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INTRODUCTICN

In these notes on relativity and gravitation, we will present the theoretical
models which have been proposed for explaining the phenomena of gravitation in
modern physica. We may as well use the term relativistic theory of gravitation
in place of the objéctivé modern used above. The relativistic theoretical models
used for describing the gravitational field can be devided into two main parts,
the so called flat-space time theories which use as the fundamental concépt the
overall flat space-tims of special relativity, and the so called general theory .
of relativity which uses as the fundamental concept a four dimensional curved
space with a Riemannian structure. In the course of this work wé will try to

compare the results and concepts of these two different points of view.

It is supposed that the reader is familiar with the special theory of relati-
vity, and with the basic physical arguments which have conducted to this theory,
as well as with the allied areas such as the theory of the electromagnetic field.
At the same time a knowledge of classical canonical dynamics and quantum mecha-
nics will be necessary. Nevertheless, more involved details which turn out to
be necessary, as for instance the theory of canonical dyamics with vanishing
Jacobian (sometimes called by Dirac theory) will be discussed. This work will
be divided into two volumes, the firet will treat with the classical model for
gravitation from both points of view stressed before. The second volume will

treat with the quantum theory of gravitation as far as we know it. -

These notes are intended to be an advanced presentation of gravitation, how-
ever, in order to have a more complete treatment, we also included some basic
introductory concepts; this is done in the sectionwff 1. In this section the
concept of tensor is introduced. It is supposed that such concept is already
known with respect to the rotation group in three-dimensional Euclidian space,
and also with respect to the four-dimensional Lorentz group. In any case, a

further reading supplying all points not covered here is advised 1.
“ ‘



1. INTRODUCTORY GECOMETRICAL OCNCEPTS

- Similarly to almost all branches of physics, such as the Newtordam - -~ - -
mechanics, the special relativity and quantum mechanics, the fundament=l comr— -
cept on which general relativity is based on is the space-time ccncq:btthe same
cbviously holds for all flat-space-time modell of -gravitatiem)s----- - -

A space-time point is defined by a given cbserver as the point where a givenr
event takes place at same instant of time as measured by the dbserver. The
oollection of all such points forme the space~time.

Tov RN R
3
oy

The space-time is further characterized by its geametrical properties. This '
means that the way by which the cbserver locates a point is not arbitrary, but --
must be campatible with the overall geametrical structure of the space~time. -
The fundamental geamstrical property of the space-time is its topologiecal
structure. The topological properties of a space consist of those: properties -
which are not affected by arbitrary deformations of the space. BAny space - - -
which by means of arbitrary deformations is made to coincide with another
space is topologically equivalent to 1t. , e ae

We will assume that locally the topology of space-time is that of a
Euclidian four-plane. Consequently it is possible to map the points of & -~ -
small but finite region of space-time onto the points of a corresponding \
region of this Euclidian f&rplme, which is done by using quadruplets of
real nmbers. With this property the space~time becumes a manifold, the
polnts being characterized by four real nunrbers. It should be noted that this
is a local property of the space, itmyhagpmthatiainpossil{:ietompthe-
whole manifold onto a single Euclidian four-plane. The totality of coordina-
tes correasponding to the above region of space-time ig called a coordinate
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In this process two details have to be clarified. First, the way by which
the above mepping was done it is not unique, we separate each ane of all possible
mappings by associating a cbserver to each one of them. Since the point P of the
space—time by this process may have several different coordinates, for the several
Jifferent mappings (cbservers), we must require that all possible cocrdinatiza-
tions, or all possible cbservers, should conduct to the same physical result.

This is the requiraxent. of coardinate covariance, cne of the basic postulates of
general relativity.

Second, in assigning coordinates to the points of space-time a difficulty
arises if the topoloxy of the manifold on the large is not Euclidian;/that means
if it is not overall equivalent to a single four-plane, In this case we have to
use more than a single cocrdinate patch for covering the whole manifold. In this
process it is not claimed the existence of more than cne cbserver. As example,
in spherical coordinates the latitude and the longitude becomes singular at the
. poles and we need two coordinate patches, one patch ocorvering the entire surface
”and ancther patch used to cover the polar region, the overlapping of these
two coordinate patches form a coordinate covering of the whole spherical region.

When we have a“coordinate oovering onto the manifold (a set of more than
mecoordinatepatdl), certain sub-sets of points will be covered by two overlap
ping coordinate patches. A point of such sub-set will therefore have associated
to it two coordinates, ¥ and x'™. When x are ‘ocontinuous and differentisble
functions of x'", and vice—versa, we Say that the space-time constitutes a dif-
ferentiable manifold.

1.1) Space-time Mappings
After having coordinated the space—time manifold, it is possible to consi-
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der a mapp:l.ng _of the manifold onto itself. Under this mapping each point of the
manifold is associated with some other point of the manifold. In crder to
preserve the topological properties of the space this mapping has to be one~to-

e and continuous.

Presently we treat the mapping from a pure mathematical point of view.
Later on, we will use this concept for introducing the notion of geametrical
dbjects, such as tensors {and generalizing the notion of mappings to other spaces
than the cocrdinate space, we will introduce other cbjects sud}asthespinors
and tetrads). The physical interpretation of a mapping in the space-time
manifold is similar to that of a Larentz transformation in special relativity,
hosever, this is a very peculiar example, in general we may have quite different

situations.

Assuming that under therrappingthepointxuofthemanifoldgoes over
x'¥, also belonging to the manifold, by

xtu - x!”(xa) .

since we have to get a ocne~to-ne transformation which is continuous, this

function has to be single-valued and

' ox'
det(-——-—)%o
ax
If the topology of the space—time is such as to require but a single
coordinate patch for its coordinatization, that is, if it has the gldbal topolo-
gyofa&wﬁdimfow—plane, those are the unique restrictions imposed on the
function x'® = x'F(x®%. However, if the topology is such as to require more
than one coordinate patch on the space, care must be taken in order to be sure
that the mapping functicn is not mapping a point lying in the overlapping
region of two or more patches anto more than ane cother point of the manifold.



_mﬂﬂscaSeweneednmerestrictimsmﬂgprevimnsnvappingfmctim, the farm
of these extra restrictions will vary in each case depending on the topology of
the manifold and the coordinatization employed.

A simple example is given by a two-dimensional manifold with the togology
of a cylinder. The simplest coordinatization campatible with this manifold is
tousexlrmgalmgageneratoroftheéylindarandxzmﬁngalmgamnd
the circumference of the cylinder and taking on values in the interval (0,2m)

Consequently all points lying in the circumferences are characterized by two
valmsofxz, nanely,x2=aandx2'=a+21r. In order that the allowed mappings
be one-to-cne, allma;;pingfmctimshavetbbeperiodicfmctimsofxzwith

period 27.

If we use a different coordinatization, the conditions on the mapping
functicns would be different but equivalent to those used above.

1.2) Groups of Mappings
An important property of the set of permissible mappings of the manifold
to itself is that they form a group. This group is defined with respect to

the operation of products of mappings. In general this group is not Abelian
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{comutative). In addition, since the topology of the manifold restricts the
allowable mappings, this group will also depend on the topology, and in fact can
be used in part to characterize this topology. We will call for short this group
by MMG, the manifold mapping group.

Due to the assumed continuity of the mapping functions we can simplify
the discussion by oonsidering solely infinitesimal mappings.

x™a g (1-2-1)

with the Iéjusmallbut otherwise arbitrary functions of the x". They are called

as the descriptors of the mapping, The inverse mzpping is, to first order

tems,
<M = oM - gu(x.)

-Let us now consider the net effect of taking two infinitesimal mappings
first in one arder and then in the reversed order:
1) The first mapping, with descriptar &Y, is used to send x" to.x'" ;
ii)  The second mapping, with descriptor gg, is used to send x'¥ to x"¥;
1ii) The second mapping is used to trEmsfomm x* to X'M;
iv}  The first mapping is then used to send X'F to X%,

The drawing and the calculatiaons up to second order in the descriptors is




e
=7 .

- 7
'K'u n x'-l + Eli‘(x)

L QL) et Eg&') - Elll.(x) * E;(x)- * E?(x) El;.\’(x)

Py L g;’(x)

=T @ - g s s fw e .

The difference ¥~ x"¥, is given by

?,u - xnu - E‘; El;,\) - {-"\1" EI;,\J‘ Eg | (1-2-3)

wheregg is the descriptor of the mapping that transfarms x'¥ directly over "M,
Thenappingreprasmbedbythe&scripbcrsﬁg is called the commutator of the
two mappings with descriptors g‘]"_andgg .

Theinportanceofthiscmmtatoxliesinthefactthatitdatammesthe
structure of the group of mappings in the vicinity of the identity element. In
particular it serves to check ocut directly if same given set of mappings form a
group, it will be so if the cammtator of these mappings is of the same form than
each element. Indeed, if same set of mappings farm a group, the difference of

two mappings is another mapping belonging to the grouwp, as example, consider
LR I )«1{(:;)

Etu - xl-l * k‘zl(-x)

for two mappings with descriptors X‘J‘_ and Ay . The di fference is dovicusly
of the same form. Since for the definition of the commator we take this dif-
ference only after computing the products, as done previocusly, it is necessary
‘that the mappings form a grow, since anly then is defined the oper.atich of

product of meppings, which generates ancther element of the group.



This property of the cammtator will prove to be important when we intro-
duce sub-groups of mappings which form a Lie growp: A sub-growp of the MG
canstitutes a Lie group when the mappings of this sub-group depend on ane or
more parameters that take on a continuous range of values. Strictly saying this
corresponds to Lie groups of first kind, later on we will introduce more general
Lie groupswhimdependmapinfnﬁtenmberdfsudlparan'eters.

Introducing the abstract manifold where the points are represented by the
pargeters of the Lie group, which we call the "growp space", we see that the
nappingassociatedtoapomfofﬂuisgmtpspéoemidlisnotclosetothe
crigin (the idendity transformation) is independent of the path of integration
used to arrive at this point (a path of inteqration.here represents the build
up of a finite transformation out of infinitesimal transformations). This pro- :

perty of integrability comes as consequence of the commrtator defined befqre.

&

Indeed, the difference between two such paths is another element of the growp,
and therefore is a possible transfarmaticn.

An example of Lie group is given by the three-dimensicnal rotation group,
which has infinitesimal mappings of the type

x'T =T 4 gT8 B r,s=1,2,3 | (1~2-4)

with e = - %5, This is a three-parameter Iie group, the three parameters are



justthe three camponents of the vector around which we carry out the rotation.
The camutator of two such mappings has the fcoam

r rm m rs sm- s sm m
f3=€y X = (e €, ~€; €,7) x

The matrix associated to the third mapping is,

€3 "B &y 7 Ep & T |:""1' 32]
which is antisymmetric, thus proving that the commutator of two rotations is
ancther rotation. .

The full linear group in three-space is a nine parameter group with para-
meters € not subject to any symmetry requirement, the rotation group is a sub-
group of it, and as we saw, form a Lie'group. The full linear group in three-
space nmy be decarposed into the rotation group, with three parameters, and into
& six paramveter group

x'F = xT 4 gFS 58 ’ T8 _'esr
which represents a group of defonnatimsinthree—épaoe. The commutator of two
mappings of this six parameter sub-group of the full linear group, has the form
similar to the previous one, now with symmetric 3 X 3 matrices,

T
£, " E, E

T
3" & 8" B8 , 8 =E, Ey=E

9 -
thus, the matrix assoctated to the commutator mapping is antisymmetric, which
shows that we get a rotation as result. This shows that the six parameter sub-
growp is not a Lie growp, and camot, strictly saying, be considered as an

individual growp eithér. It nfy be considered as a part of the full linear

grovp, the caommitator of two of these mappings represents a rotation, that is,
belongs to the remainder of the linear group. However, the cawmtator of a de-

formation and a rotation is a deformation,
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where. €y is symmetric. and ez_skew-syrmatric. The €q is symmetric,
The table of multiplication for the linear group in three-space is then,

R.RZ-R R, =R

1 271 3

b, D, ~D,D; =R

172 271

DIR-RD =D

1 2

In four dimensions the full linear group 1s a sixteen parameter group, The
sub~group of this group with ten parameter,

M - xP s (_:l-l\i x’ + ¢V

n e°v+nv e? =0

Ko P H
nuv = (1, -1, -1, -1

is the Poincaré, or the inhamogeneous Iorentz group, it forme a ten parameter Lie
group. Indeed, the camutator of two elements of the Poincaré growp is of the.

form

"'nu_ "l-[- 11_ v u B
x ‘X 5(3)\, x +_€(3)

with.
-’#3) v =W a eJéz)' v @ e;(‘1) v
@ " fwa Etz) €@ A Ein
as it may be easily checked the matrix e 31 satisfies

M TR
nau E(3) v’ nw l':(3) o 0

which shows that the Poincar@ group is a ten parameter Lie group.

The expression for the Elzx) givenabovef'brthePoincarégrmparethe



cartesian forms for these quantities. They are not the wnique form that yield
the commuitator structure of these growps. Indeed, given a Lie growp and one
particular form of the t¥(x) that reproduces the commtator structure of this
grow (in the previcus case, the cartesian form of the V), we can construct an
infinity of other £V having this same property. They can be presented in the
general form

'@ = b @, i1, N (1-2-5)

vmezetheeiaxethegm:.pparamtem. The comutator of two mappings of the
form given by (1~2-5) is,

i - uH - - i j - i j a U - M -
x x | (e] &5 — &, €y) fj £5 a 39 (1-2-6)
In order that it be of the form (1-2-5) the functions fi mst satisfy
£ 4 =k ¥ (1-2-7)
3 1,0 ij k

mmethec];jazeomstmtsnﬂependentofmesimﬁofmex“. They are called
the "structure constants” of the group and serve to characterize the growp
intrinsically, that is, independentlyofthe-particlﬂarfomtakmbythef'i.
Consequently, two groups with the same set of structwre constants are isawrphic

to each other, at least in the vicinity of the identity element.

Substituting (7) into (6) we get,

Mool J ool Jdy Kk ¢ -2

£3 (el € = &, el) %3 fk (1-2-8)
therefore, the infinitesimal parameters e; of the cammtator are,

k _ i3 _ . 1_3ik e

€ (r-:1 € - € el)cij (1-2-9)

According to the form under which the structure constants have been oonstructed,
they have to satisfy



k k

& C5i
They can also be shown to satisfy the Jaccbi identity (which 1s left as.an

axercise)
k k m k m

5 %1t h %kj* 51 %= O
It is possible reparametrize a given group by introducing a new set of
parameters, function of the ariginal set,
e'i - ai. ed
J _
where o 1s a non-singular matrix, "One can then express the EV in temms of the
| = E:'i f"l:_l
note that this is a change only on the index 1, nothing having to do with the
index u. '

Then,

R
£ = o

£
]
where a is the inverse of «.

The structire constants change under this reparametrization, a short
calculation gives

k_ k—{-m n . _;_ -
c]!_j-anaiujcm {1~2-10)

Since a variation inparameters does not changethe basic structure of a group, we
see that two groups which possess structure constants differing according to (10)

are two realizations of a same basic group. -

Prcblem 1.1

Reparametrize the rotation group in three—space by taking, as the new

1 23 2 31 3 12

infinitesimal parameters, e” =&, €” =€, and €™ = ¢, Calculate the

structure canstants for these parameters.
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Supose we have afz which satisfies (7) and that we introduce a new set of
variables x'" = x'" (x). The descriptors t¥ when expressed in function of the

new set of variables, take the form
3x'u

1
£ Mx
ax

we may write this as

Mo vy o o1 Hes ' U H O
E'(x') = ¢ gi(X). 8; x,afi

We now show that the transformed £' have the same commrtatcor structure as the
criginal £, cnlyreplac:l.ngintl'leoriginalfmmlasfg'bygg. The cawmtator
here takes the form

gl = (e ez )s g,

1\)_]

Usingthe-abovefomulaforggintenmoff‘i,weget

1—1 - lu fp fo Iu fp f
giv 33 X oo %o ti,073
Thus,
' 1] » - »
H o o1 ] 1] 4] 1M D o]
63 (El €, €, el) (x f:. f + x’p £, f )
j

which gives simply,

t
H j_ j MoeP q
-‘;3 (e €5 a € ) ::"J f1 g fJ

Using (7), we cbtain for this relation

" e el el o gl gdy M K g
8y = (e 8- gy &) x! ey £y

Fram the equation (9), this is equal to

M
-k Hep ko p
8y me3x fi =g

Which shows that the growp structure was preserved by the transfarmation x'¥ =
= x-u(x}.
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1.3) Geometrical Cbjects
Asgoclated to the cbsérvables of a given physical system there exists quan«

tities, such as for instance, the force field, the angular momentun or the intrinsic
angular maventum. We call those quantities in general as geametrical dbjects. The
term gecmetrical used here emphasizes the fact that those quantities will be defined
according to thelr transformation law under the action of the MMG. -

Allied to the concept of transfarmation suffered by some cbject with this
structure, there exists the concept of ocvarian_oa of a given relation involving |
several quantities of this form, We say that such a relation is covariant if all
merbers of it change in the same way under the MMG. We will twrn back to a more

clear definition of covariance at the end of this section,

Suppose that a geametrical cbject is defined at the point ' by means of
the N functions yA(x)  A=1,...N. The specification of the nature of such dbject
is determined according to the way 1t transforms under the MMG which transforms the
coordinate x ¥ into another value x'™.

s >y = £, @, x' @) e

provided that.this mapping in the Y-space possess all properties of the mappirng
into the coordinate space. That is, associated to the product of two elements of
the MYG there exists a mapping in the Y-space which is the product of the two mag
pings generated by each element of the MMG. There exists the identity mapping in
the Y-space, and the inverse of each mapping is another mapping of the Y-space
onto itself. With these impositions the mapping of the Y=space onto itself is a
realization of the MMG.

Associated to the infinitesimal mapping with descriptor £¥(x) there exists



the mapping an the camponents of vy,
yl(x')=yA(x) + GyA(x)  {1=3=2)
o o
Sy, 00 = 9,5, 0, ¥, @, B0, B 0,000

With these oconcepts, we can nov define what we meant by covariance of any
given relation. Let it be of the general form |

PP @, 7P @, =0

if all members of this relation change in the same way under the mapping induced
by any element of the MG the relation will mantain the same structure in terms
of the new variables yA(l) x"), yA(z) (x*),... In this situation we say that the
relation 1s covariant under the mapping induced by the MMG.

1.4) Tensors

There exists a large nunber of quantities satisfying the previous definitions
of what we have called gecmetrical cbjects. However, there is a sub-class of such
quantities which are specially useful in representing physical cbservables. This
sub—class correspands to the case where thean.re linear funct:j.cnssofﬁl:heyA

VA& = £, (), X' (X)) = A2 yy ) + $, ()
For those who are already aquainted with differential geametry and with tensor
calculus, an example of such dbjects is given, for instance, by the Christoffel
syrbols. Even more important are the quantities which possess a hanogeneocus and
linear transformation law, ¢, = 0. In this case the geametrical dbjects Y (¥

ocnstitutes a repregentation of the MMG. In this section we will treat with such

cuantities.

The simplest example of these cbjects is the scalar, for which,



y' ') =y x) (1-4-1)

Next, in order of the crescent nmmber of camponents, we have the vectors which
sub~divide into two types: Oontravariant and covariant vectors. A contravariant
vector in a n-dimensional manifold " is the set  of n camponents A“'(x) which
under any element of the MG transforms in the same way as the differential of
the cocrdinates.

3x:11
— A’ (x) (1-4-2)

Atu(xt) -

therefore

saM(x) = £V e AY (x) (1~4~3)

A covariant vector is one which transforme in the same way as the gradient of a

scalar, -
X
'(x') = (x) {1-4-4)
Al-‘ axtu AV _
thus,
84, (x) = - E‘;(x) A, (®) (1-4-5)

Scalars, contravariant and covariant vectors are special cases of a general class

of geametrical dbjects with linear hamogeneous transformation laws, called tensors.

u I..u

In a n-dimengional manifold, a tensor of rank r has n’ components T\Jltx) pl.\"k
1 ase

For our case we take n=4,representing the dimensions of the space—time menifold. It

[prk=r,

gatisfies the trangsformation law,

H U 8 :
ul...up ax' 1 ax' P 5x 1 Bka al...ap _
' ' - _ -
T\"l“g %k, al.... - o8 cos o TB (x)B {1-4~6)
ax ax P ax' ax' 1"k

It is possible to perform several cperations with tensors, we just list those
operations and glve some examples. A further reading is advised for those which
are not famlliar with tensor calculus.
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i) Addition of tenscrs

mecanaddcrmbtracttensorsofﬂmesmtypeandvariance,pmvided
they are all defined at the same point of the manifold. As result another tensor
of the same kind is obtained.

11) Multiplication of tensors
The product of a tensor of rank r by another of rank s generates a tensor
with rank r+s.

iii) Contraction
Fram any tensor of rank r with comtra and owariant indices cne can form
ancther tensor of rank r-2 by means of the operation,

ul...up uzcouup
T v -B\J v * ptk=1r
ulo.. o™ 2"k

ula - Iu

calledthecmtractimof'rv P, This operation may be repeabed whenever we

oo.\,
1 k
have at our disposal pairs of contra and co-variant indices. A property of

tensors which is very important is the symmetry or skew symmetry character of their

carponents. A tensor is symmetric or anti-symmetric depending if the components
change, or do not change, under a change of two indices of the same kind., This

property is independent of the choice of coordinates., If this happens for any
pailr of indices we say that the tensor is campletely symmetric, or cowletely anti-

symretric. As example,
Tuva - ¢u ¢v ¢a *
is completely symmetric, and the ILevi-Civita permutation symbol is campletely anti-

symmetric.

Any tenscr may be decomposed into a symmetric and a skew—symmetric parts.
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1 1
- + + - - =
T "7 T * Ty * 7 O =Ty =Ty * Tluv|

This result may be generalized to higher order tensors, for instance

+ +T
Tave "3 Tvp * Toww * Topu * Toup * Tuow ™ Towd

1
T - T + T + T -T - -
Gved "3 Twve * Toww oo T Towe T Ty T Towd

'I'urningbad(tothecaseof'rw, it may be verified that under a transforma-

tion induced by the MG, the symmetric part T transforms as function of the

(uv)
symmetric part in the new coordinate system,

T oy &) = £ (T gy )5 E,G0)

The same occuring for the antisymretric part,

T'[W](x') - ¢W(T|W|(x). Ep(x))

Whenever a geometrical dbject can be broken up into parts that transform ameng
themselves, we say that we have a reducible cbject. If no such decamposition is

posgible, we have an irreducible cbject. We see that T

(uv) andTEqu are both

irreducible cbjects.

Problem 1.2 - Show that 'I‘t is reducible and that is irreducible parts consist

_ofitstraoeTE,andatraoalesstmsorwithompamtsTﬁ --4-6qu

Of some importance for practical calculations are the Qenera].tzarl:ims of the

Kronecker symbol
: PUBRINY
de=1" Pl=e &5-¢ &
. & s
g
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TRRRY)
. 69 E 69
Gl-lvk

m 4 ] f+]

[}
5
o
<
: -_-qo'v a% 'tpo'w

which, for instance, allow us to rewrite the previocus relations in campact form,

g
TD-“’] _251“) pr_

pa'l'
Tl = 37 Sk Tpor

In the remainder of this section we treat the prdblem of construction of
tensors by differentiation. Given for instance the first rank covariant tensor
Au(X) , we may form the ccrrpcnents

Ay
By ==

ox

a direct calculation shows that these componentes transform as

ax" 3:0 a? xp
B (x') = - B_(x) ¢+ ————vam A
v 3x™ 3x:\J - po ax'H3xtV P

Ihm,inordertocalculateB;Nweneedtpkntwa:ﬂAuatead)point. Since

theBW a:emdepaﬂatoftheau,_weneedmthanjmtﬂieBwandﬂ\enapping

function ' (x) for calculating the B'W. This means that the Bw(x) do not form a

geametrical adbject, according to the previcus definiion (1-3-1). Consequently, the
Bw(x) do not form a tensor. Nevertheless, there are same cperations involving
derivatives which give as result new tensors, they are:

9
“ﬁ-i , Which is a skew-symmetric second rark tensor.

u Bx

i:l.) B o pu,v Avp,u uv,p is a camletely antisymmetric third rank tenscr.

In this relaticn, the Au v is antisymmetric.
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i1i1) 1If AI-N 0 is cawpletely antisymmetric, the conbination

aBAT
= - + - =
Buvpc A1.|\Jp o] Acn.m,p Apou Y Jb‘\.tpcr oM 61.1\);:)0 AaB}\ sT

forme a fourth rank campletely antisymmetric tensor. This last construction is as
far as ane can go with such process in four dimensicns. It must be noted that all
such tensors are antisymmetric, no symmetric tensor can be farmed out of derivatives
of a tensor. Thereasmforthat]iesinthefa&tthatformtiswmtrictensors

we can elimminate the extra temm which appear in the transformation law, for

2
-Q.—xf—-— A in the
ax:uax-\’ P
transfarmation law, thus ylélding a new tensor. Finally, it must be remarked that

instanceuﬂ:encalculatinghu\)-»-}\,u, we eliminate the term
r r

the present interpretation holds for general non-linear mappings. If the elements
of the MG under consideration belong to a linear sub-graup,
a2 xP
ath.o
all cperations of derivatives will give as result new tensors. This happens in
special relativity where the MMG is a linear group, the Poincaré group.

