = U(R(, ©, -9))
giving "
) _ - Ky -iK, ¥
PURYPT = PURT P e T wuR)e
Thus
- -ﬂ(sl[l -
J),ptl’ Ps A>=n U(R(¢,9,"¢))e IO A >
= n U(R(¢:9"’¢))Ipo’ - -I;Rt' A > (28)

= nlpos ‘Es -A>

That the parity changes the sign of helicity is expected since helicity
operator defines the spin direction in conjunction with the momen tum

direction; in fact J-P/|P| changes sign under reflection operation eg,

it is pseudo-scalar. Likewise we show

. iKYy - o,
PIp°s -p. A > enUR)e *10, - A>=nlp*, B, - 2 » (29)
Combining the two results
PP Py A > =ntp®, By A>=1p%, B, A > (30)

For the case of massless particles no rest frame exists and only two
helicity states |m = 0, ER' x| -> and |m = 0, 5&, - |x] >, A ao,z-%, £1,..
are possible for each Pr = (Ps 0, 0, p > 0). The relative phases of
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these states can be given if parity is defined on these states. Urlike
in the case of massive particles no ladder operator is defined to relate
the phases of these states of massless particles. We define in analogy
with massive case

£im =0, Bgs 1Al > = nim =0, -Bps = 2] > e
since parity commutes with rotation

Plax0, B, 1Al > =nln =0, 5. - Al > (32)
Note also the definition give earlier:

m=0, Fer Al 5= e Pl 0, By Al >

so that
imd

Im = 0, =B, [x| > = U(R(4,0, -¢)) e~ [m=0,Pp, Al > (33)
The parity operation on angular momentum states can be now defined,
[IPl9 MA>=N (")*w 0,-9) [P, A > day
J DMA s » p(e,¢)
*
P WA > = n Ky [0 (60,0015, - 2 >a0

a7 NJ J D'Sli)*(ﬂ+¢', 7-8', -ﬂ-¢')|3' Y >dﬂ-ﬁ-. (34)

In the case of spinless particle J =2 M=m

[[Blam > = [ 15 > ¥j(o.0) dng (35)
and
@131 > = n{-1)*||F]2m >

on using
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vy (1-0, 1) = (-1)* Y™(e,4)

Y Operator (Mirror Reflections):

It is often more convinient to consider the operation of reflection,
say, on the (13) plane than consider parity operation. We define this
operator by

-TﬂJz —1n02

Y =fPe = e P - (37
Under this operation

-~ x' x2 + -x2 x* + x?

and 5o do the components of any 3-vector while for axial vector A's -A',
AZ + A2 A3 5 A%, We also note
-imd, ]|
e
and
o] = k]=[rp] = [r, k=0 (39)

For one particle helicity states

-imd
e ZIEI'II,S:I, -p'Rs A

Y][m,s], ER, A >

= (_])S“A Ilms.ss = ERs A >

]"[("1)5-l IEmQSJs ER' - A> (40)

This is physically expected since under reflection in (13) plane BR
cleariy remains unaltered but the helicity, which represents some kind

of rotation around ER axis, gets the opposite sign.
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For the massless case
‘im]2 N N
m=0, Bp.IAl> = Plm=0, -Bg, (A] >

Yimad, Bp, |A[>= Pe
> - :
= nim=0, pp.- |A{ > (41)
Same relations are obtained if we replace Bk by -Eh. Also we note
Yl[m,S] ,ER, A=§ > = n|[m,5_], 5R) =5 >
Y| [m,s] ’ER_’ A= =8> = n(-I)zsll:m,s} . -’;R’ s > (42)

(Al .oz

Y [m=0, B, - [l = a(-1) AL Al

4.3 - PARITY OPERATION ON TWO-PARTICLE STATES:
For the case of time like total momentum states the discussion is

’ *
analogous to the case of single particle states

To be precise we consider the two particle helicity states in the

c.m. frame. We recall the notation
- >
le.pi000 2> = [BA> @ 1B7,

[€,P3005 A,2,> = |kph > @ I—ER A, >

iH

|e,ps00; A A >E |k A1>® |-k x> = U(R(¢, 8,-¢)}|e,P3005 A A,>

where FR = (0,0,k > 0) and (©,d) are polar angles of K w.r.t. z axis
taken along the incidence direction of the first particle. The operator

U(R) above stands for the direct product U‘{‘)(R) ® U(z)(R).

Since space reflection and rotation commute it is enough to con-

sider parity on the state |e,p;00:A,4, > . We have

% We, however, do not have |g,p> X% |a > =n(|e,p> @ [a>).
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o

Fllk > & 1FKap>) =P8R @ A7) |k 5,

= "1"z(i'kR11>(g: tkgrz>)

1 .
s, #A 45,00, =img,(*) ~ima{2)

='ﬁznz(-]) (e Iﬁk,-k1>(3) e

|-kR’ - lz >)

-
Since |:kR, A> are eigenstates of J_and J* (e.g. states |jm>) we may
*
use

-iwd -imd -i2md .
e 2 e z |jm > = e 2]jm > = (-1)zJ |jm > (4%)

to write the r.h.s. in the alternate form

S +5_ =i, +A indgl) N ing{?) .
= ﬂxnz("]) v z(e I R"' A >® € 2 |'kRs A2>)
Thus
_ Syt5+A A -imd,
® {€,B30031,2,>= nyn, (-1) e [€sP3005-4, -4, >
S ¥s,=A 4, imd -
=n,n,{-1) e [€4p3005-2, ,-2, > (45}
and
PlesPiBhir h, > = U(R(6,0,-9)) Ple,B;0053,1, > (46)
The space reflection operation on the angular momentum states of
In fact e_iﬂ(J.n) e_in(J.n)ljm > - e-iZH(J°n) Ijm > = (-l)zjfjm>.
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two particles in c.m. frame can be obtained from the partial wave
expansion

*
[€Fi003A,A, > = 2 ﬁﬂs ol))" (0,0,0)|e.B5 I M A, >

-3 N) lesBs A Ay 4, > (47)

where A = (A,-3,). Clearly [X, - A,[< J or the possible J values are
given by
Joe A= Al A= 2| + 0, [X= A 0 + 2,... (48)

The discussion for two massless particles or one massless and

another massive goes along similar lines. Thus

* *
LNy, le,Ps9 A &, A,> =n.n,(=1) LINy &y
J J 1 "2 1'2 JM J M,-A
imd,
e Iegpg J M,-Als = Az >
But
i, J oy SJ-M, -
e l€sP3IMA, 2> = ﬁ, dM'M('“)|3sP3JM'AzAz> = (-1} l€,P3d,-MA,2,>
(49)

Thus

S 45 -

+A - -
! ’ﬁ N;(-nl JIe,p;J,A,-ll,-A >

* -
NG Plefid A, (1) :

+

Since ® commutes with J the transformed state on parity operation has the

same value of J and M = A, The states in the expansion above with

distinct J values are orthogonal we can equate the terms on each side for
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same J, obtaining
- S,¥5,~d _
Plesps 3 & A 2> = (-1) ny0,lesBs X, <A A, > (50)

We may apply the ladder operators J:+ which commute with # to obtain

N S ¥5,~d
Ple,p;dMr X, > = nn,(~1) lesps O M, =2, -2, >

J-$5,-5, -
= nn,{(-1) lespsd M, =2y, -2, > (51)
‘since (J-s,-s,) is always an integer. We can also construct parity eigen-
states by noting that (|a > £(P|a>) are eigenstates of parity with parity

+1 and -1,

For the states [JMA,A,> defined earlier by

. 2w 4c -
lesP5MA A,> = 0 - lesf> (O [IMa, > (52)

n
ol VoKl g,

-5
it is clear that (p = (e,0):

J-sl-s

@l Mr x> =npm, (1) “|Mz-2,, x> (83)

2

The parity eigenstates then are

=5 ,-§

J
2
[].JM;)\IJ\2 >tnmn,(-1) lJM;-kl, <A, >} (54)
with parity =+ 1.

For particle 1 massless and 2 massive or both massless the discus-

sion goes along similar Tines.
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Parity operation on two particle state with total four momentum p¥,

on a fixed orbit p? = ¢* is given by

Pl > = PUAIPT Ple,fii 2, > (54)
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TIME REVERSAL OPERATION

1. INTRODUCTION. TIMF REVERSED STATES.

The time inversion operation is defined as the passive coordinate
transformation
= X

I,: N
SR M

>
|

In classical dynamics the trajectory of the physical system is given by
{a(t), p(t)}. If the  Lagrangian does not depend on t explicitly
and involves only even powers of p(t) then the "time rerversed” orbit

described by {a;(t), pr(t)} where
ap(t) = q(-t) pr(t) = -p(-t) {2y

is also a physically possible solution. Since initial conditions
completely describe the evolution of the trajectory of the sys tem for
future time it is cliear from qT(O) = q{0) and pT(OB = =p(0) that the
"time reversed" orbit (for example, a Kepler orbit) will be traced in
the reversed sense. In case the reversed orbit is physically realizable,

the system is said to be time reversal invariant.

The concept of time reversal is property through of in the active
sense as "reversal of motion", it is accompanied by reversing the

direction of the momenta and spins, but permiting the time to continue
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to run forward.. Such a reversal of motion is connected with the passive
transformation t + -t through the fact that observables that are odd in
t change their sign, while functions that are even do not. Let q(t ),
p(t,) be the coordinate and momentum of a particle at t = t . After time
T 1its coordinates will be q(t, + t), p(ty + 1). Start another identical
particle off, now, (at t = t + 1) at q(t, + 1) and with momentum

-p(t, + t). Then at a latter timel(fo + 21) if we find the positions and
momentum to be q(t,) and p{t,) we say that the system is time reversal

invariant otherwise it is not so.

In quantum mechanics the wave function of the system is described

by the Schridinger equation

P
i— w(X, t) = H(t) ¥(X,t) (3)
3t

The wave function W(X,0) = ¥{0) evolves to wave function (X, T) = (1)
at a latter time t = t. Consider now a time reversed state ¢'(t)} corre-
sponding to y(t); then the system-is-invariant under reversal of motion
or time reversal if the state described by y'{t) develops after
additional interval of time <t to the state ¢'(0). The state y'(1) thus
develops backward with time. It is then suggested to consider the func-
tions (t, fixed),

o(t) = v(t, - 1) (4)

for which w(0) = ¢(t,) and y(t,) = ¢(0), that is, while ¢(0) goes to
¥(t,), when t varies from 0 to t,, ¢(t,) varies to $(0). Also t » (t -t)

leads to



99

ap(t)
= 1 — = H(t -t) #(t) (5)
at

This is not the Schrodinger equation and thus ¢(t) cannot describe a
physical time reversal state. The complex conjugate of this equations,
however, gives

36 (t
1 ¢ (t)

« H(t,-t) ¢7(t) (6)
at

If H*(t,-t) = H(t) then it becomes Schrodinger equation; in this case
¢*(t) = w*(I, t, -t) may be used to describe the time reversed state.Thus
we define it by

VXt w p (%, t, -t) (7)

In more general case H* $ H but there may exist a unitary operator such
that U Hﬂ'(t"-t)ll'z = R(t) then the time reversed wave function satisfying

the Schrodinger equations is

V%t = Uy(E, t,-t) (8)

It is clear that the mapping ¢ + ¢' is antilinear due to the antilinear
operation of complex conjugation. In classical mechanics like wise the
transformation reverses the sign in the Poisson bracket relationships
e.g. it is not a canonical (but rather anti-canonical) transformation.

The Hamiltons equations under q(t) - q'{t); p(t) » -p(t) = p*(t) change

“p'(t) =
. op'(t) aq'(t)
Sign may be corrected if the transformation is g{t) - qT(t) = q'(-t) =

= q(-t) and p(t) » py(t) = p'(-t) = -p(-t) since

sign q'(t) = - where H'(q,p) = H{q',-p'). The
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darlt) oM dpr(t) oM
dt  apr(t) dt 2a7(t)

(3)

Here HT(qT(t), pT(t)) a H(qT(-t), -pT(-t)). Hence if Hy s the same :
function of (qT, pT) as H is of (q,p). Then if (q(t), p{t}) is a solution
of the equation of motion so also is (qT(t), pT(t)) = (q(-t),-p(-t)).

We thus know that the mapping |¥ > + IYT > is not unitary. For

physical reasons we must require

l< ¥ (2)|¥(1) > 2= [< ¥(2)]¥(1) >|? (10)

Since <¥r(2)[¥(1) > = < ¥(2)|¥(1)> holds only for unitary transformation

we must have
< ¥p(2) [¥5(1)> = < ¥(1)|¥(2) > ()
and the corresponding mapping (according to Wigner theorem) is antiunitary.

