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ABSTRACT

Three aspects of the theory of holomorphic functioms in the infinite dimen-
sional case are considered., The first aspect is Zorn's characterization theorem
for holomorphic mappings between Banach spaces, This theorem is established for
a mapping from an open subset of a Hausdorff Baire complex topological vector
space into a Banach space. This fact is used to prove other theorems, including
a generalization of a classical Hartogs theorem concerning separately holomorphic
functions. Domains and envelopes of holomorphy form the second subject of this
study. The results of Alexander's thesis are generalized for Riemann domains
over a complex locally convex space for which the closed convex hull of every
compact subset is compact, The existence and characterization of the envelope
~f holomorphy of a Riemann domain over CN are established. A Cartan-Thullen
theorem is proved for the so~called domains of t-holomorphy. The last  aspect
considered is the Malgrange-Gupta approximation theorem. If E is a complex local
ly convex space having a Fréchet space as its strong dual, the spaceIHNb(E) is

introduced and the Malgrange-Gupta theorem is proved.



INTRODUCTION

This work is coneerviediwith the: study of some aspects of the theory of holo

morphic mappings in the non-finite dimensional case.

The first aspect considered is Zorn's characterization of a holamorphic map
ping between Banach spaces. See ref. 3 and 4. In Chepter I, Zom's theorem
is established for a mapping f from an open subset U of a camplex Hausdorff
Bajre topological vector space into a Banach space F: f is holomerphic in U if
and nly if £ is B-continuous and G-holamorphic in U, This fact is used to
prove oﬂrer theorems, including a.genéralizajtiqx of a classical Hartogs thecrem
concerning separetély halamorphic: functions. 2, 16 and 17 are references to

topics related to these matters,

Damaing and envelopes of holamorphy form the second subject of this study.
In Chapter II, Alexander's resylts (see ref, 5) are generalized for Riemann
domains over complex locally convex spaces for which the closed convex hull « of
every compact subset is compact, In this case, the topology of the uniform
convergence over compactsets is replaced by the topology generated by the
geminorms ported by campact sets, In Chap\t'er-_II'I, the existence and character-—
ization of the envelcpe of holomorphy of a Riemann domain over M are estab]is'l_l-
ed. In Chapter IV, a Cartan Thullen theorem is proved for the so-called
domains of T- holamerphy. 12, 18, 11, 19, 20 and 21 are works related ‘to the

preceding matters.

The last aspect considered is the Malgrange-Gupta approximation theorem (see
ref. 14), If E is a complex locally convex space having a Fréchet space as its
_strong dual, the space I-IN.b(E) is introduced and the Malgrange-Gupta theorem is
proved in Chapter V. Other works related to this topic are 22, 23, 24, '25 and
26,



CHAPTER I

HOLOMORPHIC MAPPINGS

1. Em‘m ‘Between Topological Vector Spaces
All topological vector spaces we consider are camplex and Hausdorff unless

the contrary is stated explicitly.
The notation is the sam as the cnhe used by Leopoldo Nachbin in reference 1,

let . f be a mapping from an open subset U of a topological vector space E

into another topological vector space F. f is holomorphic at a point x of U if
there is a sequence of elements Pn e PCE; F),n=0,1, 2, ... such that
-
£(xth) = nZO P ()

the series converging uniformly for h in a neighbourhood of zerc in E. The se-

quence (Pn):ﬂ) is wnique and each P (h) will be denoted by -}!-?.'f(x) (h). If

T, € LCE;F) defines Py it will be denoted by H]-i-'dnf(x). f is holamorphic in U

if it ie holomorphic at each one of the points of U, £ is G-holamorphic in U if,
" for each x in U and y in E, the mapping Ac{ie€; x+AyeU} s——aF(x+2y)eF is holo~

morphic in its domain of definition.

Exoposition 1.1 - Let F be locally convex and such that the closed convex hull -
of every campact subeet is compact. If f is G-holamorphic in U, then, for each
X in U, there is a sequence of elements Pn £ pa(nE; F),n=0,1, 2, ..., such
that



£Gen) = ] P ()

n=0
for every x+h in the largest. x-equilibrated open neighbourhood of x in E contain

ed in U, The sequence (P )n"O is unique and

-

1 ~n-1
P (h) = -——J. . f(x+EN)E
2mi J|§|=1
"for every h in E as above andn = 0, 1,.... If we take the mappinger-—-G]; f=
= 8£Gh) = Lim "A"1 [EGx#dh) - £(0]eF we see that it is well defined and G-

A
holamorphic in U for each h in E. With the notations § Of(x;h) = £,

‘}nhnl by

§"£(x3 hy, By, hy,..ihy) = ver 8 L¢ and 6%(x;h) = 6"£(x;h, h,...,h)
for all h, h,, h,, ...hn in E, n=1l, 2, ..., xin U, it follows tha'-t,Pn_(h) is

equal to (n!) T §f(x;h) for allh inEandn = 0, 1, 2, ...

f is logally bounded in U if each x in U has a neighbourhoed V such that £(V)
is a bounded subset of F.

Proposition 1.2 - If f is a Banach space, the following conditions are equiva-
lené:

(a) £ is holomorphic in U;

(b) f is G-holomprphic.and dontinuous in U

(c) f is G-holomerphic and locally bounded in U.

Proofs of the above results may be found in ref. 2.

2. Hol ic i Defined in Baire T i Vector Spaces

A mapping £ from a topological space X into another topological space Y is B-
continyous if it is continuous everywhere except at the points of -.a firet catego-
1y subset of X.
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Propegition 2.1 - If (fn)n__0 is a sequence of B-continucte mappings from a

topological space X into a Banach space F such that 1im fn(x) = f(x) exists for
1ee
each x € X, then f is B-continuous in X,

Proof - It is enough to show the preposition for a sequence (fn):=0 of conti-

nuous mappings from X into F. For € >0 andm= 1, 2, ,., 1let By(e) = {teX;
|1£,(t) - £(t)]}ge} and GCe) =\") Int B (€}, - We show that C = A e/my s
m=1 n=1

the set of all'pomts.ef X where f is continuous, Let f be continuwous at to
There is m such that ||f(t)) - £ (t )|[ < €/3. From the continuity of f and
fy 3t t, we get an open neighbourhood UCt,) ef t, such that |[£(t)-£(£(}|1<e/3
and | |£,(t) -.£ (£ )| <e/3 for every t in utt, ). Thus U('t ) is containe# in
the interior of By(e) and t € G(e). Since e >0 is azbn.traxy 't: is inC, On
the other hand, if te Gt is in G(e/3) for every e>0. Hence there is m such
that t_ ¢ Int Bm(e/§) and, therefore, }{f(t) - £ (t)||<e/3 for each t in some
neighbourhood U(to) of t.. By the contmmty of.fm and the arbitrariety of £>0
it follows that f is cdhtinwm at fto. Now we take the following set F, (e) =
= {teX; [lfm(t) - foa | < ,k=1,2, ...} which is closed in X, Since
1.1.m £ (t) f(t)-exdsts for all 1: in X, we have X = L{ Fuled... - Burthefmére

F (e) < B (e) and Int F(e)C Int B (e) - Thus - L_J Int F (e)C G(e). Hence we

m=1
have X = U Int F(e)c () [F(e) - Int F, (e)_'] which is a first category
) - m=l
set, It follows that X - C=X - r’l 6(/n) =) [X - &(1/n)] is a first cate
- n-l

gory set and coincides with the collection of all points of X where f is not
continuous,

Proposition 2,2 - Let f be a B-continuous and G-holamorphic mapping from an.
open subset U of a topological vector space E into a Banach space F. For each
xinUandeachn =0, 1, 2, 3, ... the mapping h € E.— &F(xsh) € F is B

centinuous, If E is a Baire space it is continuous.



Proof -~ Note that

n- I i
§F(x3h) = Lim A Lz 1" f(mjlh)]
A0 j=0 J

foralln=0, 1, 2, ..., h € E.and x € U, To prove this it is enough to write
the Taylor series of g(&) = f (x + Eh) at 0 for each term of the sum, to reorder
the sum taking together the hamogeneous polynamials of the same deéree, and to

pass to the limit as Agoes to zero.

For all xin UyhinEandn =0, 1, 2, ,,., Wwe can write
o [ n n=4
flxsh)= Amadt| § DG £Gorih/m)
e '=ﬂ 3
where f is equal to £ in U and equal t0 0 in E - U, Since for all x in U, n =
=Q'1’ 2, -oo’m=l,2 aesy &IEHEPpmheE'-"—*I? I("l)n-J(r"
f(x+Jh1m)]sFJsB-cont1numxs Propesitien 2,1 implies that he E L—-»snf(x,h)a F

is B-~centinuous for each x inUand n.= 0, 1, 2, ...