1.8} Tensor Densities

There are a type of geametrical cbject which similarly to the tensors also
possess a hamogeneous, linear transformation law. Strictly saying, we may
consider the tensor as a particular dbject of this nature. They are called as

tensor densities, and transform as

H H B B
_.ul"'up ax |¥ ax 1 ax' P ox 1 ox k ul"'ab
¥x') = — .. 5T ¥ x) (1-5-1)
VyeseV, ax’ ax %1 ax %P oax’ ax' vk B eeeBy

where W is the weight of the density and 1s a constant. Tenscrs may be considered

as tensor densities of weight zero.
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u.uo

maq;ressimforéa’v has, with respect to that of a tensor with the
1’..

same variance, an extra term which arises fram the determinant standing on the

right hand side of (5). One finds,

Hoeseld Hosaol M. s P} TR S - SRR | P T
67 M@ Pe-wel I Per TP Bg Tt el T
» » LN ] ; F'] ) . LI
\)1. - -\’k \Jl. . .‘-%- 1 1 k P \,10 . .\}k 1‘ 1
.ol
a4 % & - EBkkg\’l Bp [ ]
’\’ 1'.. k

All operations performed an tensors may be perfarmed too on tensar densities. We
have only to take care with: The multiplication of a tensor density of weight LY

by another with weight W, yleldsa third tensor density with weight Wit W,.

Related to the problem of constructing new densities ocut of differentiation
of a given density, we have: '

i) 1If qg“ is a oontravariant vector density of weight +1,

ox Bx'u

x'

wHix') = 2’ (%)

axv

then its divergence Qp_uu is a scalar density of weight +1, that is:
!

au (x') ax | ()
ax'¥ ax’ ax!
The proof being,
' o B Y T
3: i Ekpkﬁ A 3; ax ax x
ax’ 4 were éx'l ax'P Bx'k 3::'6
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-] X 1 Aoks | 32 % Bxs ax’  3x"
1
ax™ | ax’ : axax™  ax® ax'® ax'd
Therefore
Bu‘u 1 Aoks 92 xa BxB 3::Y 3x’© 3:'“ v
¥
ax® 3 8::"‘3:'"_ aw® aw'* w® 5 xY
ax 2xt ax* o e [ et o a®
' A+ -
ax' | ax” ax® ax' ax' | ax’  ax® ax'V

it ig not difficult to check that the two first terms on the right hand side
vanish, and the third term conducts to the desired result.

s ox | o
| ax' | o

1) 1f¥™ is an antisymmetric contravariant tensor density of weight +1, then
its divergence is a oontrvariant tensor density of first rank and weight +1.

ax cax™  axtV
2x') - - — 7
ax’ ax ax
w* | ax ax'™ ogP?
-Dx'v ox! axp 31:7t
Hvp uVe
i1i) If 4 is fully antisymetric and with weight +1, then is also
3

antisymmetric with weight +1.

iv) 1If "V g a campletely antiéyrmetric tensor density, then its divergence
uu:pa has the same weight as the criginal cbiject, both being +1,
r

It muat be noted from the definition of determinant written before that we

have,
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ax

ax’!

x> 'axB 3::'1r BxT

©xpks " agyr

‘l

ax ax"P Bx'k -8::'5

which means that the Levi Civita permutation symbol skpkaisafullyantisymetric

fourth rank tensor density with weight -1. By the same token we may write,

ax’ adyr ax™* ax'® ax'* ax'S

B

ekpks - ¢

ox 3 2% ' At

which shows that ¢ PKT :I.softhesanenatmethmtheaboveakpk,rbuthasweight+1."5
As we have seen, these permutation synbols serve to give compact expressions

for the determinant of given matrices. If now we write the determinant of

density matrices with weight W, and of the form mw, u,u and “i.w' we get,

1

uv| - o By yp S0 -

7] — eopys e & L W @ {1-5-2)
U 1 Mvpo o By 8§

qu' 4! Casys © tyd, %, %, (-5-3) |

) S
afyd _pvpo _
(| TE T Uy % Y (1-5-4)

Which shows that |w'Y], hn\,"l and | w.wl are respectively scalar densities with
waight 4W-2, 4W and 4W+2.

If the matrices ”ﬁu and ¢ are ansitymmetric, we have the further property,

/lu].l'vl - 1 WV _po

-gem,pc,a N
/ ‘1 _uvpo
Bl =5 B, Uy

Theewpo synbols also permit to go from tensors (or tensor densities) l:LkeAa,

GB '] ")
or A toAaBY andAaBby,
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§

c

By SGBYG_A (1~5-5)

ds " Sapys NS (1-5-6)
If the welght of A% and 2% 1is respectively W, and W,, the weights of S’aBY and
Ay willbe wl-i and W,-1. Similarly, with " we may fom

BT =B, (1-5-7)

A% . (OBYS A (1-5-8)

If A, and A have welghts W) and Wy, the B8 and 3% will have veidhts W +1

and W2+1.
28 it is clear, the relations (6) and (8) may be solved for A, and ars

only if they are both antisymmetric.
AYG 1 vSaB X

- I E’ aB
1 v o
AYG =7 eyGaB A

The equations (5) and (7) may be solved for the Ad and A, without any restriction

8
on these camponents.

8 1y

A" = 3T Ay €

ayd

- L JoBy
Ag = 3T A €apys
For finishing this section we call attention to the fact that the tensor densities
ofthetypef\ introduced by the previous relations, are not the usually called
dual tensors to the A. In general manifolds the dual tensors can be defined anly

after introducing a metric into the space, "



25

1.6 Integrals and Stcke's Theorem in Curved Spaces

In this section we want to construct an operation of integration on the com-
ponents of gecmetrical dbjects, however, in order that such an operation have mean
ing it has to give as result ancther gearetrical cbject. We begin with the
sinmplest situation, where we want to sum up the several values that a scélar field
takes on different points of the manifold. Iet those points be xb, x'élxg Thus,
we form the quantity -

oLy + dlxy) + oue O(x)

This quantity may be thought as a single mumber associated to the n paints.
 Under am@ping-we have,
B (x]) 4T (xy) + .on T(xY) = (x4 B(xy) + .l B(x)

Therefore, this n—point scalar is a geametrical cbject. However, we cannot
generalize this for vectors or higher order tensars, for instance, the sum

H H H

¢ (xl) + ¢ (xz) + .0 b (xn)
does not represent a geametrical cbject, since at each different point a vector
transforms differently under the MMG, therefore in this sum we will have n dif-
ferent mapping functions, as result we get a complicated expression which 1s not
a vector, nor any known geametrical dbject. Thus, we already know that the sum
of values that a scalar field takes on several polnts of the manifold, does serve
as the integrand of an 1ntegra1.ﬁhdch.we write as

[ ¢ d,x
in arder to know if such operation does have meaning we calculate how the element
of volune transforms under a mapping. We get,

' ’ 1 2 3 4
ax'" Ix'" ox’ ax!

ax' = dx} ax'? ax'? ax'? - axM ax’ ax® axf

4 ax“ va axd ax°
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which may be written as
| .1 [wved
d4x'l ZTe'u_vpc dt’ J
where _
' HVO| _ | UVpo 1.2 .3 .4
d'r[ ] 5%2,34_] dx~ dx° dx~ dx

thus, since € is a tensor density with weight (-1) and d'r[WpUJ is a tensor

el

ox

d,x

' -
d4x 4

which shows that d,x is not a scalar, but rather a scalar density with weight -1.
cmseqlnntlymordertohave. just the sum of scalars, whidiasv.éesaw, has a
meaning, we need to take ¢{x) as a scalar density with weight +1. If we do not
do that, we get an operation which does not give a geavetrical object as result.
In short, the operation

I=[ ¢(x)dzx
has a meaning whenever ¢(x) is a scalar density of weight +1,

Usually such integral is extended over a finite region R of the manifold.
Often is convenient to represent this region by means of same nurber of parameters
with the cbvious condition that we take so many parameters as the nutber of di-
mensions of the submanifold R. If this nuber is M(¢ 4}, any point within R

is given by

xH = ¢“(x1... A (1-6-1)
We now form the element of "area"
u ‘e u LN ]
p ! u“axl...dxn-dr 1M
. Vk
Uynes Hyeoe v v, V. ¢
1*"*"'M™ » » 92 BAL

In crder to wnderstand this relation, we turn back to the simple case of three—
dimensicnal spaces, and R is here a surface embedded into this space. The surface
is parametrized by two parameters u, and u,,



x = ¢y, B),  iw 1, .3

vewritethetmvecﬁrsassociatedtoinﬂnitesﬂmlincmmmsdulmﬂduz,

) ) "
A" = ¢ du, = du
S S T |
1
B - ¢’;2 du,

Ttmsetwovectorsspmapara]elbgraumﬂ\emmface,ﬂeamaofﬂusparalelo—
gram may be projected on the three cocrdinate planes, and will be given by the
vector product of A and B. For instance, the area projected on the coordinate
plane i-j will be

i 2,1 o L 3 gl oo el o) ogd gl
dt SA 3 A” B (¢11 ¢12 ¢,1 ¢12) dul du2
which may be written in the foarm of (2),

ij _ .15 g .m
dar Glm ¢’1 ¢,2 du, du

172

Thus, the equation (2) is just the generalization of the usual area element for a
submanifold with M dimensins.

ulo » 4I-|M

As it may be verified, which is left as an exercise, the element dt
is invariant under parameter changes,

o

A:’. - fi()\k) H i, k= 1,..M
and is a Mth rank covariant tensar uwnder coordinate mappings. Hence, iffu...._
u e 1
is an Mth rank covariant tensor, the quantity fu “M dar 1M is a scalar

under both parameter changes and coordinate mappings. Thus,wemayfonﬁthe
integral .
" Hanveo
=] ¢ e A (1-6-3)
ulaon‘ln -
Sy



28

For M= 1, 2, 3 and 4 this is respectively a line, surface, hypersurface and
volure integral. These are the fcm;: possible forms of integration at fomr dimen—

sions.

Exerclse:
Determine explicitly the element of integration on a hypersurface of the
four-dimensional manifold.

We now state the Stckes'theorem in general form, that is for a M dimensicnal

manifold,
of
l'l' "lun
. Heone ! 1 —1 u EN
F: aw bW ar LM (1-6-4)
g R 41 My

Q-1 B 3x

The proof will not be given, since it involves only mathematical oconcepts, the

symbol Q, indicates a region of R, and Q,, , is the M-1 dimensional manifold
which forms the boundary of QM

Of particular importance is the case where M=4. In this situation we can re-
write it in a more familiar form by introducing the vector density

w1l _vupo
J =3¢ £

pa

which has weight +1, taking as before the fv with weight zero. Similarly, we

po
define
- 1 vpo
dsu 3T E‘I.NpU dt
and
| uvpo
as T euvpct dt

which allow us to write (4) in the form

M oge m M -6-
J F ds, J 3,11 as (1-6-5)
2, R,
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If, further we take the parameters in 524 as the ccordinates itself,
g™
"

we obtain, &' P% = MU0 g @ @ &’ = "V ax® ax! & &°, and since

1234
HVPO _ 4 4
EI-N 0o € 4}

&

ds = dx” dx! dx® dx® = dx
as, = (dx’ dx? dx®, dx® dx? dx?, dx° dx?, ax?, dx° dx’ dx?)
And we cbtain the four-dimensional form of Gauss' theoren.

H H
[ra, Jriee
Q 94-

3

1.7) Intermal Transformations

In addition to the MG we sametimes have to deal with transformation groups
which are not associated to coordinate mappings. This result holds true whenever
we work in a manifold with some dimension, say M, that is, in the M~dimensional
- manifold equipped with a M~dimensional mapping of symmetry, there may exist some
natber of internal mappings, depending on what geametrical dbjects there exist
within this manifold. If we enlarge the manifold to a dimension MK, where K is
the total nurber of descriptors of the internal mapping, we may suoceed eventually
in representing all existing symmetry mappings as MHK-dirensional MMG. We have
used the term "eventually” since this is not a general theorem, but in sare cases
it has be proven to be correct.

An autstanding example of a internal group is given by the gauge group of
electrodynamics, in the four-dimensional manifold of specdal relativity, it still
exists into the four-dimensional menifold of general relativity., This group is
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characterized by a scalar function of the coordinates which is added to the
potentials, thus generating another potential,

A]:I(x) =46 + A’u(x) (1-7-1)

Since to this function there are associated an infinite mumber of parameters,
this is an infinite dimensional Lie growp.

It is possible to omstruct a five dimensional manifold with the local topo
logy of a hyperplane, possessing a MAG characterized by five descriptors £l (x)
in such way that a gauge transformation is represented by a translation along
the fifth axis. This translation depends in magnitude on the polnt where it
started. This theory is known as the Kaluza-Klein formalism, and serves to
glve an example of what we called attention in the beginning of this section.

Fram the point of view of the theory of relativity, there exists an impor-
tant internal growp of transformations defined on a two dimensional camplex
space. The points of this intermal space are the ocolums of coplex elements.

vl (x)

¥ (x)

The growp of transformation is glven by a two-by-two matrix with complex elements

@) =

and determinant equal to cne.

a B
O‘An)'  frad =By =1
vy §

Under the action of this transformation, points y(x) are mapped ¢n ancother
paints ¥'{x}, for any Y. 'IhisgrolpisoffhetypeSLz. As it will be shown
later on, this grow 1s associated to coordinate transformations in the four-
dimensional manifold of special relativity, we may see that indeed it depends on
8ix real parameters, the same nuber of parameters as for a Lorentz transforma-

tion. In ¢eneral relativity the complex nurbers appearing in the transformation
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a different transformation of ¥. We will then, frequently, use the term "local
Lorentz transformations". Ancther possible situation appears when the matrix M
is both unimodular (det M = 1) and wnitary. In this case we have a realization
ocESUz. An easy checking shows that in this case we are left with three indepen-
dent real parameters in M. As it is natural, this group is assocd.atedtothr‘ee-
dimensional rotations in the coordinate space, which is "half" of the full

Icrentz group. AnSUBgroupmayalsobejmagﬁxed,asthegroupoflinearulita:y
mnimodular transformations in camplex three—dimensional space. These groups are

important in the classification schemes of elementary particles.

Turning back to the transformation m"[‘,wahavetl'lempping

i) = M () vB(x) (1~7~2)
B

Since the matrix M has unity determinant, we may construct an infinitesimal map-

ping, by writing
M=14+E

where E is an infinitesimal matrix with vanishing trace
Tr E = 0 (1-7-3)
Under this mapping we will have,

T = v @) - Y = B2 @) YR (1-7-4)
B

Since the groups we are discussing here are not generated directly by coordinate
mappings. FornistanceﬂwSI.zisdéfimdmaspacewhidl_ismt-acoordinate
space, the geametrical cbjects like VY(x) or whatever any other which may appear,
are not yet fully determined, we need to specify how they transform wnder the MMG, .
For ¥ we usually have,

¥'(x') = ¥(x)
That is, l{’(x):Lsa:tcoorr:c‘ij.né1:=E-.s;cal&tr. It may happen that we have to deal with
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objects like 'i’u%.(;:) , which are coordinate tensars on the indlces ‘1vees, and inter-

nal geametrical- chjects of the type discussed heve.
Smcemwillturnbadcagalntothegrol.pSIz after the introduction of a

metric into the manifold, we finish here this brief introduction.

2. AFFINE GEQMETRY

We have seen that except for same particular cabinations, the ordinary
derivatives of tensors and tensor‘densities did not form the cawponents of new
gearetrical objects. The reason of such difficulty arises in the first instance
from the fact that we cannot add or subtract tenscrs at separated points, and
such gperation is needed for introducing the deﬁvatives. Since the concept of
derivative is ciosely related to the evolution of the tensor field as it  moves
on the manifold, this restriction needs to be overcomed. In the following
sections we will see how to do that.

We first introduce the concept of parallel displacement of tensors.

2.1) Covariant Differentiation

Consider a oontravariant vector fileld A¥(x). The camponents of A at the
L'::.')i.l'lt:x“+c:]x"l a:cmer:elat\ed1:::>'l:l'n'=~.c:crr;_::cnt:‘-.ntsatt.'nnapointx"l by,
A x +ax) = AN +aaf ()

- + A ax’

The quantities dA" (x) being the difference of two vectors, AY (wkdx)-2" (x), located
at different points of the manifold, do not constitute the camponents of any geo—
metrical cbject. What is needed for ar purposes is another vector at the point
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® + @, by definition we take this vector to be parallel to A*(x). This vector
is denoted by A" (x) + 6A¥ (%), as before 6a%(x) is not a vector, similarly to da"(x).

However, we shall construct SA" in such way that the difference dA¥ () - 8aM(x)
behaves as another vector,

This is possible since it represents the difference of two vectors at the same
point, |
A+ @ - @)+ st ) = et ) - s
In constructing A" (x) we will require that it vanishes either AY(x) or ax"
vanishes, so as to conform with the usual notions of parallel vectors in Euclidian
geametry. The simplest possibility is when saM (x) is bi‘.‘linear in A(x) and &,
sa@) = - Th (0 A200) ax | C2-1-D)

The negative sign is just a matter of convention. The quantities r‘so (x) are the
capenents of a new geametrical cbject defined on the manifold, called as the
affine connection or affinity. It has in all 64 components, which in principle
are arbitrary, ﬂmemqumstncummposedmumisﬂmr‘;c (x) has to
transform insuch waythatthe AM(x) of (2-1-1) satisfies the condition that da¥(x) -
- sa% (%) is a vector. |

We form the following canbination,

AY ax”
]

L dx” = aa¥ - sa¥ (2-1-2)
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Sinoce the right hand side behaves as a vector, and dx’ is also a vectar, we con-
clude that the quantities A‘:\,_ form the camponents of a second rank mixed tensor,
which is called the covariant derivatives of the contravariant vectar A%,

In this way we have solved our initial problem, namely, how to omstruct new
geanetrical dbjects cut of derivatives of a tensor field. This was poésible by

means of two steps:

1) Consider the vector field at the nearby point x* + dx", the 2" (+dx) =
=M + a0, |

2) Transport the vector A (%) to the point x" + M, Mx) » Y@ + saf(x).

3) Calculate the difference of these two vectors, which are located at the
same point. This difference is equated to dx’ times the new derivative A" (x).

Ietmnmdetenn:l.nehcwrgc(id transformg under the MMG. We have,

U
3A
aa¥ = — ax”
ax
3 ¥ o\ ax'*  axY
- A'lp . _____x dx'A
ox' ax'? I-}xv ax!'
v a2 M
ax . ac x :
- AP ax'® 4 AP ax'® | (2-1-3)
ax'® ¢ ax'Pax® |
We also have that
U _p¥ ,P 40
SA I A7 dx
ax" .ax"
- A'® l.ax'?‘ (2-1~4)

Carbining the equations (3) and (4) -we cbtain



' A g
_ x> 3?2 xM ax" ox

ox'
we can write this last equation as

_ ax"
da" - saH =

PAY 8 P 1a : T
[dA +I'puA dx ] | (2-1-5)

ax!

Provided that the transformed I';): satisfy
A g

Bxu ax ax 32 :l:l'l
r!v - I-l-l +*
ax'V  Pe Ao ax'? ax'® ax"Pax'®

(2-1-6)

ax|B
multiplying both sides ofthiseqtmtimbyT we cbtain
3

. 1 ax'B 2t ¥ ax'B

r* (x') = ¥ x) + (2-1-7)
00( axtp axta ax‘-l AC '3x:03x;u ax‘u

With the cholce (6), we may write (5) which in turn shows that the difference
aM - 82 is a vector,

The transformation law for the addinities, the equation (7), is a linear and
inhomogeneous law, the transformed affinities depend linearly on the ariginal af-
finities and there exists a term independent of the original affinity. Thus, the

I‘gc'(x) represents ageametrical dbject, but is not a third rank tensor.

The knowledge of the functions rSéx) allow us to cavpare nearby physical
events, indeed, 1f those events are characterized by the geavetrical dbjects 01'(xJ

ard 0, (y), usually tensor flelds at the points x and y of a same coordinate
systezn,weinpﬁnciplemnmtotrmasportoltoﬂxepomtyamﬂmstabush:
a local cawarison between these quantities. The manifolds which possess gecme-
tricalobjectslikethel‘”w , and therefore possess this property are called af-
fine, or equivalently, the geametry of such manifolds is called an affine geo-
metry. |
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The calculus of affinities is samehow different of the tensor calculus, there
are results of the later whidmdo not a;_:ply to the calculus of affinities. We
quote same of them:

1) . The sum of two affinities located at a same point of the manifold, is
not a third affinity. Nevertheless, this sum is still a gecmetrical
cbiect.

i1) The sum of an affinity and a tensor with the same index structure, both
located at a same polnt 1s again an affinity.

144) The difference of two affinities located at a same point is a tensor
with the same index structure. (The inhamogeneous term cancéls out).

In crder that the properties (i) and (1ii) make sound in actual situations,
is necessary that we use two, or even more, affinities simaltaneously into the

manifold. This is mathematically possible 2, and have been used in the litera-

ture °. meprcpertyofmportandeoftheaffinitiesistheirsymetxyproper—

ty an the two lower indices, or the lack of such symmetry. Wejustqlnte'the
following results without proof. |

i) 1f I':O_:I.s syrmetric on p, o the transformed I"")L1 will be also symmetric

in the lower indices.
ii) The antisymetric part of an affinity is a tensor. Therefore, a general
affinity may be written as the sum of the symmetrical part and of a tensor,
represented here by its antisymmetric part.

The second result is a direct consequence of the property (11i) written™
above. A result comes out immediately, in order that the A':lv of Bg. (2-1-2) be
atmsorisnecessarythattl‘nergo be not skew symmetric in p, 0. Indeed, if
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r‘;c is such that M = - rgp, the 8aM(x) of (2-1-1) will be a vector, and since

pT
aa¥ (x) EMamitfollmﬂmtAlfv will not be a tensor. Thecries \
where antisymmetric I‘ﬁa are used together with symmetric I";cdoe:d.st, as for

instmceﬂ:emitarytlmeoa:yofEimtein4. However, in the theory of general

relativity only symmetrical affinities are used.

A
AP e+ TH AT (2-1-8)

Vo v

1s a second crder mixed tensor formed out of the first partial derivatives of

the vectar field A¥(x). * This concept of covariant derivatives of a contra-
variant vectoar may be extended to higher order tensors and even for tensor den-
sities. For cbtaining this generalization we impose two additicnal conditions
on the gperation of covariant differemtiation:

i) The covariant derivative of a scalar is identical to the ordinary derivati-

A =A_. '
hat H M

i1) The covariant derivative of a product of tensor (or tensor densities) cbeys
the product rule of ordinary derivatives.

As result of these two conditicons we can prove that

. u-oo - uoco u Lo SR - unna - )
Tv...;_p Tv..-.,p" rop Tv..._ Pzp Tcr..-.. Toees . (2-1-9)

BExercises:

1) Prove the equation 2-}9).First corpute B .y using AMB11 = scalar, and the

*  Decomposing I“\‘;U into symmetrical and antisymmetrical parts, we see that Atl”
»

decomposes into two tensors, Al,‘\, = A.(\];)u"' A.(Z)u
] ]
g

(Lu _ ¢ M @u _ § o

y where:
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items (1) and (ii) of the previocus page, along with (2~}8). After this, form the
scalar Tu”" a... Bu.;. for arbitrary vector al... BI-!"" nce more use (1),
(11). |

2) ShcwthatTt""p is a tensor of the arder indicated by the indices.

TR
3) Slwwthatdwp 0.

Now, we treat the prcblem of constructing covariant derivatives of tensor densi-
ties. We impose the further condition that the parallel displacement of a
scalar density of weight W is, by analogy with (2-1-1), equalt to
- o P -]
§ (x) =W I‘ap dx" . (2-1-10)

The welght W appears explicitly as a multiplicative factor because we know that
for w = 0, that is for scalars, § = 0 which means that the covariant derivative
is equal to the usual partial derivative, u?u = -‘uw. Thus, we have similarly
as before

U(x) dx” = auGx) - S4Gx)
e
y 3"‘
.- dx" - W% et
ou
axt
which gives for the covariant derivative of the scalar density 14 of weight W,

- - U el L]
‘l!.’(::) u;u(x) W@ (x) rcru(x) . (2-1-11)

As it may be shown, the 'umof Eq. (2-1~11)is avector Gensity of welght W. Proce-
eding now in a way similar to the case of tenscrs, we determine the covariant
derivative of any tensor density as follows: Multiply the tensor density by ocowa-
riant and contravariant tenscrs so as to sum on all indices, finally, nmltiply
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this by a scalar dnsity of weight -W, whers W is the weight of the tensor
density we started with. The final expvession 18 a scalar and we proceed  in
the sae way as before. As example we calculate um;, with % a vector density
of weight W, We form the scalar

u, e
for A a vector and B a scalar density of weight 4. Then
u Y Vo . W u "
A By A By A By =ty A B & By st B

Sustiwiting the values of A", and B, , cne finds

MR, o+ ¢« r? - =
ARyt U Ty U Wy =y =0

Since this vanishes fot arbitrary AY and 53, we conclude that

- - ~-wrP -1-12)
uu;v ul-l.\’ I'uv?tu wrpvzcu, (2-1-12}

which is the covariant derivatim:afuu, it may be shown that it forms a seocond
rank tensor density with the same weight W.

Generalizing this method for a tensor density uS'“.p of weight W, we
£ind, ’

u - .uroo : Tiae - ua-:. - u-.. -1
"\)...w “v...-.p * r]c':lpuv... ngma.‘.x. MREE wrgpuv... (2-1-13)

Exercige:
Prove the eguation (13) by using the previocus method. i
In the last section we indicated that some particular operaticns involving
just the ordinary derivatives of the components of tensor densities generate new
tensor densities. All those résults are equally dbtained replacing the ordinary
~derivatives. That is, in all such cases both derivatives happen to coinclde. It

may be proven that:
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TR
Uy T Uy

(this holds true only if W = +1, for other values of W this equality is not correct).

1i) For antisymmetric tensor densities with W = +1, u*V ,¢'"? and ©"V* the diver-

gences uu:j, uu\a)a' d‘“’g“ coincide with the covariant divergences. So that they
] ¥ »

are new tensor densities. This again holds true only for W = +1.