Such a mapping can be realized in two ways:

1. map a complete set of states {|n>} on to any other complete set {|n>}
and map a general state

¥ > =2 cnln > = L{n >< nl¥ > (12)

[¥>-zClf> (13)

We will call [n>asreversed states. For example, {{f>} may be time

reversed states and |¥> 1is then the time reversal state of |[¥> .
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2. map the set {[n>} on to set of bras {<n|} and |{¥ > on the bra

<¥ =z¢, <n] = (jp)t

(14)

The end results are related in the two cases by hermitian conjugation. It

is worth remarking that the definition of the mapping above depends on a

definite choice of basis vectors |n >. It is convenient to introduce a

unitary operator R such that Rin > = | >, R'R = RRY = 1 e.g. R = L|m«<n|
n

and an antilinear operator K which takes complex conjugation of all the

expansion coefficients of the arbitrary ket in terms of the

basis {|n >} with which one is working e.q.,

* .
Kl¢>=Kz C,in> =3 Cyln >

Since K2 = I it follows K = K™'. Thus

[¥>=RK [¥>= @ |¥>

where ® = R K is antiunitary operator with the inverse @

A few properties of antilinear operators are worth reminding.

5.2 - ANTILINEAR OPERATORS
An operator is antilinear if it satisfies
A(M) = A" (AD) anti-
A(w1+ ¢2) A;w1+ A v, - lipear

particular

(15)

(16)

- | -1
= KR .

(17)

The inverse A"1 is also antilinear. The bra-ket notation is inconvinient

and we will use the parenthesis notation. A hermitian conjugate or

adjoint operator A* can be introduced by the relation:



102

(b, A9) = (AT v, 0)" = (&, AT ) (18)

The demonstration goes as follows: (v, AlP)* = aw(g&') for a fixed y, is 2
linear function of ¥ e.q. alp(so1 +9,) = aw('ﬂi) + aw(wl) and aw(xtp) =

= Aaw(so). Thus there exists a {uniquely) defined vector %, such that

*

aw(wl = (a,, ¢). We note also () = (o), 9} = (0, AD) =2 (p) =

= (A &, ,¥) giving %y A %ye Varying now y one sees that there exists
a uniquely defined antilinear operator AT such that %, = A‘rw, obtaining
(0, AP" = (A'y, ¥). Similar considerations applied to (y./AY) where A
is linear operator leads to introduction of adjoint A* but with the cor-

responding relation (¢, /A Q) = (!A'i'w, ®).

We can easily demonstrate that (AT)* = A, (AB)+ = 87 AT where each
of the operators is either 1inear or antilinear and we note that the

product of two antilinear operators is linear operator.

An operator is antihermitian if it is anti-Tinear and satisfies
AT = A, is antiunitary if AT = A™'. The adjoint KT of complex conjugation
operator K can be seen to be-antihermitian and antiunitary. In fact from
the definition of K it is clear that it leaves the basis vectors {|n>= u }
invariant,

Ku =u or Kin>=|n> (19)
Thus if ¥= L dn up, and ¢ = E.Cn u, we have
-* * * *
(v, K@) = (; Cou, Zd o u) =2ZCd(u, u)
while (KT, ) = (zC KT u,2d u)=szzC d(u,u)
» ¥ m m’ non m onm® n

From {y, K(P)* = (K"' » ) and the fact that the basis vectors are
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orthogonal it follows that %' = K. The operator (:) = R K where R is
unitary linear operator is antiunitary, since @7 = KRt = kR = @
It is instructive to verify the definition of (E)+ explicitly (R any

linear operator):

V@) = m Yn> R ﬁ d: Up) = rﬁ ﬁ Codn (Ups R up)
((D-r b)) = (KTszcm Ups Zdo u) = (K rﬁ? Cn us(us,R+ V) s td u. )

* 4 * 'I'
={(ZZC (usRul)u,Zdul=2z2ZCd(u ,Ru){u ,u)
ms m*s® "m s pn o msn MmN $* "m/V s n

+ *
ZCd(u,R  u)=2:Cd(u,Ru)
mn MAtn m mn MmN n

Further properties of K operator are

(Ups K¥) = (KT uy 9)* = (u, o) (20)
]

(Kps ) = (¥, u)" (21)

(Ups KB Kup) = (u, KBu) = (u,Bu)", (22)

* 1In bra-ket notation the definitions of adjoint read <y|(Aj< > =
- <W|(A+|\b > and <plalp> * = < tpt&*]w >, For antilinear operators,
however, one has to exercise some came since one has |x {A)|u > =
- [<x|(A|u >]* etc. See for example, A. Messiah, Quantum Mechanics
Chap. VII and XV. See also E. Wigner, J. Math. Phys, 1, 409, 414
(1960) .
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where B is a linear operator. Thus in the representation we are working
the operation of K amounts merely to complex conjugation. Any arbitrary

antilinear operator A can always be written as
= (AK)K = K({KA) - (23)
Clearly (AK) and (KA) are linear operators and satisfy

{KA) = K(AK)K (24)

Complex Conjugate of linear operator B is defined by
-
B =XBK (25)

Care must be exercised since the definition of K depends on the basis

in which we are working. We note

8c)" = 8" ¢* (26)
8" = 8 (27)
(¥, B ) = (v, KBKP) = (Kb, BK®)" (28)
(kp, B* Kg) = (v, B )" (29)

Transpoee of linear operator B is defined as:
Teh" =" -@«sk-xst« (30)

We note

86T = [(B0)T]" = (¢ch)* 8")* = cT 8T (3n)

(k. BT K9 = (v, BY0) = (0. By) (32)
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5.3 - CHANGE OF BASIS
Consider a change of basis from |n > to |v > and let |V > denote
the reversed of |v > ., Then (:) = R K where K is compiex conjugation

operator w.r.t. the new basis, clearly R = I|7 »< vl. We have

Ve T uu, ¥) = 2 g6, v) (33)

where we write u, = |n > and g, 5 |v > etc. for parenthesis notation.We

compute (@: ¥ w.r.t. the two basis:
@w=RKy ez RuL(u0" =2 0 (0 Ry, )
@v=RKy =z £,(5,, RE)E. v

= T U (s £ 8, RENE, L u )" (o, ot

Here the summation ovepr repeated indices 1is understood. Comparing

the two expressions we obtain

(e R Up) = (s 60000605 R E(E,, u )"

or

*

" _ 1' L4
Ront = Mo Rye, Moo = (W R W dnn

where wvn = (Ev, un). The transformation {un} - {Ev} 1s unitary since

Up = Z &, W
* %*
and an an, = 2(un, Ev) (un., gv) s Gnn' etc. Thus

R=MWRW (34)

instead of the usual transformation W R N+ =WR H'i. Only if the trans
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formation coefficients W, are real {i.e. W is orthogonal) do we get the
similarity transformation theory in this problem. HNote that RK takes ¢
to the reversed state w.r.t. the basis {|n >} while RK takes to the

reversed state w.r.t. the new basis {|v>}.

5.4 - TIME REVERSED OPERATORS
To determine the operator R in order to define the time reversal

operation we require, in analogy with classical case

< wrlFlu > = < wfFle > -

< YlBlyp > = - <v[Bly >
where [y > is the time reversal state |y > = @y >=RK[p> We
require thus

<y|Flv>=(RKy, FRKY) = (Kb, RFRKy)  (36)
A suitable choise for R will then be such that

..’.*

R¥FR=% or F=RFR'=@F® (37

for then the right hand side becomes { ¥, K Y) = (¥, F w)* = (¢, T 9)

since ¥ is hermitian operator. Likewise we require that
B-RFR OO (38)

Clearly ® [pi' Xj] ®-1 = = [P-i’ Xﬂ =+ i 61:] (39)

and
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-

@LO®"'--1 - (40)

The time reversed operator corresponding to any general operator O

is then defined by

O; = RO R =RKOKR = @O®"™ (41)

whepre

® =rKk and @T-@ ' -«kr? (42)

In particular ?T = ¥ and 3} = -p. HNote that R is defined up to an
arbitrary phase. The definition implies for any linear operator (hermi-

tian or not)

QW) =07 ¥ (43)

and

(42,07 (1)) = (4(2), 0v(1)™ = (81}, o w(2) (44)

for

(Ov); =RKO 'P=RKOKR1'RK¢J=RO*R¢LI.-OT¢T
(#r(2),0r ¥(1)) = (k¥(2), RT RO K (1)) = (Xp(2), G k v(1))=
= (¥(2),0v())"

For Q=2 a complex number, Or = kf and
(b(2)s A7 wp(1)) = (w(2), aw(1))"
or

(#(2)s $p(1)) = (K1), ¥(2))
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In Schrodinger picture the time dependence of states is given by

9
i— ¥ (t) > = H(t)|w(t) >
ot
we deduce

3
S 1= l(t) >« ® HY ® 7 lur(t) > (45)
changing t + (t, - t)
d
i ;;'le(to_t) >= @ H(to-t)GD-Ile(to't) > (46}

If Hp = @ H(t,-t) @' =RH R =H e.g. His invariant under

time reversal, and if |y (t) > is a possible state of the system so is

-|wrey
at a given time t is the time-reversal transform of the state represented

(t) > = |yt ,-t)>. The dynamical state represented by |y . (t) >

by |¢ (t) > at time (t -t). In the Heisenberg picture one can show that
if F(t) and p(t) satisfy the canonical equations of motion, so also do
Froy(t) = Fr(-t) = F(=t) and B (1) = By(-t) = -B(-1).

It is clear that (@ commutes with all the spatial transformations.
Fron ® o, ®" - - p; it follows ® elia'g = e’_‘?’g @ . From
@Fxp)@ ! = - (Fxp) it follows @ e'iL'H“’ = e'“"a"" @® . Reflec-

tions too commute with time reversal.
Since spin is a particular angular momentum, we assume
- - -+ s +
®@s®@ ' =-5 or RS R a-3 (47)

The definition preserves the property of commutation of time reversal

with spatial transformations. It follows
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@i @' =0 or RIRI=-F (48)

o,

and consequently (@ ,R] = 0, R being rotation operator (R = ¢ V"M,

The invariance of an operator B under time reversal is expressed by
By = B, that is, @B =B@® or RB =BRor RB' R’ =BT or RB* R - B,
The invariance condition for the operator S = e'iBa (o real) is then
giventy @ s @' «0@BO®T _jieB i @ s @5
If B is hermitian @ S @'1 = sT. This is to be contrasted with the
case of invariance under (linear) unitary transformation where the
invariance condition is expressed by UB U” =B and U S ™' =S, The
relation @ S @ ™' =S is obtained for time odd operators satisfying
® s (E"1 = -B, We note an important .relation for the matrix elements

of S when B is hermitian and invariant under time reversal:

(11(2), @ s @ wp(1)) = (2}, S w(IN" = (ur(2)s 5T ur(1))
= (S w(2)s #r(1))s

S being linear operator, thus

(or(1)s S ¥p(2)) = (W(2), S ¥(1)) (49)

Note the interchange of initial and final states.
We will now determine the operator R for some special cases.

In coordinate space representation spanned by the kets in the wave
function w(?,t) = <_F|‘¥(t) > 1is defined by

|¥(t) > = f d*F |¥> < FlY(t) > = J d*F |¥ > w(F,t) (50)
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so that

Kig(t) > = | d3F|F > < F|‘~P(t)>*

ey

@y(t) > = J d'FJ 4 FF > < FIR|F > < FlY(t) > T
= j d*?f P T <P @] < FlEL) > (51)

Since ?op(® ¥ >) s F@|F>) we can write ¥ |®|F > = 82(F'-FR
where R is the coordinate space representation of the operator R, and

acts on the spin components of w*(?,t).
@ |w(t) > = J ST > Ry (F,.t) (52)

e.g. in the coordinate space the time reversal operation is realized by
the complex conjugation of the wave function followed by a unitary trans

formation R which acts on the spin components of the wave function.

In momentum space representation we have

x(t) > = [ @piBBue) > = [ PFIE > o(fFt) (53)
and

@lut)> = [ ¢ [ @B >S5 ® 15> oGty (54)
Now

B @5 ) « =@ 3yl > = - § (OIF »
thus

<P |@IP>= <BIRIP > = 6 (P+PR

where R is the operator acting on the spin components of the momentum -

space wave function. Then
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Cﬂww>=Jd$'ww Ro (-3, t) (55)

e.g. in the momentum space the time reversal operation is realized by
complex conjugation of the momentum wave function, changing 3 to -p and
following with a unitary transformation IR acting on the spin components

of the wave function.