Theorem 2.1 - Let f be a mapping from an open subset U of a Baire topological
vector space E into a Banach space F. f is holomorphic in U if and only if f is

G-holamorphic and B-continuous in U,

We need the following two lemmas whose preofs are in ref, 2,

lemma 2,1 - Let (fn-)-:=u be a sequence of continuous mappings from an. open. subset
U of a Baire space E into a normed space F having a limit f(x) for all x in U, The
set of all points of U where (fn)::[J is locally bounded is and dense in U,

Lemma 2,2 - let E be a topological vector space and F a locatly cenvex space. If
P ¢ G,("EsF) is bounded in x_tA, where x  is a point of E and A is a balanced sub-

set of E, then P is bounded in A, h) {A x #A}. More precisely, if q is a
=1 -
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‘continuous seminorm in F and sup {q(P(xo+a)); ae Al ¢ I(q, then sup {q(P(a));

ae Ao} £ Kq.

Proof of Theorem 2.1 - let f be G-holamorphic and B-continuous in U. By Preposi

tion 1,1, for x in U and h in the largest open balanced neighbouwrhood V of 0 in.
E such that x + VC U,

F(x+h) = -51,- 8P E(xzh) .

L]

(T

0

If P (h) = 53.- G"fcx;hj for all h in E, P is in @(“E;r') by Proposition 2.2,
:S;'mce ;F]'Q Pn(h) =0 foreachh e V, Lerma 2‘.1 applies and the set .of all points
of V where (Pn);o is locally bounded is open and dense in V., It follows that
there are xoin V and an open balanced neighbourhood A of zero in E such that X ¢
+ ACV and sup {||Pn_(xo+ a)l|; ae A, ne N K < + =, Thus, by Lemma 2.2,

sup {||Pn(a)||; aceA,nelN}<k, For0<y<landhin YA,

it 3
3 H‘ *

-]
Hence. f is holemorphic at x since the above inequality implies that l Pn(h)
n=0

--]1‘- : ij(x;h)'

j=0 ¥

N .
] _ z --:-Lw-‘G:j fixzh)

£(xeth) -
. 3>N I

L < J

35N

converges uniformly to £(+h) in YA,

Theorem 2,2 - Let x be a po:l.nt of a Baire topological vector space E and A a
balanced open neighbourhood of 0 in E. If f is a G-holamorphic mapping from x+A
into a Banach space F and f is locally bounded at a point X, of x#A, then f is
holemorphic in 'x+A..

Proof - There is no loss of generality in supposing x=0. If y € A, Ay denotes
the largest balanced neighbourhood of zero in E such that y+Ay<: A, The set L'
of all points of A where f is locally bounded is non-empty, Ify is in L!



fiysh) = T 5},- §%(y;h)

O L]

e

for all.heAy .Since £ is bomdedinaneighbomhoodofthepoint y,thepoly?
 nomial P_(h) = Z¥ 2 §"f(y;h) is bounded in a neighbourhood of 0 far all n = 051,...-
Hence P_ e@(“zr) forn =0, 1, ... Pr'cposl'tlm21u@lmethatflsB-cmt1-
mxmsmy-l-Ay Thms,byiheorem2l f:u.sholonnrph:.cmyi-Ay Hence L' is
open in A, If L' = &L', 'theabcvearglmtg:.ves{yeA'z-ysAy}nL'=
for all z in L", Since{ye:A;z—yeAy} is open in A and z is in it, L" is
open in A, Therefore, as A is connected, AéL' and f is holemorphic in A,

Corollary 2.1 - Let f be a G-holamorphic function fram an open cormected subset

U of a Baire topological vector space E into a Banach space F. If f is locally
bounded at cne point x of U, it is holemorphic in U..

‘Corollary 2.2 - let.f be a G-holomorphic function from an dpen subset U of a

Baire topological vector space E into a Banach space E, The set of all points

where f is locally bounded is open and closed in U,
The above results may be used to prove the following theorem:

Theorem 2,3 - let E; and E, be two Baire topological vector spaces with E,
metrizable and E; x E, a Baire space. I..e't.f_be a mapping from an cpen subset U
of E, X E, into a Banach space F. f is holomorphic in U if and cnly if it is
separately holamorphic in each variable, |

We need the following result proved in ref. 2,

Lemna 2,3 - Under the conditions of Theorem 2.3 if f is separately continuous

in U, then every open subset W of U contains an open set where f is bounded,
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Proof of Theorem 2,3 - If f is separately holomorphic in U, then the mapping
(s B) € {(A,8) € € 5 (x, + Ax], X, + EX]) € U } b £0x,+2x! %, +EX]) € T is
 separately holamorphic for each (x,, x,) in U and each (x{, x,) in E;x E,, By

the classical Hartogs theorem it. is holomorphic in its domain of definition.
Thus the mapping A e{Ae®; (X, +Ax], x,+ Ax}) € U} b= F(x,+AX], %,#Ax}) € F. is
holemorphic for each (x,, x,) € U and (xj, x§) € E; x E, and f is G-holomorphic
in U, By Lemma 2.3 and Corollary 2.1 f is holemorphic in U.

(1) Let us recall the foliqcing result proved in ref. 2: "A mapping f frem an
open subset U of a metrizable topological vector space E into a locally .
convex space T is -G—hoimnrphic and continuous in U if and only if Tef
is holemorphic in U for every T in E'," Hence, if we understand holamorphy
as G-holamorphy and comtinuity and if, in Thesrem 2.1, Theorem 2.2, Corol-
lary 2.1, Corollary 2.2, Theorem 2.3, we consider E, E,, E, metrizable,
then we may take F locally convex and all the results will still be tywd
when we replace the words "locally bounded™ by:the-wedd Howhbinmoms"inin
Corollary 2.2,

(2) The results of this section were proved by Zem in ref, 3 and 4 fior functions

defined in open subsets of a Banach space,

(3) Corollary 2.2 and Theorem 2.3 were proved by Noverraz in ref, 2 for E, E,
and E, metrizable complete,



3. Holamorphic Conplex Mappings in a Riemsnn Damain

In this section it is considered the cencept and same properties of a holo-

morphic function defined in a Riemann domain over a locally convex space with

canplex values, They will be wused in Chapter II,

Let E be a locally cenvex space, A pair (§, ¢) is a Riemann demain over E

if U is a connected Hauwsdorff topological space and ¢ is a local hameomorphism

fram tLinto E. A mapping £ from U into € is holemorphic in W if £ o [§fw] -1

is a holemorphic in ¢(w) for every open subset w of U where ¢ is a hameamerghism,

Let (W, ¢) be a Riemann domain over E,

Notatieons

(i) H @ denotes the algebra of all holamorghic complex mappings in U.

(ii)

(iii),

If f is a holomorphic mapping from U into € and u € well, w being an open

set where ¢ is a homecmorphism, there is a seqwnce_,(Pn):=0 of elements

n
that

P. ¢ P(E) and an open convex balanced neighbourhood U of zero in E such

fo ol (4w +h) = [ BP0 )
: n=0

the series converging wniformly for h in U. The sequence. (Pn)ri=0 ig unique
and each P is denoted byﬁ-]i- Few), If T e £ (L) defines P_ it is denoted

by -ﬁl,- d£(w.

Ifaell and AC E, a + A means that

a+ A= [old ~* 4 + A
w being an open subset of U where ¢ is a hemeamorphism and a € Wand¢(a) +
+ A SHw). IfA-={h}, a+ {h} is denoted by a+h. If'?c&ﬂaen B+ A=

= U (b+A) where b+A have the meaning just stated.
Be® -
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(iv) TFrom (i1) and (iii) it follows that (1) may be written

fuh) = [ & P (2)
n=0 '

Propositien 3.1 = If f is a holomorphic mapping from U into € and h ¢ E, then

the mapping ahf(-.)(h): ve U r——s FFM) € € is helomorphic in, n =
= 0, l, e

Proposition 3.2 - If f is a holemorphic mapping fremW inte C, then:

) 4[] = df8C 1] W
(2) PECHuv) = B E[E 1] Oraw

for all u,-vinEandnz 0, 1,2,..,

Proposition 3.3 - Let f be a holemorphic mapping frem Winto €, x el and V a

balanced convex cpen neighbourhood of zero in E such that x + Ve, Then

flOv) =

[a ]
‘I:I’MS

5—# PG (W)

for all in V.

Propositien 3.4 - If f and g ave in #{ (W), then f.gis in¥ W and_it is troe

that
N}

NeEpm = § &

s+t=n sit!-

[?i‘fcu) (h)] [&"gcu) (h)}

for all u in hand h in E,
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Proposition 3.5 - If f is a holamorphic mapping frem U into € and g is an entire

camplex function in €, the mapping gof is holomorphic in U.

CHAPTER II

EXTENSIONS OF HOLOMORPHIC FUNCTIONS

1. The Spectyxum

let E be a locally convex space such that the closed convex hull of every
campact subset is compact., If (U, ¢) is a Riemann domain over E, we consider in
generated by all seminorms p such that

() the topology T

(1) p is ported by some compact subset K of {|, that is: for every open subset
¥ of U containing K there is o(¥) > 0 such that

p(f) € o su%'lf(v)l
ve
for all £ in ‘HW;

(2) plfg) € p(f)p(g), for all £ and g in HAW.