The proof of (i) for instance, follows from (2+1~13) as,

Mool 0 unG gl
Uy U r Ty W-WI U
TR
u -u

sH

Similarly we may check the item (ii). Intlwabcveproofwehavemedthefagt
that the affinity ng is symetric over the lower indices. The same kind of treat-
ment can be extended to tensors, in the case that ordinary derivatives yields new
tensors.

At this point we introduce cne of the most important properties of covariant
derivatives. Unlike ordinary derivatives, the covariant derivatives are not com~- .
mutative, that means

)., - ), $0

A
for a generic geametrical cbject, such as a tensor or a tensor density. In the

following section we will see that it holds too for "internal geametrical cbjects"”
such a8 tetrads and spinors.

If one calculates this "commita "forctﬂ-ku,agivanvectorfield,an
finds (of,, = (€ ) )

A U2V
P _ 4P (P - 1P _pl--pla;k'o- -
k;u\J 1t;\)].l (rau,u rW,I.l Pku rw P)W ro.u)! TDN] k a (2=1-14)
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Even in the case of symretrical affinities this "comutator" does not vanish, and is
equaito
P _ P . gF p e
k.;u " k.;w nmm k" , {2-1-15)
with

R° =P - apP A

auv [s1 8] -..I'Cpl\l,u AL Tav CAv Tow (2~-1-15)

Sinoe k':w - k‘:w is a tensor, and kP a vector, we conclude at once from the Eq.
(2~} 55) that the ngof (2-1-16) forms a fourth rank tensor. Thie tensor has a dominant
part in the geametrical structure of the manifold, and is called the Riemann
tensor. Its vanishing, for the case of a symmetric affinity, is the nécessary
and suficlent condition for the covariant derivatiw.to be commtative. We
havé'prmedthis only for a vectar field, however, itnﬁybe-extmdedforanycmr—
mutator of covariant derivatives of any tensor or tensor density, any one of such

oomutators can be expressed as a linear cavbination of and its contracticn

p
RO’].I\)

Rgpvmdiappearsmtchasewtnremtakeatmﬁmdmmitytostartwiﬂl.

Exercises:
‘1) Carputeu‘fw —w?w for a vector density of weight W. Show that this quantity
vanishes whenever ng vanlshes.

2) Showthat T, =T =-1ﬁm T, | -11\‘)90 T .+ for a symetric affinity.

2.2) Covarlant-Differentiation for Intermal Groups

Whenever we have other geametrical cbjects than tensors into the manifold, we
are faced with the problem of calculating new geametrical cbjects with the derivati
ves of such quantities. This is possibletobes;alxedbyextazdingthecmoeptof
ocovariant derivatives to those "internal variables". The covariant derivative of
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any gecmetrical cbject Y'(x) is defined as a new geametrical dbject wz_;x) which is
a covariant first rank tensor under space-time mappings (considering ¥ as a scalar,
incaaeomtra:cy,wejustaggregra'betheirﬁicestofmnahimerorderterwor) and

transforms like ¥ under the internal mappings. |

In order to introduce the covariant derivatives, we oconsider for simplicity a
quantity lll‘ﬂ‘wl'xic:h is a scalar wnder the space-time meppings, and which transforms
under internal mappings as

T (x) = -1 5 (x) . Y, (2-2-1)

these later represent an infinitesimal group of transformations, with growp para-
meters ¢© which are arbitrary space-time functions., However, in some particular

cases, as for instance in special relativity, they may be constants.

The transformation lzw for ‘PAmay be extended too for ¥, ,that is, for intem
al spaces we also deal with covariant and contravariant dbjects. We start with the
ocondition, lPA H’A = u = gcalar {with respect to internal transformations) and get, on
account that Su = 0,

Tty + v Y, -0

Substitution of (1) glves ' .
.. r B
” @y, - €710, vy ¥ =0
since this vanishes formy‘PA,detaintl'newmtexpartof (1) now written in

temoflPA.

Ty, () = e () Lg ¥, () (2-2-2)

A

The matrix which conducts to (1) is

A . r_ A
MAB GB i¢ge LrB

that is,
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vhx) = i B - (2-2-3)
B
Wenmdeteminethemtrixassod.atedbothetrmformatimofﬂme%. For that,

againweusethecaﬁitimﬂaat‘{all’AisascaJar,

vAm v, - @ @
using (3) we write this as

i A ALY

since ‘i'B is arbitrary, we get
' ! -1 B

\Fc - 'PB M o (2-2-4)
Thus, ‘FAtransfonm with a matrix M, and ‘FAwith amtrixM_l. For the case of
infinitesimal transformation, the matrix M ! has the form
-1 A A . T _A
M B GB tie L 5

which shows oncoe more that (2) is satisfied.

Since the transformation in internal space is carried cut at a fixed point of

space-time, we can differentiate all terms of (3),

'A \},A . T _A ‘PB ., LA T _A..
L 4 - - € L - € L. +- L
TN rB ,p 16 Lopu ¥ Cals B)?B

B"I'Au--ierL‘: v oo it iRy P

> B, B’ ,u

thus,

T
thisneansthat?ﬁ
¥

‘i".udonotfonnagearetricalcbjectlike‘?. Such cbject will be represented by

I

depmdsbothm‘l’p‘uandwh,whidzsmmatﬂ\eébrivative
]

‘F?u.' For’ defiﬁing ‘Ff‘u P we Introduce the ‘“parallel transport"

of?A_fmﬂwpointx"tox"+dx,whidzgeneratesmﬁ1e%Aﬂaevariatim

sv*(x) = -g rﬂ(x)B Py o (2-2-5)
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I'ﬁBistl'seaffinityﬁortheinte_malgrwp,andgissarecmstmtvmidldepmds

on vhat particular intéxl:rm’-il structure we deal with. The covariant derivative of
¥ ig therefore glven bg‘

?{‘udx“ = avi(x) - ¥ )

B y

R S S | (2-2-6)
For simplifying the formulae we shall use matrix notation, in this notation we
. indica'ce‘FAby‘i',a:ﬂ‘PAbyx. Thus, the previcus forrulas now read as
¥ o= MY
x' =t
§¢Y =-gT ¥ ax"

u

Yu= ¥yt s

Our basic requirement on ‘P_u is that it transforms as Y,

‘P;u(x) = M(x) ‘F;u(x) (2-2-7)

under internal mappings. In arder that the ‘F11 of (2-2-6) satisfy these omditions
¥
is necessary that the affinity possess the transformation law

' - - _1_ -1 -1 ' o~
I, G > H’u(x) MG + MG T @ N () . (2-2-8)
For infinitesimal transformaticns this gives,
o _ i _r Corp g . e
I'u(x) =T, + 3 Gl A ptie [ru, Lrl (2-2-9)

where.[I'u,L:] is the matrix representing the conmutator of the two matrices I

A particular cladg of intefnal affinities is cbtained when cne takes . -
S i® 8t (2-2-10)

uB- rBn
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In this case, the commtatar stamding an the right side of (9) takes the form

[,L]-1 “m: {2=2-11)

wehavemedﬂiefactthatﬂmegrermﬁ%satisfyﬂlempmty,

[L ,L] =c® 1
8 xr Ar
For the choice {10) we get far (9)

! . . i r_ . m r s _
r, =i1L, {B‘r*_se'u+1e Cop B} (2-2-12)

which on accomt of (10) maybeput.as

r W
= B
u i Lr U

with the transformed B' equal to

m
B'E -B +-t-: +:|.€C B
H H g

B . -
o " (2-2-13)

A important property now comes out, if we consider ancther internal space sparmed
by quantities with indices r,m..., that is, the sapce equipped with gecmetric
dbjects le:l transforming under their intermal mappings as,

r , .
Tuot =+4ic¢® C:.s i {contravariant vector)
To =-ief " v (covariant vector)

T rs m

{the trmsfonuatimlmforUrs"' may be cbtained by generalizing those two laws

as we dld for tensors in coordinate space), which means thatthegenerators,&sra:e
here

bz = = oy

weseethattheBrareasetoffmn'intemalvectorsof'thisspace (the egquation
.@~2-13) hasthe form of (2-2-11for¢3=—40,ewcept for the tenn e )with an addition

altemeu in their transformation law.



With respect to the index u 'cheBi form a vector wnder space-time mappings.
Exerciges:

1) Prove that the quantit:l.ea.églr = - C;nr satisfy the grouwp property

E%""gr]mn E“&l:j éin -ﬁt:j“é:n - Ctrﬁzn

which was usedbeforeforintroduc:i.ngtheintem_alspaoeofthedajects Unr: .

The Cglr are the structuremtmtsofthegroupwithgeneratomléB. (Hint:

use the Jacobi indenty for these structure oconstants).

2) Prc:veth.a‘l:B""11 is a oovariant vector for the index u. (Hint: oonsider the
expression for lI'_u_wh:l.ch is a covariant wvector).

The extension of covariant differentiation for dbjects with both space-time
and internal indices is easily cbtained, consider for instance the cbject ‘}ﬁ‘, we

have
- - P . -
\rﬁ;v T:.v“‘r\?livﬁ rwu’; (2-2-14)
For the choice (10) for the affinity, we get
- . A .t B_ P Y
"ﬁ;v w':’v+1gLanu o -8 »ﬁ (2-2-15)

If the intemal growp is SU,, B 1s the Yang-Mills field >, If the range of

variation of r is restricted to just one parameter ef = e, then,
A

T = - ic@ LA YPw
This grap is necessarily an Abelian group, since
iy, Lsc]. =0

that is, all structure constant vanish. Thus, frem (13) one gets
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which is just the transformation law for the wector motential in electrodynamics
mnder a gauge transformation.

Inthiscasethespaceofﬂxe?’h'isatmdmensimalmtemalvectorsmce,

the elements of this space are the real and imaginary parts of a coplex scalar.,

yuyl+iy?

w1
Al )
S &0
the group of rotations along an axis perpendicular to this space is an Abelian
growp. A rotation through an angle €(x) may then be written as

€y

which is equivalent to multiply the scalar by an axbitrary phase factor,

as we know this is just the transformation of the matter field *, which holds
independently if ¥ is a scalar or a spinor for instance. In any case Y is
always a space-time scalar, and this is all that matters.

As in the case of the covariant derivative of space-time cbjects, the com-
mutator of covariant derivatives of internal dbijects in general does not vanish.
A straightforward calculation gives,

A' I . .
where
ard  art _
A - UB _ vB L _p . oy
Fuv B x” T * 3“30 Tus Iﬁc Imv Y @-2=17)

* under a gauge transformation of the potentials.
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Em&;efonnpxesmtedbyPﬁvB we see that it transforms as an antisymmetric

seond rank tensor under space-time mappings, and under internal mappings we hawve,

A Ly 'A
?,uv N (w;u) 3V HA (V?u).v

since (‘l’z}u) .,y 18 a ocovariant derivative on the index v. Thus,
! ’

R SR S Col N

HYY 3V ,uv VU

but the right hand side of (2-2-16) oontains '{'B, which changes as ¥'"= © thus,

N G )-gp'AuB

SV 3V LVB

which inplies that Pﬁvﬁ transforms as a mixed second rarnk internal tensor,

p 3 x) = MA(x)P () 18 () (2-2~18)
B R s B

Then, under the simultaneous effect of both mappings we have

p
P'A‘ 9x 3::

x") 5 = —5 @ B g T, (2-2-19)

ax'M ax™V
For the cholce (2-2-10) of the affinity, we cbtain the. following particular repre-

sentation of the P]AJ'\JB

A . LA T
P 1L, Bg’uv

uv B
) :
r T _.“_‘ , .r .m_8 o
gw o +igC B Bu (2-2-20)
in this case the transformation law (2-2-18) takes the form
r . BT m o
TF, el o, - (2-2-21)

r r
ésm - Csm

VEseethatPﬁvBisﬂm.malogmofﬂmeRimtemorforthemtemlspace.
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Its vanishing is the necessary and sufficient condition for internal covariant
dlfferentiation be commtative.

For the case where r = Pﬁ B reduces to (using (2-2-20)).
3B '33
?" —-E 2, ¢ =0. (2-2-22)
WooaxY e me

Which is the expression for ‘the electramagnetic field FW. Thus, the electramag-
netic potential is the affinity for the gauge growp and the electromagnetic field
is the corresponding Riemann tensor.

Finally, we give a general expression for the internal covariant derivative

Yep " w“B':' +gTh W gD Wt oL (2-2-20)

},IO_CD-... ‘.IC oDO.l

Exercises
1) Using that ¥* ¥, is an intemal scalar, calculate Ya by impeeing that inter—
nal covariant differentiation shares all prcperl:iea of the space~time covariant dif

ferentiation. Answer: wA;u_ ="PA,U - grfﬁ A Y.

2) Prove the equation (24}by1£irigﬂ1exesultsofﬂ1ep:evia:sprdalanandsinﬁ.lar

results of the conventicnal tensor calculus.

‘-_” Compute ¥ ABjuv _q!AB:vw M?AB;W' = Yappup = 9F uuA Yrg9 Pl:vB AR’
Ftrclosing\pﬂﬁssectim,mgi\etheatmmryofalldmmmum
cbtained. These results willsbe of interest when we came to consider cbjects like
‘PKB onto the manifold, and this will be done later on in comection with the

spinor formalation of general relat.wity
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2.1} Summary of the Structure of Internal Chiects
(only general formulas are included)
Object Symbol Transf. law Inf. t. law Covar. Differ,
Contravariant |2 = e |u - R - - .
Lravar Pix) = ¥: ¥ (x) = M) ¥x) | BY = -ie LY Y =¥ el ¥
Covariant - ' =1 - i el - _ .
Vector ¥ @) = x X @R () Ty=ic X Lp| Xy® X = 8X L
SR | -1 i r
['s « =M M "+ Sr =2’ L
Affinity r: 5" ru U g »u H 8 ,ur -
) ~1 r
+MT M + i [ru,r]
PW-I‘H'\, -
Anslogue of T + P! (x) T it
- - - =-jp . P . - P +*
the Riemann Vol Hv W W0 WV,0
. -1
Tensor +. i(rvru -M(x)Pu\J(x)M' (x) . E‘t' Pu\g + IEFU- PLN]
- I‘ul‘v)
Similar to that Similar to the Obtained by
Mixed obtained by pro- |linearization superposition ofj
‘FAB duct of components|of the transf. derivat, of ¥
multi-order CD... 1 2 of and X
tensors ?1T2...xc Xp *** A B 12 '
1 2'..xch..'
2.3) Affine Geodesics

Once we have given an affinity over the manifold, and thus an affine gecmetry

is defined on the manifold, we can correspond distant points and introduce curves

into the manifold. 2aAn important class of curves are the affine geodesics.

They
are defined as follaws: Given a point P lying on the curve, take any vector propor

tional to the tangent at the crve at P and transport this vector parallel to
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itself along the curve to another paint P' also cn the curve. Then, ifthepara;
lel transported vector is proportional to the tangent to the curwe at P' for
every paint P', and every starting point P, the camrve is an affine geodesic.

The significance of this may be understood easily if one takes a overall flat
manifold, where the affinities r:‘,ovaﬂahataupoants,&mﬂemauel trans-
port of a vector does not change their conponents, and the wvector at P is identical
to the transported vector at P'; thus, an affine geodesic for flat space is just a
straight line joining P to P'. Therefore, one can describe the affine geodesic
between two points as the "straichtest” line which joins these points.

For determining explicitly the equation for those famlly of curves let us use
a paraetric representation for fixing the points on the curve.
= M)

where T 1s a continuous parameter defined on the curwve, which increases monotoni-
cally as oane proceeds along the curve in a fixed direction. The tangent to the
curve at a point with parameter value T is given. by
ag¥
tu=-_
dt.

since the differentials dgl" transform as a contravariant vector and dt is assured
to be a scalar, the targent is a contravariant vector. If we transpart the tangent

vector fram the point T to T + 4t we will get a new vector,

u v
ThHa tF + 6¢H = E-E—'-I‘gcg'— Fiad
daTt 4T

while the tangent at the curve at P' (corresponding to T + dr) has the value

. u 2-U
t'H - -&91-_- Eu('r-rd'r) - iﬁ_ + a8 dt
_ at ar? '
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Fram the definition of geodesic it follows that these vectors must be proportion-
al to each other,

- K(T, cl'r)t:'u
where the proporticnality constant K must be such that K{t, 0) = 1. Hence K(t,dt)
must have the form

K(t, d1) = 1 + af1)dr

datz P oar dt

To a large extent the parametrization of the curve is arbitrary. Given e
parametrization in terms of 1, we can introduce a new parameter s(1) without af-
fecting the geodesic nature of the curve. If we do this, we cbtain

azgH ag? ar’  a(m)s'+s" ¥

+ 8 - (2-3-2)
ds? M 4s  ds a'? ds

where 8' and s" are the first and second derivatives of s with respect to 7. We

see that is always possible to find a parameter s(1) such that the right hand side
of (2=3-2) vanishes, that is, a s({t] such that
a(t)s’' + g" =0 ,
Since this equation posséss solutions for arbitrary a(‘rl + Thus,;, we may present
the equation of a geodesic as
- dazg! - aP  a®

+ ———— — 0 (2-3-3)
ds? pa ds ds .

2.4) msi;a_m parallelism and Affine Flatness. The flat Space-Time Tetrads

The affinities I’uw(x) represent altogether 64 functions of the coordinates,
which transform under a mapping according to (2-1-7),
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ax* b  ax'M 52 2 ax'¥

T (x) + —— -
ax'V 3x'® ax & A8 ax'Vax'? 5x

ey o
Tog ")

The I _(x} and [}} (x') represent the same affine gecmetry set down on the mani-
fold in two different ways. We now prove the following result, which may be
taken as a thearem: It is always possible to determine a coordinate system, in
fact infinitely many, in which the ' (x) vanish at a given point of the manifold.
Indeed, we have

3% xP ax®  ax® axP

T w TH
ax'Vax*° +rsu(x) ax' ax'® I‘w(x)

ax'¥ @4

let us take a point P on the manifold, in the coordinate system x it has coordi-
nates xg ?hmiderthemﬂinatempphxgx"=xu(x'“)andmposethatatp
the affinities I'\) vanish

tH, - A
I‘w(x P) 0 {(2-4-2)

always there exists a coordinate transformation such that this condition is satis-
fled. Indeed, the condition (2-4-2) j.nj;li.es fram (2-4-1) that at P,

32 X o ax®
w—-—-——axlvax'o +I'B'a(x) " -———ax'a =0 (2-4-3)

P
a solution of this equation, which at the same time is the coordinate transforma—
tion we are locking for, is

Hxt) - S e 2% - % (rgu)l, LU (2-4~4)

indeed, fram (2-4-4) one gets
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axP o 1 U.p') 6T x™M s g Ty
at® Vv Z Ve Py v ¥
2 x* 5.
ax"Vax'’ o (rUU)P

since in the new coordinate system the point P is given by x' = ¢ (see the equa-
tion (274-4)), we have o

a5P ] a2 4P
ax'V Jp ) 6“

- - (TP

ax'Vax'® [/ p

substitution of these two relations into (2-4-3) shows that this equation is satis-
fied at P.

We remark that there is an extension of this result which shows that exists
a coordinate transformation, which is a generalization of cur equaticns (2-4-4),
such that in this new representation the affinities vanish along an arbitrarily
prescribed geodesic. ©

There exlsts a manifold for which the affinities I (x) vanish everywhere
in a glven system of coordinates, this manifold is the flat space-time of special
relativity *, and the coordinate system displaying this feature is the cartesian
system of coordinates. In any other coordinate system we will get non~vanishing
campenents.  These later components may be calculated by the following method,
take x' as cartesian coordinates in (2-1-7), so that I‘;JE {x') = 0 which gives
for the ccordinates x, which may be for instance spherical coordinates,

22 x®  axV ax®

ax'™Vax'®  axP ax® ' (2-4-5)

rﬁam - -

* Obviously all present statements hold for n-dimensional spaces, butwe restrict

the discussion to four~dimensional spaces.



we may thereby call such‘type of affinity as the flat space-time affinity. If
further we allow just linear mappings onto the manifold, as is the case for
special relativity, we get that in cartesian coordinates related one to the other
by Lorentz transformations, the affinities I‘ga(x) vanish for any cocrdinate
system. Since in the next sections we will generalize the special relativistic
principle of relativity, we will barely make use of such simple types of mani-
fold, unless for treating the gocalled flat space-time theories of gravitation,
which will be done later on. Presently, in discussing gecmetrical properties of
the manifold, we take this case as a very particular situation with no further

ooments.

Flat space-time affinities given by (2-4-5) give rise to a flat affine ,
geametry. In what follows we give a method for recognizing this type of gecmetry, ™
ﬂmsocalledm&bdofdistmtparauenmofvecm. This method has the |
further advantage of introducing another important gecmetrical dbject into the
manifold, the flat space-time tetrad, which in the following section will be
generalized to the Rieamnian space-time tetrad.

Tl're,}:nmledgeofthel"gab(} allow us to introduce the notion of local
parallelism, used bdfore for introducing the oconcept of covariant derivatives,
ﬁﬂmidlisessentiallyalocaloperatim,asawotherkindof derivative., Thus,
an affine geametry supplies us with the notion of local parallelism. However,
we cannot in general decide if two vectors on distant separated points are, or
are not parallel. To ané.verthis,wevmldhmboparallel—trmspartmof
the vectors along scme curve comnecting these two points, wp to the location of
the other vector. In general the transported vector will vary according to the
curve upon which it was moved. In other words, the affinity in general is not
integrable,
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If however, the resultant vector is independent of the path of transport, we would
have an integrable affinity and we may speak of the notion of distant parallelism,

Suppose that we do have an integrable affinity. Then, given a vector hV
atapointP,wecancmstmctamiquevectorhu(x),thatisam:l.q'cevecl:or
field over the manifold, by transporting h" parallel to itself to each point of
the manifold. As it is clear, whenever we calculate h*(x+dx) by Taylor's expan-
sicn, we cbtain another vector h”(x) + dh"(x) which is parallel to h¥(x). Then,
if we want to impose that the transported vector from the point x to x + dx is
parallel to h¥ (x), we need to impose that sh” = dh". But this imposition is equi-
vaJmttoh‘:v=o,

' AV

¥ dax’ = an® - &hM = 0

TR TR A
iy = e Th RP a0 | (2-4-6)

;
These are the equations for a parallel vecter field h"(x). Alternatively, the
conditions that these equations possess solutions are the necessary and suficlent
conditions that the affinity is integrable. Before stablishing those conditions,
we generalize the equation (2-4-6) by taking a system of four linearly independent
wit vectors h(g) (x) at each point of the manifold. Any vector BY is then writ-

tenasaocnbinatimoftlnbasisvectomh'ia),

B (x) = (¥ () NG (2-4-7)

(the index into round brackets dencte the four vectors of the basis, h(l)...h“)).
This basis is supposed to be parallel to itself at all points, that is, it satis-

fies the equation (2-4-6},
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Mo .M P -
h(m);v h(u) WV * rupv h(a) °. (2-4-8)

We now study the prablem of determination of the necessary and suficient
oconditions for the existence of solutions of {2-4-8). This equation is of the
farm

il o m 4
—r == F, (1.6 xhux) (2-4-9)
axl. 1

wherethnga:eluumﬁmtimsofﬂlefamdxi. For getting the relatien
(2-4-8) we take

« " .
£ - h(p) . m=1,..16 . |
weahallassmethattlmﬁnctimFimofclassClwerthedcmainpfvariatim

ofthefamdthexi. 'Iherefore,theﬁmctiamfa a.reofclaasczmthe four-
dimensional manifold, and we hawe

3? g% 32g%

e B gy (2-4-10)
axtoxd  axtax’
using this result into (2-4-9) one gets
ar®  or® aF® %
e~ - o+ —4 . (2-4-11)
axd  af” J . ax ag” 1t

vhich form the necessary conditions far integrability of the (2-4-9). If the

system of equation (2-4-9) has a solution, then either (2-4-11) are identities in

o

f mdxiorelse,ﬂmemarecertainﬁmctimalrelatimsmgﬂmfaandxi.

Applying these relations for our particular situvation, where

a, .M
£ a0

P> - pH ol
i Av T (p)
i, * v,y

we cbtain for (2-4-11),
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_'l ] =sP w0 o —be
Ty Bey SR Bepy =0« (2-4-12)

P P _pP pr o, P
(r [y ., r. +rT -

ou,v ov,u Ay Tov AV

Since the value assigned to h"(’ﬂ at the starting point P was arbitrary, this con-
dition holds for arbitrary values of h"zﬂ, at every point of the manifold. 2s -
oonsequence, we conclude that the necessary condition for the integrability of
an affinity is that the associated Riemann tensor vanishes over all points of the
mani fold.

P -
RO'l-l 0 (2-4-13)

The vanishing of the Rlemann tensor is also a sufficient condition for the
integrabllity of an affinity. To show this we first take a small closed loop. Once
having shown that the affinity is integrable along this loop, we can extend this
:esulttoacloaedﬁnitepathoamctingPWiﬂiP',bytakingt}ﬁ.s closed path as
formed by two neighbouring curies cbtained by adding the necessary number of small
closed loops.

Then, we have to prove that the affinity is integrable around a small
closedlocpvmenkg_w=0mthexegimomta_inedinthisloq:. Iet ws consider
the small polygon with vertices at the points x, ¥ + ax”, x* + §x* and ¥* + ad+
+ §x" a8 shown in the following picture.