For example consider the wave packet in momentum space for a spin-

less particle:

dk -iE t
[¥(t) > = I a(k)e B K > = j d*k [k > o(K,t) (56)
2r)?
d3k i t
- * . k™
(6> = @ I > - [z a’te IR
d3k -iE t
* k
Iwrev(t) > = le(-t) > = j 2 a (-k) e [k > {57)
Clearly,
0o, (Kit) = o (%, -t) (58)

The coordinate space wave function is easily obtained:

d%k i(KT=E, t) > >
a(k) e k™, Jd’k " (k. t)elk T

wﬁJJ-JWu)>-IQﬂ,

d*k i(RP-E, t) R
a"(-K)e k -J d*k ¢ (-K,-t)e'K"T

brey(Fat) = Flerl-t)> = | v
T

_ > +
.f d*k o"(%,-t)e KT

ek, -i(KFE L)
e J a (ke
(2m)

- y(F, -t)" (59)
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We can calculate the average momentum in reversed state

-1(’(‘-?+Ek.t)

ek o AR i(RTeE, ¢ .
f(zw)s j o 2(0e U a"(@ne
™

d'k a3k’ . o d%
a H ——— (k') a(K)a"(%) 83 (k-k') = - f———’k‘la\(?)l2
(2nm)? 4 (2m)®

which is opposite in sign to the average momentum in the original state,

The time reversal, it is clear leaves the total charge invariant
while reverses the direction of the current, This is sometimes called
Wigner time revereql. It is also possible to define time reversal
often called Sehwringer time reversal which leaves the current invariant
and reverses the charge, and indeed is Wigner time reversal either

preceded by or followed by charge conjugation.

We now determine the unitary transformation R for particles with
spin. Working in coordinate space representation, R acts solely on the
spin components of state vector. We will adopt also the usual "standard
basis” in spin (angular momentum) space in order to define K. In this
representation space J, and J: = (JI: i Jz) have real matrix
elements so that Jl and J3 have real while J, has pure imaginary matrix

elements. R must then satisfy (R'R = RR* o I).
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Then

corresponding to rotation by = around 2~axis, as can be easily verified *.
In coordinate representation, thus, time reversal operator is (g being
spin operator)
-inS =imS,

=e *Kake (60)
since in our representation (-1J,) has real matrix elements. From
[(:), J2 ]=0 it follows that time reversal does not change the valye
of j. Also of interest is the unitary operator (:)2. It commutes with
J, P, ¥. Time reversal applied twice in succession will bring the

Physical system to its original state. Hence
®2=c1 where |e]2 = 1 (61)

Since (:) is antiunitary the introduction of a phase factor does not
alter (@2 e.q.

(e'i{S@)g - eiﬁ@ eiﬁ@ﬂ e'ié e‘15®2=®2 (62)
Also we have

®* - @ -®: (63)

implying ¢ = s*. Thus

@2 =:1 (64)

In other words all states must be eigenstates of @2 with eigenvalues

+1 or -1, It may be remarked that in the Present case of antiunitary

* Note then R@®@(x,B8,Y)R ° -ﬂE*(a,B,Y),in "Standard basis representation”.
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operator we do not have eigenstates of (:) analogous to the case of space
reflection. In the standard basis representation of angular momentum
states we have:
-inS -inS -inS, -=ims -iamS,
M2 =e ‘e 2K=e ‘e t=e (65)

From the result

e"i(Zﬂ')J'ﬂ |jl‘l‘| > = (__-!)ijjm N

we see thatQEF!1as eigenvalues +1 for integral spin S and -1 for half-odd

-integer S, we ignore all other internal attributes.

As an example we consider the case of S = 1/2 particle in coordinate

representation:
. T
-ixo
R=e H = -i g,
. - 0_
® <-io k= pkr=x§7 (66)

@ - -1

In coordinate representation the representative of (:) 1s<?|(:)|F'> =

= RK &¥r-7). Time reversed state then is

Ppey(Fst) = f ' < F @ |F'> p(F'.-t) =RK w(F,Qt) - (67)
For free particle with m = 1/2

o) = H(KF-Et) (gj) o (K-F-Et) |12’%>
Then

(F,t) = e

N JRTO '
+'I("k r Et)(?) = e 1(k NEt)l 13. - > (68)

]
Vrey 2
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Vrey has spin and momentum components opposite to those of Y. The same

goes for the orbital angular momentum.

Time reversal invariance requires that any spin independent
—
Hamiltonian must be real. For spin-orbit term Vso(r) d-L the invariance
requires that V. (r) be real. However for a term Vp(r)E-F the

invariance condition is
* . -
R V(r)(EF) R - - V;(r) 5F =V (NEP

that is, Vp(r) is imaginary. This term, however, is not reflection

invariant.

5.5 - TRANSFORMATION OF ANGULAR MOMENTUM STATES

In latter discussions we will need to know the transformation
properties of angular momentum states under time reversal. From
[QD, J%] =0 it follows that the values of j is unaltered and only the

eigenvalue of J, will get altered. From

®@ 9,®"'®lin > = -4, @ lsm > = @nijn

(@ lim>)=-n (@im>)
that is,

®lim > = u(i, -my|j, -m> (69)

where u(j, -m) is a phase factor. Also
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3 1am > </ §(341) - m(m 1){gms 1 >

and
® @ --9,

give

@ o_fim>=-9,@|im> = -u(i,-m) J,_j, -m>

= -u(d,-m) ¥ 3G )m(m-1)]§,-m1>

But

@ J_ im > =/ §(3+)-n(n-1)@ |3, w1 >

= u(3,-m+1) i(I+1)m(m-1)]3,-m1 >

We obtain

U(j’ -m) == u(j’ -m+1)
Hence

w(d, -m = (1" g where u;| =1 (70)

1t is desirable to choose Uy S0 that the form of u(j, -m) remains

invariant under addition of angular momentum. We have

lgm 3, 3, > =L <J j2 m, m,jjm > 1:]1 m> i, m > (71)

where the Clebsch-Gordon coefficients are real in the standard conven-

‘tion of phases. Thus we require

@ lgm 3,3 >

(-])m ujljzjz js -m >
. . s, m1+m2
< d, mmim>(-1) " "y
m NI . . . :
(1" b g () £<j 3, -m, |§-m> |3 -m>li,m,

zujz|j1-m1>[jz-mz >
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or

ki J
ug(=1)7 « g (17 -1 (72)

we could satisfy thus by choosing

uy = (1) e it (73)
Thus
®lim > = (-1 M5, m > (74)
This choice of phase is also consistent with the choice of phase in the
-in$
representation of time reversal operator by GD =g 2 K 1n the repre
sentation space of standard basis. For
Kijm > = [jm > (75)
and
=-imd ,
@lim>ae  ljm>s] (™ Him> = (<13 ™5, >
Ilnl
In the special case of J = |
(E)[z. mo>s (_1)2-m|£’_m (76)
implying that in the coordinate representation
<&@l > « @<osf am> = (-1)4M < g4 gm > ()

In the coordinate representation for spinless case time reversal can by

realized simply by complex conjugation, therefore
®< opiam > = < oplan >" = (-1)¥M < gyg, m >

Since standard spherical harmonics satisfy Yg(e,¢)* = (-1)" Y2(6.¢) it

follows that
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<oplam > = % 17 (0,0) (78)

However, in the momentum space representation p + -p in addition to the

complex conjugation of the (spinless) momentum space wave function e.g.

L-m s o ene *
@< oypylam > = (1) < op0pl8,om > = <m0 g 20w >

p
Now ‘

Vi(r-0, m0)" = (-1)*™" ¥} (0,0)
thus

_ i
<9ps ¢p|2’m > = YR.(GP’ ¢p) . (79)

We note that ({2 = 1 for orbital angular momentum.

We also note an important supereelection rule: there can exist no
observables guantity which have non-zero matrix elements connecting
N N
states of integral and half-odd-integtal spin . This follows from

@2 =+ 1and @2}j... > = (-1)]j ... > so that

<i'...|Blj... > =< i @28 @2 ... >

GIINCICIRIRE (| TF e (80)

Hence the theorem.

5.6 - KRAMERS DEGENERACY
Anothar important consequence of time reversal invariance is the
Kramers dbéeneracy in the case (H)2 = - I when the states {¥ > and

@ |¥ > are necessarily orthogonal:

* We ignore here other intermal attribute,
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@) = (OO = -(@v.® OV -(v.@) (81)

and thus Tinearly independent. Thus eigenvectors of ()2 in this case
are two fold degenerate. If time reversal operation is a symmetry opera-
tion the system, in the case of (2= -1, one requires for its complete
description an additional two dimensions in the abstract state vector
space. For example, if the Hamiltonian of a particle with spin half-odd
integer be invariant under time reversal, the energy eigenvalues are at
least doubly degenerate (or degenerate an even number of time). In each
subspace corresponding to a fixed energy value we can choose an
orthogonal basis made up of the pairs formed by a vector and its time
reversed vector . If time reversal is not a symmetry operator Kramers
degeneracy does not apply e.g. in the presence of external magnetic field

(=0 J = %J states are split l1ifting the Kramers degeneracy.

In the case of 2= 1 it can be easily shown that we can choose 3n

this case an orthogonal basis al?! of whose vectors satisfy
@le>=ja> (82)

Such a real representation in which basis vectors are invariant under Q)
is sometimes quite useful. One must note, however, ) (ija > ) =

= -(ila > ). Since ile> and ja > describe the same physical state it
is not possible to introduce any physically meaningful quantum number
here 1ike in case of parity. ()i of course, is invariant under multi-
plication of states by & phase factor and is a meaningful label for

the state. We note that in a state invariant under () the expecta-

tion value of any time odd hermitian operator, viz, () A (@"1 = -A,
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vanishes:

(0.A9) = (0, DA@ '¥) = (@7, A® ') -(v, A"

where @u= e} por® 'v= e’ 'y giving Re(y, A y)” = 0. If in addition
A hermitian (Y, A ¢) = 0.

5.7 - TIME REVERSAL OPERATOR ON HILBERT SPACE: SINCE PARTICLE STATES:
We now consider the time reversal operation acting in the Hilbert
space of state vectors. Like in the case of parity operation we have

the group multiplication law
- -1
Quu® ™ =yl L) (83)

Considering a time translation, that is, L = (1,a) with a¥ =
T _5po
= (t, 0, 0, 0) we obtain @e'P @™ = u(L(T.a)) = e P L. Let |x > be
the energy eigenstate with energy E > 0, then

I¥e1) _-u - -
e1P t Dix>= @e iP t|X 5 = GDeiEtix > a e+1Et ® x>
1f we require @ |x > to be +ve energy state vectors, @ must be an

(84)

antiunitary operator. Commutation relations of () with P¥ easily follow:

-

® Pu@ . U(I,(V,a) I;) = U(T; -a®, 3) (85)

or .
1 - .
Eia-@P@ - E._'iPﬂa‘, + IP.a

Thus

@@ =r ad @PK®--K (ae)

same as in the case of parity operation.
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By adding space-inversion and time-reversal elements to the
restricted group we obtain the so called extended or full inhomogeneous
group (IHL} and by adding the representatives of P and T in to a repre
sentation of RIHL we get a representation of the IHL. The procedure

adapted for the case of space reflection.

Consider vectors corresponding to the particle rest frame. From

the commutation relations it follows that we can write:
®(mp >®@ le>) = Imp> @ Tla > (87).

where T is an antiunitary operator defined on h. From

Ims6> @® T D(R) T~ fa >

® vR® (P >@] o > )

WIR I (mE> @ la> )

U(R)(|m;p>() la>)={m;B>@ D(R}|a > (88)

We have thus,

T D(R)T™' = D(R) (89)

Since T is antilinear Schur's Lemma is not applicable. However, we showed
that we can express, T as

T = (@)K, D'D = DO = I (90)

where K is the antiunitary operator, w.r.t. a spacific basis, which
replaces the components of a vector by their complex conjugates and D((E))
is a unitary linear operator. We must then specify a basis in hyw.r.t.

which K and consequently T are defined. It follows

D(@®) K D(R) kK DT (@) = D(R)
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or

0" (@) D(R) D(@®) = D*(R) (91)

%*
Showing that D(R) and D (R). are equivalent representations and D(()) is
the unitary matrix corresponding to time reversal operator - which trans-
forms them into one another. The matrix D((:)), we recall, was found to

be
-1n52

(@) - e

the arbitrary phase chosen so as to ensure D((H)) K|jm > = (-1)j'm|j,-m> .