With this topology ‘() is an m-convex topological algebra. The collection s |
of all continuous hemomerphisms from H(Y) onto € is called the spectrum of HW.
For every h € S(U) there is a compact subset ¥ of W such that
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\h(f)

< sup f(k)l
ke ¥

for all £ in Y. This fact is denoted h{¥.

Proposition 1.1 - For every h & S(U) there is a unique & In E such that T(a,) =

= h{Tod) for all T in the topological dual E' of E.

We need the following lemma:

lema 1.1 - I£ T = (T, T,,..., ) is a continuous linear mapping from E into €
and G is a linear mapping from " into C, then the mapping f: u ¢ L —flw =
2 exp G(To ¢(w) € € is such that h(f) is equal to exp G(n(T,09) ;n{Tpe0)s. 005
n(T e ¢) forallh in SQ@).

Proof - By Propositicn 3.5 from Chapter I f is in . It is known that

[ n
exp G(T(x)) = } ﬁ-]f- [G(Tl(x), To(x) 5ee0s Tn(x))]

n=0
uniformly for x in some neighbourhood of every campact subset of E, If arTy, -
a
continuous seminorm p in ¥ is ported by a compact subset X of Y, there is an

open subset V of ¢(l) containing ¢ such that
exp G(To¢(w) = [ =r [G(Tlod:(u) seeesTpo cb(u))]
n=0

wniformly in ¢_1(V)D,'_.‘16. Tt follows that the sequence of the partial sums of the
above series converges to f for the Tma—topology. Thus

hil =r |:G(_T1°¢,...,Tno ¢>]_ = ] 27 (6(T,08) ... (T 08))
‘ n=0

n=0



canverges to h(f) as N goes to = and the leyma follows,

- Proof of Pmpgsitim 1.1 - Congider: h}?(, K= ¢X), K the closed convex hull

of KinE, If g = {T;, Toyueu; TICE andag= {xe K;T; (x) = h(T;0 9,
i=1,2y ..., 0}, then ag# ¢. In fact, if a g= ¢, T = (Ty, Tyoes T edE;CD)
is such that G(Tie ¢), h(T, o ),...,h(T o ¢))¢ T(K), Hence there is G in
£ such that

Re G(h(T, e $),...;h(T o $)) > sup Re G(T(L)) | ¢))
tEK
Fram Lemma 1.1 and (1) it follows that |h(f)| > sup |f(w)| for the holemorphic

mapping f defined as in the preceeding lemma. Thls is a contradiction to h]‘;:(
and we must have ag # ¢. Since K is campact and the collection {ag|g<E', ¢
finite } of closed subsets of ﬁhas the finite intersection property, the inter
sectien of the whole oolle.c‘ticn is non-empty and any a, of it has the property
this proposition requires. The uniqueness of &, follows fran the fact that E'
separates the points of E.

Remark - It is possible to give a topolegy to S(U) in such a way that the mapping
T: h e SA) ———> 7(h) = a € E is a local hemeamorphism and (S(W), ) has nice
properties. The remaining part of this section is"devéted to the construction of

this topology.

Lemma 1,2 - If ¥ is a compact subset of {f, there is a convex balanced open neigh-
U of zero in E such that X+Uc U and X+L is campact for every compact
subset L of U,

Proof - For each keX let{} be an open subset of Il containing k and such that
¢|&I’ is a hareamorphism fmﬁ{: onto ¢(If ).- If Vi is a convex balanced open.
ne:l.ghbou.:rhoedofzeminEsudlthat ¢(fb§;)::o dCk) + Wkandﬂ' c:uk,wehave



20

}g# [¢|&1,’(]'1(¢0c)_\ +Y) DA,
There are K;y Kzgenss khe [JC such that
Q [ﬂu_;(J'l (o) + % ) DK
: n
let V = Q.vki. We have: )
K+ ve {lg-[¢lqg]”lc¢0<i) n

and, if L is.a compact subset of V'

n
’ _ ~ =1
X+L=|] I}Mﬁ] g(.¢(ki3_ + _2Vki)ﬂ(¢(m + L):I
)

=1

Y’
compact’
. S /
— : —_—
campact

Remark - Throughout this chapter the results given without a proof are to be

considered as having the same proofs (formally) as the corresponding results for

the Banach space case in Alexander thesis (see ref, 5).

Proposition 1.2 - Let h in S(U) be such that h {ﬁ(. let U be an open convex balanced
neighbourhood of zero in E such that K+ UC 1L and X+ L is compact for every
compact subset L of U, If, fer every ue U, we set formally

® 7. . .
h(f) = [ — @) 2)

n=0 n! '

for all £ in ¥ ), then

¢i) The series in (2) converges absolutely, h, is in S(W) and h,{ X , where X, =
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=¥+ {.Mi]-]_il < a} for aa> 1such tha't{lullkl & alcUs

ii) ﬂ(hu) = w(h) + u,

If h is in S, h {¥, and $f U is an open balanced convex neighbourhood of zero
in E such that X+ UcU and ¥+ L is compact for every compact subset L of U,
then we set N U the collection of all h, for u in U. We consider in S(W) the

topology having the family of all such N, yasea basis.
. "..

Witim 1.3 - The njapping 7 is a local homoemorphism from S(W) into E and

“lNh,U is.a homeomorphism between Nh,U and m(h) + U.

2. Extensions Pairs

In the pfgb_eeding section (S, ™ was defined. If s(i) is connected, then
(S(),m) is a Riemann domain. We do not know if SCW) is connected, but we can find
a comnected open subset E(U) of S(I) such that (E(iD ,M is a Riemann domain over E

with very interesting properties.

We define a holomorphic mapping from (S(H),m inte C in the gamé way & holomor-

phic mapping fram a Riemann domain into € is defined,

Proposition 2.1 - If f is in #C, the mapping Tt h & S —Th) = ne) e €
is holamorphic in. s).

The mapping i: u ¢ Y —> ilw) € S(W), where i(w) is the evaluation hamomor-
phism at u, is such that i(Te ¢ =T o ¢(uw for all T inE' anduin. If
follows that moi = ¢. If (W) separates the points off, then i is 1-1 and it is
possible to show that i is a local homecmorphism frem % onto an open subset U of

Sl with the following properties: (1) if fisin ¥, £ o i1 is indclly);
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(ii) g o i is in YW for each g in Y ). In this case it is usual to call i
a biholamorphism from ?1, onto ?IS Since {| is connected there is a ‘connected
component EC) of S(U) containing g, If we also denote £ [EQ) by F, we have
T(i(w) = 1)) = £(u) for all u inf. Hence, identifying U to U, we may
consider T as a holomorphic extension of £ to E(.

let (§, ™ and @, ¢) be Riemann domains over E with & cancnically identified
to an open subset of g (by means of a biholamorphism from { anto an open subset
ofg). (g,@) is called an extension pair if for each f.inﬂ@)_ there is an T in
#®) such that T|H= £. In this case fe ¥@ —>TF e H (P is an algebraic iso
morﬁhism.' If it is also a hamecamnorphism, when we consider the topology 'rma’in

both spaces, we say that (5,9) is a normal extension pair,

If # () separates the points of {f, then (E(W), ) is an extension pair as we saw
gbove, The follewing theorem implies that it is also a normal extensicn pair,

Theorem 2,1 - Let ([,®) be an extension pair, If; for every x in &, the mapping
fe WW +—s T(x) ¢ ¢ is linear and continuous for the topology T, in @

a
then (§,£) is normal,

Proof - Let 7 and ¢ be the local hamecmorphisms defining the Riemann domains & and
& respectively. To prove this theorem it is enough to show that for every algebra
seminorm p in }'8(5), ported by a compact set / contained in B, there is an algebra
seminorm q in H @, ported by a campact set } contained in ©), such that p(Fg q(f)
for all f in (&) . By the assumptions of the thecrem, for each x in £ there is a
compact subset X of P such that |'f(x_)lst€si:§ |£C6)] for every £ in $ B, Let V,
be a closed balanced neighbourhood of zero in'E such that v, is contained in the
interdor fi}x of 2V, and (1) x + v c g, (ii) ,'kx + W C D, (iii) ;1'5‘c + Lis
compact for all campact subsets L of 4V .  Since. £ is
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cmnpact,thereisafiniteoover'{xi+\fxi=xi+vi_| i=1,2, ,..sn}of £.
Fori=1, 2, ..., n we set
Ly ‘-"kxi_i- L‘J A { ﬂ(ﬁﬁ(xi *V,:)) - n(xiﬂn R
|AT<Z
Hence ’glc‘j{xa_ + 2V, C & and ofi is compact. let X be the wnien of.ﬂre,fi, is=
=1, 2, ..., N, wvhich is a compact subset of $. For every open subset Wot
containing ¥, there is an open balanced neighbourhood A of zeéro in E such that

| S .
fl);-_ =;kxi + U AL+ B n(xi +2V.0) - w(xiﬂ N 2v:}
- <2
is an open subset of@omté:‘m‘ng.fi foralli=1, 2, .., n, The unian of all
n o
such f; contains X. We may take A so that Uu}'i_czu}'.

isl.