M
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Paralleltrmspartofﬂwe.basishlia)_ ffom x¥ to ¥ + A results in the new

basts b, - T h%a)_ a’. In tramsporting these vectars to the point ¥ + ax* +

sx*, we must use the value of the affinity at the starting point ¥ + dx” , that

is, I‘gu +I‘f;n v ax’. In this way we construct at '+ @ + 6x the new basis

h'(z ywith value

Moo ol B N erl LM o TyaB B P A 6O
nih = (- Th by @) = (R, + Thy o axD) (i — Tp, by, dx) 6

We could continmee to parallel tramspt.av:rt*!:hi.six.'\*=_-c::t:orba.ck1:.0:("l via the point
xu“ + 6xM andcm;&are its components with .the ouriginal companents at-x”, the
hé;); however, we can equally test the integrability of the affinity by compar-

ing at the point ¥ + ax* + 6x* the two basis h'¥ | andl':g;) cbtained by a

simi lar process but going through the p_oint'x]" + 6xu,

P GxA) dxc

TvpmB _ B
6x ) (h o 2w

W oooaB o 4B Vy _ M
h (h s, h 8x7) (I‘Bcr + T (a)

(o) (o) Bv () Bo T

(ncbematwed:taindirectiyh‘zg) from b | simply by changing d into § and
viceversa). We get

wl B H g A T .
h(a) h(a) RG;\‘L’ h(a).ax dx 0.

p' '™
If the two basis h(“) and h(f.l)

ﬂmtﬂushq:pmsmngh = 0. Thus, the vanishing of the Riemann tensor is

a sufficient oondition for the affinity being integrable.

are equal the affinity is integrable. We see

One important point must be understood, the criterion of integrability of
an affinity is an invariant property. Namely, such criterion is independent of
how ane places the affinity on the manifold, ingM=0formdmiceofthe
affinity, it will be zero for any cther setting of the affinity. Thus, sets

of r'é‘o which are related by (2-1-7) and which have R, =0, are all integrable.




60

We have sald before that one particular set of such integrable rgc were
distinguished from the other sets by the fact that they vanish on all points of
the manifold, rgc = 0, and that the coordinates satisfying this were the
cartesian coardinates. We camnot prove this statement in the framework of the
affine gacmetry, cnly after introducing a metric into the manifold we will be
able to prove this, but presently we take this as true and investigate further
the structure of the remaining sets of integrable r‘éa . They are given by the
equation (2-4-5)%. Solving (2-4-8) for the integrable affinity, |

i - - o N H{“) (2-4-14)
(we have used the fact that h?a) H{a) = 62, or, Hia) is the inverse matrix to
h’ta)) *.  Conpariscn of (2-4-5) with (2-4-14) glves
0 8xp
h(a) = ;;'—a (2-4-15)
. ax'® o
() —4
hb - (2-4-16)

where the x' are cartesian cocrdinates. Indeed, from these later two equations

me gets 3¢ xM 3z y# Bx'B
i .
h - - .
_(a) oV ax'%x”  ox'%ax’ B 3x”
80 that
2 u- B a
o E(a) i} ] X’ axl ax.
(ay,v A : 3::'0"3::'B 3x’ E):t1

which proves our previous statement. Thus, we conclude that the vanishing of the
affinities I‘\',;‘: (x'} which conducted to (2-4-5), implies through (2-4-14) that the.

() U
h =c, for e
@@

* Since the hléa) are linearly independent, we have c
I
and this system of equation has solutions for the ¢ only if |h“(luj’| $ 0, .
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ne m‘ﬁ‘g"’ are given by (2-4-15) and (2-4-16). Bouivalently, cne can say
that the necessary conditions for I)) = 0 is that there exists a set of basis
vectors hf | and E‘“’ such that (2-4-15) and (2-4-16) are satisfied. We prove.
now that this is also a sufficient condition: The existence of a system of
basis vectors satisfying (2-4-15) and (2-4-16) ‘implies that there exists a map-
plng such that all affinities vanish in the new representation., Chviously we.
are always referring to.integrable sets of affinities. For proving this later
statement, we start with (2-4-14). Imposing that the I, of (2-4-14) is sym
metric in the lover indices we get

¥ '(“) E(“) (2-4-17)

(u).v ( a) A
further, franthefactthtl:h‘i‘a) and B are reciprocal matrices, we cbtain
(G) a)
Biegy By ha, A "7( | (2-4-18)
adding (2-4-17) and (2-4-18),
13 -(a.) M -(a)
Blay,vPr * Beoy Bya = O (2~4-19)

in the first term of (2-4-19) we use c¢hce more a relation like (2-4-18),

- n¥ h(“) +0d  BE@ oo

(o) (@) "v,2 _
which may be written as wALlE, o
u) @)y e kb S e i
thus
(o) —(a)
A "By

But this implies that within the same region where the affinity is integrable
thereexistsascala.rf(a}(x) such that '

(@) o (@)
B, £y
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I.etmmathesefwrscalarsf(a)inorder to form amag:ing

ol @y R
then
& (o)
F(a)-ax .-.Bfl‘_
- v ax’ 3::9._
and consequently. . ag¥’ <
PP
") T e

e -]

which are the similar to the equations. (2-4-15) and (2-4-16). For oompleting
s T =p

the proof, wehavetoshcwthatﬂmeaffinityinthensﬂmpresentatimvanishes

r"‘(x ) =0, We have from (2-1-17),

" i  axf ?a 32x*  ax'M
e - @) + s '
va ax™  ax'® “3 ox'Vax'" ax®
B.xa Bx

- " = by h{’(‘v) and H(u) and using the express:l.on for
3 X i
rzs(x) given by (2-4-14), we cbtain after scme easy steps

r'ﬁo(x') -0

This onpletes the proof. - Therefore, we can state: The necessary and suficient
omdition for Pl\jc =0 is the existence of a parallel system of basis vector over
the manifold satisfying (2-4-15) and (2-4~16).

Forcc:rpleteneaawehavetopmva ncwthacl:indeedtheh() H(C‘)
those relations are really a set of four contravariant and four covariant vectors.

Thatis,vgehavetoshmﬂwtmﬁeramappingyz=yl(ﬂr
ol
1H R
M@ 5 Ee®

(the proof for H:a] foﬂ:lms analoxgously) . The proof of (2-4-20) is easily
cbtained, since
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The system of parallel basis h¥ () and their reciprocal?xlgu)bc) n the
manifold, form the so called flat space-time tetrads. They satisfy

h'll) ) =

wf @ E¥@ =6, (2-4-21)
(a)(x) 78 (x) = Egg . : (2-4-22)

In the next chapter we will generalize this concept in order to introduce into

the curved manifold a set of basis system (which will not form a field of paral

lel basis anymore). The tetrad field of vectors.

3. THE GEQMETRY ON A METRICAL MANTFOLD

3.1) The Metric Tensor

Folloving our discussions of the geametrical concepts of space-time we now
introduce the idea of distance and angle between vectors, that is, we introduce
a metrical geametry into the manifold. According to Rilemann we define the dis-
tanoe between the nearby points x and x»tdx as '

s = gy® ¥ ax’ (3-1-1)

dsiscalledﬂ‘eupeelenent.Anetridalgametxywithdszofﬂxefomabova
is called a Riemannian gearetry. The norm of a vector is defined by

Al (x) = 8, A V) ' (3-1-2)

IfA2>o (or < O) foraxbitraxynamemarrpmentsA“,themtricgwis said

to be positive (or negative) definite. Otherwise the metric is salgd to be in-
definite. In the great part of all applications to the relativity theory the




64

metric is indefinite, however, thpre exist sub-spaces of the four-dimensional
menifold which possess definite poeitive (or definite negattve; mecrics.

The angle between two vectors A" and BY 1is defined by

80 M gY

/811'{" Al-l'\)' /gm Ap Bu

coa(A,B) =

(3-1-3) |

Care must be taken sinoe for indefinite metrics it may happen that a given
vector ¢ has a null nom

c? - gy, Fc’=0 (31-4)
vectors satisfying this oondition are called null vectors. For them the defini

tion formula (3-1-3) does not apply. Nevertheless, in general we still CHEEE
defins arthoganallity even for null vectors and same other vector, by -.

A.B = 2,0 AMx) BY(x) =0 - (3-1-5)
o

we then said that A" and Bumpezpaﬁimlar,inthiscasehuorBunuybea
null vector, cne at a time of course. In a next section we will define more.
completely the structure of the indefinite metric of-  general relativity.

'I't‘legecnetricald'laracterofgw is fixa:ibythe requivement that ds
isa §calar wmder space—tim,mings. .'I'his is an extra imposition and is done
bcl:ﬁ due to our previous experience in special relativity and to an heuristic
argument of logical simplicity. In this case = is a syxmetricaltemor
Given 9 e can construct several other quantities which will be useful in
the subsequent treatment. First, we form the determinant g of =

- 8= lgyt |
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with its help we foum the inverse matrix to g, as

g == (3-1-6)
o
sinoe
8, g’V = 6: (3-1-7)

it follows that g”“’ 1s a contravariant Byxtrreti'ic tensor of rank two. The

quantity g is a scalar density of weight +2, since

8

* ax

ax
' Ll T J—
g &' sx'®  ox'V

and taking determinants on both sides we cbtain

sas (x)

sz

g'(x') = glx) .

Givmgw andg""’ we may introduce the operation of raising and lower-
ingindiws.-matmsor-r"'“"' wecano:x:stxﬁctanoﬂ:ermmo;--r‘"u"-
acoording to

T'ol LN i_!.__v..l-_.

ravHeass -31-“, T.._o e :

whi].e fw Tno. sen we can I ! Tioiu.o_. by

sesHese see ses

T!o-u-on - 8]-1\, Tao' [N

LI ] L ;.lv-tol_

Similarly we can raise or lower indices on densities. Once we use this cpera-
tion of raising and lowering indices we have to take care on the correct posi-
tin of the indices, as example given-TW which is not symmetrical, the two

tensors
T V THY
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are not equal.

3.2) Metric Geodesics and Metric Affinity

In the previous section we introduced the oonoept of geodesics associated
to a given affinity a8 a generalizhtion of cne of the properties of the straight
line in Euclidian gecmetry, pemely the property that the tangent vector to’e
straight line forms a field of parallel vectors. Here, we define a metric
geodesic also as a generalization of the property of straight lines that they
include the shortest distance between two points. Accordingly, we define a
metric geodesic between P and P' as the curve joining these points for which
the arc e!.mmt is ‘sta'tidmry

P! P’
PP a
P P

for variationg which vanish at the boundaries. Here,

] A -f—- -/gu il'l i\) . iu --d:—].l
S v a
Thus, we have
Pl
8 _, = 8§, di S ., = f =),
pp! Ba B, 5,70, x
P ¢
hence,

. L]

of of
855500 * j ~X gt e A Ml
' ax
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mi
P! : . apt
S : -J. .ai-- i ..3:2‘. &8 H dx + .?f.l_ le" i
ppt = T x :
o ax \ ox M >

@m the derivatives, we get.

P' .v
By o [ey T\ |
PP k] H
ok s ' A S
’k ’ ’A
P

dmmwemedthatﬁfvmﬂshatﬂmbomdaﬂea. Since 6x" is arbitrary inside

v
L2 gy g B ®

1 | '
, =0 (3-2-1)
7 7 ot da s '

A »A

mingthesyrrmtryofgw we cbtain after same easy steps,

s
ry
- {w,o) & x¥ - Pt ! =0 (3-2-2)
o s %’ |
whare, . |
{w,o} = %-(%,U * s&v,u - 31,1\:,0) (323

are the so called Christoffel symbols of first kind, The equation (3-2-2) ean
be greatly simplified by choosing the parameter ) equal to the distance s
along the curve. In this case the last term on the right hand side of (3-2-2)
iazem,andwegat,solvingfortheiu, N

FL " dxf  dx o
+ — — -
—;T .{ p‘_’} ” ” 0 , {3-2-4)



68

where the {pl‘;} are tha cChristoffel synmbols of second kind, * defined as

By o WV - (¥ -
(1 =gV fpowd = () 329

Thus, the equation of the metric geodesic may be put in the sinple form (3-2-4) .
Since s is the arc element along the curve,; we must restrict the solutions of

(3-2-4) by the supplementary ocondition

ax”  dx’
B e —— =], (3-2-6)
W ogs  ds

It can be shown that the equation (3~2-6) is a first integral of (3-2-4), indeed

differentiating (3-2-6) ane finds,

i’ ¥ ax’ ¥ 4’ e
+ _ + s 0
‘u\:,s de ds ds By dsz ds ds du}. /

Using (3-2-4) we will get an identity.

For cbtaining the previous results we assumed that ds’ # 0. But since we
‘Geal with indefinite metrics, it may happen that ds?= 0. As we will see, this
case corresponds to the motion of particles with zero rest mass, moving alang
the light caone. For_this situation the previous relations do not apply, and
we need to derive other variational principle. This variational principle is

cbtained directly from Fermat's principle of optics.

Consider thecasewheregooistakennegatiw,aswewillsaetrusw
responds to a Rlemenhian (or psevdo-Riesfannian) metric with local signature +2,
We have

*# These quantities transform under the MMG as an affinity.
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gl = .dxidxk'i-z ax° daxt + dx® dx° = 0
8 Bix Boi 850 _

for goo< 0, the positive root of this equation is,

o __ i _ i j _ )
dx 8, 9x /goo 1/3oo /ﬁoi g; dx  dx 8; ; dx’ ax’ >0 ,

The quantity with the dimension of lencght associated to x° is

du = .' - g‘;o dxo
which here is equal to,
g : |
ol i / T i i .
du = v Sy dx? (3-2-7)
g, .
where
Boi Boj ,
Tig = By - (3-2-8)

80(.)

as it may be easily shown, the three-dimensional tensor A 3 is the reciprocal
of the spatial components gij of the four-dimemsicnal metric. The variaticnal
principle for light rays is then, '

u
1 du
Gj —dA =0
dX
u
o
with du $oi i s
Uy m— i+ TR
g a g ]

[s10)

the Euler-lLagrange equations for this problem are,

9 ]

aoa

—-n-—-'-—-—q--O
at el
weseethatinthecasewlnmgd=0,duhasfomnllythesanefonnasch,but
now  written in temms of three—dimensional quantities,
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1 .
do = ';ij dx” dx", g =0

hence, in this case we can write immediately, by an:logy with (3-2-4),

dle i dxk dil
— it — —-0 - . (3-2-9)
du Ak!’ du du _

ma 8}, is the three-dinensional Christoffel symbol build w with vy, xa gid,
ithwpmmthathe:eyij=gij,arﬂweha\a | g

- - aT aY aY1,J_! - a a ‘-_3 :
G (T8-S e(Bm B R) o

ax ox ax ax ox ox

For this situation, we have
i i
(et = 8,

but whenever g, #0, clearly this equallity will mthold. Ffor the gerexal 81
tuation wheye g_, do not vanish, we have fram the Euler-lagrange equatian,

d Boi. Yig '_ig' ' igij |
— , < (3-2-11)

The equations (3-2-9) and (3—2—11) are the equations of motion far particles
moving along null geodesics, the fArst equation correspands to stationary fields.
Since v, lovers spatial indices, we have & = yyk Wat Bq. (3-2-11) says
is that the particle moving on a null geodesic is dcted by e foroé. - |

and has a momentum equal to
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the field,similarly to the tctalmntlmpi-!-e/o\i in presence of a magnetic
field. mm,thenm—statimaxypartofﬂnfield,thegoiactsaaamagnetic
field imparting an extra mcmentum to the particle. Finally, we can take X
equal to the time, in arder to be able to speak of mawentum and force, as we did.
Since we will tuim back to these questions later on, we finish here the discus-
sion of null gecdesics.

In crder that the two geodesic paths introduced in the four-dimensional
manifold, the affine geodesic and the metric geodesic coinclde, we have to suppose
that

H _ By, -

I‘w = {va} (3-2-12)
This is an extra imposition since the two structures are unrelated in the sense
that they can be introduced independently. For all known physical app]icaticns
of Rlemannian gecmetry the above assumption is sufficient. With this choice
our affinity is symretric on the lower indices.

With the oondition (3-2-12) it follows immediately that
Bsq = O | (3-2-13)
we may say that with the chaloe (3-2-12) for the affine connection I', the 9
tums ocut to be a omstant under covariant differentiation. It may be verified
hovever that the choice (3.2.12) is not unique, indeed we may take instead of
(32-12),

How Mg sfhee g¥e gt -
F\JCI. {\JG} ¢G 6\) ¢\J 6(! +9 '\)G (3~2-14)

‘This 1s correct, since the sum of an affinity with a tensor ylelds a new affini

L]
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ty, our I‘ﬂa. The geaetry wnderlined through the oadition (3+2-14) is called
the Weyl's:ntty'?sm it contains besides the Iy another basic variable,
the covector ¢u' Fbrctu-Ow:eomert'm Rienanian structure. The oondi-
tion (F2-14) conducts to :

- _ B
Bvsa " Buv,a T Tha 8

According to Weyl's interpretation the vector $, describes the geametrical
structure of the electromagnetic potentials. In this way an unitary field
thecry 18 constructed for gravitaticn and electramagnetismby gemeralizing the
Riemannian condition (3-2-12).

_pﬁ

ye S ™ $ NI (3-2-15)

Problmn:' Cnstruct the caxrvature tensor for Weyl's theory using (3-2-14) and
ﬂnawimofﬂg_w in terms of the affine connections I‘gu

P .pP P P A P pA
Raw rcm\: ravu rku I' r)wrcm

Ve may still go beyond Weyl's work by writing in plaoe of (3~2-14},

I‘];u - {td} + arbitrary tensor field. (3~-2-16)
for a tensor field to be specified later, and we can try to construct this
tensor in the more ganarzlfomupmsib]a. However, such gereral geametries
‘do not possess an covicus geamretrical interpretation as the sinple Weyl's geo-
rnetyry has. |

3.3) Metric Flatness

The relations (3-2-12), {3-2-14) mnd (3-2-16) are possible cholcss for the
foulty unknown represented by the affine connections w,whidla:egimby
those farmulas as linear functiona of the Christnffel symbols of the second type.
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We here turn conce again to study the properties of a metrical space with
the square of tie line element given by (3~1-1).
dsz-guv(x)d.xpdxv'

(:t:ma:l.c‘lerapointPont'.l'na-rrlani.fold,andletci!,s2 be the square of the line ele—

ment emerging fram P, We use two settings an the manifold, the first denoted
by coordinates x and the seocond by %', from the invariance of dsz,
2% =g 00 et ax =gl ) axt e (3-3-1)

Since ds2 is written for the point P, we should write for campletdness

a® = g, (o) axy axy = gl ) dgtang”
now, let us take another point in the vicinity of P, which has coordinates x
for the first setting and coordinates x' for the second cne. We expand the
metric tensor on both settings in power series expansion of the separation,

- o o
sW(x) - sw(xp) + - x) (su\J.a)mP (3-3=2)

’ 3 .
B, &) = gl &)+ @' - x)) @y, ozt (3-3-3)
where we agssumed that the square of the separation is of hicher order and may
be neglected. Fram the equation (3-2-3) we can find after same easy steps,

8o ™ Bov ! * By fua?
using the condition (3-2-12}, which equa].s'.{gv} to the rzv, we rewrite the
above Taylor's series as

. : )
B = B Ol * O3 {agy Ty * oy o) ey (-3-4)
8, (') =gl () + x'pyigl T+ gl Pt (3-3-5)

Now, using the theorem proved on section (2-4}, which says that it is always
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possible to determine a setting such that locally the I‘ﬁa vanish. As before,
we take this setting as given by the coordinates x', and the point wnder consi-
deration the point P, | '

O sty o
Tuo Op) =0
T
where the Aﬂa are constants. From those relations we get for (3-3-4) and

(3-3-5} the values

' ) o o
By = g, (xp) + (x- x?).' {5y (xp) &) * 8oy, (%p) LN (3-3-6)
8, =) =gl &'y ‘ | (3-3-7)

Thus, for the coordinate system X', the ten quantities g',(x') have the same
value g' (x'p) for all paints x' inside the infinitesimal neighbourhood of P.
Therefore, in the setting X' where ﬂme.r;)‘; vanish at P, the metric temsor is
constant over an infinitesimal volume of the manifold containing the point P.
Since we know that a quadratic form with constant ccefficients is always reduci
ble to a sum of squares, we have at the vicinity of P, from the Egs. (3-3-1) and
(3~3-7),

ds: =a, dx'® ax'V = algebraic sum of square of ax'V

wheretl'uaaw is just g]:N(xE',). Fran here on, for simplicity we drop the lines
frem the coordinates. The above sum over the square of the dx” cannot be of
the type

@xB? + @Al + @xH? ¢ @h?
{nor of the type where only the minus sign appears), because we have seen that
the metric has to be indefinite. Thm,wehmbogetalmgaidewithsmenmber
of plis signg, sare nuvber of minus signs. The difference beweenthetotal
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nutber of plus signs and the total number of minus signs (or the reverse, depend

ing on the convention which is used) is called the signature of the metric. Since
the above process for cbtaining the diagonalization of dsz, and thus, the signa
ture of guv(x), is good for any point P of the manifold, we will cbtain the same

signature for gw(x) at any point on the manifold.,

InthenextsectimofthisdlaptErwewillgiveexplic:Ltlythebmpcssible
signaunesmecantakeforg (x) Once each cne of them is chosen, it will
remain fixed for the remaining of the treatment.

Thus, for a Riemamian manifold, it is peesible to determine a coordinate
system such that locally the metric tensor Sy (x) takes on omstant values +1 and
-1, with a certain arrangement which defines its signature. That is all cne can
do, whenever we go off this infinitesimal volure, the 9, assure arbitrary values.*

We treat now the case for a flat mamifold. In this situation we sa¢ that
ﬂmmeﬁstsamordinatesystan,ﬂmcart&eimmozﬂinates,vmemﬂmafﬁniues '
rvg vanish over all space. In any other setting, campatible with the flatness,
i:he_I‘Sol take on values in temms of the flat tetrads as

u - wH )

G ==l | E( (3-3-8)
with . axl.l | “ ,ax'a |

u = AR epi——

h(ﬂ) a'xpa ’ h‘-l 3x11 ' (3-3-9)

Since the-cbr:l.vativasofgw arerelatedtothersgﬂmxghtherelatimwritten
previously, it is tobea:pectedthat =1 is same finction of the flat tetrads

* This can be seen as: follows, :_f we. go- off the z.nfm:.tesunal Vicinity of P we
have to take dlso the remaining’ terms in the Taylor & expansion €3-3-3), but’
the next order tem.w:.ll in¢lude the curvature at P which is not zero, and

thus, the B‘L'N (x') is not constant in the second order approximation.

Tt T —
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h"('a) and their mcd.pramlﬁiq-a. Indeed, if we call by g, oy the camconents
ofﬂnmtricmorinmimmm,mbygas the values into the
aetungwhemtmrﬁc take on values given by (3-3-8), we get by using the pro

perty that the metric is a secnd rank tensor,

ax'® ax'® o e’
, Wiy @®
) T k@ s 8 R 5 s (3-3-10)

wsing (3-3-9) we write this as

fu® = EY ER 0, 0 8700 =1, gy 5@ @ (331D

and this is just the relation between the metric g and the flat tatrads h’.‘E‘GJ
and H‘i"‘) A metric field satisfying (3-3-11) with the hléa) and H]i“) given by
(3-3-9) is called a flat metric tensor.

?hmvmlyzeﬂlestrwtmofﬂncmpaﬁntsgia)(s). Once this is
known, we are able to get the structure of any other flal:mtrictensorgw by
wsing (3-3-11). As we sald before, the I(a) (g) Tefer to the cartesian system
of coordinates, where the affinities vanish (and where covariant differentia-
tion is equivalent to the usual partial differentiation). Using cnce more the
thecrem (2-4) we get that the derivatives g(ww)'uvmiahnotmly at a paint,
but nov at all points of the manifold *, and thus, the ) @) X° omnstants.
We indicate the constant values assured by g, ) 28 &us,

B(a)(8) = %ag
This result is consistent since in the flat manifold the curvature tensor
vanishes at all points.

* Use that B(a)(8),1" 30 (B) I‘EB (ll)*'(l)' (dlr%; ) ,and in cartesian :coordinates the
[ vanish at all points, 3iving' as result that the derivatives of B(a) (8) are

zero for all points.
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Problem: Using the formula (3-3-8) for the affinities, ocompute the components of

the curvature tensor for a flat manifold. Answer: they are all null.

As the last comment on this section, we call attention to an important fact:
The choice of settings for I and g, according to (3-3-8) and (3-3-11) is
limlted by the condition that the curvature tehsor vanishes. For:l.nstance, a
four-dimensional system of spherical coordinates is excluded since it gives a
onstant curvature for the manifold which contradicts the fact that the curvatu-
re tensor vanishes. All coordinate system to be used are those which are topolo
g:I_.célly flat.

3.4) Tetrads in Curved Spaces and the Limit to Flatness

The equations (3-3-11) can be generalized to a similar locking type of
equation, where nos the h(a) and Hég') are taken as arbitrary functions,

(a) h(B)

By = g+ B 00 =g, gy 6 (3-4-1)

satisfying the same relationships (2-4-21) and (2-4-22),

™ n® o 50 uopl) oo
Rgy By = 8¢a) h(a) h 8, (3-4-2)

The h].(ta) and H"('a) have necegsarily to satisfy (3-4-2) in order that the two

matrices (g:\l u) and (gwl of (3-4-1) be reciprocal,

-9

A set of quantities h&"‘) and |, satisfying such conditions is called by
tetrad four-vectors in the Rlemannian space. 8 The reason for such temm is
cbtained when we calculate the Rlemann curvature tensor with such field of tetrads,
and dbtain a non~vanishing tensor as result. We will do this in the next sectim,
but presently we can calculate the christoffel synbols in terms of these tetrad

field of wvectars,
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o 1«0 1 8 oA, I
_{up}' 7 h( ")Z‘"‘h J E {E(v)u Bn- (v) DAﬁl-l } : _(.3"4'3)
(A) ) ) () ) '
"up ax" ax P P

As we see the eqmtim.(S-d—B] .goes over the equation {3-3-8) with the iderfi:}_
fication (}ZQB),inﬁxelimtvmereﬂleh(a)' andE‘Ea) take the valwes for a
flat manifold, i.e. the values given by (3-3-9). In this case the A(M vanish.