From the commutation relations of Jk operators one in fact has
-1 1
R, (1), R (m)= - 3, 43 R (M), R, (m) = 3, (92)

In the standard basis representation J,» J, have real matrix elements
while J, has pure imaginary elements. If follows

R, () (@8, MK (1) =R (0,8,7) (93)
We recall also

@a(m) = (1) ™ s (94)

m,-m'
and

d(my &(m < (" 0

We also note that (:) commutes with rotation operator. The rela-

tion may be derived from

® ur) @7 = u(1, R 1) = U(R) (95)
where U(R) = e 1{J"0)
=1
say along 3-axis we show (:) Ka(:) = K, which implies ((:) being anti-

Likewise considering pure Lorentz transformation,
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unitary) " ¢
-iK_- i
@e®=e’'@

Helicity operator clearly commutes with time reversal operator

[FE). ELE:] = 0. From

Ip!

Im,P;G >

WA ImsE >@ fa> ) = msp> @ o>

v

@ mpia > @U@ (ImF >@ Tla>) ~® W) E B (imfiw)

= Im;p®, p>® Tla>

s -1 ~ -1
since I, Ap I, " p= Ps» Where P = (p®, -p) and (E) U(Ap)(:) a U(Aps)
is linear operator, as expected from the commutation relations of @ with
PH,
To be explicit we study time reversal operation on the heticity
states. From the construction of the rest states and the phase convention

adapted

+ + J -
®(ms]:0 2 > = (-1)5"‘]|:m,s];0.-)\> =e " 2|[m,s:| 30,4 > {96)

For helicity states
iKy ¥
U(A;) = U(R($,0,-¢))e

and -1

-iy K
® un) @ = uRs.0-))e ®*®

-ipK
= U(R(¢,G,—¢))E

(97)
therefore
® | [m.s]:p%B;00= (-1)5°2 U(R($:85-9)) | [m,s]3p° ,=PgsA >

= (-1)5')‘|[m,.{l; P°, P, A > (98)
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where we remember that the last label is the helicity label which for the

rest states it is an eigenvalue of J, operator. We also note
®|[mosj; pOER;l > = ('])s-lltm:s]; pos 'Ea;l >

= &' ™2 [,e]; o0, Bpar > (99)

To be precise time reversal is defined in the standard basis representa-
tion of angular momentum. The operation of complex conjugation K leaves
basis states invariant and is thus suppressed. Care must be exercised
when applying time reversal on a linear combination of these states. With
our choice of phase conventions no extra phase factor arises for time
reversal acting on |3R,‘1 > states neither depending on p nor on A. For
the case of massless particles we may define
-{md

@m0 Bps 2 Al >=e im0 Bp.  A] > (100)

Not there arises no extra phase dependence -in going from |A| state to

- |r| state can be seen as follows. The two states are’ connected by Y

operator
YII'Il'O, 3R’ Ik|> = Tllm=0g ERs - IAI > . (10])
=imd -imd -imd -imd
where Y = % ‘= e zP,whﬂe®=e *k=ke 2
-imd -imd
@Y = Y® and Ye ‘=e ¥ (102)

Therefore
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N -1WJ3
®Y IpR- IM"' n ® IERS‘ IAI)' Y ®|3R’ l’*l" =Ye Iagi 'll >

imd ind (103)
=1mJ, =1md,
=€ YIBRa = Ix>=ne IBR’ -IAf >
Analogous result when Bﬁ + -Bh are obtained (E)I-Eh,x > =
=jrd
=e z[-ﬁﬁ, A > for both massive and -massless case. Since space rota-
tion commutes with time reversal we have also
=ind
® (8, 2> = U(R(6,0, -¢))e *|4Bgar > (104)

The time reversal operation on angular momentum states can be

derived from
- J *
[{pfaMx > = N, f D,S,,L’ (6,0.-4) |p,) >dn
> =imd -
® 1131w > < 07 [ ofDie.0, -0) UR(6.6, -6)) € *[Bpor> da

= W15 [l (,0,70) [Bor> d = (-1)S W] o) (r4,1-0,-1-0) [B. 1>

(105)
For spinless particles J=2 M=m Ny =Ny =/ (2041)/4m
1Blim > = [ 13> ¥70,0)0
and
> * > - -
® |13 > = jYE (7-0, m9)[B > do = (-1)*™" f Y.(0,4) B do
(106}

= (-1)*™ | iBle, -m >
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5.8 - TIME REVERSAL ON TWO - PARTICLE STATES

We consider the states in c.m, frame with the particles moving along

3-axis
|e,B:0052,2, > = [Rg 2> @ |-kp 4, >
th “
- -tmaf?) i)
®|E.5300;7\112> =@ |iR 11>® ¢ |'kRAz > - (107)

This is by definition same as

-ind
= e " 2(lifR Al>® |-iER A, > ) (108

where J = 3( Y + 3‘ % is total angular momentum operator. Thus

“img
@le.p:00; M2,> = Ke [e.P30052,3, > (109)

where we insert K to remind us of antilinear nature of (. From the

partial wave expansion

|€,B3005 A,2,> = T Njle, B3 9 A A, ¥

[ SR |

we obtain

(Kie,psdM A,2,>

lesps IM; A%, >)

5. 3-2 .
‘EJ NJ® Iessz AAA> =L El NJ(']) GM',-AIE’p’JMl Alkz >

J M

- Ny(-1)7 A euBs 05mh, A, >

since @ commutes with rotation operator (or from [®, J’] = 0)

it follows therefore
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®le.psd A 32> = (1) Me B30, a3, > (110)

From

@, @ = -y,

@9, le.B5 I A A2, = =(35) [€,B3d,-A, Aag>(-1)9
or

@lefson 21,20 = (1)IMW e 5,051, 0, >
Hence _
@ lesbs M5 20,5 = -1 Me s 0, w5 a0, > (1)
as was expected,
For the vectors {JM; A;),> defined earller, we find, since the

coefficient is real and |e,b > is unaltered (@ P @} = P?)
® (M5 22> = (-1)%M (0,00, > (112)

Time reversal operator can be calculated for the ¢c.m. state wifh
relative momentum of the particles oriented along I(e,¢) by observing
that

1€:5:00; 2,1,> = U(R(4,0,-6)) [e,F:00; A2, > (M3)
and that (® commutes with rotation operator.
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OTHER SYMMETRY PRINCIPLES

6.1 - IDENTICAL PARTICLES: * SYMMETRIZED STATES:

When the two particles are identical the two-particle state has to
be symmetrized or antisymmetrized. We introduce the symmetry operator (3,
which interchanges particles 1 and 2. Since #,, commutes with rotation

operator we may only consider the state
€,5:0050,2, > = [[m.s)s Kp, A3 1> @ I[Ms]s Kpa 252> (1)

where we introduce extra labels to distinguish the particles. Thus
@u[e.ﬁ;OO;Al}\z > = |ER,11; 2> ® ]-IR' )\z; 'I.>
o imgt?)
™ {(_'l)s 11 e11TJ£ |-k’R, )LI; Z> ®

1y .,
(-1)572 it lkgs 2,5 1>}

={(A+2,)

= (-1) e'i'lTJg {]..-;:R' 11;2 > ®“:R' Az; 1>}
(2)
where 3 = 3030 + 382) . or alternatively ((-1)*% = 1):
-(A,+1)) +ind, >
SR e T itk 22> © kpargs 1> 1 (3)

% See for example: Quantum Mechanics vol. II, A, Messiah, Chapter XIV;
~ Quantum Mechanics, L. Landau,
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Hence ([A,~ %,]is integer)
B, lePi005a 2, > = (-1)*57A1M2 o 1My 5iggia > (4)

which is analogous to the parity operation on two particle state. The
permutation operator is represented by a unitary operator.. Since Pn comm
mutes with rotations we can derive, using partial.wave expansion of the
states |e,p;00;X,%, > the transformation on angular momentum states

G M2, > = (-1)J-ZSIJM;12A1 >.

According to spin-statistics theorem bosons have integral spin and
fermions have half integral spin. Also two particle state must be symmetric
if the particles are bosons and antisymmetric if they are fermions. Thus
the appropriate states are obtained by applying the operator

1e ™ e, ] (5)
to the Unsymmetrized 2-particle state.

The appropriate states for identical particles are

+ imd

[le,ﬁ;OU;llAz > + (- e 2IE.ﬁ;OO;m1 >] ' (6)

For angular momentum states they are
N [lamrn, >+ (0 g, > ] (7)

where J is necessarily integer in the present case. We also note that

* A (Al -A,) is simply the J, value e.g. the total spin component in
the C.M. frame along the 3-axis and thus the possible J values are
Jow Ay = A0, A, = A, [+ 1 ...



130

“1 - ',\z| £ J and for J odd only A, # 4, states are possible.  For

A, # A, the normalization factor N is = while for A, = A, it is 1/2.
2 : /2\

This expression should be compared with parity eigenstates for
identical particles

'-  [lJ“ RGP G I TR WAV (8)

For example for two photon states (AY « + 1) the. states |11> and

[-1, -1 > must.have J = 0, 2, 4 ... while the states_.|1,.-1> and

|-1, T > must carry J.2.2. Thus a spin one particle cannot decay into
two photons. The symmetrized eigenstates are given by [11> , |-1, ~1 >
and 1 [l],-]).i |-'I,'l>:[ according as J is even or odd. (J »2). The
paritgzgigenstates.arE“(S*I)- L [l11 >+ |-1, ‘1%]-30d--

'55 {ll,-l > :;(?I)J |-1.1%]. ME;nce only states possible for. two photons

o the type 4= [111 >+ |-1, -1 {] and 2%, 3%, 47
/z_ - » ’

are 0, 2, 4
of the type 1 [l,.-b + |=1, 1 >, upper sign corresponds to J{ > 2)
even while thf]ower to J.odd. Another example is w* 7° state. The sym-
metrized states for.J odd does not exist e.g. w?, p® are forbidden to
decay into 2m°. The J = 0 state in this case carries even parity imply-

ing that a 0™ particle cannot decay into 21° e.g. n {e2n°,

The principle of definite symmetry properties for. two particle
state can be generalized.to include all particles belonging to the same
isospin multiplet if the electromagnetic interaction is neglected. In such
a case all the (2I+1) particles belonging to the same isospin I multiplet

are treated identical (e.g. different charge states). The complete wave



13

function of the particle is now the direct product of the wave function in
charge space with the wave function constructed above and appropriate symmetriz.

state of two identical particles is obtained by applying the operator

s
C[reenme,e,n] )
where Plz is the permutation operator in isospin space.

From angular momentum theory we know

Fizljszjm 7 ; % 0:)12(I'11“"1>|‘j2m2)) < 3y 3,mm,|im > 6m."h* m,
2

1

= z z 53m2>|j1m1> <jljzm1mzljm) Gm. m, +m,

c.z z{ljzmz >|j1m1> (-])j'jl‘jz<jajlmzml|jm> Gm,m1+ m,

e (-1)379:732 5.5 4m > (10)

Hence for identical particles belonging to the same isospin multiplet I,and

carrying the total isespin (I, I,)

el (-2 (m

and appropriatly symmetrized total wave function incorporating the spin

statistics connection is

JIELEW R S AN E Pt A LI RVWED B A (12)

If A, = A, then (J +1 -2I,) must be even,

In the LS-coupling scheme
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[UM;LS > = ] LM > |S S, SMc> < LSM_ Mg [oM >

a.z-TLNL>< LSM Mg |M > (]S, m,><S,m, ><S S.mm,[SM. >

6312|JM;L5>Slsz =1(®,|LM >)<LSM, Mg [OM>< S S m.m, [SMc > 8 (|S,m,>|S,m,>)

« (DML < LS Mg Il (S5, S >

s (-1)E¥57817S2 g5 (13)

stl
where we used the fact that for relative orbital angular momentun the @,
operation is the same as the parity operation.

Thus for identical particles the symmetrized states in this case are

R e N S e I T
w.r—' i

a N [1 + (-1)L+S+I-ZI£’|JM‘;LS;I 1, > (14)

that is, (L+S+1-2I ) must be even.

Note that we couple in this scheme the spins of particles which are
in movement in c.m. frame. However, the nonrelativistic treatment used

can be given relativistic justification.

*
See, for example, Mc Kerrell, Il Nuovo Cimento, 34, 1289 (1964).
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6.2 - PARTICLE-ANTIPARTICLE CONJUGATION: (CHARGE CONJUGATION)

Charge conjugation operation 1is defined as the mapping of the physical
system into another physical system in which each particle has been replaced
by one with opposite Value of internal quantum numbers lke of charge, baryon number
strangeness and lepton number. Thus C transforms a particle into its anti-
particle leaving unaltered, however, the space time description of the

system,
Cl[m.s]s B A5 o> = [[m.s]; B, As &>
where a refer to the quantum number @, B, S etc. The anti-particle label

& contains these labels with their signs reversed. Clearly
Cé =g [
Requiring that C[x > be also a positive energy state if [x> 1s so, that is,
. o . : ¢
el P 8 (Clx>)=e1Et(CIx>)=Ce‘Pt]x>

We conclude from ¢’ (i P)C=1iP'and C' PP C = P* that C must be a

unitary operator. Than we can redefine h the phase convention to ensure
C®al

and ¢7 = ¢ = ¢. Also Ny = q: with }nal =1,

o
The quantum numbers Q and B are always conserved €.9. satisfy super-

selection rules meaning a state can never be a superposition of states with
different values of Q and B. If Q =B = 0 we can construct eigenstates of

C,




C{l...a>*n f...a> =+{|...a>+n|...