n .
-]
B = | [£+ m N s 5‘}1’] |
i=1 _
: A
is an open subset of E centaining £. If xe @), then x is in xg+ 2V, for
Q
same i, w0 - wix;) belongs to ﬁfi' and, for |A] < 1, x; + AlrGa) = mlx;)) is in
Eby (i). The function g(1) = Flx+ Aln(x) - m(x;)) defined in a néighbourhood
of the set {A € €3 Ill.s.l}- is such that

gy = } Amn—il'!- g(m)(ﬂ) and T(x)= g(l) = z I-n}rg
m=0 m=0

)

'Iherefocré:
) < 20‘ 2 |d Fxp) (0o - x| €
m=0 -
< I & sw  [PLOOMR - 106D ()
m=0 *
x5
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If k e;ig(,, then, by (ii), k + Alr(x) - w(x;)) is in Dfor all |A| € 2. The func-
tion g, (A) = £(k + A(M(x) - 7(x;))) is defined for all |A| < 2. The Cauchy ine-
qualities .
g, ™ @) ! 2™ sup |g,
[A[2

form=10, 1, 2, ..., imply
| PECA G - 1N | € mi 27 sup | £¢0)]
et
form=0, 1, 2, ... These inequalities and (3) imply
_ 0
T |<swp £ [ 2T g2 swp | £¢ex}
teu} =0 telt

Therefore

sw  |FG@l< 2 swp |£Ct)]
x€8W) ' tely

for every open subset Wof @ such thatéﬁ is contained in4) It follows that for
every open subset (i of @ containing K there is c(®(@)) > 0 such that

p(E) £ 2 c@W)) swp |FIE)| 4)
) te &t
for all £ in ¥ @).

We need the following lemma which has a simple proof.

Lenma 2.1 - Let P be the collecticn of all seminorms s in %(®) ported by J¢and
such that (a) s{f.g) £ s(£).s(g), (bl 5(f) & 2/c@BW)). sup ()}, for all ¥,
&nd g in Y8 and forr a1l ap!nsmmﬂof@cmtam:mgx The supremm of all

these seminorms is a seminorm belonging to &,

Returning to the pmbf of the theorem, we see that the seminorm s in {,@@,
defined by s(f) = p(T), for all f in ¥ &), is a member of the collection Pof
Lemma 2.1,  This lemma implies that there is an algebra seminom q in (&)
ported by ¥, such that p(¥) < q(f) for all £ in ¥ @.
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Theorem 2.2 - If (i, is a Riemann domain over E such that ¥ QL) separates the
points of Y, then (E (#),™ and the biholemorphism i from U cnto the open subset
ﬂS of E(#) are such that:

(a) ¥(E@X)) separates the points of E(H);
(b) (EAD,U) is a normal extension pair, -

Moregver, (E(U),m) is maximum relatively to (a) and (b) in the follawing sense; if
(%, V) is a Riemann domain over E and j is abiholonbzﬂlisjnfr’anﬁdutoanopm
subset ‘&m of Mand (a) and (b) are satisfied when E@) is 'replaoed by %, then 72
may be identified to an open eubset of E(?D by é biholamorphism preserving the
points of fl.

Remark - Other results in Alexander's thesis may be generalized to the case wej are
considering., Since they are -not going to be.cheeded here i.we.do. not enunciate

them,
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CHAPTER + III

RIEMANN DOMAINS OF HOLOMORPHY OVER €

Throughout, this chapter the points and the subsets of ¢ are identified respec
tively to the points and subsets of (L'_ﬁx(O,O,..-.)CCN.-

A Riemann domain (U, ¢) over & is of order n at a point u of Il if n is the

smallest positive integer such that there is an open polydisc B in 'rrn(tw) with

1 . .
(B)., Here w  is the projection map

center 0 for which wtv € L for every v in.'lT;
ping from & anto the space of the firet n variables. (U, ¢) is of arder (at

most) n in a subset Qof U if (4, §) is of.on:"er' (at most) n at each pointiof a.

(%, ¢) is locally pseudo-convex if @y, ¢,) is pseudo-convex for each affine sub-

space V of O of dimension two. i, denotes the topological subspace ¢'1[¢au)nv]_
of U and ¢, denotes the restriction of ¢ to ?l.v In this case, see ref, 6 and 7,
for each v in V, “the mapping z € 'le o——=- log éﬂv(z yV) € € is pltmisubhammid-.
Recall that 6nv(z,v) = inf {|x|; u+ Av ¢ Uyt

Proposition 1 - Let (i, ¢) be a locally pseudo-convex Riemann domain over C‘N There

is a positive integer n such that (U, ¢) is of order n in Y and o) = T, 0 ¢ x

N CN fo ,n-1]

Lemma 1 ~ Let (Y, ¢) be .a locally pseudo-convex Riemann domain over ® or order n
at a point u of L. Let r be the largest positive real number such that utbe il for
each b in the open polydisc Br in Trn(G.N) with center 0 and radius r. Then wv e U
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for each v in ﬁ;l(Br). U, ¢) is of order at most n at each one of these uhv,

Proof - ¢.(u) may be censidered equal to zero without any loss of generality. Let

W= (wj)}mI € 'rr;l(Br). If w (W) = 0, then wrw € th because (U,$) is of order n at
u. IfTrn(w)#Oande 0 for each j »n, u+ wel becawsewe B, If 7 (w) #0
and wj¢ 0 for same j ¥»n, consider z = (z:l):lEN (0,...,0, Wy W +1"“) £ d,N The

subspace V of & generated by z and w has dimension 2. Since (ly, ¢|uv) is pseudo-
convex, -105;_&,1V (t, w-z) is a plurisubharmonic function of t in%y. (U, ¢) of
order n at u implies that there are positive real numbers ee,...,' €,-7 such that
u+vell for each v in & such that |vil <€;, =0, 1,..., n-L. Hence ut Aze'lLV
for each AeC because Az; = 0, i=0,1,..., n~1, and ¢(utrz) = Az eV, Cohsequently

-log 6‘U.V(“+ Az, w-2) is a subharmonic function of A in €. Ife = min{ €3 i=

0y 14.:.y N=1} and & is the product of & by the inverse of swp {fwifs 1=

=0, 1, «evy -1}, Jalug- z;)| < e for eadwl|a[<5" andi=0,1, ..., 0=1,. It
follows that ut Az+alw-z) is in Y, for all X in € and laj<6 .. Thus

-log Guv(uﬂz, w-z) is a bounded above subharmonic function of A in €,  Thence

constant. Since ﬁuv(ul-gz.-, w-z)>1, Guvtu-l_-z,'w-z»l and ww el

Lempa 2 » Let (U, ¢) and u be as in Lemma 1.  Let {f be an open connected neighbor-
hood of u such that ¢|a)‘13 a homeamorphism from (M anto ¢(u) + AX. XA < - [B'S]
whereeachAilsmopenballm@mth.oeMerOmds;,n—l.. Then (U, ¢) is of
order at most n in (/and ¢(8) = ¢(w) + on.;.xAn_l x &N-[D,n-l] .

Preof - ¢(u) may be considered equal to 0 without any less of generdality, let Wn=
= AX...xA _, and W' the set of all points w of W_ such that (Y, ¢) is of order at
most n at [¢|uf_'|-1(w). By Lemma 1, if we W, W' contains the largest polydisc of
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radius r >0 with center w which is contained in Hn Since Oewn it follms ‘that
W =W, If welf owe W «-0n-T  pence, applying Lemma 1 for u =
1Elr ¢(ur)] , it is easy to see that (I, ¢) is of order at most n at w'= ur (W) -

- 'rrn¢(ur)).

Proof of Propesition 1 - let U‘be the set of all points of { where (i, ¢) is of

order at most n, ByI.emnaZ Y is open. Let(xk)kobeasequenceofpomtsof
1)’ converging to x in Jl. letafbearxopenmxectednelghbomhoodofxmusudu
that ¢ is ahamanorphlsmfrmﬂfmto ¢(x)+A°x...xA aqto’s],mereeach
A; is an open ball € with center 0. Thmﬁ(vewkhxgemo@md,bylema
2, (1L¢)1soforderatmstnmu)' Hence x € ¥ and ¥ iy ¢losed in &, Since U
is comected, ¥ is equal to . Now the remaining part of the proof follows eas_::._-

1y,

Proposition 2 - let (i, ¢ be a locally pseudo-convex Riemann domain over &,

There is n > 0 in @ such that (X, ¢) is of order n in Uand (W, o) is a mani-
fold of holomorphy spread over ¢ if Uh = ¢_1ETn o@(tl-)] and ¢ = ot . (See ref.

- 7. for the conoept of manifold spread over o).

Proof - Preposition 1 implies that there is a pesitive n in & such that (%, ¢) is

of order n in Y. Thus ¢@M) = m © p{U) x CN'[U’R"J']. If (“'h’ ¢,) is defingd as
above, it is a maméold spread over Cn Since (U, ¢) is locally pseudo-convex,
(7Ln ¢ ) is Jocally pseudo-convex, hence a manifold of holanorpl'w spread over .