Hp

Thegacnetr:l.cal cbjects repmsentedbytheh(a) and h"? . (from here on we shall

()
d:tpoutﬂlebarmtreh()}areofmodisunctnatuxes First, they are four-
vectars on the index n, and seaond, they are quantities which change wnder a

transformation cn the index (o), at a fixed point x, as
hl(a) (x) - L(u) (x) @) h(B) (x) | : (33_4_5)

where I = (L(°') (B)} is a matrix satisfying the same pseudo-orthogomallity oo
dition of a Lorentz transformation matrix in special relativity,

T : .
Loy @ g 1. | (3-4-6)

@  Fap L)
'I.h.egaaretricalnaaningof(fi-—d::S)isthatofalocalrot&timofthefom*—legs
at a fixed point x, the point at which is located the origin of the basys system

of tetrads. Under a mapping of the MMG we cbtain,

ax®

y () RN ()
Ry (x') g b ) | (3-4-7)

The transformation law (3-4-5) needs further explanaticn, and we will see
that the fact that L = L{x) implies in the impossibility of stablishing a field
‘of parallel basis on the manifold.
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Since in (3-4-5) the index u is fixed, that is, the transformation (3-4-5)
applies equally to all camponents of the four vectors hu‘)... hM) , We may write
this relation without the index .

where by h(“‘) we mean the o~th vector’clbf the bagis. What (3-4-8) says is that
the vectors hV ... h¥ change as a linear combination of themselves. Obvious-
ly, this implies that at the fixed point x we are getting another basis
. b uhich 1s rotated respect to the original basis by some angle.
Since 1. depends on x, we get at each different point x a different choice for
the orlentation of the new fleld of basis vectars h' (¥,

Now, comes the fundanental point, we impose that all relevant relations
are covariant with respect to this cholce' of orientation (or are invariant, as
it happens frequently), in making this statement we are puting the transforma-
tions (3-4-5) in the same footing of the transformations (3-4-7), thus dbtain-
ing a coplete symmetry on all existing groups. We left for a future discussion
the meaning of such amplification of the invariance growp of general relativity,
go as to include the (3-4-5) as a part. The reasom for this is simply because we
have not as yet introduced the basic postulates of general relativity. With the
‘impesition of symmetry under the choloe of any cne of the several basys systems
h(? ang ' (¥ related through (3-4-5), we are immediately conducted to the
result that any choice of local orientation for the basis is equally good, and
thus, we lost conmpletely the concept of a parallel field of four-legs cnto the
manifold, as we had for a flat manifold. B2s result, we have to expect that the
Rlemann tensor does not vanish over the manifold, and this is indeed the situa-

tim.
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80 that the oontracted pyoduct, the scalar product in the internal space, is

invariant.

(o)
hu

Similarly, any scalar product in coordinate space, such as hlio.) I'_lu(a) is a.m

“rom ierd . .
h(a)\) internal invariants.

invariant. d

The expressios for the covariant derivatives of _hl(‘“) and h‘éu) are obtained

taking into acomnt the gecmetrical properties of those cbijects as

@ @ (e (o) (8) '
n(% e n® - a2 2® b (3-4~10)
TR N T '

Bay;v =P,y T Tua B ~ A v P (3-4-11)

Wmeﬂmadsbmceofﬂmmmafﬂnitynwi(m is due to the fact that

(o) g (o) it
the derivatives of hu () {or 1'I1(a)) do not transform as h]_l {ox h(c-:,)sinca
L =L{x, only the canbination h\S‘:*L o+ !L’(“L(BI h\EB') doss have such property.

Now, we knov that the Riemanniah structure was characterized by the condi~

tion gW'Q = 0. As it can be proved from {3-4~1}, the unique possibility con-
ducting to this is. | : o
B ;
h@-i\’ - (3~4-12)
&\’;p =) , (3"‘;"13)

] A . .
Where g]-NFD is given by _ o )
-] A ] -]
Bvio 77 Aoan Bav T A En

! |
Using (3-4-11) and (3r4~12) we cbtain A]g“) @ 9 function of r{‘m,_
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(@ _.A | @ ..\ o (o)
N@ "M By T Beby (3-4-14)

As it is easily seen, the two equations (3-4-10) and h-(s{v =0 also onduct to
the equation (3-4-14). Now, from (3-4-13) we cbtain a further restriction on

Aoyan * bayw =0 (3-4-15)

Which means that the matrix Ay = () ) 18 skew symetric. A direct calcula
tion using the formula (3-4-14) shows that A, do not autamatically satisfy this
ocondition. Thus, we have to antissymetrize the inteynal affinity.

1

—

Awan” % eran " b’

We can cbtain further information regarding the equations (3-4-11) and
(3-4-12) ; indeed, from these relations cne gets

TR ) y
(o) ,v TR * Ay @ Mo (3-4-16)

the left hand side of this equation is a gradient, so that we identically get,

h‘zu) v = h‘ia) _ryr @d as onsequence the curl of the right hand side vanishes
_pH A (8 K — (rH A O M -
( I'vlh(a) +A V(@) h(B)),T ¢ P‘L‘Xh(a) +A () h(B));\’ 0 (3-4-17)

a stralghtfarward calculation from (3-4-17) leads to,

oA (8) LI : .
Ryrvite) * Svr (o) Mgy = © (3~4-18)
where R‘;‘rv 1slthe Riemann curvature tensor, mds(s?r(a! is
8 - 2B )] (p) ®) « 7@ ®
8Vt =4 v(a), T A ), v’ AV @b e " A v A v (p) (~4-19)

But this quantity is just the internal curvature tensor cbtained from the equa- |

tions



(@ _ @ _ @ Gy
V;uv V;W' Sw(ﬁl)‘lr

The equation (3-4-19) may be written in matrix notation as

su-r'nv,r_ﬁ-r,-v*'h'rnu"%nr' (3—4—20)
Therefare, the two cnxvatures are related to each other according to (3-4-18),
solving these equatics for the Riwwe get

u uo (@ J(B) SN (- N TRy S 02
Ryt ™ h(B) By 5 ™via) °? 5 tv(a) Ryrv h(u) hu . (3-4-21)

We will tumn back to these relations when treating the relationships of this
method with the formalism in the conplex two-dimensicnal symplectic space S,
studied before,

The &onstant values assured by the. éw will be now interpreted, in consis-
tent way, by turning back to the imposition (3-4-6) on the transformation ma-
trix L. What this relation means, is that the components S;W given by

v = P By Bro
are wmaffected whenever we carry out a local rotation of the "legs". But this
is just what happens with the metric tensor in special relativity under the
Lorentz grouwp. Thus, we can identify the §W with the special relativistic
ocamponents of the metric, and the growp of local rotations of the legs as a
local Lorentz transformation. With this identification we are just saying that
in the neighbourhood of any point x of the curved manifold, there exists a tan-
gent hyperplane defined by the set of four pseudo-Euclidian vectors h¥ =
= (l,... hY) with components nl = (hlm pene hlm) etc, which span this local :
hyperplane. The covarlant or contravariant components of those vectors are
related throuch the pseudo-Fuclidian metric §

W e LB

(8) . 9Ba
(@ B b h

My g Yoy
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Thus, in a certain sense, a tetrad formalism is a two-metric formalism,
since we similtanecusly use the two tensors g and §W . The signature of gW
iamm”mmgmwmumme%ﬁmm”wmquw
‘oording to any ane of the cholces (3,1) or(l,3), where the number at the left on
the pa:érxthesis indicates the total nutber of pceitive components, and the other
nuber the total nunber of negative compaments. Through the relation (3-4-14) -
we have expressed the A(“L(B) as function of the I . Since we already know the
rﬁa in temms of the tetrad, according to (3-4-3), we can express the internal
affinity in terms of their own variables, the tetrad vectors. A direct calcula
tim gives

(@) @ L1 (@ L, @Y
A ue =B h@hu 7y B p * 5 BB b

(a) h‘Y

8,y

L, (e . (3-4-22)

1 (p ' 1
+gh "cs) Boa,u 2 @,p

@’
Using (3-4-19) we may write the intermal curvature entirely in functian of the
tetrad. We will not give here the details of suwch calculation which is rather
lenghty. We just note that a similar type of calculation may be carried out
from the seoond of the relations (3-4-21) by expressing ! in terms of

vpo

tetrad. This is possible since R is given in tems of the I’ and these

vpo
later are functions of the tetrad according to (3-4-3).

'Lheflatspace—tine]dm.tofthetetradtheozyisobtainedfcrhm

since then the 9w goes over its flat space-time campments gw

3.5) The Riemann Tensor in Texms of the Metric

Turning back to the Riemann curvature tensor introduced at the chapter on
affine gecmetry accarding to the relation



P . - P pr P A
Rouv I‘w’v I'w.u r}\n I'W-PI'M I‘ml

we presently study the symmetries and firther propesties of this tensor.

Cbvicsly this tensor is skew~symmetric and satisfies the following set of

conditions
P - nP _
R ouv ROW i {3-5-1)
4] 4] ¢] -
Rcuv + pr + Bl-l o .0 : {3-5~2)

AsmeqlmmofﬂmuWomumﬂnngw has eighty independent companents.
These oonditions belong to the affine curvature tensor, that is they are onse-
quence of the affine equaticn written at the beginning of this section. Now, we
use the cholce (3-2-12) for the affinity rﬂa,indoing so we are speclalizing the
coice of the R for the metrical Riemannian gecmetry. In this case the

ouv
ng take over the form

PPy Py P h ) agP 3 - .

B = Gl Gl 7 o +GHG) (35-3)
which defines the metrical curvature in the Riemannian geametry. As we sald
before, a different cholce might be done for the rl\jc which conducts to a dif-

ferentfomoftheng,asforinstmcemWey]!stheory.

A rather characteristic difference arises from the Rgu , Of (3-5-3) and the
ng of the affine geametry, namely, the metrical curvature may be written with
at] indices down according to

A E ] 1 - -
Boouy = 8o Rowv T T B ov ¥ Bou,on T Bpv,ou T Sou,o0) *
+ 8% lou,aHov ,8} - {pv ,aMoy, 81 (3-5-4)

a property which is not shared by the affine curvature tensor since in the affine



gearetry the operation of lowering and raising ' of indices is not dafined.

The metrical curvature tensor has besides the symmetries of the affine
anxvature tensor new symmetry Iproperties. Far finding out these extra symme-
tries a trick is of real value: We make a mapping such that locally the {pu,a}
vanish, and then study at this point the symmetries of the non-vanishing part of
Rpcruv' Since we know that a symmetry property 1s an absolute property of the
geawetrical dbject, the symmetry which is found in this way will hold in gereral,

that is for any other system of coordinates.

Thus, for the coordinate system which has vanishing comonents for the
"{pu,a} at some paint with coordinates x*, we have

1
B - & - -
Rpouv(xa) 7 Cou,ov * Bov,on ” Sov,on T Bow,ov) xmx® (3-5-3)

at the point x”. One may use the temm "the principal part of the curvature” for
the expression (3-5-5), since this is the part which does not vanish at the
point where the Christoffel symbols vanish. From (3-5-5) we easily cbtain the
further symmetries.

Roowv™ ~ Ry oV (3-5-6)

Rooww * Ruvpo (3-5-7)

As result of these additional symmetries the number of independent companents
ofmecmnvatu:etemcrnwpcisreducedtotwenty.

In addition, %vpc also satisfy differential identities,

R].Npc;l + Ruulp;c + Ruwl;p =0 (3-5-8)
which are called the differential Bianchi identities. Again one can prove
(3-5-8) by the same method used for cbtaining (4-5-6) and (3-5-7). Since all
identities outlined previouwsly are antomatically satisfied by any curvature
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tensor, they do not mean any extra imposition on the metric.

Of special interest are the new geametrical dbjects ane cam form with the
carvatwre tensor. Chviocusly we have affine cbjects and metrical dcbjects, the
later being of more practical interest. The first important metrical dbject ane
can ocnstruct with Iﬁmpcis the metric Ricd . tensor.,

up o [P Py _Byp L. PuBy '
R B3 -8 ~EHE s BT (3-5-9)

Roo = 87 Ripo 0  va’,p

which is a symmetric second rank tensor. This is the wique independent foem
by vmidmcnecancmtractﬂlemtridlmrvaturemor A further contrac-

-t

tion ylelds the scalar curvature R,
L W o JVOD P Vo _ VOB p | VO p 4B |
R =387 R s Gl ,8 GoHpe? *+ 8 (g H  (3-5-10)

This scalar has the very important property of being, aside from a trivial
censtant factor, themlyscalarthatdepe:ﬁsmthegw and thelr first and
seocond derivatives and is linear in the second derivatives,

At this point it is interesting to ask 1f there are other pcssibilities of
onstructing scalars ocut of the campanents of the cwrvature. The answer is positi
ve, we can form new scalars besides the R. In what will follow we shall tumn

back to this possibility.

Besides rﬁ;v there exists too the symmetric seocond rank tensorngw which
depends mlyiptosecmdordarderivatives OfgaB and is linear in these quamti-
ties. These are the only second rank tensors sharing such property. A linear
conbination of these two tensors of great importance is the s¢ ealled Einstein's.

' ¢ = -l. g (3-5-11)
w” B T2 8y
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vhich thereby is linear in the second order derivatives of Jog* This tensar sa—

tisfies the omntracted Bianchi identities

A - AU -
G\);l (g Guv);l 0 (3-5-12)

as can be proven directly fram (3-5-8).

3.6) The Weyl Tenscr and the Algebralc Classifications

An important tensor may be formed wp with the components of the Riemann
tensor as

1 1 1 _
Coomv ™ Roowy " T 8o Ruo ¥ T 80 R T T 8o Ryp
1 1 1
"2 8w R TE By B R E 8y, 8 R (3-6-1)

and is called as the Weyl conformal tensor. It satisfies all symmetries of R pouv,

and satisfies also the further property,

PH o = 0 (3-6-2)

which means that the Ricol tensor associated to the Weyl tensor vanishes. Asso-
clated to the Weyl tensor there exists some useful properties which we outline
now. For spaces where the Riccl tenscr vanishes, %vuo, ﬂlePJey}tensoris
equal to the remaining non null components of the Riemann tensor,

Coowv ™ Roopy

In the above ciramstance Cpgyy does not vanish, but it may exist the case where
Coouv vanishes, in this situation the space is oconformally flat. The proof being
a8 follows, first cne can prove that the Cogpyy o©f (3-6-1) may be written in a

form exactly equal to the Riemann tensor but replacing gw'by §W =E]i!,
97
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P Y e iy Yy '
o ™ Tty " o - ¢, }{ be § MY (3-6-3)
D 1 "‘DG ~d
{ b=38 “w-,u g ‘au,c Buc,a) (3-6-4)
1
'Euv - 34 guv | (3-6-5)

(the proof of (3-6-3) will! not be glven since it is rather lenghty). Naw, we
know from the previows chapter that the vanishing of the Riemann tensor over all
thespacemp]iesthattheree)dstsamamingsudithatgw takes on the Galilean
values &LN. In our case what vanishes 1s the c‘gw of the equation (3-6-3), and
thusthea:w tdt.ethevall.ae&

Ld -0

v T By
cverallpointsofthespaoa But, then, thggwtakemvaluas

su(x)"s (x)sw'dﬁ(x)gw

mallpoints,mdﬂﬁaisﬂmmﬂﬁmﬁcalcmdiﬂmforﬂxespacebeingcmfonm}_

™ in same coordinate system,

ly flat. This is the meascn for calling chW as the confarmal curvature tensor.

In! sumary, for ng = 0, on all points, the space is flat; and for C pouv= 0,

1
also en all point.?, the space is oonfarmally flat.

-

Before going on with the study of the Weyl tensor, is interesting to turn

back to the initial equation (3~6-1}. This relation may be clarified by means of

an equivalent decampoeition of the several companents of ‘the Riemann tensor °

R .
Rooww = Boowy ¥ Coouy * 1T Bpopu (3-6-6)
1 A " _
A _ oA _R A -
S8 -ie 6-9

¢ Bomv T Box 8oy T 8y B (3'5-9)
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The sﬁ is the reduced Ricci temsar, that is 8) = 0, the E s algsbraically

equivalent to the reduced Riccl tensor, and thus has in all nine independent com-
ponents. The quantities pony POSSESS just one independent component, gy,q4 for
instance. Thus, the C . has in all ten independent companents, a direct compa
rison of (3-6—6) with (3-6-1} shows that the COGLN of (3-6-6} is just the Weyl
tensor. Then, the Eq. (3-6-6) consistently decavposes the 20 components of

R gy iNto three geometrical cbjects, the s €
tmandmecmpamts.hbseethatforliw—ﬂ,bothsﬁde vanish and

pouv
%Mw.is eq'ual to prc .

™ and R , with respectively nine,

From the Formula (3-6-3) we can cbtain a further property of invariance of
the Weyl tensar. Indeed, if we oonsider the conformal transformation on the
metric, 10 |

v o al ulx
1L e A"

wnder which thea;v is invariant,
_ o
& T By
wecbtaindimctlyasmeqmnceofﬂnamvarimce-m;wﬂmt&mWeYltmsor
1g also invariant wnder the above conformal mapping, cl -cp . Thus, all
possible Riemannian manifolds cbtained for allpcssible values of the function
u(x) possess the same confarmal mrvarl:ure-cpcw. Ve may interpret this invari-
ance property as a gauge like type of invariance of the geametry of the manifold.

We now analyze the structure of the sewveral components of the conformal
tensor. For daing this we use the symmetry properties of those components,

Coou™ Cuvpo

Coaumv™ ~Copmv™™ Coovn

which allow w8 to interpret the Cm\,

Cpoﬁv - Cab = Cba

as a real symetric 6 x 6 matrix,
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where the indices a, b range fram 1 to 6. Franf:!—«éd)mhave,

& w = O (3-6-10)

Areals.xsnatrixhasmali%cmpaents,hweverascmsequmcaofﬂmesym-

metries of Cpcuv only ten cpanents are different of zero.

It is interesting to draw anal"alogywith the electromagnetic tensor FW
which may be identified with a reml six-vector Na’
Fiv =N

Presently,cmrcpcwisequiw}almttoﬂaepuintofvienofitssymetriestoa

difectpmdm:toftwotemsorslﬂce}?u that is, C

pauy
of thequmtitpra Fyr and thus it corresponds to NN which is a particular

v’ has the same symmetries
type of a symmetric 6 x 6 matrix. This analogy is only formal but it will be
useful in what will follow. |

We can consider the following eigenvalue equation,

b

CpV = A v, (3-6-11)

which holds for the vectar V of the real vector space with six dimensions. This
six-dimensional vector space has a metric Yab givmby (3-6-9) , |
Bab ™ Buups " Bup Bwo T guc‘r 80 (3-6~-12)
so that
Va = 8 Vb
Thus, we can write, for the condition that (3-6-1l) has solutions different from
the trivial solution, _
|Cab- A8 _.’--0 (3-6-13)

which is a sixth-degree polingmial eguation in the eigenvalue X, According to
the several solutions of this equation it is possible to stablish a classifica-
tion of the nunber of distinct eigenvalues and eigenvectors of cd:' This work
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is t::!ed:um'-.-.t:‘l.1:::)Peatr<:ﬁr-]'l and is known in the literature as the Petrov classes. We
list bellow the results cbtained

Petrov type L D(degenerate)| II  |N(aull)] III [Conformally flat

Distinct 3

eigenvectors 3 :2 2 1 zero

' equal
Eigenvalues distinct two equal distinct |(both |null zZero

nyull)

' There exists still another possibility which is associated to manifolds where there
are no topological symmetries, we may call this case as the class completely asym-
metric. In this case there are four independent eigenvalues for cab‘ This is the
largest possible number of eigenvalues. 2As example, we give the following cases |
which will be treated in more detail later on: a memifold with the spatial topology
of a sphere (spherically symmetric) belmngs to the Petrov class D. The Petrov class
N is assoclated to a manifold with the local topolegy of the light-cone, that is,
the radlation fleld of gravitation, As we knov from field theary (see for instance
Landau and Lifschitz’s bock) , the eigenvalues of cpcuv are the invariants one can
form with the components of this tensor. According to the Petrov classification

we see that it is possible according to the topology of the space, to cmstruct
from one such invariant up to four invariants at each space-time point. There
exists too, the well known case where all such invariants vanish at each paint,

this corresponds to a space where exists just gravitational radiation, with simi-
larity with the electromagnetic field of - waves where the two invariants of the
field are both null. Thus, we have arrived at the result previouwsly referred of
mtrucl:d.ng other invariants with Rm"w besides the scalar curvature of the space.
It tums out that such invariants are all necessarily quadratic and cubic in the

cmpmentsofcpcw.Inthecasewherethe. space is as;umatricatthemighbmr-
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hood of a given point, there exists there fowr of such invariants. They can be
presented in the compact notatimn,

be _da

Al = Tr(CgCg) = Cob 8 C.q 8 .

A% = Tr(cgee)

A3

= Tr(CgCgCg)

A% = Tr(cgCaap) |
The A% are functions of the coardinate x” for the point under consideration, and
all matrices standing above are six.by sik matrices, €, is the fevi-Civita symbol |
in the six-dimensicnal notation. These four invariants will be of sppcial import
ance in cur Future dlscussich of the role of the initial value problem for gravita*
" tion and the associated problem of cbtaining geametrical cbjects with a well pres-

cribed behavicur with respect to the initial Cauchy data.

Gbviously, besides the above A% cne can construct other invariant such as for
instance A°R, where R is the scalar curvature. In general, one can form A% £(R)
with £(R) a polinamial in R. All such invariants are functionally dependent on
the basic set A* and the R. Note that for the case where R, vanish, and so R
vanishes too, the A% do not vanish in general, since for R, and R both null the
Cpgwitisnotze_"'o. 'Iherefore,ingeneralwe'axetoexpect?ﬂzatﬂE'A“are
more fundamental than the other invariants for the description of the system. Of
_ oourse, such interpretation holds good if the A% do e.x:I.ht, ‘that 1s, if the space
is asymmetric atthev:l.c:tnityoftﬁe region wnder study. This same interpreta—
tion holds for the Weyl tensor, which is clearly more fundamental than the Rie
mann tensor for describing t_:hesystan,inthesensethattheircmpmentsare
akvaysdiffermtofzeroewﬁvm_ﬁ:emmtemormdﬂuiscalarcmvatumgo

to zero.
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3.7) The Intemal SL, Growp in the Metrical Geametry

In this section we will relate the method of tetrad calculus with the
variables belanging to the complex two-dimensicnal internal vector space. In this
space, which we call 52, it is defined a skew symmetric bilinear non degenerate
inner product. That is, given two vectors of 82 {two-component  spinors) , say u
and v, we have

u.,v = =v.u
The realization of this t:pera"!:.ic:ﬂissd::tain.evndbyintroduc:‘l.ngj.niaos2 a skew sym-
metric matrix €28 with companents

such that

u.v = EAB 1.1A VB (37-1)

Ihemtrixemcon&apmdsinsztomesymetricmtrixgwinﬂnmordinabe
space. Thus, we can introduce cperations of lowering and ralsing of indioes of
gecmetrical cbjects in S,. With this end we define a matrix €™ such that

eBC=-6§_,

;)

€ =1-1 o (3-7-2)

Then, givmu-——(uA)wefomthevariablexhas

B B
uA-u EBA"—EABU
andgiwm'v= (VA),WE fonnthevariablevaby

A AB BA
v I £Y e vy

which is characteristic of the antisymmetry of the metric. In 5, we define begides

of the vectors u with covariant or oontravariant camponents, the vectors u*, where
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the star means camlex conjugation. 'I‘fmelaterpossesstoocovarj‘._?_:_utaswellas
contravariant a:ltpcnente;i. We indicate these cmpcw::ntsby.uiandu‘h. hder the
STQP_SI-ZﬂleuA,v,wAmdyAvatyas '

u"&-NABuB

1B

vi=y M A

A, B

w'k 2 MA]; w‘B

'. = _1 B L]
A S T
A'Hermitian matrix in 52 ig represented by 'I'Aé satisfying

Tap = Ty

A very important set of four Henmitian matrices is given by the three Pauli ma-
trices together with the two-by-two identity matrix. |

» 0 1 » 0 -i
« AB AB

o AB 1 0} o AR 1 0
0'3 - 0'0 = .
0-1/" 01

They are of special interest since they relate each real f<::|.1r1:\‘=-__cl:at:n:v"I to a
Heymitian matrix in S,, given by a linear corbination of the above matrices.

vAB . ¥ Zf (3-7-3)

By the other hand, the three Paull matrices satisfy the anticommtation rules,

e Bg AR . e B o AR BR
o , &j *Oi & T - 25,; € . (3-7-4)
the addition of the fom:thmtrix&o allos us to generalize (3-7-4) to
) B om.;L + % 'ﬁgAf{ -2 g eﬁi (3-7-5)
BPA v VA p 8

where &LN has signature +2.

~ Fram the usual operations of lowering and raising of ‘indices we have,

i
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° A 8
SR P v
o AB v, _ , .V
5, A &= 28" (3-7-7)

this later equation cames fram (3-7-5). As result, we may invert (3-7-3),

M1 gh AF
w2 gl v (3-7-8)

Frcm(3—?-8)wemaystudythestrucmreofthefwrvectorvu. For dolng this,
we compute the norm ofvu,

v vu - - %Tr(\re vg), V= ("Aﬁ) (3-7-9)

WeseethatfortMpresentdnimofsignatmeﬂxeﬁoumctorvuistim—
like if vAB is a Hermitian negative definite matrix. V" is space-like if v"“3 is
a Hermitian positive definite matrix, and is a null vector if vma is a Hermitian
gingular matrix. This discussiocn holds only for real fowrvectors. Indeed, for
oxplex fourvectars, we see fram (3-7-3) that vAé is not a Hermdtian matrix,

The equation (3-7-3) or (3-7-8) may be generalized for tensors of arbitra-

ry rank as,
TAB RS LN OOAB . ea Tuv... (3-7-10)

Ve - _( )’31: 3,\:  pABRS ... (3-7-11)

AB

where n is the rank of the tensor TH'"** ."Ihus,thecru are similar to projec

tion operators which transform each  tensor index into a palr of spinor indices,
cne mdotted, the other dotted.