For the case in which particle state is identical with its antiparticle
state {e.g. Q=0 B=0 5=0, etc.) we can define charge parity n = + 1 for the
particle. The one-particle states of this type are n®, p°, 7%, ®, %, y
etc. The action of C on many particle states is:obtained easily if we
regard the state as direct product of single particle states and C is ap-
plied separatély to each single particle state. For a particle-antiparti

cle pair specially we note for angular-momentum states, for example,
C|IM; XA, 5y >=[IM; A0,y >

the phase factor on the R.H.S. is one since the product.of sfng1e particle

and its antiparticle phase factors was seen above.to be one. Regarding

the particle and antiparticle as identical particles.differinmg only in

their internal charge labels the connection between spin and statistics

may be applied e.g. the appropriately symmetrized states for particle-anti-
particle pair are.given by applying the operator [I +.(el)2s € ‘i;] to un-
symmetrized state where €12 is the permutation.operator which interchanges the

space and spin labels of the particle. Thus the appropriate states are

[19M:0, 257> + (DY clamaggsy > ] =M, sy >

Since

A

Cﬁ%2|JM;A1A2;Y > = (-'l)2s [IMA A, 5y >>
and

GﬁzldM;llhz;y >> = (-1)J |JM;1211;Y

v

>

we have

ClaMiA 2, 5y >>= (—1)J | OM3A A, 5y >>
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The symmetrized angular momentum states of particle-antiparticle are thus
eigenstates of C only if A, = A+ When A, # A, the states

DJM;AIJ\Z Y >> + [JH;lzf\l;y >>]
are eigenstates of C with eigenvalue + (-T)J.

For states in LS coupling scheme the symmetrized states are also eigen

states of C operator,

[]JM;LS;Y > + (-1)L+S C|IM;LS;y %] = [OM;LSsy >>

ClaMsLSsy >> = (1)L jumsis.y »>
for partic1e-ant1partic1e pair.

Eigenstates of C are possible only when total internal charges in the
system are zero, that is, B=0 S=0 and Q=0. Charge conjugation symmetry
{C-invariance) invariance thus gives selection rules for transitions between
such states. For strong fnteractions, however C-invariance can be
combined with isospin invariance to extend the selection rules for Q#0

cases 1if charge independence is assumed to hold *.

*
See for example: Carruthurus, Unitary Symmetry, (Benjamin N.Y.).
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.

S-OPERATOR AND S-MATRIX OF “IN" AND "OUT" STATES:

| 7.1 - S-MATRIX POR STRONG INTERACTIONS:
Any scattering process due to strong interactions may-be described
in terms of initial and final states of non-interacting particles. This

is possible due tq short range of these interactions.

We assume the existence of a Hilbert space of physical states .
(Heisenberg sta;es).whieh is spanned by both a éomplete-set:off orthonormal
Heisenberg "in" states {|¢,; in >} and by a complete .set. of orthonormal
“out" states {Iwa;.out >}. Both "in* and "out" states contain vacuum, one
particle states, two particle states (non-interacting) etc. We assume also
|0; in > = |0; out > gnd i1, in> = |1: out > for the vacuum.and one
particle states.. .Since.we are in Heisenberg picture the states are fixed
and the operaters carry the time dependence. The "in® and."out" states are
not states which go over one into another as time changes.frem t = - = to
4o, rather the system is described once and for ever either.by the "in"
states or by the "out" states. These are the eigenstates of.the assymptotic
limits of changing operators. Since these operators are different for t =

=+ and t = - = the corresponding “out" and "in" states differ also.

The S-matrix describes de entity of all possible results of measure-

ments at t = + = when the state at t = - « has been given. According to
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rules of quantum.mechanics we expand the given state Iwa;.in > w.r.t. the
eigenstates of the operators which belong to the next measurement viz, the
“out” operators. Then
W3 in > = 'S, [y; out > M
b

Then |Sba|2 gives.the probability to find the system in {¥y, out > state
when a measurement.ﬁnout" is performed and the system was in state lwa.

in > before the measurement. Sba depends on the interaction that took

place. Clearly
Spa = <¥ps out|y.; in > | (2)

*

’ 2 » a2 * ’
Also ZISbal = <y,3 in jy,sin> =1and § Sha Sbe = L Sap Sep = Sac
b b b

We may thus define a S-matrix operator S as:a linear unitary operator

which connects the complete sets of “in" and "out" states

[¥ys in > =.S|wa; out >, lwa; out > = S+|wa; in > (3)
and
=1 to ot _
Aip =S Ayt S s 5S" « §'S =1 - (4)
It follows:

Sba = < g5 out [S|y,; out >

. (5)
= <gps in S} g5 in >

S is clearly given by § = {Iwa; in > WPy 3 out |. If there is no interaction
a

[w,s out > = |y, 3 in > and
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Sba = < W3 1n|wa; in > N (6)

In the presence of interaction transition ~to final.states can take place
in two distinct ways: without having taken place any. interaction or after
having taken place.actual interaction. It is thus suggested to define a
non-unitary transition matrix-Tba by

Spa = Vps inlwa; in>+1 T, (7)
and introduce a T-operator

S =1+ 14T . (8)

Tyy = <Vp30ut|T[y,s0ut > = <y sin|{T{y,; in > (9)

Unitary of S implies

T = =47t (10).
Transition probability is then given by

ISba =<3 1n]wa; in >|2= ITbalz _(11)

We note also

[9y5 out > = [yys 1n> = 1 THy 5 4n > (12)

The invariance of S under a invariance transformation affected by an
operator 0 is, as . we c‘l.iscussed earlier, is stated by

0 §"0'1 =S for unitary transformation

and by

0s0™} = s* for anti-unitary transformation
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This corresponds to the commutativity with 0 of the correspoending hermi-
tian generator of .the unitarity operator S, viz, if S =e' 5% B* . and o
real then

[0.8] =0 (13)

We will assume 1in the.spipit.of.the'princip1e.of.relativity that the S-matrix
is Lorentz'inyariant'(or rather invariant under RIHL). The matrix elements
Sba regarded as functions of the states !wa > and Iwb>.1s.thus a scalar

under forentz transformations *. We showed that a unitary (infinite dimen-
sional) representation of the Lorentz group is defined on the Hilbert space

#, to which the states belong; the unitary operator associated with trans forma
tion (A,a) is U(A,a) defined on 4. Then (suppressing the in (“"out") labels)

UISIvy > = < lUs Ulv, > = Uy, 50 w) (1)

Lorentz invariance allows us to calculate the S matrix elements in any
convinient frame of reference connected to the Taboratory frame by a Lorentz
transformation. We will. frequently use the c.m. frame. Translation and rota
tion invariance in particular imply that the energy-momentum. 4-vector and the

total angular momentum is conserved during the transition.

L S .
From U S U =S it follows

[P, S]=0  and [3, s] =0 (15)

*
This clearly implias that the states, say Iwa; in > are normalized in

invariant fashion since Sba reduces to < wb; in |wa;in> in the absence

of interaction.

. ._’*
** g, a) = elp.a and U(R,0) = e_lJ.n¢ .
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Thus if the initial and final states are eigenstates of 4-momentum we have
< |PPS -8 PHiy, > =0 (16)
or '
(ph - ph) < ¥ylSlw, > =0
leading to
<uy(Stw, > = 6*(p} - Py) < HyiS(p,)1¥,> (1)

Thus the invariance of S-matrix w.r.t. space-time translations allows us
to write

Spa = (2M* 8%(pp - L) Spa(P,) (18)
where Sba(pa) are the matrix elements of S operator on the energy-momentum
surface. We may write

sba(pa) = <%|s(pa)|ca > (]9)
Also

<‘pb|wa > = (2‘"‘)“ sutpb- pa) < ablu'a >

Here o are labels.other than total four momentum. In fact. we showed
earlier that the states in 6 are spanned by the states of type |p> @ [0
where < p'[p> = (2m)* &*(p-p'). Thus

iTya = (218 (0P [Sya(Py)-<ap lop] (20)
We may define transition matrix elements on energy-momentum surface by
Tyy = (2m)* 6*(p} = PR} Tpa(Py) (21)

where
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i Tba(pa) - Sba(pa) - “blaa > (22)

In more formal way we may write

S=1 @ S(P) (23)

where

SpalPa) = W IS(P) ¥, > = <o IS(p,)]a, > (24)

and |y> = |p> ® |a>. Likewise we may write

T=1@ T(P) (25)
where

S(P} = I +1 T(P) (26)
giving

O IS(p)ley > = <apla> +1 <o |Tpy)le, > (27)

We note that we have adopted covariant normalization for the states so that

<ap|T(P,) e, > is also Lorentz invariant,

The completeness relation corresponding to the covariant normalization

adopted (suppressing the factors n ):

PysPyaee PpiklPys Pys Pyen ppsk> = (2m)*M(2pt., 2p1)8% (B, ) .. .6 (B, -B})

(28)
is given by (say for out -states)
d*p N .

I-IO;out><0;out|+ )) J IpsA out> < p;A out| +

A (2m)® 2 pt

d3p1 d’pz + -+ - -

) H [P, A, 5 P,A,; out> <p PLA, out| + ...
x}, (2m)? 2p®  (2m)t 2py MM T PR iy

(29)
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Therefore

[y, 3in>= S{w,sout >

dsp - .
= |0;out><0;out|$|wa;out>+ ) J _— Ip,h;out><’ﬁ,)_\;out|S|wa;out >4
, ° (2m)® 2p
| (30)
d*p
"It is clear that we can interpret, (in our normalization), ————r since
(2m)? 2p°

the completeness relation involves sumnation over all the states, as the
number of momentum states {IF:*} available with momentum E.centered around B,
in the range p < p € P + d*p. In other wards the density of states in
1

momentum space {§ ————— . Thus, for example, the probability for find-

(2m)? 2p°
ing , in the final state, after interaction has taken place, two particles
1 and 2 with helicities A, and X, and with final particle momentum in the

range 31 £ Fi £ Ei + d’pi. is proportional to *

dsp dsp
(2m)® 2p}  (2n)® 2p;

|<B,A,3 B, 2,3 out S| v,; out >|?

d*p, d*p
=|<_|;A;-|5k;'in [S] .5 in >|? 2 (31)
171 272 a (2“)3 zp: (2.“)3 zp:

The probability amplitude ,w.r.t. measure d?p in momentum space, is

proportional to:

1 1
(2“)312 /25?_ (21)3/2 Jzﬁg

< 31A1 : 3212; in|S|wa; in > (32)

# 1f {|i>} is a completa set of states normalized as <i[j> = N; §;; the reso
lution of identity reads Eli> ﬁl— <i| = I as can be cheked by applying it to
a state |j>." The expamsion of & state reads |¢> = [|i > %& <i|y> and
<Ply> = § ﬁ%-|<i|w>|2. Thus the probability amplitude corteSponding to

state |i> fs <i|¥>/ /N PP .
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which is clearly not Lorentz invariant since it has been defined w.r.t. to
the non-covariant measure d’p for the integral in momentum space. This
non-invariant probability amplitude multiplied by the factor /Zp¥+ 257
gives the invariant probability amplitude < ;111; HZAZIS]wa > defined w.r.t,
the covariant measure ___ifﬂl_._ in the momentum space. This observation

(2m)? 2p°
was first made by Mgller in 1949,

We note also-that for the cases |¢a> # lwb > we have Sba = i T, and
probability [Sbal2 = |[Tp,|?> the transition probability. In the case the
initial and final state may be coincident it can be shown * say, by cons-
tructing wave packets for the initial and final stafes that the transition
probability is still given by the amplitude |Tpal?+ This is otherwise clear

since it is Tba which determines the transition amplitude.

7.2 - CROSS-SECTIONS AND DECAY RATES:
The transition probability can be connected to the experimental ly
measured quantities, for example, the decay rate of a particle or scattering

cross section of two ingident particles.

*%
It is convenient to go over to box normalization . The spatial
e
part of the wave function of a plane wave state of momentum p is e'PX

satisfying

* BSee for example: Goldberger and Watson, Collision Theory or K. Gottfried
Quantum Mechanics, Vol. I or S. Davydov, Quantum Mechanics, Chap. XI.