'Propos1t1m3- Let (U, 4:)beaRiemamdmainovL’rd?'ofordernﬁ;umdletv

be a peint af (,N Consider the man:l.folds spread over &, (U.n N } and (?};1, wn)
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gven by b = ¢ 1 [r, 0 0], vy = 47 v - M) + 0 6], 6, = dlay, ¥
= ¢| U'n.__ Then there is a biholemcrphism between them, In particular, if (uh,din)
is of holemorphy, (‘U’n, %;) is also of holemorphy. '

Proof - Censider the mappings

by: x eV, b e x + [T 400 - ¢0)] el

and

ze’ﬂ.h — - >z 4 [v__- 'rrn(v)] € ‘U;

Tt is easy to see that byo b, and byo b; are the identity mappings in ZLnand in ?};1
respectively, They are also local hemeamorphisms, In fact: consider x in v;x and
an open neighbourhood {{" of x in U such that ¢/ is a hameomorphism and ¢(W") =

= 0(x) + Ax...xAX A-0t] here each A, is an open ball in € with center 0. Let
W' be an open neighbourhood of x + ['rr $(x) - ¢(x)] in U such that ¢|( is a homeo-
morphism and ¢{h) = n plx) + B x. ..st_l
+ A XA X tI.N-l:U't]', each B, being an open ball in € with center 0. Let#" be

the open neighbourhood of xell given by't¢|k?_]‘1 [¢¢0 + B_X BjyX...xB x.t’_‘l't[’ ;Sj:]
Now it is easy to see that b1|w" A ¥ is a homecmorphism from ¢/ N ’U’n onto WMLn.

x By x A-0%8lis contained in = 900 +

It is also easy to verify that f o by e‘ff}(v’n) and g ob, e'f&(’tln) for every £ e_ff,(’l{n)
and g € fé(?)'n).

A Riemann domain (U,$) over @ is a domain of holamorphy if there is £ eff(2) with

no extensien Teff, (D for every Riemann domain (T, §) over & extending (ﬂ,tb) proper
ly, (@, 9) extends (U, ¢) properly if there is a biholomorphism j (see Page 22)
from U onto a proper open subset U, of . In this case, f has an extension Fe (D
if Toj = f.° | |
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Preposition 4 - Let (1, ¢) be a Riemann domain over @ of arder n in Y, and such
that (Uﬁ, ¢n), defined as above, is a manifold of holanorphyépread over ¢, Then
(4, ¢) is a domain of holamorphy.

Proof - There is f_ e‘ﬂ,(’an) with no extension Tne '2'6(@1) for each manifold (&, )
spread over C° extending (?Jh, ¢n) properly..

f: xell > f(x) = fn[xi-(wnct(x) - ¢(x))] €t

holamorphic in %. In fact: if x is in U, let 4*' and & be considered as in the
proof of Proposition 3. It is quite clear that

£ o[¢|€'ﬂ-1(¢(x)+b) = f o[¢(0f)]-1 Enn $(x)+b] (%)

for each b in B x B, x...x B, & _[O‘BJ. - But, in ¢, f o [tblaﬂ-l depends
only on the first n variables and it is holamorphic in 7 9@ since it is equal to
£ o [¢wnun]'1 there. Hence it is holamorphic in ¢() (see ref. 8, 8 and 10),
Since ¢(¢) is a translation of ¢$(4*") and (*) holds f o [¢p|¢"] is holomorphic in
‘¢@"). Thus f is an element of #(A) and the restriction of it to i, is equal to
f!-,t. If f has an extension T in (M) forsmeRiemanndanaiﬁ(E,E’) over & ex-
tending (U, ¢) properly, there is some manifold (U’n, ) spread over " (of the
type used in the proof of Proposition 3) which is not of holamorphy, Proposition 3
implies that (%, ¢,) is not a manifold of holomorphy spread over ¢", a contradic-
tion to the hypothesis of this proposition. Therefore (U, ¢) is a domain of holo-

moyphy.

Proposition 5 - Let (U, ¢)beeiRiema:mdamajnofholmﬂ1yover¢Nsuchthat

k() separates the points of . Then (E(W), n) is cancnically identified to (¥,4).
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"The. proof of this propositien is an immediate consequence of Theorem 2.2, Chap-
ter II.

A Riemarn domain (U, ¢) over & is peeudo=cenvex if, for each compact subset K

of U, and each balanced convex open neighbourhbod .U_ of 0 in & such that X+ucll and
Y+L is compact for every compact subset L of U,

illf vell,
where

X, = tust [f] ¢ slgc|f(t)|, ¥ £ e}

Proposition 6 ~ Let (U, 4) be a Riemann damain over & such that ¥(W) separates

the points of { and (EQW), %) is canonically identified to (ll, ¢). Then (%, ¢) is

pseude-convex,

Proof - let K be a campact subset of U, and let U be an open balanced convex neigh-
bourhood of 0 in N such that '.'R-F Ucll and X+L is campact for every compact sub
set L of U. Then, bszopos1‘t1m12 Chapter II, ¢(iu)+U'c¢(U.) Proposition
1.3, Chapter II, implies that N, (x),UC:S(u) for each x J.n](. where i(x) is the

evaluation homomorphism at the peint x, Since N, is open connected and x is

i(a,U
in N; x),U i EQD, it follows that N 0 ,U is contained in E() for each x mJﬁu.
But Y, is. identified to E(W) andN()Ulsthesamesetasx+Ufaread‘lx1nj4u

I-Ienceku'+ ve i,

Propoeition 7 = If (A, ¢) is a pseudo-convex Riemann domain over di, it 48 locally

pseudo-canvex,

Pooof - If V is an affine subspace in & of dimension twb, (ﬂv, ¢V) is a manifiold
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spread over Cz, where U.V = ¢-1.[¢(UJ ﬂ‘:] and ¢, = ¢[ﬂ.v Te s.héw that ?lv is pseudo-
canvex, it is enough to prove that d(X, ) > 0 (see ref, 7 for this notafion) for
every campact s:.xbse‘t%ofﬂv. let ¥ be a compact subset c>f'U,v and let U be an open
balanced convex nejighbourhood of 0 in & such that ¥+ ycl and X+ L is compact
for each compact subset L of U. Then iu; ucll and ¢(;1'Ezg + UC §).  Since $Ck)
is contained: in. then clesed convexi hull.of - ¢(K) and .4(K). = PKIeV (see-
Chapter II},. it- follows that

ok + UDVC o NV = 6, .

New
A

-j{'nv +uft Vcﬁuﬂ?lv + U Nvc
c:(-i‘k.u+ U} nfuvcunnvcuv .

It follows that there is a polydisc B in V with certer 0 and radius r.> 0 such that
:rq.v+ BC:.'U.V. This wesns that deuv) >0,

Now it is possible to enunciate the following theorem whose proof we have just

finished,

Theorem 1 - Let.(#, ¢) be a Riemann domain over ¢ such that ¥ ) separates the
points of {l. The following conditions are equivalent:

(1) @, ¢) is a domain of holamorphy,

(2) (EQD, 7) is canonically identified to (i, ¢).

(3) (’_a,, $) is pseudo-convex.

) M, ¢) is locally pseudo-convex.

(5) There is n > 0 in N such that (4, ¢) isof ordern in% and (U , ¢ ) is a
marifold of helemorphy spread over €, if o = o[ , U = oL LA ¢(u5].
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Rematrks'~ (1) Theorem 1 was proved by Hirschowitz in ref, 10 fer the case in which
@, ¢) is an open subset of €,

(2) The implications (1) ==>(2) =>>(3) = (4) are true for a Riemann

domain (4, ¢) over a locally convex space E such that the closed convex hull of .

each compact subset is campact. The proofs are exactly the same as above..

Let (U, ¢) be a Riemann domain over QSN such that % (l) separates the points of
. The envelcpe of holemorphy of (¥, ¢) is a Riemann domain (’llb, tbo) over (EN
which is maximum in the sense stated in Theorem 2.2, Chapter II, with the word

"normal" erased in condition (b)..

The equivalent conditions (1) and (2) in Theorem 1 and Theorem 2,2, Chapter II,
imply that the follewing results are true,

Theorem 2 - If U, ¢) is a Riemann domain over G,N and () separates the points of
L, then (E(}), m) is the envelope of holamorphy of (U, ¢).