We may spply, for instance the above equations to the electramagnetic four-

tials A , as well as to the skew symmetric field strenghts F_ .. In this case
M Hv
we cbtain,

1
A -3 aﬁB A (3-7-12)
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1 B RS
FW -7 Smﬁ 8\)R§ FA'B _ (3-7-13)

SincaFwisskewsyxmtric,wehmthefuxﬂieroonditim,

A RS b b (3-7-14)
It 18 an easy matter to verify that a FoRS gatisfying the constraints
(3-7-14) 1is of the form,

PRl E,CAR) 85 4 4R e:AR] (3-7-15)

That means, is given entirely in terms of a symmetric se_ccnd rank spincr ¢(AB) .
Such cbject has three camplex independent camponents, or equivalently six real
independent camponents, the same total nuber of independent components present in

FI.I\J .

Prcblem: Write up the Maxwell field equations in spinay notation.

So far we have treated the situation where the rqatric tensor assumes its
canonical value over all polnts on the four-space. Thus, all results so far
derived belong to the fonna]iam of special relativity. However, it is peossible to
generalize the four constant Hermitian matrices 811 to a set of four new Hermitian
matrices ou(x) such that the rule (3-7-5) gets generalized to-

’ B _ AR B _ AR

ag g +GBO’

BR .
u A v va % ° 2 gw(.x) € (3-7-16)

with a metric =N an arbitrary fimction of the.coordinates. locallythesegw
goovertheaw. All previous fommlasstillhold,wxitdngcuinplaoeofﬂle&u.-

Since the four constant matrices Sﬁfomabasisforthe vector space of
all two-by-two matrices, we may write for any such matrix, say N,

N = ag" 8ﬁ' (3-7-17)
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a particular caseiscbtainedwhen we take the two-by-two matrices Uu and write for
each cne of them a relation Mke (3-7-17).

= (G) ; -
Uu(x). hl-1 (x)da . (3~7-18)

Since= the Gli are Hermitian the - quantities hlfa} are real functions. Note that for
arbitrary matrices, such dsthe abowe N fhese coefficients are not necessartly  feal.

Now, it is simple to verify that the héa) intyrodueed In (3-7-18}) are just
the tetrad vectors studied previously. Indeed, fram (3-7-18) and (3-7-16) we

cbtain.
¢

Q) )] -
hu B, é:JI.B Euv
As it dbvious, it is important to lock for the spinor representation of the
Riemann tensor and of the Weyl tensor. First of all, fram (3-7-11) one may ask

what should be the spinor representation for the metric gw. A direct calculation

gives,
- 1 + ] AB Ré
8y = 7 %uag Tups 8
with (as it foliows from (3~7-16)),
SAB RS ; EAR E:RS

sim larly,
Baf RS ™ Sar °B
so that such spinor representation for gu\: does not tell us any new result,

M%vplmhmﬂmfomﬂa,

1 E RS CM ,
Ryvp (’2‘7 9 0% 95" G Rk 2 i i (3-7-19)

Duetothesymetries-o:ER we have the restrictions

HVpA
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’Aﬁ rf ok m’t ~ Bod AB o NE (3-7-20)
“Ah RS chME < ma né N it (3-7-21)
Ryiogf oiak ™ P ok ab gd (3-7-22)

which allow us to write similarly o (3-7-15},

T - .‘. -l . .." LR ] 48
RErS iRk ™ Z [xucn €35 Emk * Pamik v a8

* Y53on Sam Sk * NS SaiCon) G-7-23)
where xmma ¢ ) sarl:.isfy the conditions
'XARCN = XRAGN * Xamve™ Xcnar (3-7-24)
Oamii ™ Sl Oamis = Gikar (3-7-25)
These relations have been first agmédbymtmn 2 qbsequently a spinor forma

lism for general rehtiﬁtywasmtructedbyPenrmeB. Thus, the Riemann
tensorisfepresentedtyhntymsofspinors,ﬂlexmmﬂnéﬁ. The Riccl
_tensorisxepresentedw

Bes. -mu*dvﬁm {3-7-26)
| i o = 5 B o
the scalar curvature is given by

R= %—eﬁn et Res o | o-7-27
and the Einstein tensoxr by.
-I : . L]
Sacp ™ " T [®FaB Fed.” mc,s] . (3-7-20)

Tiis, we see that whenevex R, =0, which isplies thet R and G arp Bioth
eqé:ai to zara, we have
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¢ABC‘ =0 (3-7-29)

Therefore, we conclude that the Weyl tensor is given entirely in terms of the
spinor-xm. AfurtheranalisysshwsthatxABCDisentirelysymetxicwhenR
vanishes. The final conclusion is that the spinor representation of the Weyl

is cbtained in terms of a fully symetric fourth rank spincr. This

tensor Cuvpo’ .
is deeply connected with the spin 2 of the gravitation.

The Relations Between Internal and the Space-Time Curvatures

3.8)
So far we have dotained the campenents of the Rlemann and Weyl tensors and
B* According

wealsohaved:tainedtheca‘rpcnentsoftheinhemalcumturePA

to the method outlined in the preceding section we know how to write the curvatures
prc and prc in the spina-represerntdation. Actually, the PﬁvR and FS-NDU may be
relatad by simple forrulas. To get started we introduce the covariant derivatives

of the Bermitian cu matrices
. - - A ¥ . 1-" = ;

e "%y {*Yo, *T °u+°urv'°u (UﬁB) (3-8-1)

Since the covariant derivatives. of g'W vanish in Riemannian geametry, it is

natural to:equrethatcuv 0. Fran(B—?—lB)thisﬂplitlmth&L=0md
a,.,, = 0. Thislaberissind.larinstnlctmetoourpreviouscmditimsﬁas.v—
The significance of this omdition is also simdlar to that of the tensor

case. We thus get, _ _
(3-8-2)

Y ’r
Ou,v {W}a + T o’u-i-o‘ I‘ -0 .
in terms of the Christoffel

This equaticn can be solved for the intermal affinity T
symbol -;4-‘] Furthermore, we may write (3-8-2) in the form
A t
={"}o,-T. 0 —auI‘v

T = ' %7 v %
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Smcethelefthandsicbisagradientofou,wahaveo This

peva - %y,av
condition implies that the curl of the right hand side vanishes,

A I Ay oo el o
aa‘[{w} o+ I, +'°u-rv:| - 3, [{w} O +T 0, ¢ % r&]._,...

working out explicitly this condition, we cbtain,

B _1 X\ _PRB
PwvaA "% ‘m° Rvap (3-8-3)
Wwhich is the relationship between the curvature PW and Fn\)lp . 15 Besides
this type of relationship, we may also get formulas connecting the PW with

thePenrosemrvamresxmmdquBéﬁ. 16 They are,

v 1 v, a BF : ;o
P e % & {‘-’p F% Xapep * qﬁ B °3 ¢cmn?} (3-8-4)

The inverse relationships may be also written.

FOUNDATIONS OF GENERAL- RELATIVITY

- 4,1) Introductian

In the year of 1915 Einstein proposed a modification of the space-time des
cription of physical systeme in special relativity. In this- description, as in
the older Newtonian description, the gecmetry~ef space-time was fixed once for
all, that means, it was not affected by the presence, or absence, of other phy
sical systems existing in space-time., In other words, the gecmetry of space—
time in special relativity appeared as an absolute element in all: theories where
the covariant group was the MMG. The modification proposed by Einstein consisted
in removing the gecmetry of space~time from the realm of the absolute, and plac -
ing it as a dynamical element of the theory. The theory which was formed along-
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side with such proposal is today known as the general theory of relativity.

The geametry of space—time in the general theory was assumed by Einstein to
be characterized by a Rlemannian metric. Being a dynamical element, :I.t'was to
be determined by a set of dynamical laws, similarly for instance to the way that

the electramagnetic field is determined by the Maxwell equations.

Dee to the dyamical nature of the metric, Einstein was able to propose a
secnd fundamental property. He assumed that in the general theory the gravitation
al field was not to be described by a separate new geametrical cbject but was to
be described by the metric tensor.

The reascns which conducted Einstein to a search of nore general world pic-
tures than that afforded by special relativity was related to certain aspects
of these thecries which did not satisfy him. In particular, he was disturbed by
the inability of elther Newtonian mechanics’ or special relativity to explain the
miversal constancy of the ratio of inertial to gravitational mass of material bo-
dles. In addition he cbiected to the existence of certaln types of absolute nmo- .
tions, naely, accelerated motions, in these two theories. Following some arguvents
put £arth by Mach, he felt that all moticn should be relative, not just wniform mo-

tions as is the case in speclal relativity.

In the search that ultimately conducted to the general theory, Einstein was
gulded by three general principles. The first was Mach's principle, the second
was the principle of equivalence, and the third was the principle of general invari
ance. In what follows we examine each of these principles and show how they led
Einstein to the general thecry. We then introduce the field equations proposed by
him for gravitation and discuss their general properties.

Befou:e' doing this, we turn back again to the discussion of absolute and rela-
tive motions. In arder to clarify the previows conclusions we show how is possi-
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ble to analize the several types of motion from the point of view of special relati-
vity and of the general thecry. The discussion which follows will further clarify
the significance of the geodesics of the Rlemannian manifold.

First one starts fram the special thecry. In this case it is possible to
cbtain relative uniform motions as consequence of the principle of relativity. It
might be thought that such restriction should enter in contradictien with the geo
metrical fact that the four-velocity is a vector. Actually this is not the case,
what happens is that the four-velocity is a very particular example of a four-vec-
tor, it satisfles similtanecusly both requirements. We show this explicitly: con-
sider a particle moving mniformly alomg the direction X of some inertial frame. We
may oonsider the particle itself as another inertial frame, and the lorentz trans-
fo::matidavmidl connects both 8Y84ES. Call by K the reference system at rest and K'
the frame travelling along with the particle. For K the particle moves along the
direction X witli a four-velocity with ocomponents

where

dx v dx°® 1
ds C:l——'{ ds l"l-'—-z—
. c c
We prove now that for K' the particle is at rest, and that clromstance do not
ontradicts therprcpe.rty that the four-velocity is a vector (which being null in

cone frame should vanish in all other frames). Consider the Lorentz transformation
which leds K to K', |

for the spatial camponents we get
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u't - L- . uj + L. u {4-1-1)

1 ' . c
1 1 1 1 \
L 8 e L =0, L =0, L -
1 ' 2 ’ 3 7% 7 0
Y v ' ' o v
1=~ 1-=%
c L] c
Since all moticn occurs along the common direction X, we may write just (4-1-1)
fori=1,
.u'l-L11u1+L1 u®
[+]
o
using the values erul=-g§,uosg—,LllaﬂLlowrithenbefom, we see
that u'l vanishes, proving that indeed the particle is at rest in K'. Note that

this does not ocontradicts the fact that u’ is a four-vector and its vanishing in
one frame should imply in its overall vanishing. WhétvanishesinK'isnota
consequence of uv=0,bul:instead all right hand side is what vanishes,

Thus, we see that the four-velocity is a particular type of vector, cne which allows

a direct cnstruction of the matrix elements Lv in terms of it.

A
Now let's go to the four-acceleration w’, defined by,

v duv dzxv
W -— = ——
ds ds

Asitisclear,forwvwe do not have any relation which aullcr.wrl.lstc:)puttl'nszu.a\J

equal to zero in K', and this follows simply from the fact that the matrix elements

A"

L") depend just on the velocities, not on the accelerations. Thus, the Particle

which is accelerated for K will be accelerated for K' as well, with value
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oV el lm',

This means that accelerated motions are absolute motions. As ccnsequence, the
equation of :~tion of & charged particle las a physical meaning for all inertial

chservers,
dzxv L '
L Sp¥ A (4-1~2)
o ) R

-

ds2

(the right hand side is the Iorentz force). We will turm back to this equation
in what follows.

Now we analize the motion fram the point of view of the general theory, that
is, for a Riemannian manifold where the motion is represented by its geodesics.

The case of motion along straight lines, realized with omstant four-velocity u’=

v _
=—%—,isinthe general theory without a physical significance since this later

theory deals with a force field, the field of gravitation, nevertheless we may
onsider such type of free motion in certaln systems of coordinates, such as the
gaodesicsystanofmﬂinates,whezerﬁc = 0. In these coordinates the motion.
. proceeds as if the particle was free,

a*x’
-0

‘as®
The particular choice of such coordinates does not mean at all that the descrip-
tion go far cbtained is a priviledged cne. This is due to the fact that the
description in geodesics coordinates possess the sﬁme physical significance as in
any other coardinates. 'I‘he;hysicglly prevailing companents. of the curvature ten-
sor do not vanish in geodesic ooordinates. However, from the pure mathematical
point of view these coordinates give ws a canstant value for the four-velocity
aimgthegeodesicoftheparticle. With this . omstant four-velocity we may ima—
ginetq-'doidimtwedid before in special relativity, that is, to go over the rest
frame of the particle. Since the choice of geodesics coordinates is just a mathe-
matical trick, we know that the space has an intrinsic curvature, so that we may

'8
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omnsider at each paint of the four-space. the pseudo-Euclidian tangent four-space.
On this tangent space we may oconsider a.loxentz transformation which leds v to
the value zero on that paint,

LT

wVe) =Y, @ @ =0
For each different point along the geodesic we have to cnsider a new such rest
frare. That is all one can do now. Thus, we arrive too in a principle of relati

ve miform motions.

What about accelerated motions 7 For considering these: motions, which now
have a prevailing physical meaning, we start with the equation of geodesics.

o’ u?\) =0 (4-1-3)

This equation tells ws that the motion pdssess a covariant significance, that is,
the equation of moticn is covariant under the MMG of the curved space. But this
equation splits into two terms, the first being the four-acceleration w’ = 9-2%:
andtl'leaecmdthetennrzkuauk. =
the two above terms are separately covariant, This oonclusion inmplies just in

Thus, as a trivial analysis shows, none of

the type of analysis done before. Consider the wuinseparal:e, gince this is
not a fourvector we may state a law of relative acocelerated motions directly.
Indaed,mdaracocrdinatetransfonnatimthew“vaxyas

ax'W 32 x|\) B

o - o
WO —y * uu (4-1-4)
ax“ ax“ax

And we may consider the coordinate transformation such that w> vanishes, in this

case w'® have the values

vV = o uB (4-1-5)

BT
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Therefore, all accelerated motions are now relative motions, It is important
to keep in mind the two different argurents leading to relative motions., The first
refers to relative uniform motions and cames from the suitable ' choice of coordina-
tes such that the u’ in the new coordinates are oonstants,

u'V = Bx:’ v = constant (4-1-6)
Ix

féllc:&ingwith a local Iorentz transformation we arrive at a local rest frame. But
the u’ are four-vectors, so that what is amstant, or zero, is the full right
hand side of (4-1-6), not the u® alone. The seond type of relative motins refers
to the acoeleratedmoticns,hemthe;? are not the camponents of a four-vector so
that the argument which leds to the choloe of a rest frame is entirely similar to
that which gave us the local vanishing of the affinities rﬁa .

Hence, the v’ and the w' are geametrical dbjects of distinct nature, and thus
need different type of analysis.

The fact that the w' are not four-vectors in the general theory implies that
the Lorentz equation (4-1-2) is wrong and needs to be corregted. This is done by
introducing the extra term I':X o ul, which transforme this equation to the equa-
tion of a geodesic

a2

d82

+I':1uqul'-£—l?uxu;\.

Only this full equation possess a covariant character wnder the MG of the curved

space.
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4.2) Madh's principle

According to Ernst Mach 17

all inertial effects are due to mutual inter-
action of matter. He says in his bock: When a body rotates relatively to the
fixed stars, centrifugal foroes arise. Such foroes appear due to the inter-

action of the body with the rest of the universe. As exanple, if we take two
bodies camected by a rope and let then rotate through their common center, a
tensimarisesmtheropeandaccordingtohimthisisdﬁetoﬂle interaction
of the rotating masses with all other bodies in the universe. Another example
is the following: ocmsider the fixed stars as an wniform mass distribution on
Ithesurfaceofasl:i'lere,andtakemothermassinsideofthiss;bererotattng

with omstant angular velocity w alagf.are circular path.

It is seen that at all points of the arbit the mass m is closer to same part of
the mass distribution than to masses on the opposite side. Thus, an effective
force : mo’r- arises on the particle, accelerating it towards the nearby masses
on the celestial sphere, the centrifugal foroe as interpreted by Mach., For r
going to zero all effects tend to cancel since then the overall distance is the
same for all points on the celestial sphere, and the force tends to zero. J_:f
we take two masses m and m' qmnectedbyaropemdletthenrotateinsidethis
celestial sphere we will chserve a tension on the rope, such tension arises due
to the interaction of m and m' with the nearby masses an the celestial sphere.
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Thus, Mach Prqf:o-ésthatal:.linerﬁaleﬁﬁectsweredmto.anacttch—ab*-
distmceinberaéttmwithoﬂlermterialbodiesoft}:euﬂwm Hesaysinhis
bodcthatnorelativemtimexistn,mlymwithrespecttooﬂlerbodiesdo
exist in nature. 'PhatMadlintmds to say. fcrmlative motion is Just that. any
mtimzespecttomotl'lerbody Hewasc:mtrarytotheexistenceofnotima
rESPectbothefbedabsohzbespaoeofﬁ\eNewtmimﬁmry

mstypeofmtezbmtaummpnessedmrymméemmumednm—
prasentadﬂremuainntivatimfmhisseardmtmardsﬂmegmeral&eoq Re-
: omtly Dicke 1 has advanaad the hypoﬁmisﬁﬁ:at Mach's pa:i.rw.igf.le was connected
to the existence of a.relativistic -scﬂar field of atractive forms into-the
wniverse. As wwinm,mpnmpnofm in spite of i’ts-hemmtic'a;peal
isnotienkﬂeﬁasam&_ﬂﬁﬂammﬂof-gnralmlhuﬂty.-
M'-m'mmmtmm'mm is fust a phiflasophical point of view,
Otherbeﬁeteﬁatitishnhedapcsslb]einterp:etatimemlmnlngttem]eof
inertialﬁcnm In this cnnection, both thearetical and experimental work has
baand:nebased an possible detectiens of this principle. Of shich warks we

havetogiveseparabe'refemce of the woﬂcsof\-nidce]‘g'mmr 20and
Gursey‘-zlmﬂ:ethecreticaldcmain and thaseof(bmiandSalpeter 2,‘1'mre

recently treated bg' Hng'ses
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First we tre&t slichtly the work of D:I.dce A more caplete treatment of
this work will be given when discussing advanced research topics later on.

According to Dicke the Mach program should be realized through the existence
of an atractive long range scalar interaction acting cn matter, this later posses

sing a similar to a "mesonic charge" depending in general of the particular body
on consideration. The action function for the whole system is then of the form

O, o, .
g, g

.v&aeretheseomdmdﬂurdintegralsamcaniedoverﬂleuneofmivemeofﬂﬁ
bodies. The field equatimandtheequatims of motions are,

88 : | -
o @ + a2> px) +p(x) -0 - (4-2-2)
88 d 5 3 | (4-2-3)
= {m; * g ¢(z))z}-gi-—--0 :
oz, iu dTi- - ‘ EIZ]%1
with. o,
) =} siJ §,Gz,) JE da
i
5

A first implication caming from this fornmlation is that the effective mass
of all bodles possessing the "mesonic charge" become a fimction of the scalar
field, and thus become dependent an the location almng the line of wniverse of
these particles. This result, which is given by the equation

effect _ vy
1, m + g $(2))

1
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nqyalsobeinte:pzetedasaggmgatmgtoﬂnmartialmssmiammsstem
'9;4(z}) Gue to the presence of the fleld $, this new mass is generated by the
interagtion of m with all other bofies in the uniwerse, This extra term explains
for the effects of inertia on the body, this explanation is in full agresment
with Mach's hypothesis. The total force acting on the body is then

d
%-31-—.—{- -u-- (‘i¢)-gi—T(6 111 1\,)

1

which depends on the velocities along the arbit of the body, in agreement with the
cbserved fact that all insrtial forces depend on the body velocities. For simpll
fying the calculations we may assume that the field ¢ has its origin in the
d:l.itant matter distributed homogeneowsly and isotropically into the universe,
similarly to our previous celestial sphere, in this case all relevant force terms
aqe due to the. naarbymasses in the wmniverse, similarly to our previows situation.

'Ihee:q:ezﬁmntalmﬁtmthepossible verifications of Mach's principle are
ma:tiyrmetococﬁ:tmi Salpeter and Hughes. The idea of Cocconi and Salpeter is:
Ifimrtialeffectsaredmtothedistributimofmtterinthemﬁveme, we
ﬂmlddosemmllanisotropyofﬂnmuueffactamﬂmsarm@rfaoe
since the solar system is enbeded incmr-galaxyin such way that the distribution
of masses respect to it is not isotropic. |

Codoeni and Salpeter assumed that the omtribution Am to the inertial mass
*'ofahody,-dmtoamssMlomﬂdatadist&oermayfrmﬁzebody‘is pro-
porticnal to- ‘”“--. Then, the total contribution to the inertial mass of the body
Gue toalloﬂlermaesesinthemiverse,tlutisg:ingmtsicbofmrgalam is
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R
P 411’pk3\’
m =K | 47 r° = dr = K w——————
] . \
0 r 3-wv

where R is the radius of the wniverse, p the average density of matter, assumed
distributed hamogenecusly and isotroplcally, and K a prcporti_mality onstant,
The range of values for the exponent v can be restricted by the cmsiderations:
If v < 0 the more distant bodies should give larger contribution tomowl'zich is
wnreasonable. For v > 1, the nearby bodies should contribute strongly to m,,
for example the sun would dominate in determining the effective mass m + m_,
which is contrary on the cbserved facts of planetary motions. Thus, they take
'0 < v <1, Since they lock for an effect due to the anisotropy in mass distri-
bution arcund the planetary system, they consider the increment Am to m e to

the mass Mo in the galaxy, assumed concentrated at a distance Ro from m,

MO
fm = K -

R
=]

the ratio of this contribution to m, would give an effect of mass anisotropy, it

glves,
M, (3=v)

o7 |E

R\; 4mp R3-v

Using the presently accepted values,

M_ = 3<X 1044 g

R_ = 2.5 % 0% cm
R =3x107 e
o =107 g

(for crparison we recall that:



Approximation mass of the s =1.9 x 103.':19 ’

Mean distanoce Earth to Sun = 1.5 x 1013'cm-,

Mean _&arwity of Earth = 5.5 t_:;/cm3
which give an idea of the order. of magnitude o.fthe above numbers) .
One finds for v =0,

v i‘.ﬂ‘."..a x .19'.10-
m

[»]

%-Zx'_lmfs
o ’ .

HﬁgheShastestedtheOOca:u—Salpetarhypcmesisbyaseziesofstmdard
nuclear magnetic - rescnance- experiments, ming aLi nucleus inft;'ae ground
state. menuclearspininﬂ'zegmmdstateisBﬂ,somatmamagneticﬂeld
the 14’ nmleuswillhavefouremrgy levels. meyshmldbeaquauyspaced’if
there were no mass anisotrcpy mdasing]enuclear:esmancelimslmldbe
chserved. Ifthere:l.s a mass misotr@thespadngwillnolmgerbemﬂ.foun
and one should cbserve a triplet nuclear rescnance line if the structwre is
resolved, or a single broadned line 1f the strucutre isnotresolved Hughes
obsezvedthe]‘.d. ‘rescnance over a12-hr.per.i.od AsinglelineofwidthlZ
'qaswasdaserved whidldimgedbylessthm02qpscverthis period. Using
a sinmple shell model for this nucleus- HughescalculatEdtlmvalleor% to
the nuclear mass of I, Hed)tainedasali.mit—(lozz ‘This rules out

M.
qEﬂE'.ctofmaas misotrq:yaocordingto ﬂlecaoea'li-SaJ.petervaltms

However, Dicke has. angmd'ﬂm&lvmdr‘s princlple should @plymbmlyw .
inertial mass but to fields as well, so that the propagatien of photens weuld -
be influvenced by the distribution of matter in the wniverse., Iikewise, nuclear

a ; .



forces should also possess an anisotropy,it may happen that including such
factor of anisotropy in the model for the nuclear interaction cne can get a
value for :% compatible with the Cocomi-Salpeter values. The interpretation
of Hughes'experiment, at least as it bears on Mach's principle mst therefore

be omsidered as an open question.