** See for example, Martin and Spearman, Elementary Particle Theory, North
Holland.
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f ex(elP %) (P %) o (2m)280(3-5) (33)

as the scalar product of two plane wave states. The delta function indicates
that there is a continuum of values of p due to integration over an infinite
range. If, however, we restrict ourselves to a finite box.in space such

that - L < x; €L and impose further on the momentum eigenstates
ipeX _ =+ _ipX

(Eop e =pe ) the periodic boundary conditions (i =1, 2, 3),
+ _ _ipX '
¢3(X) ~ e )
8,(x; = - L) = ¢ (x; = 1) (34)
P P _

the momentum spectrum becomes discrete e.qg.

pi'ni(f) n1.-o,11.:2. res (35)

The allowed momentum eigenvalues form a three-dimensional lattice of points
'p'(“) with spacing % . .The corresponding wave functions %(ﬁ)(;) from a

complete set of periodic functions in the box with the finite normalization

. -»(m). - .. +(ﬂ).
I(e‘--P Xy* (el BHIeXy gy ”6'6('“)‘ (0 (36)

¥

where V is the volume (V = L*®) of the box and & is Kronecker

*(n) 2
delta. Thus-]-- e‘Ip X
"'

;(m) ;;(n)
are orthonormalized wave functions. The rule of

going from box normalization to infinite volume normalization is clearly
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Vom siny T () S(EBY) (37)

Since
Ly Sm sty FE") = ) (38)

hr2d

and

5(B-B') £(3') d*p' « F(P) (39)

S

we conclude the rule (p(" —aD):

]; )(.n) — [d’p . (49)

P (2m)?®

The normalized momentum eigenstates

KM 5 o Lo B

) ®) (41)

correspond to probability density %-at any point in the box, while the total

probabjlity density integrated over, the box volume V is one. Since
< E(n)lp(n ) > = 6 a(n)’ E(n ) (42)
and

<BlB'> = (2m)* 2 p® §2(-B') - (43)

we have the rule

vV NTSL) PO (44)
Vop®

For example, it implies:

<X|[p>= /2pdelPX- (45)
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which is clearly true. Also

d?
I ____?_E_“_ 13> B| ——n ) 13(“)> < '5(")| (46)
(2m)® 2p E(") .

so that the completeness relation reads

I = |0,out><0,0ut| +§ ¥ 'IE("), Asout> <3("), A out |
-
A pn)

+1 1 l l |E£n) A Egm) A, out><'|§('“),\l : '55'") A 0ut| + ...
M pm) ) ‘ o

and

[¥21n> = S|y, sout> = |0,0ut><0 0ut |S |y, s0ut >
+ 2[3("),A;out><ﬁ("),A;out|+ISIwaiquf>fzzlﬁf"’lt;ﬁﬁm)lzout>

-3n
< p{n)ki; ﬁﬁm) A, Out[S|y,sout> + ... (48)
Thus the transition probability amplitude from a state of two particles to a
state of n particles is

) (n) o (ng) _
Pgimd, glm) A m YL (49)

() ng) _ n

L
Alp

collectively quantum numbers other than momentum in the final and the initial

) Jn)) _ -
where we used < p PP, # 9; % >=1 and where A, X denote
state resﬁectiver. We may use the four momentum conservation to take out

the Kronecker delta and write equation (7.49) as

1 <a®|T(p,)]0,2%%> (50)

631 s-pbf GP-? ap-?\‘
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where pfl'l and p}.u are total 4-momentum vectors in the final and the initial

state.

We may translate it into continuum formulation of .ordinary momentum space
(with infinite or continuum novrmalizatior) by the rules given above. It is,

say, in the example above,

1 (U 1

fe— .. ——— <% P ..p Pps AITIPGSX > ——— (51

V2piv 2 pd ¥ P V2p°V v2q°y

de may remove the 4-momentum delta function to obtain

1 n ]
II

v2poV « 2q°V k=1 JZpE v

Thus the rule of translation for transition matrix etements is given by
| L

i

Y2p*V  29°V k=1 /2p§¥

i(2my* Gk(Pf'P{) < aflT{pi)} o> (52)

< abeX |T(p,i)|(1‘-box > ——p¥ tu < af!'T(P-]}f Gy 2

(53)

where we have used the fact that when we use finite box in space we
should take a firite time interval t, and

ty 8530}, paln) —— (21) 8(p%- p'°) (54)
so that

Vot 8 —» (27)*8* (p¥~ p'M) (55)

© Oin) | 30 ) aln’)

The transition probability is

Note that with box normaiization rthe energy spectrum is also discrete.



148
box box
I .- <o IT(py )y >1% 85 3 6p0 1o (56)
3(";) 3(“n) LA B

where we used (6mn)2 =8 Translated into continum language (when V is

mn’

very large) the transition probability density reads: v
: (2m)*s* (pl-p})

n
z E (v tg)2|<“f|T(P1)|ai >{2(H

¢ ) 0y.9n0 )
3("‘) 3("n) k=1 Zpkv 2p°V-2q°V vVt

n 1 1
= oo B(2m) Ve 8* (pgrpy) [ <ol T(R;) o> 13 T

) (57)
k=1 Zpﬂv 2p%V.2q°V

Consider, for example, the decay probability density. of.a.one particle

jnitial state into n final particles. It is then given by

n i 1
Tov B(21)* 8%(Pg-py)V t,l<ag| T(py) [ag>2( W -—-)—— (58)
3 0
ke Zpkv 2p'V
From the rule, for V very large, we can replace
'}
] — [[a (59)
3(n) (2m)?

We conclude that the transition probability for a one particle state with
momentum p* going.over to n particles state with 3-momenta lying inside

the range p; < p; < by

gt d’pi, i=1,2, ..n1is given by

! oo 2 " d’pk :
;;;(2'") §*(pepy) ot c | <ag|T(py) foy>] (kfl m) (60)

and is proportional to time interval 'to'. The transition probability per
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unit time called decay rate is then

(2m)*6* (p-p}) n d%
A = — | <ag|T(py)fag>[?e T ——K_ (61)
2 p° k=1 2p{ (2m)?

The total decay rate or inverse mean life time is obtained by integrating
and taking appropriate summation over other variables (like, spin, isospin,
etc.) over all final states *. The total decay rate is clearly the sum of

partial decay rates.

We remaind ourselves that the probability density lw('f,t)l2 correspond
ing to a wave function w(f,t) can also be given the interpretation of
the (average) particle density at position X and at time t. In fact if we
have / {u(X,t)|2d°x = 1 we may imagine an ensemble of n identical non-
inter:cting particles inside the volume V described by the common wave
function - y(X,t). The relation S n{y}? d®x = n allows us to interpret |y|?
as the average particle density :t position X at time t. Interpreting one

particle in the box the particle density corresponding to wave function
TR
-— e

7
also can be interpreted as the decay probability per unit time of one

is-%. The decay probability density.per.unit time above thus

initial particle into n final particles. The expression is clearly independ

ent of the volume of the box.

We next discuss the case of fwo particle initial state. (With the (box)

normalization condition we can interpret it as a state representing two non

* d\ may also be interpreted, as is clear from the expression, as the
probability density per unit space-time volume divided by the density
of initial particle ( %-).
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interacting particIes'in volume V). The transition probability density

is

n d?p
(20)* 8" (pgpy) V t,l<ag[T(p) log>|?( T ) . (62)
k=1 (2m)® 2p / 2p°V 2q°V
The probability density per unit time is then
4 gh : af 7 4y !
(2m)* §*(0gop;) 1 <ogl TRy Map>1? (1 - ) o (63)

ksl (27)* 2py

Experimentally *, the transition of two particles (states) to n particles
(state) is characterized by a"scattering cross section” with the dimen-
sions of an area and which is independent of the details of the source

of incident particles (as well as that of the aperture of the detector).
We define the theoretical scattering cross section. (which:coincides with
experimental definition) as the transition probability-density per unit
time and per unit incident flux density, say, in the laboratory frame

where the other particle is at rest. For example if g =0 the current
probability density e.g. the flux density is v %uhere.v 5 -l-il is the

relative velocity and‘v is the probability density of incident particle.
The theoretical cross section for the scattering of two particles is thus

(in the lab. frame)

o=l Jdc 1] (4 P°Q°V) 1 4p {.(zn)u 8*(p-py) <ag T(p) o> [
| o
1 Tk (64)
k=1 (2m)° 2 py

* See for example, The Quantum Theory of Scattering, L. S. Rodberg and
R. H. Thaler, Academic Press (1967), p. 20.
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It is easy to check that do has the dimensions of area (perpendicular to
the direction of the collision axis). In fact with the covariant norma-
lization adopted by us the states IEA> carry a dimension L(fh=¢c = 1).
The dimension of < p .. pn;k| P,G:A > is then L{n+2) implying a dimension
"% for < af]T(p1)|a1>. The quantity inside curly.brackets is thus
dimensionless (as well as Lorentz invariant) and do .is seen to have
dimensions of an.area. The expression for do is clearly independent of
the box volume. Interpreting the (box) normalization as representing one
particle in volume V, as. .discussed above, we recognize the flux density
as the incident particle flux and the transition probability density per
unit time as the probabi1ity per unit time of one incident particle inter

acting with one target particle producing n final particles.

From the expression above we may also interpret differential cross section
as the probability per unit space-time volume divided.by.the flux of
incident particle and the density of target particles. A similar interpreta

tion for the decay rate may also be given.

The differential cross section for the scattering of two particles is

thus given by (including nis)

(2m)*|<oglT(pp) la> (2. .
o = " (nlp nICI nlpjt nlpn) dq (65)

where n = 1 for bosons and =.2m for fermions.corresponding to the normaliza

[
tion <prlp'A' > = (Zv)a.g-f— 6’(3?3’)611. and dQ is the covariant phase
n



-1
o
™

space factor *
n d? Py
dq = 6"(pf-pi) I ——
k=1 (2m)*2 4

)l

2*p
(2m)*

n
- $"(pgpy) T | o(pl) S(pE-m)  (66)

(p))

The factor F = I;p - 3&|p°q° can be expressed as

2
1 -

- - 1/
| = {(q°3 - p°q)2%} | (67)

l_cd

F = p%°

%oy

-
W

L

. - 1/2

= {{q.p)? - m* m?+ (3 xp)?}
Here p®> = m? and p'® = m'?, In the frames of reference normally of interest
(e.g. c.m. frame or a convenient lab. frame) the beam and target particles
are parallel or antiparallel and F takes explicitly covariant form {and
hence do)

F e [(ap)? - m m” (68)

i . YL S .
Thus F = (v p"q”)]ab = m(qZ - m'<) =M Q|1ab in the lab. frame
with p=0. Inthec.m, framep +3 =0 we getF = 'ke where k is

the magnitude of 3-momentum of initial partic es and ¢ the total energy

A useful re-urrenge formulae for calcularting this factor was first given
by P. Srivastava and E. Sudershan, Phys. Rew. 110, 765 (1958), in connee
tion with a covariant formulation of Fermi's Statistical Model for colli-

sions at high energies,
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in the c.m. frame. It is clear that the value of do remains invariant
with respect a Lorentz transformation along the collision axis, in the

c.m. frame.

7.3 - DENSITY MATRIX; MIXTURE STATES:
We may write, from the discussion in section (7.1)  the transition
matrix for a process A+ B —»-C + D+ E + ...
<P PpPpees Ap Ay Acs in| T(pg) Py Pps Ay Ap 3 dn >
C'DTE"*"C "D "E out 1 A'B* A "B out
(69)

= < An Ag Aceas An | T, (PP PaPnPee.) [Ahg; in >
¢ " fgred 1 Tp, (PaPgs PePpPe--)irydy -

where‘ﬁp (pApB; PcPpPe - - ) is an operator in spin space. This is clear

. ; h °
since a state Iﬁk > is connected to the rest state [0A> by a Lorentz trans
formation for massive particles and for massless case the "spin” quantum

number is an invariant quantity.

'rp_ is thus a matrix (nf X n;) in the “spin space".
i
An Ap Ao .., '
ToRET - (70)
Ae A _ _
where A"B

ng = (2 spt 1)(2 sg + 1)

and for Vg? “u or'G s GL, (2s + 1) is replaced by 1 white for photons by

e
2.
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When the initial states is a mixture state use of density matrix must be

made to describe the state of the system.

For p, and Pg fixed the spin density matrix in the initial mixture state
is

py = P(PysPg) = ; ; (Ixg Ag 10> < &g Ag inf) w(Xs) w(ng) (my

A "B

h ) =1, Ag) = 1, A Ag) = 1
where AE w( A). §B w(Ag) XE lg w(rq)  w(Ap)

* A B . c 1 .
e.g. i = Py ® p; . Here w(},) is the probability that the spin
state of particle A is given by Ay etc.