Corollary 1 - Every extension pair of Riemann domains over G,N is normal.
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CHAPTER IV

DOMATNS OF T-HOLOMORPHY IN A SEPARABLE BANACH SPACE

1et U # ¢ be an open subset gf-a-canplex geparable 'Be:naéhspace E, Let T be
a positive lower semi-continuous function in U such that T(x) ¢ d(x, 3U), the
distance of x to the boundary 8U of U, for every x in U, ¥ (W) denotes the
algd'ma of all the complex valued holomerphic functions in U whlch are bounded on
_each_closed ball with center x in U and radius strictly smaller than T(x) (see
ref, ¥1). The oallectidl of all finite mions of balls of the above type is
genoced by | (). InﬁT(U) it is considered the Freche‘t topology of the uniform.
convergence over the elements of tBT(U).- Observe that 't:he umon of the 'ﬂﬁr(U) for
all. T, is the algebra $(U) of the complex valued helamrphlc functions in U, U

is -ar open set of r-holomorphy if it is impossible.to find two open connected sub

sets Uy and U, of E such that (a) U ny, contains U, £ ¢, ®) Uy is not contained

in.U, (&) foreachfmﬁ w, thea:elsf m%(U)hewmgthesmevaluesasf
in U,. Ilesasubse‘tofU,XU deno'tes'mesetofallmesudlthat.
|£(x)| < sup {|£(t)]; teX}
for each £ in- ‘&T(U). Tt is easy to see that the following proper*ties are satisfied:
LI
(1) xf] ‘is clesed in U
(25 28 e
(2). If X= UV, where U and V are open subsets of E, then XUCX'V;

: T
(3) TEXC YC U, then XyC Yy 5

(%) Sup {}£Ct)]3 teX } <sup {I£(V)]5 t e xa} for each £'in ‘ﬁ_(U).:



35

”~

Propogitien 1~ If X ds a subset of E, then XE is contained in the closed

oohvex hull SE éf X,

M - By a separation theorem it follows that g ¢ X if, and enly if,

#(2) € sup {¢{x); xeX} for every real continueus linear mapping ¢ on E, considered
as a real Banach space., The mapping ¢. : XeE F———-=(x) = ¢(x) - ip(i.x)e €

is a continuous linear form on E and the function f: X €E +—sp £(x) = exp P(x)
is in %T(E). If ;_e%, .|f(E)| < sup {$£(x)|; xeX} and ¢(E) € sup {d(R); x=X}
Hence E eX. '. |

Corollary 1 ~ If X is a bounded set contained in the cpen subset U of E, )?(rj is
bounded, |

Proof - Apply Proposition 1 and property (2).

Theorem 1 - Let U be an cpen ccnnected subset of E. The following conditions are
equivalent:
(a) U is a demain of Tt-holamorphy.
(b) If A is in BT(U), % is a bounded closed set in E and d(g‘[t" 3 > 0,
() There is £ in %_(U) such that it is inpossible to find open canmected
subsets Uy anf U, of E such that

(i) un Ul:J U2 #¢ and Ulﬁf-U,

(ii) there._is'fl in ‘z(Ul) such that f is equal to t_‘l,_in Uy

Proof - It is clear that (v) ———=>(a)
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(a) === (b)

Let A = L_pr(x) wheme(xi):.sthecloaedballwlthcenterxleU
andmd:.u.sp <‘r(x) i=1,2, .ssyn. Ifr>olasuchthatr-<mf{'r(xi)—
-p.l-l 2, «vey 1}, ;U-I-B(O)cllanddfﬂu, U) > 0. In fact: if f is
in % (), it is bounded in X = HBP +p(%y)+ Henoe:

L3
3t

for every t in A, Here M = sup {|£f(x)|; |x-t| € », teA}. Thus,

£t)| ¢ Mt

=1

1 -
—clj £(z)| €« M.x

3t

for every z in .;AJ. Hence the Taylor series of f in 2 converges uniformly in
every closed ball B (2), s < r, Therefore it defines a function £, in

#(int B (2)) which is equal to f in the connected component of UM int B (2)d¢
containing {z}. Since U is a domain of r-lwlarorphy Int B (2)cU and

d(z, 3U) » r for each 2 inAU Thus dCAU, 3w » 0, AU is bounded by Corcllary
1 and closed in U by (1). Since d(AU, ) > 0, AU is closed in E,

(b) =——=p(a)

lemma 1 -~ Let X be a countable dense set :.n U, Lat (;n) =] Pe a sequence formed
by all elements of X in such a way that each x in X appears an infinite number
of times in the sequence, Foreachn=1, 2, ..., set

n
B R SLETE PRTONUY
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n _
- Then UBj = U and every A in QT(U) is contained in some B .
F13
Proof - Let B (x) be such that.p < T(x). Consider & = t(x) - p > 0 Given
By (X), there is § € X in B 4, (0 such that T(E)> T (x) - & . Hence there
is a subsequence G;nk)::l of (En):ﬂ. such 'tha‘tﬁm( =g, k=1,2, ..., and

T(Enk) >1(x) - 8/ =p+8/2+7,

Y > s.fOPﬂllk:l,z, v ChOOBenk such that
Q

T(E

) (-1/m, ) > p + 8/2
ey nk_o

B(x)c.:B

Ty G-l o’

and the lemma follows,

Proof of (h} ==——>(c). let (En) ‘and (Bn)n_ be aeqm;ms like those of
Lemma 1. By (b) BT is bounded and closed in E. Moreover d(B , 3U) > 0, For
eachs let BE be the largest open ball with can‘be.rE oonta:l.nedan Then

B CtB far j = 1, 2, ... I.e‘tzjbeanelen‘entofB BJU Denotebyf a

87 Wy |
function in § ,(U) such that f-_(z.) = 1 and sup {|f.(t)l, te B } < 1. Replac-

:.ngf byapwerof:.tself 1tlspossz.bletocmslderf(z)equaltoland
sup{if(t)l,tsB}<l/23 Thusf u.snott}mmtantfmcnmlmu.

] .

Define f = n (-f, 7. since 20 3723 converges, it follows that Z| (1—f )3—1|-

: 3=1 . =1
CONVerges um.foxmly on each Bn Hence the infinite product converges uniformly
to f on each B and f is in*sT(U). Gn the other hand:

o0 T
> I -v2hiso.

J=s '
Therefore, if V = Bp(x)-with p<t(x), there is s such that V is contained in B,

I Q-f.(t)d

inf
jes

teBs

and
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-] .
T Q- f.&))9
3=s J

yxeVy >0,

Thus f i not identically zero since U is cormected and ﬂr(U) is an integrity
”~

darain, Itistnxeﬂma‘tdkf(zj)=0ifk<j. Since each £ ¢ X appears an

- -]
n=1?

is a positive ingeger, there are points in BE’ of the form Z55 where all the dif

infinite number of times in () the follewing fect follows: if £ ¢ X and N

ferentials of f of order m less than N vanish, Thus £ can not be extended to a

holomorphic function in a neighbourhood of B In factt if this were true, f

E.
would have all of its differentials at same point of the boundary BBE of BE

equal to zero. Hence f would be 0 in B,_ and, consequently f would be identically

zerogin U, Suppose that there are opengcamcted subsets Ui and U, of E such
that U; ¢ U, U; A UD U, # ¢ and exdsts £; in#(U)) such that £ is equal to f;
in U,. Call ﬁz the connected component of Uy | U containing U,. Let £ be a
peint ofz. éU n U; and of the closure of U,. Ifr> 0 is such that B,(£) is a
subset of U,, chocse £, in X0 B,/2
p < &g, ). Hence By & B, () and ro B (£)cU,, which is a contradiction

(£). The radius p of BE is such that
. ()

to the fact that f cannot be extended to a holam:rphic function in a neighbour-
hood of By . Thus f is a function as in (c)
Q.E.D.

Remark - A similar result was proved by Dineen in ref, 12 for the case in which
#!b(U) replaces ‘Je,r(U) .
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CHAPTER V

A MALGRANGE ~ ‘@UPTA THEOREM

1. Nuclear Entire Functions of Beunded Type
Throughout this chapter E, E;, E,, ..., E_ are lecally convex spaces whose
 strong dnals are Fréchet spaces.

In .3(El',_ Epy vues En)_ we consider the topology of the uniform convergence
over bounded subsets of E) % E, X... X E_. Let L(E,,..., E_ ) be the campletion
of this space. ogf(El, oo ey En) = Lf(El,..., En) is the vector subspace of
L(El,..., En) generated by all n-linear mappings ¢, X «iu% ¢, where ¢, € Ei,_
i=l’ 2. -oo’nmd ¢lx vee X ¢n:(x1, -..,‘Kn)'= ¢1(x1)ao- ¢n(xh) fw all .
(xl,_...-, xh) in E, % xE . The mapping Q. (¢1,_..., ¢n)_ E'-Ei;:_,%...x EI;
—— $; X ... x ¢, €L (E,...; E) is n-linear and continuous when it is
given to Bi x .., x E| the product topology of the strang topolegies B(E;_, E;)
in Ei, i=1, 2’.”" n, There is a continuous linear mapping X, from the

. s ' ' ! LA
projective tensor product Bl®1r }32®,ﬂ_ ®1r En of the spaces Ei' 1=
=1,2, ...ninto L(E 5005 BD. %, 181 = 1 and its image is Lf(El',..-.,'En)..
X, may be extended to a continuous linear mapping fram the completion
N t -~ 1 ' t [ PR
5@, ®, ...0F of E®, 5®, .0 E into LE,...,E). This
extension is also denoted by Xy» 1T is not known if ¥n ig 1-1, Here this is
supposed to be true and, at the end of this chapter, some remarks are made in
order te deal with the other case.
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The following result is true. (See ref, 13 for a proof),

Propositicn 1,1 - If Fl and F, are Fréchet spaces, every element u of Flé.ﬁ F,

is the sum of an absolutely summable series

u s n:fo " % Oy

w .