Now, we comment how Mach's principle leds Einstein towards its theary.
Binstein remarks 23: "The theory of relativity makes it appear prcbable that
Mach was on the right road in his thoughts that inertia depends upon a mutual
action of matter". He was able to go beyond Mach's proposition by saying that
the effect of mutual interaction of matter was translated in terme of the geo-
metry of the space containing those masses. Thus follows that at most the geo
mtxyofspacem:stheinflmmcadbythedistﬁbutimofmasm,andrrmtbe
regardadasadynanicalelenentofthetlmoxymdnotasanabolute element.
Thus we may say that the crucial step of removing the geametry of space from
the realm of the absolute to the realm of a dynamical element was essentially
due to the influence exerced on him by Mach's thoughts,

After he developed his general theory, Einstein care to realize that it
did not satisfy Mach's principle in the strict sense.

vheeler has suggested that Mach's principle provides boundary conditions
for the general theory but does not bear directly on the field equaticns of
the theary. By the other hand, Dicke thoughts differently, he argues that
possibly Mach's principle is contained into another type of fleld, the scalar
long range interactions. All such suggestions are actually open questions.
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4.3) The BEquivalenoe Principle

Mach's principle suggested to Einstein th=+ the gecmetry of space-time
should be a dynamical element in all physical theories. He follows with a
second principle which he calls as the principle of equivalence. This princi-
ple is the outgrawth of an experimental fact known since the time of Galileo
which says that the ratio of inertial to gravitationil mass is a wniversal
onstant. Iet us call such constant by Q, Galileo noted that in the gravita-
ticnal field all bodies fall with the same acceleration, which gives rise to
this wniversal constancy. Before going on with Einstein's point of view we
cament on the implications of this cbserved fact in physics, prior to the

proposal of the general theory.

In Newtonian mechanies and in all gravitaticnal theories in special relati
vity such constancy of Q have to be taken as an additional hypothesis rather
than being a consequence of the theory. Since the time of  Galileo the oons-
tancy of Q has been tested with ever-increasing acturacy. In his ¥yincipia,
Newton described a pendulum experiment that fimdthecaast‘éncy of Q to one
part in a thowsand; later, Bessel 2> also using a pendulum experiment improved
the accuracy to one part in 60.000. The next significant improvement in agt
curacy was dmne by Edtvds 2® and subsequently repeated by EStviis, Pekar and
Fekete 27, They stablished the constancy of Q to ne part in 108, Later
Southerns 2% vorking with radtostive wanium cxide, fixed Q to one pert in
2 % 1ﬂ15. While not so accurate as Edtvis neasurérrent:s, Southems' experiment
was sufficient to stabltsh the c::l'r'.sstanc_lgr of Q for the mass equivalent of. the
binding- energy of nuclei. More recently Dicke 22 warking with aluminium and
gold was ahle to extend the accuracy of the Edtvis result to cne part in 01l

'y
On the basis of the avallable data, Wapstra and Nijgh 30 were able to argue
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for the constancy of Q for the varlous particles which omnstitute the matter.
Thus, the Q ratic for a protm plus electron is shown to be equal to Q for a
neut::mtoabmtmepartin.m?. Thus, we may suppose that Q is a wniversal
constant for matter of all kind. |

This wniversal constancy is a characteristic property of the gravitaticnal
field, since for instance not all charged bodies move equally into an electric
field. |

If Q has the same value for all bodies, they should all behave in the same
manner in an aﬂ:q‘tra:y, but given, gravitational field. It may be shownh that
the equation of motion for those bodles has the form

+TH — — a0 (4-3-1)

for a suitable cholce of the parameter A.

Indeed, we can oonstruct a theory for gravitational fields in special
relativity, by representing tentatively the field by a symmetric Lorentz tenscr
lP]_N and by a Lorentz scalar ¢. If we require that the resulting particle
equations of motion contain no higher than quadratic temms in the particle ve-
locities, the total action for the system is of the form

Q

2

o |1 fepa v , opg 46 _ | Y L ah
: J"f {g o Vot B 00 4’.9} ¢x-d "’oiJ,_[ By (X)232;0, Gz ) By dx
R 1 R &

glw(x):'s guv + aguv ¢ + 8 wll\J
From which follows the equations of motion
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Thus, the form of the equation of motion. (4-3-1) is not a prescribed proper—
ty of a gecmetﬁcal ﬂieocry,but rather appears naturally in any relativistic.
formmlation, -

We conclude from ﬂlis.malysis that the motion of all types of particles
into the field will serve cnce for all to fix the metric affin.'l.ty{ga}' “for the
field; this holding if we neglect the reaction of the test particlés onto the field,
sinee such reaction clearly depends on the partioular test-particle cne chocses.
We now emnciate the Principle of Equivalence of Einstein, one of the basic
postulates of the gemeral theary of relativity:

St

"On the extent that we can neglect the reaction on the field by the test
particle moving in it, measurements made on any physical test system will give
the sae affinity in the space-time region wmder consideration.”
¥hat this principle means is the following: Take amy type of particle and let

it move into the field. If the interaction of the particle with the field is -
neglected, which may be cbtained for small masses of the test particle, we
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determinate the affinity r‘1 fram (4-3-1). This affinity will serve for the
subsecuent motion of any other test particle, in particular it will serve for
the motion of low energy light rays into the field., Thug, this principle glves
us a well prescribed form for fiidhg ocnca for all the wnderline field which will
act on all kind of matter moving in it.-

We note that this principle is compatible with a special relativistic form»
lation of the gravitational field theory, as follows from (4-3-1) which is also
an equation of the special relativistic theory of gravitation. Thus, in spite
of not being a consequence of this theoxy,theequalttyofmim tom__ is

g.
ccherent with the results of the special relativistic theories.

It should be noted however, that a special relativistic equation bearing the
Lorentz invariance, and having ™ different of mgr can be written,

a%z* &) deP* az
m, — — =0 (4-3-2)
in. gr. po
dlz di dA

&’z p, a&f &

since both =—— and { } o5 F— are Lorentz vectors. Thus, the special
dx
relativistic equations of motion in a field of gravitation still allow for a

possible violation of the Principle of Equivalence,

A rather different situation will appear in the general theory of relativi

ty. If one imposes general oovariance of (4-3-1) necessarily m, - has to be

P o 2
H i d2" dz dz
set equal tom in the (4-3-2) sinoencne{pcj T T o >

are
gr.

vectors in the Rlemannian space, and in order to maintain the general covariance

dzz

a2
nd.natedbythesinﬂ.larnm—tensormscmﬂngfrm{gc} %%— %—-,and this

of this equation the extra non-tensor terms coming from

is possible only if both terms have the same coefficient, thus inplying in min' =

=m
gr.



118

 For the time being we will not enter in further oonments on this fact since
this will be treated in the realm of the Postulate of General Covariance, -

For introducing his Principle of Equivalence Einstein gave as example the
nowaday fafm falling elevator idealized experiment. He imagined an elevator
that was freely falling in a gravitational field, that means that was falling
with the acceleratim imposed by this field, To an dbserver inside this eleva—
.t\cn:, ama:berialbodythatwasinalsoin.freely falling would appear to be in
a state of uniform motion, Likewise, in an elevator accelerated in the direction
+Z, in gravity free region, a material body appears to be accelerated towards
the bottom of the elevator with this same acceleration. This is eactly the
s;ane what occurs as 1f the body were falling in.an uniform gravitational field.
Also, ugatrayswouldmpeartotrkvelalmgcuxvedtrajectoriesinthisac-
cehrated!ﬂ.evatm: Inthedra#ingnhidifollauswegivetheinformatimswhich
mobserve:atmstwithrespecttoﬂmemle:@d\elevatorshmldobsem--

y L4

¥
foten \
. B
{

8

The first part of this cbservation, namely, that all bodies fali with an

miﬁommleratimisexactlyﬂmesmeasifmecbsemtimsmdeinsi&m
wniform accelerated region of spage, were made in a fixed region where an

wniform gravitational fleld exists. On the basis of this idealized experiment
Einstein oconcluded two things: First, all motions are relative, second, on the
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basis of purely local chservations, to distinguish between unifomm motion-of a
body in a gravitational field and wniform accelerated motion in a gravity free
regicn was impossible. This was possible to be imagined due to the fact that
'mm =m. Going beyond this, we immediately have that from this total local
equivalence it follows that light rays should bend in presence of gravitaticnal
fields. This was later detected for light rays travelling near the surface of

the sun.

4.4) The Principle of General Invariance

We come now to the third principle which 1edsEinsteintoﬂ1eﬂmeo:§of
general relativity. This is the Principle of ¢eneral invariance, or as usually
is referred in the literature, the Principle of general covariance. There is
still a good deal of confusion concerning just what oontent Einstein implied
by this principle, due in part to his o way of writing. He says that the laws
of physics are independent of amy particular referenoe system we chocse to
write explicitly those laws.

This requirement is equivalent to demanding that the MMG is a covariance
grmpbfall;hysicaltheories. The MMG here means the manifold mspping growp

for curved spaces.

Before discussing the omnsequences of accepting the principle of general
invariance as a fundawental principle of nature let ws discuss what we should
accept in the first place. Iet's flrst of all enumerate same arguments which
favour this principle: |

1) what little experimental evidence we have, tends to suppart it. Indeed
thedaservedmﬁveraalcmstmcyoftheratioofmmtomgisadixectomse-
quence of this principle, as remarked in the previows section.
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2) The principle of general covariance leds us to a new physics. While it
is possible to describe all known gravitatior:l phengmena within the framework
of special relativity, one learns very little more by doing so. Most of the
new effects predicted by this theory are too much small to be experimentally
 dstected by present-day-techniques. On the other hand, the principle of
general invariance force on us theories which predict essentially new types of
phenarena having no counterpart in the flat, linear world of special relativity.
This is a positive point for the general theory.

3) The principle of invariance rules out the possibility of existence of
absolute dbjects in the space-time description of the wiverse. In a werld
where eﬁst absolute dbjects, parts of this world, the absolute dbjects,
influence all other remainder elements of the space without being influenced in
turn. Such description therafore lacks reciprocity, It seems reascnable, how-
ever, and in order to keep alongside with experience that there is a operative
lav in nature relating the action and reaction of the several elements of the
wniverse. While the equivalence principle suggests that the space—time affihity
should be a dmamical cbject, 1t does not rule out. completely the possibility of
the existence of a flat affinity. But it says nothing regarding the existence
of the Newtonian planes of absolute similtaneity. The principle of ge_neral
invariance on the other hand does eliminate all such cbjects from the space—time
description of the wiverse. Thus the principle of equivalence can be oonsidered
to be a consequence of the principle of general invariance. In fact, the-.pr:lnc:l.—
ple of general invariance is a stronger statement than all previous.principles,
and contains, ox inmplies, in the principle of equivalence and in Mach's principle.
If ane accepts the principle of general invariance, one can dispense both the
principle of equivalence and the principle of Mach as foundations of the general
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theory of relativity. Adopting this type of view, one may say that the verified
oonstant ratio of mm\to mg is an experimental verification of the principle of
general invariance.

By the other hand, one canaccept the principleof equivalence as the basic postu
late of the gravitational phenamena, a theary baséd on this postulate may be two
fold, it may be a theory of gravitation in flat space, where it happens that m, =
= mg' that is, the postulate of equivalence is just an cbserved fact, without any
decisive implication on the foundations of the theory. Or it may be a theory
where we adopt the point of view that the equivalence principle has to bear a
deeper implication on the foundations of the theory. Such theory has necsssari-
ly to onsider the similarity between the four-acceleration and the fouwr-foree
as a fundamental fact.

Since the four-acceleration transforms -as

Bx'_u Bzx'u N
W@ ¢ e o 0 @ (4-4-1)
3 9% 3x°

' wl“(xl) -

under a coordinate transformation allowing for nar-linear terme. Thus, if the
equation of motion 1s covariant, the four-force ruw u’ u° has to transform as,
3x-11 azx-u

(I‘gsua uB) (x) = m ul(x) P . (4-4-2)
x"9x

a W uc)'(X') =
hed axP

In the flat space-time formulation the quadratic term in the law of trans-
formation vanishes.

aleu

=0
ax"ax"

But for a more general grogp of transformations this will not happen, and the
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identity between (4~4-1) and (4-4-2) gives an information on hov the T trans
form. Since the W’ are four-vectors, fram (i-4-2) we cbtain that the I'  trans
form as an affinity. Then, we rearrive at the geometrical formulation of
Einstein. For arriving to this result one wsed as a given fact that ds is a.
scalar. We know that indeed ds® is such an cbject, but ds itself has ‘to be taken
as an invariant. - |

Following with our finality, we try to set forth all possible generally cova
riant field theories. For doing this, we require that a single irreducible
field should be used. The simplest possible chject is a scalar fleld ¢(x).
Since the metric of the underlying space is a dynamical cbject of the theory, we
arrive at the result that a field equation of the form

e, | (4-4-2)
where j is the source functions, for instance the trace of the styess tensar of
matter and energy in space

| i=g" T
is not possible., Indeed, this equation is generally covariant, but it contains
besides of the scalar ¢(x} also the metric Y which.is to be detegmined by |
the field equations. Thus, we get two negative results:

1) We have one field equation for dstermining altogether eleven unknown,

the ¢ and the g~ |

2) The field is described by wo irreducible geametrical cbiects & and g

contrarily to cur previcus remark.

The next geamtrical cbject is a vector field fﬁ. This case has against it
several negative results. First of all it will give a fleld which may be both
attractive, as well as repulsive., This is cmtraryto the dbserved fact that
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anly attractive gravitational forces are known. Besides this, with fu we can
only form ge'neraliy covariant equations like |

v - |
R T (4-4-3)
£ V= | (4-4-4)
where fw is the field intensity tensor ..
= £ - f

fW H,V v,u
Both such equations contain besides fu' also gW and present the same negative

result pointed out for ¢.-

However, it is possible to set wp field equations for an antisymmetric
seccnd rank tensor FW' or for a tensor density 'J;':l

- - oL (4-4-5)
% va_"__?\: Fou * % Fuo ™ Jopy
§ e P, (4-4-6)

which are independent of the metric %yt This awids the problem of reducibili- .
ty of the variables which appear in the field equations. But we still have pro-
blems, since FLN' ar 4"V , possess six independent compcnents. Fram (4-4-5) or
(4-4-6) , we have mmly four field equations for fixing the dynamical behaviour

of these six functions. We should think in introducing again equations like

.'u - -—
oy =0 (4-4-7)

for FW' This neve_rtheless introdueas Iy into the field equations, and we are
left once again with sixbeen field variables and just eight field equations, the
(4-45) and (4-47). For 3"’ we have no possibility of cbtaining two new rela-

tionships independent of the metric. We might take

det $V = 0 (4-4-8)
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But this is just cne condition (which inmplies in taking the source temm in the
(4~4-6) as zero), and is not enough, Consequently, a theory using antisymme-
tric second rank temsors does not fixes all field variables, we are always left
with same nurber of arbitrary ocomponents.

The next simple formilation is cbtained for symmetric seoond rank tensors.
This formulation is the most natural cne, since the metric itself, which is a
dynamical element, is such type of geometrical dbject. As a natural imposi-
tion we take the metric % itself as the field variables. This is not es-
sential from the mathematical peoint of view, we may use any other symmetric
second rank tensar such ﬂta;:__gw is a function of this tensor. * However,
the choice of g, 4lrectly as the field variables is the simplest possible
cholce. * For this case, we have three possible generally oowvariant second-order
differential equations. For a better presentation, we give a nuber to each
one of those formalisms.

1) We refjuire that

prc =0 . {4-4-9)
where Eﬁwpc"is the metrical Riemann tensor. This equation in spite of being
ganerally oovarimt introduces a direct difficulty, the aff:lnit.y which corres-
ponds to (4r#-9), is a flat affinity riO ( the symbol (o) derotes the flat
nar!:ureofth.isaﬁfinity} '.[Trus there exists an’qpingsudlthatgw takes

* -of thége - theorz.es, where Buv F (s }, for 8.8 = 8gy the field variable,
we have to exclude the cases: whare BHU - ¢'pv' and guv u’ + ¢u " Both

of these cases’ g::ve ‘symmetric tensors, but their expression contains a rela
tion among, guv, _g%! and the derivatives of ¢(or ¢ } and the ¢ itself,These
relations cannot ge selved for gu directly, and have to be taken &5 & set
of first order differential equations for gu in terms of sdﬁ known from
the field equations.
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.m@umm@gﬁwmall space time. We arrive in this way to the ocmstruc

tion of an apsolute cbject into the manifold, the AN This is contrary to the
principle of general invariance. Thus, we have to avoid this type of equaticn.

2) We require that the Weyl tensor constructed with gW vanishes,

&

N

0 : ' (4-4-10)
In this case there exists a mapping such that gu: = (-g) -1/4

%y takes on Gali-

lean values over all space-time,
* = g
v T By
Therefore g:\’ is an absolute dbject. This implies that t_:)'W itself is given
as a dynamical dbject, entirely in fuinction of just a scalar density of weight
+ 1/2, the quantity (-g) ]‘/4.
ERC Rl WERTCN

This 18 still a possible theory to be considered. Nordstrim, in 1912 formulated
such type of theory, what Nordstrtm tried to set up was a scalar theory of gravi
tation, as a natural generalization of Newton's theory. As we sald, a scalar
theory of gravitation is related to the equation (4-4-10) , but for Nordstrém
this was not considered since he dld not claimfor general covariance, which was
not motivated in his time, Later on in 1914 Einstein and Fokker in e of his
first attempts to set forth a relativistic thecry of gravitation, have genera-
lized Nardstrdm's theory, so as to tum it into a general covariant formulation.
In the Einstein-Fokker theory, the scalar density g = det g Was to be deter-
mined by the equation

Lk

R=k &I-N
where T, is the stress-energy temsor of matter or of any other field present.
Camparing this equation with (4-4-2), we see that the D'Alenbertian of the
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scalar is here replaced by the scalar cwrvature I formed with gw. However,
"since for several facts this theory was wrong *, it was. substituted two years
later by the ooréect formulation, today called the general theory of relativity.

3) 'Ihe only other possible,- general ocovariant equation, which is of the
second differential order, and is written for the metric tersor g is of the
form,

R,*+ ORg +Ag =KT o {(4-4-11)
where RW and R are respectively the Riccel tensor and the scalar curvature cal-
culated with 9yt _' The o, A and K are oonstants which may be taken initially
with arbitrary values. If we require that (4-4-11) follow from a variational
principle, then o = - 1/2. '.E‘heseequatims':rim a=- 1/2 wvere the equa-
tions proposed by Einstein in 1916. 2As we have remarked before, from the
strict paint of view of the principle of invariance, it is not necessary that
g'.i v solution of (4-4-11) be the metric tensor, nor RW the Ricci tensor. Only
it is encugh that Rwhave the form similar to that of a Riced tensor, this is
all that is necessary for ascertaining that this egquation 1s a general covariant .
second order'eqnntj_.m, .M1Mg a symetric tensor gw. It is important to
note that in principle one can form a continuoue infinity of generally covariant
equaticns for a symetric tensor gw_. - Only the extra imposition of dbtain-
ing a second order dlfferential equation, which is an additicnal requirement
over and shove the principle of invariance, uniquely fixed the equation in the

L 3

 form.of (4-4-11).

It is interesting to draw an analogy with the case of electrodynamics. In

It predicts the wrong sign for the advance of the planetary per:i.h.eiia, it
does not predict a bending for light rays in a gravitational field. i
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this situation the principle of invariance is replaced by the principle of
Poincaré invariance plus gauge invariance.  Only on the basis of these two
inwariance principles, one can form a continuous infinity of field equations,
by using as Lagrangian density any function of the two Maxwell scalars

-
u1 F Fuu

et

- oHVPO '
u2 £ Fuu Fpo
that is,

A?- F(ul, uz)

The £iedd équations are the infinite set of equations

&L 2l 3% aw  du,  *F 3y, 2w O 3 By
— a - . +* +
. o 2 o o
Glu aah.a du; % BAu'a du; du, 0x 8Au’a du, ox aAu’a
2 2p
3° F 3u1 auz 3“‘F Bu..a du, aF 9 Bu:

+ + . _ + w0 !
o 2 o 0 a
du, du, 3x aau’a_ du,; 9% BA“’G du, ax 3*u,a
where

9 au -y A
a HA

ax aau'a_

.-3_ —a-‘:i - eH\JDO'F =0
) vp,0

ax” BAu’a

Here the situation is a bit different sinoe all above equations are of the
second differential order. The extra requirement which will reduce the infi-
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nity of all possible equations, is the requirement of linearity, which reduoes
the field equations to the wnique form

Su ] du, -

1
a [

GA“ ox aAu,a

This analogy serves to point out.that we always have to use same other type

of extra requirements besides the. invariance principle. This extra imposition
may be different for each type of theory. If we require further that linearity

0

also holds for the gravitational field equations, which sums up two extra
requirerents besides the general covariance, we get the result that no field
equation do exists, which is altogether of second order and linear, being
generally covariant. This means that the requirement of linearity is not
cmpatible with the general covariance for second order differential equatiens.
The only possible linear second order differential equations, are those covarl
ant with respect to the Poincar® plus spin-two gauge transformations of the form

¢fuu(x). - ¢u\)(.x) + A’u,v(x) + A\)'u(x)

and we get again the so called flat space-time formulations of gravitation.

We now comment on & point very important. let us suppose that we face the
following problem: To construct a theory which is generally covariant involv-
ing some tensor field. From what we have seen, the ocnly meaningful of such
theories are thpee invaolving a sm_tric.tansor..field of second rank.

Regardless of what field it describes, if we impose that th:é.'field equa-
tions, are of the seoond differential order and follow from a variational princl
ple, we get a unique possible cholce, Later on, by means of consequences of this
field equation,which are eompared with-cbssrvablesphencmena, we learn that this
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theory describes the gravitational field, Oomparing with a similar situation
respect to the restricted invariance of the Poincaré group, we see that the
imposition of Poincaré invariance does not pick up any particular type of
field variable, we havwe several possible theories, scalar, vector, tensor and
so on. This means that the Poincaré invariance does not foroe us to introduce
any tensor field, which a posteriori will describe the gravitaticonal fieid, as
a necessary element of the theory. If we do so, we still have a lot of arbi-
trariness in the field equations. We have to impose besides the ocorrect aff
ferential arder, that the equations are linear (similarly to the case seen
before for the electrodynamics) and the poeitive definiteness of the energy
density of the field. Only then, the field equations will be unifue.

A caparisen of this situation with those presented in the generally inva-
riant formulation, shows us how the principle of general invariance is formal-
ly stronger than the restricted principle of relativity.

‘5. THE THEORY OF ‘GENERAL RELATIVITY

5.1) The Einstein Field Equations

For cbtaiming hislequaticn for -the metric field 9 Einstein‘was gquided by
the Principle of invariance together with the extra requirement that in an
. aprcpriate limit, his equarticns should coincide with the Newtonian gravitaﬂ.m
| al theory. Ifwelodcmﬂlis later theory as a field theory, tlmthegra—
vitational potmtial ¢{x) satisfies the Poisson equation.
V2P (x) = 4mGp(x) (511

 a solution of this equation is,
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8; .
$@) =~} 6 g+ (5-1-2) .
1 x3

where 8. As the distance between the ith body and the field paint, 9 is the
gravitational charge of the ith particle of an N~body system of gravitating
particles. In this case

p(x) = E p; (x) = }i: g 8(xx) (5~1-3)
Was just the requirement that inmapmpriate limit the gensrally covariant
equations should coincide with (5-1-1), which indicates that the field equations
for Iy should be of the seoond differential order. Besides this, the equa-
ticns should contain in the right hand side the stress-energy tenspr TW
. linearly, in order to inswre a carrect limit ‘to the Newtonien gravitaticnal

charge density p. v

Einstein takes the equations in the form (4-5-1l1) with q = - 1/2. Then,
since
er .1
Guv Rv "7 By R
satisfles
&

nG}N;J\ =0

we get, as consequence of the field equations,
1 - ' -
Ruv o X R + Agw k TIN._ (5-1-4)

that Tuv satisfies the covariamt continuity equation,

g Toosy = O (5-1-5)
»

where one used that 9 also satisfies Yvin - 0, in crder to take into accowunt
the temm Agw. In what will follow we ghall consider A = 0, This was also
initially done by Einstpin. The temm Ag,,, called the cosmological term will
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be considered later.

31 pitvert 32

In the same year that Einstein proposed this field equation,
derived a similar equation fram a variarl:imal principle. The cu@ariscn of both
a;proaches -served to show wp that really the form of a generally ccvarianteHUB-
tion of the second differential order involving a symmetric second rank tensor

was indeed unique, on the basis of the two extra impositions.

1) It follows from a variational principle.
2) It has to be of the second differential crder.
Wie give now the derivation of (5-14) from the varlational principle, >
First we oconsider the egquations for = in the absence of matter and cother fields,
The two invariants (in strict sense they are not scalars, both rather scalar denst
ties with weight W = +1)

q; = /9 R

Q= g
are of the correct differential order for generating second order &ifferential
equations, 1.pt:nvz:n:iaat':l.t:mi.ng]'“J (forqlweneeda little more of care, since it
involvesbesidestheg andtheg

oq
totl':istl'nefieldequatimss-i—o should include third order derivatives of

A,c':\ll.'."othegm"rm,. We might think that due

D

a dlvergence, and thus do not give contribution to the variational prcblem). Thus,

. Butthiswillnotha;pen.becauaealltemsinqlwhididependmgw \G form
!

we may put the most general Action function as
Sg =~ é\JA Y=g* (R-2A) d4x (5-1-6)

mhereKaéﬁnaremtmtstobecbtanm.md. R is the scalar curvature

S P p p -
[:up, rw,p o rpv Ty rcpr G-1-7)
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For deriving the Euler-Lagrange equations for (5-1-6), it is customary to take the
affinity. r]‘}v identical to the Christoffel symbols.

g —
Vo z ax" ax’ B::1 '

oLl (35»1 LY 3%)

1
and hence as known. functions of the g . However, a-fmalsotxeatb*lﬂaegw
andther” as the independents variables .‘:.nthevariatimalprincﬂ.ple and thus
datam:xgequatimsthatdetemﬂmboﬂzobjacts, Such proocedure is known as the
Palatini variational techniqus. This procedure for electrodynamics inplies in
using both the potentials A and the fields F, as variants in the Action princi-
ple. Presently, we use Palatini's method.