Now for a reaction initiated by “pure" state IAA AB> the probability
amplitude for finding the final "out" state | Ao Ap Ag +-. 3 out > dis given
by (pc,pD,pE oo Fixed)

< Ac Ap Ag -ee out | TTpi| Ap Ags out >

(72)
= < Ao AgAg evs s in|1Tp1 | Ag Ag: in >

Thus the "out" state of particles C, D, E, ... corresponding to a fixed

initial state | Ap Ags in > is given by

) IAC Ap Ag s out> < A Ap A ... out Tl x4 Ags out >

Xe Ap Age )
=T [Ay Ags out >

where we made use of the resolution of the identity for Pcs Pps Pg e

Note taking partial trace w.r.t. particle A we obtain

A
Tr, (o) = (Tr o*D @ ;% = 0"
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fixed. Thus the density matrix for the final state is

Pg = pf(pc,stPEs") =l I z (’WP\A?\B ;OUt><AAf\_B ;OUtITT)m(-'\A)m(AB) (74)
AA AB
where C is a constant to take care of the lack of normalization of states

T Aprgs out >. Let us calculate mean value of an operator Aout = s7! A

-

in
in the ‘out'state.

<A>

C Tr(og Rout) = Tr(Asut P¢)

CTr (Agut ) (H|AAAB; out><AzAg; outrﬂ+) w(iy) w(ig))
A Ag

=C ] ] )) <AcAg Ag .. outfA T [A4 Ags out >
A

AA AB AC DAE. LI

"< Ap Ags outfiT| A A Ap <e3 0ut > w(dy) w(dg)
=C 17 I < Mg age.;in] Ain T Ay Ags dn >

< Ap Ags in [T* | Ae Ag Ag-es in> w(iy) w(rg)

= C Tr(A, T o, T (75)

Thus if we work with only “in" states and "“in" operators we may write the

final state density operator as
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.!.
oe=C To, T (76)
or

0¢(Pcs Pps Pgse--) = CW(paPgs PPpPE--+) Py (Pa> pB)TW*(pApB; PcPpPE--+)

C is given by the condition

Tr pp =1 (77
Thus
+
L B (78)
r (¥ pi'“' )

We can calculate the denominator

(Y pi'T+) - \ zl w(Ay) m(xB) Tr ﬂTllAAB; in> Aphgs in [T*)
A "B

=Y I ... 1 w(Ap)w(Ag)< Ackp o3 0| Tl ApAgs in >
e %o A §B

e < Xy A

A Ags 1n11|‘+| Achp +-3 in >

) §a §3 ACEQKE..w(An) ulg) [Aehote - MIaglg?l* (79)

*
is clearly the differential cross section, upto a factor, due to the

incoherent initial mixed states described by the density matrix p,, summed

over the final polarizations and averaged over the initial polarizationms.

If the final state represented by the density matrix pe is observed

* e.g. ( %%-).
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through an apparatus, the setting of which is represented by 2 hermitian

operator A acting on IAC Ap *g -« > the transitian rate is

w(1,) = Tr(A pg) (80;

We may also obtain the polarization density matrix of one or a subset of
the final particles when cne does not observe the polarization of the
other particles. This can be obtained by taking a partial trace with
respect the latter particles. For example, if the polarization of the
particle 1 is not observed, the polarization density matrix of the other
final particles is Tr (pg). The discussion above clearly applies to a

decay of one particle state. *

7.4 - SCATTERING PROCESS: @ + b = o = d.
For a process of type a + b - ¢ + d we have expiicity, in the c.m,
frame, |
2w 4z

a.i> T ——— — Ie, ¢a ; "‘a i‘b 2

Ay ko

2 /4 ' .
laf:»: T 1 E (o ; e )‘d>
Ve | & |

{81

where [k and k' are magnitude and (@u %) and (9,0) are the polar angles

For some applications to specific processes see for example, Jacob and

Wick, Annals of Physics 7, 404 {(1859); Jackson and
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of the 3-momenta of the initial particle "a" and final particle “¢"
respectively. The invariant phase space factor dQ takes the simple form

(eq. 3.112)
(2m)° dQ = '-El 42(0,9)* d*p¢ 8*(p-p;) (82)
E

in the c.m. frame. The differential cross-section ( %%-) is obtained on

integrating do over Ps to remove the delta function.

gg B leltelop iy p e me - 1 e

4F (2m)¢  4¢
1 Ikl 2 .
e (I)l“GflT(Pi)laﬁl Ma b e M|d
2
< (B 1o o ag 1T 0 805 24 121 (83)

We may choose the Z-axis in the c.m. frame so that it coincides with

K, that is, 6, = ¢, = 0. Then

do (8:9) |2
L. f ; (84)
dQ A Add Ag R |
(8,4) 2 .
where 3 ags A, - (T ) <95 A A [T¢py) 1005 2, A > (85)

We note also for the invariant matrix element:
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T lap = e IT(p 10,052,
<o) T{p;) 104> = ' et < Q¢ A ld T(p1 e ¢ b >
Apaip B g KK
. N (2“)2 . R . '.— . : . .
= — VY (s,t) (86}

/M 16 Pl e

where T(s,t) = “__¢AE: £ Pty is the invariant ¥ matrix element as func
tion of the invariants s = (pa+pb)2 = g? and ts (p, -p )2 'We-remark that
through do 1is "invariant", the factor d2 and hence (dc/dﬂ)is not invarian

quantity.

We now will make the expansion of the invariant matrix elements in terms

of angular momentum states.
B3 A, Ag|T(p;)[00; A Ay > .
¢cd i ra b e

5N Ony o eag (008 00 <M A IT(Rg) ENG 9 Agohps Agun (872,

IR

Since the total angular momentum is conserved, that is, S-matrix operator is

rotation invariant, [S,J] = 0, we have

< M3 AL Ag TRy oM Ay ap =

< 6y S <A A |T“(e>| by 2 (88)

Thus
<0p; A, Agq IT(py)]005 2, Ay >
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Where A = (A,- Ap) and u = (Ac = Aq). The angular momentum expansion of
f(0,¢) (or ¢(s,t}) is thus
o 1 s 3 >
£, %0 . x| @) o{u) (0.0,-6)<A, AqIT{e) A, 2y >
¢"d*"a’b (90)
1()*"11) ] J .
-e o £(2341) d{u) (8) < &, AqlToe) (A, A, >
This may be referred to as (generalized) partial wave expansion. In the

special case of spinless particles it reduces to

£(0) = £(0,0) = E%E EZO (2141) P, (cos 8) T(e)

= ] (2841) P,(cos @) fy(e) ' (91)
£ .
where the partial wave amplitude is defined by f,(c) = T (€)/2 k. We

derive easily :

fz(e) . %. J P, (cos ©) f(©) d(cos 6) (92)
-1

7.5 - UNITARITY CONDITION:
We now discuss the condition of unitary of S matri; on the matrix
elements, From
T-1traitt - (93)
it follows
< pgs ol (T-TH pys og > = 1 < pgiag [T7 Tipys oy > (94)
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where [p;a> represents a state with total four momen tum pp and o

indicates
the rest of the labels and [pie > =ip>@la >. We now insert on the rignt

hand side the resolution of the identity'* in terms of the complete set

of states of the Hi]bert space, viz,

1= ] ¢'p 4@ |psa >< pal (95)

n d?p.
where dQ = 6"(p1 TP, ot .+ Pp - p){ I -—-—-l-;> and ; refers to summa-

\i=l  (2m)? 2p¢
tion over all internal variables and integration ovér momentum space of the

n particles. Note that psa > zlpl, Pyee B3k 2.

For each T matrix elements we can use

< p";a"!Tlp';a'> = (2“)* éh(pn_pl)( .all IT(pa)Ial > (95)

to obtain

(Zﬂ)“s“(pf-pi)[<aflT(p,-)la,-> =< affT+(pi)lai>]

if(emy’” §*(Pe-py) f {dg <afIT'r(p1-)la><alT(p1-)la1->}

P“Pi
Thus

dQja ><a) = I (with
to normalization < o > = §(Q-Q") &

* Note with our normalization J P fixed) corresponds

AR in obvious notation. The

discussion here follows closely Martin and Spearman,
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[ aelT(p, ) oy > = <ag|T(py) o]

- 1(2m* § 160 < ag|T'(py)l<alTipy) oy 1 (98)
1 =V

where it is clear that only intermediate states la > with a total four

momentum p = p; = Py contribute.

For a hermitian K matrix defined by

I +iK

S = (99)

I - iK

so that T = 2K + i X T, the K-matrix elements can be defined similarly, viz,

<p'; o' |Klpsa > = < p'lp > <a'{K(p}|a >

« (2m)* 6“(9-9") < a'[K(p) |o> (100)
Then we have
* _
< Olf[K(P.i)IOl.l > e< “1|K(Pi)i Oe> (_1_01)
and
< “f'T(Pi)l a;> = 2 < “flK(P1)|a1 >
{102)

+ 1(2m)* | (dacaglk(py) l><alTipg) oy}
P=p;

For example, for two particle scattering a + b + ¢ + d, the unitary rela-

tion becomes (choosing © = ¢ = Q)

QAAGT [T(91) 10033, hy 51>- 00 AA g3V [T (P4 [003A 357 >

= i(Zﬂ)“f dQ< 63 A Ay Y'IT*(p1)|a><a|T(pi)l00; AghpiY 2 (103)
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where i dQ extends over states [o> which have the same 4-momentum as the
initial (final) momentum. If total momentum is below the threshold of any
three particle intermediate state, only two particle intermediate states

are possible and the (2-particle) unitarity conditions is

<®¢;Acxd;Y'[T(pi)[00;Aaxb;y>-<e¢;AcAd;y'lT*(pi)loo;xaxb;Y >

< onnagir 1)) [0%0 10,0, 054070 2, 3y T, 00 Aaly >

: H * il

i f Q"< 0% A A, sy TRy ) ledsA A ysv*> <o %A, 257" [T(py) 100532, 5v>
(104)

We may now use expression in partial waves to obtain the partial wave

unitary condition

+J
<'\cAd ' ITJ(pi )| lakb iY"‘ACAd v T (pi ) ’Aa'}‘b Y >

=D g YT asyean, Ty A5y > (105)
1 4 Y
Symbolically
g 3t I
TL_‘A' TA,\-' =1 2 TAI.I',\‘I AN {108}

All

or regarding v as matrix whose components are labelled by (the set} A, A'.

We may write
t t
S AC RIS LA P (107)

For the matrix Y defined by

J . J
SYURRITUR S I Y | (108)
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we obtain
; |
9 sd o
For matrix K¥ the unitarity condition is
+ %*

- kY J J
K K or KA oo KXA'

Also
Pezawdseid P

or

27t . Yt -

1.6 - OPTICAL THEQREM

From (suppressing indices nl)

<003 )‘bsYlT(p )100; }*a h3Y>" -<00;A Abs'YIT (p-])IOO J‘alb’Y >

i(am)* f dq <00;Aakb;YITf(pi)Ia><UIT(pi)|00;lakb;Y >

i(2m)* f dQ {alT(py)[0032,0 5y >|2

_ .'k (2“)“
T4 : 4Q < a|T(Py) fay>|*
4k e
.k
= —02 z. ——=
=Y faoe 1) o,

(109)

(o)

(1)

M2
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Thus

or
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can be written as

2i Im<00; AghpsY [T(pi)IOO; A Ap3Y >

.k (0,0)

= 2i Im f 112

7n Agdy Y3AApY (112)

o, 0) L S (114)
Im f A A It “tot

b bY
ke

Im (s, t = 0) = = Tent _ (115)

22

Here Ceot is the total cross sections for scattering from an initial state

with quantum numbers AysApsy and f,,,(0,0) is the forward elastic scattering

amp11itude.