where (3 n)g-[] is a sequence of complex numbers such that ] [A_| 1is smaller
) -] & . n=0

than 1 and (x)) o (resp. (y ) _,) is a sequence in F, (resp. F,) converging to

n’‘n=
Py

zero, Moreover, the topology in F. @ _F, is given by the seminorms:
& 1< 2

n

0 -}
buly, o = inf n§0 p(x) qly )5 u = ngo x @y, x, € F,y ¢F,

where p and q are continuous seminorms in F, and F, respectively,

fa)

| )
Define in x:n(El®Tr ces ®1TEI'1) the locally convex topology generated by the

seminorms ;

hod -
’pl!‘ sey Pn j£0 P1(¢1:| Pn(¢nj)’ A jé[] ¢l] x X ¢n:| :

1 ~ 4
for each A € xn(E:L@'rr ®1T E;]), where P; is a continuous seminorm in E;,

i=1,2, ..., n. This subspace of L(El,..: » E) with the topology just defined
is called the space of the n-linear nuclear mappings from El' X v, % En into €
and it is dencted by Ly(Eyseees E ). If all the spaces E; are equal to E the
notation is I.N(nE). Let P("E) be the set of all mappz'.ngé PEL x eE ————-EA(X) =

= A (x,...,xe¢C forA in LY S PN(nB") and lF.’f(nET-are 'defined by the same process
with. LE"E) replaced by Ly CE}andL{E)respectively, Consider in PC'E) the local

ly convex topology generated by the seminorms:
. - m

!

=

o

IPh, = = inf 1fq(q;.)“- P =
Nsq : 377 - 1 3

¢'xcolx¢' =
j=1 j=1 3

] .

1) e

1
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for all P e le(nE), where q is a continuous seminorm in E'.

Lfs(pE) denctes the subspace of ILf(nE). formed by the symetric n-linear map-
pings. Similar definitions are given for Lé@_nE") mmé(mﬂl. IfPe .Pf(nE_)_
is defined by A in II..fs(nE), it is denoted by P,. Same notation is used for P in
PCE) and B, ("E).

Proposition 1.2 - If A #s in L. ("E), then

= Il ] -1
'IAHNaQiq’H-':q.. IA'N,Q,“S nPA"N < ni(nl) IAIN’q

e

for each continuous semincrm q in E',

Remark - In this chapter, a result left without a proof has formally the same
demonstration as the oor*mspondmg one in ref,l4,

Since it is known that ILfs(nE) is dense in ILNS(T'E) and that Proposition 1.2
is true, it is -possibie. to define the seminorms |, || N,q in. Pﬁ(nE) by: if Py ig
. i . * . .
. o . . , _
in H.N(nE) eum:l-(ﬁ\:'.)j=ﬂ is a sequence in Lfs(nE) converging to A in lN(nE), IPAIN,q
is the limit of the sequence (HPA:'I - q);_g, fer each continuous semincym q in E',
- -~ . -
It is not difficult to see that PN(nE) with the locally convex topology generated
by the seminorms .| g =4 varies in the collection of all continuous seminorms
1
in E', is a Fréchet space and
o N, ;y=1
IAly g < IRl y g < 07D Al o

for esach A in I.N(n'E) and all seminorme | N,q"
-4

Proposition 1.3 - If A is in I ("E), %, € E;, 1 = 1, 2, ... k, 1 ¢ k< n, then
A.X,...x, defined by
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Axqgeo g (xm_l,. ,351) = AlX , X500y X))
for each (X 1s+++y %) in En-k, is an element of "lLN(n-kE) and

HA‘xl xkl N q |AEN qxl,

where-qxl,...~-,- % ig the continuous seminorm on E' given .by
qxl""" xkcqu = sup {q(¢), |¢(x1)|,..., |¢(xk)|}

for each ¢ in E', Moreover:

lPA.xl,. N N,q < l I
yerey Ko

m
Proof - If A is in Lf(“E),somatA= ) 615 X +uv X by, it follows that
' j:_]_.

n

fa.x. .50 X < j£1 69506000 _ﬁcj%)!q(q(ﬂj_)...qwnj) <
m

< jglqu'_tﬁ'°‘)}i< (¢1j)-o_o 'qxl’...’. ,ﬁ((¢nj)

Hence

fA.x ..o | < | Al (1)
1% N,q\ |N'qxl_,...,xk

The density of L ("E) in Ly, ("E) and (1) imply the first part of the proposition.
The second part follows analogously.

X mapping f from E into € is entire of bounded nuclear type in E if:

(1) £ e¥E

(2) & f(O)e[PN(nE) n=0,1, 2,

(3) lim: (n!)-lﬂ Reco) | N :| 1/n = 0, for each continuous seminorm q in E',
Teses.
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In the space %Nb(E)- of -all entire mappings of bounded nuclear type in E it is

considered the locally convex topology Ty generated by the seminorms .
' w
- n, -1 an
= ! £(0)
I o)™ |d In o

"fuqu’ﬁ. n=0

as q varies in the collection of all continuous seminerms in E' and p varies in

the set of all positive real numbers.

Proposition 1.4 = The campletion IHNBIE) of (ng(B), Ty is the set of all map-
pings f from E into € such that there are P € [PN(DE), n=0,1, ... satisfying
the following conditions: “

() £ = § aHTP (), for each x in E;
n=0

% -1
2 PRrt S S el |
' nEO ' n H

< +w
N,q

n. -l - 1./“_ )
(3) ﬂ [(n!) IPnIN’q] =0

for each p>0 and each continuous seminorm q on E'. By is denoted-by__ﬁ.nf(O)

and £ is defined by the same series as before. @y (E), 7) is a Fré-

N,q,p
chet space,

Proof - It is clear that each f satisfying (1) and (2) is the limit of a

-]

sequefice of elements of ¥, (E). If (£, is a Cauchy sequence in Hgy (E),

¢ @™ &P () 3 is a Cawhy sequence in By("E) and cenverges to
T 'P.n.; PN(nE), forn =0, 1, 2, ... For each continuous seminorm q on E'
and each p > 0, there is Mq’p > UlsuT that [£ |l N,g,0 S Moo for k = 1,2,...
— n -
Hence, for all k and all n, ()7~ {d "0 Iy o <P an’p. Now
, |
-1 ww=lp 40 =112 n
(n!) ﬂPnnN’qs (n¥)" |1fn-d. £.(0) ||N’q + @) )4 fk(O)IlN’q <

=1 _An -n,
<@g -4 fk(0)||N’q+ pnﬁq’p .
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Passing to the limit as k gees to o
t -1 . =-n.

(n}) uPnlN,q--‘ PM, for each n
This implies that

lim sy [(n!)-lanIN El Vh ot for each g,

e : ' Nag
A8 p goes to » conditien (3) is gbtained. Define _

- -

-1
f(x) = (n!) ~ P (x)
W= I @™ g

for each x in E. Such f is in By, (E) and it is the limit of the Sequence ka);l'-

Q.E'B.

2. Convolutien QOperators and Borel Transforms in B ().

giticn 2,1 - letae E and £ E%Nb(E). Then

W d")a e ¥y (E) ana
dPma= § ant @M eod o
i=0 . '

in the sense of 3, (),

S «.
(000 = fGra) = § ()™! Prooa
. n=0

in the sense of f@Nb(E).
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Proof - Observe that
= 1 s 4 1 1./\
&l = Z (=112 PrP 2= 7 mnH ™ PR

=i n=0
for each x in E, Now the proof is formally equal to the proof of Lemma 8 in ref,
1l with Leama 6 replaced by Proposition 3.1.

Remark = If f ins an element of lHNb(E) - ﬁNb(E) it is the limit of a.sequence

(fk)k -1 of elements of ﬁNb(E). Thus, for each x in.E, a-nfk(x) exdsts for all k

end
~n _.An _ . 1 ‘_+n/\i _ 4itn
1d "5 G0 - d P 0 "N,q = Z ah™ | £,(0) % e £ ot Iy a

sapy=l g~ itn ~3+n
€7 G la £ -4 £ | <
i=0 k N’q'x,... »X

—€n! iz [(i-bn)'] l+n|Al+n fkf-glmfIIN —_—a0 ask,M—»=

(here q, denotes q_ Hence the sequence (g nfk(x) );__:1 converges to a peint

e ..,x *
P, of B("E) and P_ is denoted by d "£(x).

Propositien 2.2 - Propesition 2.1 is true when ﬂNb(E) is replaced everywhere by

g, CED.

Proof - (1) Let (fk)“’

)=y be a sequence inﬂNb(E) converging to £ in Hy (E). Then,

for each a in E,

T
la "g(a - a f (. )aI[N’q’

Z ant et ||dl+nfk(01a - @

1-0 N s.q. <

oPnt T [(un)l] 1. p)l*“ ja 3" £ (o) - &M (ol .
i=0 ’

- . - : ——
At gy - gy lyg 5 ———> Oask,m
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~n o L )

Thus (d fk(.)a)k=l 18 a Cauchy sequence in HNb(E) and converges to a g ¢ |HNb(E).
e o~

Since (d nfk(x) )§=l converges to d 'f(x) for each x in E, it is easy to see that

g = aF()a and

da= § @dn ! d*Peo)x.a
i=0

for each a € E and x in E. Use the same argument of part (1) of the preceding
proposition to camplete the proof,

(2) Let (f )k =1 Pe @ sequence of elements of #; (E) converging to f in H (E).

Then
uT—a b - Ta fm" N,a,p
-1
ngocm @ coa- g 0dly <
@® co . /\
) (i!)-ll:dl%an - 1+“f (0)a ]|| N0 €
n=a  iz0 2Q5P

I o™ 2 () 11720 ™ | 1+“f (-3 ¢ O
=0 i=0 Ny a

||fk" L iN 2p I oY ——>0, as k,m —, if p> 1,
aqan- n=0

Since k-lj;]j T [l = 1_f(x) for each x in E, g = T, f a‘I-INb(E). On the cfnther
hand (1) of Proposition 2.1 holds for each fy. Moreover d '(r_, £)(0) = & £ (a)
and, passing to the limit, al('r_af)(o) - 1s equal to a *£a). Now, the rest of

the proof follows as in Proposition 2.1.

Amapping @ from By (E) into itself is called a convolution operator on

HN-b(E) if (1) @1is linear ;(ii) @ is continuous; (iii) & is translation in-
variant, that is: @T_af: T, OFf foreach a inE and each f in By (E). @

denotes the collection of all convolution operators on IHNb(E) . It is an algebra
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with unity under ccnposrtlm of mappings as multiplication and the mual vector
space operations. Consider the mapping v: @e@ ——— y@ = T IHNb(E)
where T(f) = Qf(0) for each f in H, (E).

Proposition 2,3 = v is a linear 1-1 mapping from @ ento IHI:]b(E).

The following two lemmas are used in the proof of Propositien 2.3 and they

are interesting in themselves,

1 .
Lemma 2.1 - Jlet T ¢ HNb(E) so that there are p > 0, ¢ > 0 and a continuous semi-
norm q en E' such that: |T(f)| < of £} - for each £ in H; (E). Then, for every
' N.,q,p
PelPy (nE) withAin L NS(I_]'E) such tha‘t-PA = P, the polynamial '
y e E ——T (& y" %) ¢ ¢, denoted by Tx(gc_k), as in By("E) for each k¢n.

Moreover

lemma 2,2 - IfFT e IHI:]b_(E) is as in Lemma 2.1, then (T * £)(x) = T('t'_x £), for
each x in E, .de,fines a function T * fe H,(E) for each f in HNb(E). For every

Py > 0 there is = > 0 such that

T * -
7+ £l N,q.p, €l N.q,2(pt p;)
for each fin Hg (E).

The proofs of the last three results are formally equal to the proofs of Lemma
9, Lemma 10 and Proposition 10 in ref, 14,

Notation - The inverse mapping y' of vy is given by y'T(f) = T*f for each T in
By () and each £ in Ey(E), Now y'T is denoted by T*, for each T in H (E).
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. t = L}
If T) and T, ave in By (E) and &, =T,. % eQ, (92 = TZ*EQ, Y(Oloﬂz) € By, (E)
is denoted by T,* T,. Also, for every £ in Hg (E), (Tlﬂ T,) * f = (01 o 02)(f)=
=@1((ﬂ2 f) = -Tl* (th £, Tl* T, is called the conwolution of T, and Ty,
' _ '

Remark - !HNb(E) is an algebra under the usual vector space operations and with
convolution as multiplication, This algebra has a unity §, defined by &8(f) =
= £(0) for each f in ¥, (E). The mapping vy is an algebra isamorphism.

The mapping ¢ € E' ——— ?(d)) = T(exp ¢) € € is called the Borel trens-
m’T\ of T in lHl:Ib(E).

lemma 2,3 - The vector subspace of IHNb(E) generated by the set {exp ¢; ¢ecE'}
is dense in IHNbCE).

Lemma 2.4 - The mapping B: T € Bu("E)! ~—— B T ¢ P('E') defined by BT(¢) =
= T(¢") for each ¢ in E' establishes an isomorphism between the two spaces. More

over.
def I7¢P) | |BT()| et
ITly, = sw — = ap ——— =[BT
Iph, 20 Phig  qo qte™
L]

for each centinuous seminorm q on E' such that

|T(PY| < c(q) |P|N§q
for every P in PN(nE).-

A function £ of J(E') is of exponential type if there are ¢ > 0 angd a

continuous seminorm q on E' such that
5| ¢ cep [a(e2]

for each ¢ in E'. Dengte by Exp E' the set of all functions of expenential type
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on E'. It is an algebra under pointwise multiplication and the usual vector

gspace operations.

Proposition 2,4 - The mapping a: T e H]:Ib(E)-—"""a'T =7 ¢ Exp E' is an algebra

- iscmorphism,

‘Broposition 2.5 - let £, f), fy ¢ #(E') be such that £, = £,f with £, and £,
of expenential type and f, not identically zero. Then f, is of exponential type.

Proof - 1If £ is identically zero, then f, is identically zero and f; is of’
expanential 't&{pe. Ifr £, is not identically zero, it is possible to suppose
fl(O) = f2(0) = 1 and the existence of positive constants Cl‘ 02 and of a
continuous seminorm q on E' such that (1) [£;(x)] < Ci.e:tp[q(x)], i=1, 2, for
each x in E'y () [fy00f ¢ Mif qx) < 6§, for same § >0, If xeE'and q_(:vc)li'E
# 0, set %, = x/q(x), g;(z) = £;(=mx;) fori=1,2, 3 andzin €. Theng; edb(0),
i=1,2,38, g0 =gy0) =1, Igi(_z)l < Ci.&t&p@(:rj_)'zlj] i=1,2and £,°8,8
By'a Malg;mge thecrem (see Ref. 15) there are ey > 0, C-3 > 0 such that
lg5(2 « Cy.em[eslz] * fép all z in €. If z=1g(%); then it follows that:
|£500] = [£56a(x) x| € Cpeexp[ea)]
for all x in E' such that q(x) # 0, If q(x) = 0 it follows that |£,00] <M,
Hence, if 4 = max {M, Cl, o
|£500)] < d.exp[caq(x)_']

for each x in E',
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Prepositiaon 2.6 - Let U be a non-empty open connected subset of E', Let f and
g be elements of {4 (E") s g not identically zero, such that for every affine sub-
space S, of E', of dimensicn 1 and for any connected campanent S' of S Ny, in
which g is not identically zero, the restriction f|S' is divisible by gl|s!
with the quotient as a hola'mrphic mapping in 8'., Then f is divisible by g and

the quotient is holomorphic in U,

Proof - It is encugh to proof the propesition locally. let £ € U. There is
@ecE such that g(8+@) # 0 and £ + t O c U for {t] €« 1. There is 0 <r <1
such that |g(E+t@)] > 0 for |t| = r, because the zercs of a holamorphic function
of cne compllex variable are isolated. Since {t € ¢; |t] =r} is compact,
there is a neighborhood V of &, V< U such that {g(x+t@)| > 6§ > 0 for each x in V

and each Jt| = r. Define

h(x) = (mfl'[ t7h fxrte). [goerte)] L at
Iti=r

for each x in V, It is easy to see that h is locally bounded in V. By the

hypothesis of this proposition, there is a mapping ¢, from {t € €; |t|{<1} into

C, holomorphic on its domain of definition, such that f(x+te) = g(x+10). ¢, ()

for all |t| < 1, On the other hand

(21ri)"ljlt|. ¢X(t).t-l at = QTFi)_lJtL:. £t f(x+te).[g(x+te)]'l at
=r g

for each x in V. Hence ¢ (0) = h(x) for each x in V and f(x) = g(x).h(x) for

SRR AT S,

each x in V. Thus h is G-holamorphic in V. Since h is also locally bounded in V,

it follows that h is holomorphic in V.

I
Proposition 2.7 - Let T, and T, be elements of IHNb(E), T2 not identically zero,

2

. ”~
such that if P e Py ("E), ¢ €E', T,*Pexp¢=0then T)(Pexp ¢ ) =0, Then T,
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is divisible by 62 with the quotient as an entire functien of expenential type

on EY,

Theorem 2.1 - Let @:be-a convolution opexator on lHNb(Ei. The vector subspace

of B, (E) generated by {P exp ¢; $ € E', P ¢ PyC'E), n = 0, 1,... OP exp ¢) =
0} is dense for the topology Ty in the closed subspace H=1f¢ By, (B); OF =
0} of Wy, (E).

Theorem 2.2 - let@ be a hm-—zero cé;nvolutim operator on lHNb(E) and let ty
be its transpose, Then tgﬂl:lb(m is equal to the orthogenal of {f € Hy (E);
Of = 0} in By (E) and is closed for the weak topology of My, (E) defined by

Hy, (E).

Theorem 2.3 -~ The image of a non-zero canvolutien cperator in. HND(E) is equal

to |HN'b(E).

Remark - If the mappings X, considered.in the first section of this chapter are
not 1-1, some modificaticns have to be done in the preceding material. The read
ing of the Appendix in Ref. 14 will show clearly what are the modifications that
must be dene,
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