7.7 -

INVARIANCE CONDITIONS ON PARTIAL WAVE AMPLITUDES:

1. Parity Invariance:
< Acxdlrd(g)|xaxb > <M A Ay [T(e) M5 2 A >
~f
s <dM3r Ay |@ T(e) Plam x>

2J-s_-§ -5 =5
a b ¢ d
*Ma M N g (+1)

< IM; -lc,:-_ld [T(e)|JIM; - Ags = Ay >

= n <Ay [T9e) | -2y, - A > (116)
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where
$ +$,-5_.-8
¢c *d “a b
n=n, N n.ny (-1) (117}

since (J—sc-sd) is certainly an integer. For the scattering amplitude

f . (e'¢)
lckd'kalb

1 *
— D) o) e m0) <a 2glT eI, 2y 2
J

'| -
-~ E (2041) DY) (8,0,-8) < - A, = A ITEN- Ay, - 2 > m

= 572' E(ZJ+]) DE:E'F (“-¢,@,_ﬂ+¢)<-kc, “Ag ITJ(S)[-Aa,-Ab>

=N Taa Ags - A - a (0, T ) (18)

If we choose ¢ = 0 to be the plane of scattering we find

f RRTC N N ) (119)

o 4 (O U
Ackd’kalb o? ld, ka, kb_

2., Time Reversal Invariamce

As discussed earlier by time revéfgé1'1nvariance of unitary S
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operator we mean the invariance under time reversal of its generator. This

leads to the time reversal condition
®s B -

< M3 2y [S(e) oM Ay A >

1]

J
<A AglsTe) ag x>

(V. . . HTsTe) @ v
M3 e ags M; A Ab)

*

_ T ) )
(®vp.y . Sle) @ by, )
Mircags AU N

< (20, b0 T s
« (- Wa,-Miaag, S (8 Vg upn i)

M ey ISEE T, Mindg> = <hgy 18Y(e) g >

and similar relations holds if we -ep-aze SY by TV or k. Since kY is 3

hermitian it follows that kY matrix i3 : real symmetric matrix. From

T i
z(2) o807 (o8, - g < T2 pla, ag >

o .
i

a

. L rJ .
= Z(ZJ*1 D(J) {T1~¢,2, p=r) = *a #b T (E}Iki.{d o

it follows, *f me reversa) holds

. P (A,m =¢)
ik f (e,m = k' F, ’
A \.d, Aa \'b s chd
or

u.i._ {@
K f)agingy, (0 ®) * (1) f, ?)

Achdita ‘athitetd

(121}

ise

(122)



168

where {©,¢) on the right hand side are polar angles of the particte "a" in

the inverse reaction ¢ +d + a + b with ¢ bearing the angles (0,0C).

3 - Detatled Balancing
Time reversal invariance leads to a relation between unpolarized cross

sactions of reactions a+b>¢c+dandc+d+»a +b.

From the relation just obtained

KZ[F . o .o (8.8)]2 =k'2 |f. o ., (0.)]2 | 125
AAgitghy Ay it ) (125)

The differential cross section summed over all the final spins (or helicities)

and averaged over all the initial spins for reactiona +b+c +d s

1
do (99¢)
- £, (@:8) 126
(3 dapocd (25_41)(25,+1) A { . PAdgighy | (126)
. a b Aa' Ab

c' d

Like wise for reaction c + d + a + b (with “a" emitted along {6,4)).

1
dO' (9,¢) 2
( ) = Iy 2 ol (127)
T Tedsad pg 11)(2s441) Agah,  a'bircMd
¢*d
We find thus
(49780 aupaced  K'2 (25 +1)(254+1)

= (128}
(d0/dR)  qogep KZ (25,41)(28y+)
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Both cross sections are evaluated at the same total energy and angle in the

c.m. frame. This equation is called the principle of detailed balancing.

It was used to determine the'spin of n" in the reaction n' + d ¥ p + p.
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R
-/
PION - NUCLEAR SCATTERING:

N+n>N+T

a b ¢ d
We have A = 0 A, = ; and may use u(=2(l - )) =+ to indicate the
J

helicity state in place of pair (A, N) T  is thus a (2 x 2) matrix. The

parity operation on {JM;u > state is given by
]

J
@lMsu > = ng n (-1} 2 [dM; - >
1 - (1)

using Ny = +1, n, = -1. Eigenstates of parity are given by

1
| aM;u > = -/: I:IJM;u >+ |[gM; - ﬂ
- V2

2
75 - ¥ (2)
@loMu >, a (-1)(-1) loMsu > =+ (-1)  CloMsu >,

We may call 2 = (J :%), which is an integer,the "orbital” parity of mN
system. Note, however, that "2" has no place in the relativistic theory
we have been discussing *. The parity conserving transition amplitudes (in

the c.m. frame) may be defined by

See however, the footnote on page 132.



171

+
by (€) = <M;x[T(e)|M;u >
u N ;
(3)
=1 o J o
) 2 T‘;u * T‘fki-u "t TA-!"]J :' T'AJJ}
where
J TJ ~ _
T)m(e) = <A (e)|u > =< JM3A | T(e) | IM;u > (4)

J+ 7y
and + in F'= labels the parity states with parity (-)(-1) . If parity

is conserved (we discussed above)

J J . J
T ® Toey Cor T =19 ang 19 ) (5)

sincen =+ 1; it follows

o=
o

J +
=TAuiTJ =F‘-];

Ay =H »~H (6)

Also T(e) or TJ(e) is diagonat in the parity eigenstate basis if space reflec

tion invariance holds. Time invariance requires

T;\]u ) T;J.lk for T,_=T.,) - (7)

and is already satisfied if parity is conserved. We also see that only two

amplitudes are independent if parity conservation holds. We take them to be

- J J+ J J .
T- 5T = e = (T # T,.)
J J J ®)
Tge 3Ty = Fit = (T£+ - T )

where Tg+ corresponds to parity conserving  amplitude with the states 1
J=
having J = ¢ + %- so that the parity of the states is -(-1)2 = (-1)(-T) Z.
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Similar interpretations apply to other notations for partial wave amplitudes
and the corresponding phase shifts. One often uses the ampl{tude fd,
(e)

fJ(g) B ——
2k

For helicity amplitudes we have the decomposition (% +0 +‘%;+ 0)

<2u|TJ(e)|2A>
2 K

i(A-u)e J
fzu.zk(e’¢) = e Z{2J+1) dku(e)

(10)

where A = (A, - A ), U= (xc - A4) and (8,¢4) represent polar angles of

nucleon momentum,

Thus

J |
F,o(0:0) = ] (2041) dyy () ()
' J .

f,0.0) = e [ (o) (@) Fle) B

ar J

0 ' ’ ' 3 1 "
fH,(B.cb) - E cos > E,J"'% (cos 9) - PJ__% (cos 9)] (f‘_]"' +"’fJ-.)

_ (12)
f,(00 - 19 sin 8 [py, sleoso ) + Pyy (eos 3] (5 7y,)
on using the explicity expressions fbr dJ(e).
Parity conservation condition implies
f_(8,0) = ,,(0,0) (13)
£.,(0.0) = e £(2041) q; ~3(@) £ () = - 1 £, (0,0)
- 3% g(a04) & 13 £ _(e) | (18)
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J
-+

on using d_, (0) = (-1)" ™ d_.(e), and f)_ = f
f,.and f__are referred to as helicity non-flip and helicity-flip
amplitudes. Clearly f, (6 =7, ¢) =0and f,_(6 = 0,p) = O which also

follows from angular momentum conservation considerations.
From orthogonality of d(©) matrices we may derive

£ (e) = %EJ f,,(8) d%’% (0) dQ

(15)

J 1 i¢ J
fo (g) = — J f (6,6) e " d Q) do
+-(8) . +-(€50) -1 {9)

The formulae for the unpolarized differential cross section and the pola-

rization are given by

o 2 2
— = [f %+ [f ]

dQ .
- 2 Im (f,, £.) |
P(O) « b A S
[fo ]2+ IF, 12
- -+
- q X q' - -
where n = I* — , and q and q' refer to the momentum of incoming and
qxq'

outgoing nucleons.

In order to connect f_ , f__ with other amplitudes in use in litera-

++° 4
ture we have to introduce explicit wave function for particles involved.
For the spinless pion the wave function in coordinate representation is

simply
L >
IR > =/ 2k® 6T (17)
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K being the energy and momentum of pion. For spin S = 1/2 nucleon state

with momentum p and helicity A the wave function is
| - 1 - Do - :
< r'[m, E—] pA>=c¢elP Y 'ZLX(P] (18)

where p) 1s the birac 4-spinor corresponding to four momentum p* and
here U, (B) 1s the Dirac 4-spinor corresponding to f H

helicity A. The helicity operator can be shown to be given by *
(p)) (19)

=
Leny o EE P ‘ . .
where eu(p) = et i ——) and v's are the 4 x 4 Dirac matrices and
P

w=1,2, 3, 4.

-
Z+p
The helicity operator reduces to h{p) = —-I-;-l- for E > 0 and h{p) =
+- - - 2 p
= - -Z-T;-E for £ < 0 states; where % L is the spin operator. It also
27|

commutes with (y+p). In the Dirac - Pauli representation of the gamma
matrices two linearly independent plane wave spinors satisfying Dirac

equation (p - m) = 0 are given by (E> 0 ):

. 2m m+ p
?!i(p) o ( )Zli(()) i=s1,2 {20}
m+Ep. 2m

where % (0) = 2,(p=0) satisfy v, #,(0) = %;(0) has the form .(0) =

= (;1) The helicity states with the phase convention adopted by us can
be constructed as follows. For the two linearly independent two  spinors

Xj» we choose them as eigenstates nf‘%c3 vizxy = (é) and y_, = (?) e
2 2

* See for example, J. Sakurai, Advanced Quantum Mechanics or Lurie, Particles
and Fields.
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that the corresponding rest frame states UR(O) = (Ek), A=+ %—, are eigen-

states of the l-za, the third component of the spin oeprator, The states

2 . . m+’R
Uy(P = (%40, 04 0)) = ('2m )ZL,\(O') (21)

are clearty he1igity states for a particle moving along 3-axis. The
helicity states for particle moving along 3(9,¢) is then obtained by apply-
ing a2 rotation

U, () = ® (6,0, -9) Uy (Bp)

m m+ p |
rs ( o )ﬁ(q&.e, - 91U, (0) (22)

&(d’ses ‘¢)X
R (.9, -¢)’LLA(0) = ( 0 'A) (23)

and £(,0, = 9) x, = 802 g9z gload/z g4 4,([3] +0) =

“®(4:0, -) U, (0) are eigenstates of 1 (I-n) where 7 = 7(0,8) while fx,

where

are eigenstates of %-3- n. We easily show

ﬂ(%es.'d’))(% = COoS %xlﬂ + e1¢ sin.g. X 'i
| (24)

R(6:0, -¢) x4 = - (sin g ) gt Xyy2 t+ COS % x__é,

These may be termed rest (helicity) states corresponding to particle
moving along {0,4).
For the process N + w - N + ¢ the scattering amplitude clearly takes

the form
Z(a') M % (a)
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In the Dirac-Pauli representation we can reduce it to the form
1.
Xe M x4

where X¢ § 3re the Pauli 2-spinors representing- spin $tates and M(q,q') is
] : '
*
2 x 2'matrix in spin space . The most general form of M consistent with

rotation invariance and parity conservation in our case is
Me £ 13¢f, (3:3')(3-8)/3]13"] (26)

where E is the-initial nucleon mﬁmentum and"a‘ that of.the final nucleon.
To relate f, and f, to helicity amplitudes LR and f__ we calculate the
scattering amplitude between helicity states. Taking q along 3-axis and
3' along (6,9) we have

f.|.+(90¢) = (ex:,z)-r M xl/z. (fl + fz) cos %
+ -i¢ o
fr(0d) = (@3, M e (F -t sin ()

+ +, +, >+ - -
where we used (3-3')(Rx,y) = 19 I(&xﬁ_) and (5+q)x, = Aldlx, -
Frequently, M is written as

MefI+igaen (28)
- '. .
qQxq
where N = ————— . We find easily
q xq'
fef +f, cos© : (28)

g=-f, sine

Compare with discussion in section 7.3 on Density matrix,.
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The expressions for cross section and polarization become

N PTPRRP
—_— +|g
dQ )

2 Im (f g)

;: T ——————
[F1%+ [g]*

and the partial wave expansions,

AR CLILAE zfz_:]_ P, (cos®)
i (30)
_ T - '
g = o8 [%£+ fz;] P,(cos 8) sin o

Here we denote partial wave amplitude by f£+ = flJ+ corresponding to J =

= (& 15% ). The inverse relations are s
1
fﬁice) =-12- f l:f1 P,(cos ©) + f, Pﬂ.il {cos e):| d{cos ©)
-1 (31)

Another common notation for the partial wave amplitudes is L21 23 where I
»

is isospin of (7N) system e.g. S.,, P,., S,1, Ps.» Py,... partial waves.

Invariant scattering amplitudes A and 8 are also in use. They are
defined by *
Sei = g; + i(2m)* &* (Pf'P1)2m ﬁ%(Q') T %(a)
(32)
dc m* _ s
—e— T T Tl
da 16 ¢ W* spins
where T can be expressed, in its most general form in terms of two invariant

amplitudes A and B

* See for example: Eden, J. High Energy Collisicns
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Te At - 1B v et (33)

In ¢.m. frame we can reduce izf'TZLi to the form

xe WX | (34)
We can then show
o ]
£ = A+ (W-mB
' enw
35
E-m (35)
f, [A+(H+m)B]
8 W

where E is the energy of nucleon, W the c.m. energy and m the nuclear mass.
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