We have, =
av-g ag
e - e el L1 2 o 1 uv _
8/=g X Gguv 3 g - Ggw 5 /—E?&g Ggw {5-1-8)
B &y
5" = ~gHY VA S8 - (5-1-9)

I
and thus, a variation in the integrmdo:ESG gives,
V=g 6R + R 6/~ - 2 A &/~g

since R = g’-‘“’ RW’ we get .\
o JHV uv,_ o JWv T
SR = g GRLI\) + 0g RI.IV 8 emw R GSI;N

substitution of this into the above equation glves.

/=g sn+x.§.f“‘-zna - /g % 88, *+ 8" 6R, +

1
_+ 58 Gguv \R) -~ A /=g Gguv

-l AP R MV & 6r Jadx (513
-GSG !—-J‘ I:(,R T 8 R + A g™ G‘U\) GRm;ld x (5-1-11)

From (5~1-7} we see that %.w involves mly-tha a;‘."-‘E:Ln.i1:1.&«1;_-_).',‘57U If we take first an
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arbitraxyvariatimingwthat_vmishmthebcmﬂaryof the region of integra-

tion, for fixed M., we cbtain the equations. '

Al‘
Y -2V R+ gV =0 (5-1~12)
which are part of the caplete field equations (5-1-4). The remainder of these

equations are fixed by considering variations in 'Y, vanishing at the boundaries

VA
ofintegral:im,forfixadgw. We get from the last term in the integrand of

(5-1-11).
g g s Ry = {/~g"* ar:’N - gV srfﬁ\p}-’p + {(/3 g“");p - (3 & ),cr 6;} 6r°
(5~1-13)
The first term in (5-1~13) is a divergence, and does not contribute to GSG, since
the esrﬁ;L vanish on the surface which bownds the region of integratien in S.. We
are left with
85, 2 Jd x {(/-g sw) - (=g g° ’a ;} 6I‘d- 0

from the Euler-Tagrange equation for the variaticon in the affipities, we cbtain,
/- sw);p - (/- sm);U 6: =0

Bt these equations in tum inply that ¢! = 0, and hence I = (X1 . With this

identification, the equations (5-1-12) form the left hand side of the field equa-

tions (5~1-4). |

Iet us cnsider now the interacticn of matter or fields, or both, with the.
gravitaticnal field. This amounts to adding to SG an Action integral SM describing
such interaction. The total Action. functional is then

S-SG+SH.

Since in the Palatini variational method, both g, and rﬁv are variants, if we

wmttokeeptheshrplefoﬁnrzv

of Sy So as that it does not depend upon the Ij . This is the same as requiring

= {3\,} mchanged, we have to restrict the ‘ form
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the principle of minimal poupling: all interactions depend just on the potentials
Of the gravitaticnal fields, the g, not on the rfj‘v. Since then §, will depend
just on the Iv? besides its own variables, we get by( variating thegw in Sy,

| — KUV 4 -
85y -é-f y-g T agw d'x _ (5-1-14)
where the contravariant second rank tensor T is defined by this relation. This

ngy be put simbolically as,

GSH "
—Gy - ™V (x) | (5-1-15)

Gg‘u\)

'l‘huslr the field equation for the gravitaticnal field, cbtained by variating the
total Action integral S; + S, will have the form (5-1-4)¢ As an application of
(5-1-14) , we give the following examples.

L 8

1) Determine the expression for ™ for the electromagnetic. field, where

-] 4 = v 1l
Sy Wjdx/}‘g g 2F1N Fpo‘ (5-1~16)
Effecbl.ngthe variation on the 9, we cbtain
,GS "_J Fyvpo (8" 2% 6 /2 + /20 68" + /g™ 55}
where F_ is ashortforf v Fpg - Using (5-1-B) and (5-1-9) we get
_____ Lm pwlB Avao up Vi of
65}1 d x /g {Fuvpc 28 g uvpcr gll g Fuvpc g8 8 }687\8
which gives.
Mol A8 1. _po 2By -
™ - L B The P OO0 G-1-17
which is the Maxwell stress-enerqy tensor 34, satisfying the properties,
DB _ o8
B T =0

2) Derive the expression for T'' for the scalar field, with
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we have, ' _
o~
88, J [¢ 0 088 + /B 58"y - we? sf".j
which gives,
. 2
88, = %J e Al A T TN A SAE ST S o I N
The expression for i is then,
. .
of - (8]-“1 gVB - _il_ g}lv SGB) ¢'u ¢’v + Ef ¢2 gaB (5-1-19)
3) Deriwe 1:1'n=.-.'1'c"B for a- systanofneutralparticleswith rest mass m ,with
Sy = \J\f—\—g d'x ZJ& A, 6% (x-z,) ,/; L& z} :'z (5-1-20)
doing the variation in gw"" we get
ca oB
; 98
o
65y = = moj a*x ;_‘[axi 6"(;&-:1) J-_g‘ + / z¥ 6/—_3‘
. 2 /g Bt 2
thus
| 2% 36
J. "( ) 1 R
58, = = =2 d?« $ x*z) ————r
- Bt 2

. 11 ]
R Zi :
T(x) = m, {J‘“i 6" (i) ——— + 3G 2} I} “Bc:o . (5-14my
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5.2} Staticnary and Statis: Gravitational Fields
Before introducing this class of kinematically possible gravitational
fields, we will need a further concept, called by symetries assoclated to the
behaviour of the metric tensor g,y Under an infinitesimal mepping of the MYG,
the retric gw varies as

- - P P P i, .
LT T A L (-2-1
where
3'311 =g - g, @
if it happens that the transformation with dascriptora Ep(,w& is such that this
varia:tim vmishes |
fgw(x) =0
we say that this Ep is a Killing vector field. By the same arqument, we call
the equation |
o f Pag . 5=2-
Bup S0 * By Bt By &7 0 (5-2-2)
a Killing equation. The existence of Killing vectors cn the space-time serves to
characterize the symmetries which these spaces possess. These symmetries are
translated in the foxm assumed by the metric of the space, which satisfy (5—2—2)
As example, cnsider the flat space~time of special ralati.vity. Then, ga,u nw
at all points, in cartesian cocrdinates. In this case, we get sinply
' P P .
N v nup E.V + np\) E’u 0
the most general soluticr} of this equation is of the form
W LA
3 c¥ _+ €, .
where ¢* and e ™ “up ﬁv- €, ore ten infinitesimal parameters. The four Kil-
ling vectors, or better saying, the four components of the Killing vector in this

case, are assoclated to the dasa'iptom of the Poincaré growp.

After same calculations, we may put (5-2-1) in the fomm
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Fgw = 5}1;\, + g "3# (5-2-3)
where i

BB £
We prove now the following property: A gravitational field is called staticnary
if it possess an everywhere timelike Killing vector. The proof is as follows,
let'r!'_lbe such vector, we thep have from (5-2-3),

Tv;u + T]-I;V =0 (5—2—4?
writing explicitly this equation one finds

Tiot Ty~ 2 r}’:v T, =0 (5-2-5)

Consider now a t:fansfonmtim of the reference system, such that in the new frame
the components of ", which satisfy in. all points the property.

@ = g, @ @G >0 (5-2-6)
have the canonical Val;e

™.k | (5-2-7)

vhat such transformation do exists at each paint of the manifold is seen fram its
equations

-~

o _ 0 .
33—-0 T'o + waox;d-l—'[' - T - 1
ax'° ox!

axr _,0 ax  _'j

i
T — = -
n x° ') T T 0

A
they always possess a solution. Now, for the reference system where (5-2-7) holds, .
we have

To ™ Boa T Boo? Ti ™ Bia T Bio (5-2-8)

or, ‘r]l = gpo_. For these values of 'r'nthe Killing ecuaticry (5-2-5) takes the form
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. 3800__ _Lr -0
1 _ 'r}xl'. . 2 "o,00

385, . 983 o - -0
ax’ ax® ool
BF;O . Bg.o _ -
P e LIRS

-

which glwes.
3
..BLX -0 | (5~2-9)
X :

Besides this, from (5-2-7) and (5-2-8) cne.gets,
227 Ma | —2-10}
T ‘ru T 8, > 0 ! (5-2-10)
The two relations (5-2-9) and (5-2-10) define a staticnary gravitational field in
general relativity.
)

Given a timelike vector 1" (x), not necessarily a Killing field, defined
on the space~time manifold, we may imtroduce a tl’&ee-parmter family of curves
whose tangent are equal to the t"'(x). The points of such curves are given by

H =gl v (5-2-11)
where ) is aparmteralmgﬂmmmmﬂm;i;i-l, 2, Smﬂmepa%&re'oers
m&mmﬁumaguﬁcuwofmanmw; s




Then, _ .

-3{3 = Mea, vh) ‘ (5-2-12)
are the defining equations of these curves. As we have seen, any timelike vector
may be put in the form t* = {1,8} by adequate cholce of coordinates. In this
mdjnatesystan,ﬁweumaregim-byxr-=mt.and A =x° In this case
the y' may be identified to the patial coardinates x,

—
- bk T

3 ~ time axis

— spaéer like direction

Thus, a timelike vector fleld furnishes us with a method of defining a space S,,
gimilar to the absolute space of Newtonian mechanics, Apoihtof&isw
oconsist of an equivalshoe class of points ofS4',t¢opointstingc:nsichredas
equimtformepmpoeeofmtnwungﬂusspam%ifmuemﬁném
arve (5-2-11). | .

«— equivalence class of points

Thepararrebersyicmﬂmbetakenas-ﬂmooordinatesofapointinsy A
trajectory in S, gets projected onto a curve in S;. This curve will be refered
to as the arbit associated with the trajectory.



140

‘Wenaydecmposeanaxbitrarydisplacmentdxu at a point of S, into a
oatpmentparalle;l.totumdacmpanntnomalto v, thus belonging to §,, ac-
' cording to

ar = ¥ da + ag? ' | (5-2—13)
where Tu dg¥ = 0. Then,
T dxu _
do = -E-z—— , (5-2-14)
T
and | . 'ru de , _
agh = ot - £ e (5-2-15)
T
where | ‘1'“ T

SN C R ¥ (5-2-16)
013 v 6\) Tz'

'Ihetensocrﬁ“vis a projection cperator for the hyperplane normal to L

satigfies,
ﬁu-v é,;\.' 2" A
2,7
The length dl, whidlisthepmjectimlmtotheplaoenomaltotuofa
displacement &&, is

de? = a8, ag¥ = &y ag? ag’

from (5-2-15),
2 oo vl \" A (R A (o] _
dL gpvﬂ 7‘SB gdx dx ekpdx dx (5=2-17)
it )
R T
ey, =B 4 @ pgw-g,m-——;ﬂ (5-2-18)

T
Thetensorewiathmtheprojectimofgw mtotlmPlemenonraltoruand
plays the role of a metric in this plane, as is shown through the relation
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(5-2-17). vhen 1" = {1,8}, we get for this tensor the canonical values

"
e =g = (5-2-19-1)
8o gpo oo or
T ——3 g &

os “or

g - - T 1. T
00 e, = 8. —-—---—g {5~2-19-2)

®a0 " Bap

00

In a similar way we may define the differential of a displacement along the
direction of t¥. Its square being

= {TI Yy rqy oM
duz-(du'ru)(dat_) gw(du'r)(da'r)

= H v : —
Py dx" dx (5-2-20)
where
T, Tv )
In the canonical representation, where T = 90 we cbtain
8o By
Pv * T 5-2-22)

[elo]

which means that all their camponents are different fram zero. It should be
cbserved that both e]_l v
from (5~2-18) and (5-2-21). They satisfy the orthogonallity condition,

andpw are tensors at fon~dirensions, as can be seen

v

eu\) Py 0 |

In the "canonical frame" we get sinply
g.. 8

Boo _
. Buo s\!c: :
du? » e dx” dx’ (5=2~24)
-4 L

o0
mntlmserelatimsmseethatﬂaeguo are variables which are associated to
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displacarentsnonmltoﬂmhypexplme%vtﬂdlhasanardelemntgimby

(5-2-23).

All those results hold good for any arbitrarily chosen timelike vector
™. At this point it is impartant to dra attention to the conventions used. Ac-
cording to (5-2-6) we are defining a timelike vectar in the case that the signa-
ttneofgw is -2, If we chose the opposite signature, that is +2, we hawe to
define a timeltke.vectar by |

T =g @ T U@ <0

instead of by (5-2-6). 1In this case 9o is negative, and in the "canonical frame"
we get
T (x) = g (x) <0 (5~2-25)

instead of (5~2-10}. In any case, we may introduce a wnit vector along the

drection of ¥ by,
. o |
H e g = (5-2-26)

A% H

For signature -2, and in the "canonical frame" we have

6]; g :
Ml g =B (5~2-27)
> P g -

00 00

Por the signature +2, and in the "canonical frame" we will get
s¥ |
Hao g . tMo (5-2-28)

L=

00 .

using 2 instead of ™ we may rewrite @V v 38

N _ sH _ LM —
ﬁv-av zp.v (5~2-29)
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mdfm:ew andpwwehave

v ™ Sy " 21-1 Lv = Qu . . {5=2-30)

Py = &y Ay , (5-2-31)
So that &2 and di? take on the form
dg? = '(‘gw - 2) dx¥ dax’ (5-2-32)
du? = «@, a2 (5-2~33)

From (5-2-33) we clearly see that du is the measure of an interval outside of the
hyperplane 83. All these relations will be of importance later on when we will
study the Dirac's formulation of the gravitattgtal field in terms of a Hamdltonlan.

[

Now, we tum attention to another detall. We have fixed the choice of
a "cananical framg" fram the conditions (5-2-7) on the ™. Hovever, we may chose
tofixsudamordj.natestythe_fwrcqnditims

s o, (5-3—3«;)

H 'S
on the Ty instead of the (5-2-7). Both types of settings are equally aorrect.
However, in Dirac's theary we chose (5-2-34) ingbead of (5-2-7), so that it is
important to rewrite all inpartant relations in this setting. Since the method
of obtention of these quantities is exactly the same, we just write the results.

gV . gHo
¥

T2 = 8oo

o

uo 6*‘:

’“u'z‘_/ﬁuzu‘/o—';?
. 8 8

' Qs or
a = erB- rh —i—-g——
rs grs’ & T o0
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These relations referring to the signature -2. For opposite signature we change
signs in goo.

In the case that the 1 is a Killing field,

T + T = 0
iV Vi

the ew and pw are independent of xo, corresponding to stationary fields,
while we can define ahyperplmxenoxﬁalbo'ru at each point of the mani-
fold where the TV is defined, we cannot in general form a family of hypersurf&ces
with the " as normals, What this is so, we may see fram the followlng facts:
Iet these hypersurfaces be given by the relation
$(x) = ¢
1f ¥ is orthogonal to this famdly,

'ru(x) = £(x) ¢’u(x) (5-2=35)

that is, jruisprtportimaltoﬂmegradientofsscalar. Up to this paint every-
thing is correct, but if we map to the canonical frame where T -=guo_weobtain

suo(x) = E(x) ¢’u(x) ' (5=2~36)

which in general is not satisfied for all metrics g, It is important to fix at-

tention in one detall: The equation (5-2-36] is not covariant as it stands, however
this dees ndtmean that it is wrong, We cbtained this equation from the covariant

relation (5-2-35) by plcking up a particular system of coordinates. By the same

tdcm,wl'lenweg:ttu'—-g » We also get a non~covariant relation, since in general

HO

g . is not a vectar, This does not mean that such relation is wrong, it just means

pHo
that T takes this particular form in this coordinate system, and since we always

knaw how to pass to a general system of coordinates, and thus cbtalning covariant
equations, we are free to work in these particular coordinates.
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A special class of stationary gravitaticnal fields are those for which
the associated timelike Killing field is also hypersurface orthogonal, that is,
there exists a.fand.iy of hypersurfaces possessing theae vectom' as normals. Thus,
(5-2-35) iz verified and one gets

T T
(-E> -{2 ]=0 (5-2-37)
E /v E pu

Fram this equation one gets

T . -T, . = (& -E, T &

B,V v, v (5-2-38)

We now prove that from {5-2-38) it follows that ‘tu v ™ Ty - has a mill projecticn
r n

oanto the plane normal to ™

ﬁ“ a" oGy = Tyt = O (5~2-39)

Indeed, a straightforward calculation using (5-2-16) and (5-2-38) shows that
(5-2-39) is verified.

Thus,wecanmacl:l‘neln'\:a'i:icstllyt.ranslateth.efacttha&t:z'rll is a timelike
hypersurfaoaorthogmalKiliingfieldbynemsofthesetofequatims,

ol
- ™ >
T _7‘-;1 0

" o o’ o (:[“"J " T“'}L/l-. Q

A gravitational field satisfylng all such impcsitions is called a static gravita
ticnal field in general relativity. They are partifular cases of stationary gra
vitational fields. ’

In the "cancnical fram", where. &g

o] po
8" a“p-z“zp-a“g-

L

%00
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and T, = 90! the (5-2-39) takes the form

H 810‘_ po T _
ﬁ pﬁ A(u\, '\J’u spo’xgkopxmpg 0018 0 (5‘240)

where we have also tzken under consideration that " is a Killing fleld, and thus
satisfiesg Iv,0 = 0 in this coordinate system.
I

For A =0, and p = 0, the (5-2-40) is identically satisfied. For A =i,

we get -] g
gm:i.'—gir.-p".g«:n:)ita go-sooi ' =0
e ] ’ ®00 ’ 00 .

again for p= 0 this is an identity, but for p =k, we cbtain

g () =0 | (5-2~41)

at all points of the manifold. Thus, the condition fixing the static field in the
canonical frame is the equation (5-2-41).

As we will see when studying the solutions of the fleld equations, the
knowledge of the existence of Killing fields onto. the manifold will serve in an
invariant fashion for characterizing the properties of symeetry of the manifold,
and thus relating all found solﬁtims, and eventually Z:nrov:lng that several of
such solutions are merely the restatement of a same soluticn in sinmply another
form, that is in a different coordinatization. As an example of this, we have
seen that a statichary _fié:_l.d is characterized by the equations’

2

: !
T" = T >
pt >0

in the canonical coordinate system they assume the form

>0
SOO-

B0 7 0



But in other system of coordinates they oem havn a AAES~vae form,
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If we were W™

wmre of ' the fact that both metrics describe the same type of fields we might

michrﬂxesemdiffemtfmasmaiﬂermttypesofsolnumsofthe

field equatims.

Since these are non-linear differential equations, it is hard

to see if this is true ar not. mly-ﬂie_luwledgecfthéfactthatboﬂlare

cnsequence: of the Killing equation shows us that indeed they are two different

forme of the same gecmetxy.

We finish this section with a table of the results cbtained,

i . . . c-ﬁéniéal rran'e'
Type of field | Geometrical character. Mathematical Cendit. (signature -2)
There exists a time: >0 800 >0
Stationary 11..ke Killing vector T -0 -0
field. (usv) guv;o
There exists a hyper- [1%>0, T(’y-v) >0
. surface orthogonal.” ’ =0
Static timelike Killing &, & i) g‘“’"’
vector field. ’ 8fo0
' e _B
There exists a Ltime- 2 g - 28 _0OF
General like vector field. ¥ >. ° ve” Frs oo
. VL
w 2.0
5.3) Interactim Ba‘bueen Gravitatim apd_Other Physiml System

maingtoamprevimspreaentatim,wehmintrodumdinmeMm
principle a term giving account of the interactichs of external systems with the
gravitational field. They were cbtained from their counterparts in special rela-
tivltybymp]acdngev&ryvhexetlnﬂinkmskimmtﬁxgw by the Riemarnian metric

tensor. Thejustifimtimfordningsorestsmﬁ:e pﬁndplecfm.ninalmphm
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By this principle thedynand.calla-zsslnaldreduceateadlpointtoﬂleirspec{al
relativistic form by means of s suitable space—time mapping. If we did not
invcke this principle but only the Principle of general invariance, thenthere
wwldbenoxeasmfdrruhngouttennsprcportimaltprpc, silchas for
instance ™Y F7 R for the interaction with a electramgnetic field. In this

vpo
casemshouldaddto-snatem

e WL R 1\
j/?dxl’ LA S

Hmevgf, such types of interactims may generate higher order derivatives of QW
in the field equations for the gravitational fleld, this will tum these equations
in a conplicated form. ALl contributions to the study of interactions with the
gravitational field in general relativity accept as a initial inposition that the

principle of minimal cdupling is verified, and thus, they start by postulating
that all interactions are cbtained by the above replacement. In what follows we
give several examples of interactions.

5-3-1) Motion of Particles in a Gravitatimal Field

We start with the simplest type of interaction, that exists between a
massive particle and a gravitaticnal field, which initially is taken as an extern
al fleld, that is, not generated by the massive body under study. Since however,
the massive body is also a source of a gravitational field, and it acts on the
sources of the original field, we get. that the body will moves into the total
field represented by the criginal fleld modified by the changes in its sources
duee to the presence of the body plus the awn gravitational field generated by the
body itself. The motion satisfies the equation of a geodesic of the total field.
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iy +_{ga} # x° =0 - (5-3-1.1)
‘with the sypplementary condition
g, (@ =1 |  (5-3-1.2)

Only in the limit where we can neglect the influence of the particle on the sources
of the initial gravitational field can we subtract the effects of self-interaction,
and thus treat the motion of the particle in a given field of gravitation. For

j.nstanoe,ﬂaenntimofasmllbodyinthegravitatingfieldofanassive star.
]

Of special interest are the cases where the gravitational field, that is,
the total field or the initial field depending on the structure of the approxima-
tion token, possesses same symmetries, that is, there exists same Killihg fields
anto the manifold.

. + - 0 -
ku;u k\,;p (5-3-1.3)

amxu=gwk"‘. mmitispossjbmmmmati“kuisammtofﬂe
motion along the trajectory of the particle.

d s e ) IR
ﬁ?(ruku} # B +x ku.vx 0 (5-3-1.4)

as consequence of (5-3-1.1) and (5-3-1.3). If the Killing vector field is time-
like, that is, if the field Tv is stationary, then the quantity f:l=m‘r11 v

where Tuisﬂlatine—ﬁkexilhngwctorassociatedtbtheﬁeld,dzmmtaken
as the energy of the particle in araloqy with the definition of this quantity in
special relativity. The energy of-the particle is then a constant of the motion.

We may re-express '&=mrui]"i.nsuchway that brings out its sinﬂ.larity.
with the expression giving the energy of a charged particle in a omstant electro

magnetic field. m

[+]

g - + ed (5~3-1.5)

x2

1 - .

cz
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Tot_hismdweintroducethe"Innml"velodtyoftheparticleasthedlmgein
‘the displacement nomal to ! relative to its displacement parallel to t.

v
P, dx
P\

However, before going on with this proof, let us turn back in order to show that
(5-3-1.5) is constant of the motion for a charged particle in a constant electro
magnetic field in special relativity. This will be done as an exercise.

Prcblem: Show that (5-3-1.5) is conserved for omstant electromagnetic fields in
special relativity.

Solution: Starting from the variational principle for a charged particle in
an electramagnetic field in special relativity.
A, |

S--I {-mo ZIJ zY - g Au(z) i“} dx

A

-y _ a2
where z =35 - We have _
u _f%  susv  ds
/éuz / vz F4 a

Taking a variation in the coordinates z° of the particle, such that §2z° vanish
an the boandaries Al andkz.

Az » I .
| =y z, 6z N
- —— - A
58 . J‘ = e An(z) szt - e Z¢ v (z) 8: dl
_ . _
M
Integrating by parts the first two terms standing on the right hand side,
A A
2 . 2

' d m z
86 = | —( i+ e A (2) | 62" ar ;,J ez' A (z) 862° ax
J dx ;zvz A]" K,V '

."1 . .11
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This is a general relation, we now lock for same variation under which the field

AU (z) is symmetric. An important type of variation is a translation of tha
cocrdinates z¥ in the direction of a time-like wnit vector nu,

gﬁv n11 nv =1

6z" = ¢ o

fweirrposethatthefieldau(z) has the symmetry property,

A, (@) 6z’ =g A n’ =0

n,v
_Then
12 .
fd m7~'==°'z" A@be o* o
‘68 = —_— + e z)yE n
) dA zvév n
1

and invariance under the translation along the time-like direction nM requires

S =0
1 L]

) VA

Xy % *
or '
mo_éu | m éu
==+ e A (z) n‘i '_‘:7—-3._.*'3:\(:)
;zsz f*lfli Yz gz

which means that this quantity is a constant of the motion along the trajectory
of the particle. Since we can always take a reference system such that

o = (1, 0, 0, 0}, 62" ={g, 0, 0, O}

which may be seen from the grapht t
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wg get that
V 1~z /c

this case the p:gpérwofﬂuefieldmsmplythestabenentthatme
field is oconstant,

+ e¢}is a constant a.leng the motion of the particle. In

this field. Note that

+ ep » is the total energy of-the particle in
l—i /c '

F=F.__\+ e A“(l) ¥

maybe-written as

I 2ot eh ()

which is sinﬂlartoour previous formila &=‘nn'r“-ru which we called by energy. As
we saw, this quantity is constant along the trajectory of the particle, for
staticpery flelds. Faor electromagnetic fields it reduces to the total enerqy of
the particle in the "rest frame" of the time—like wvector nt.

Turning back to (5-3-1.6) , the & means the displacerent along the
path of the particle. For =.-{1,3} the u* tak.e the value

| | .
r ax" B O .
U = e—— - ’ u® = —— — ' (5-3-1.7}
/B (ax® + g ax®y. | B (dx® + g dx)
with
'.800
g = -I0
' 8o

Thus, we may write

1 I TS

u.-{u,u}-{—gu,u} o (5-3-1.8}
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The actual velocity of the particle is =, whidlfrm {(5~3-1.6) has the value

1
o (P +2M)

/1 - u?
2 - H \)- L u-
u ewu u guvu u, !.uu 0
In the reference system where ™" = {1,0} we get
1 1

;{]_1____.___ > >
Y1 - u?

-g.1 + ~— ., u

(5-3-1.9)

(5-3-1.10)

By cmparison of these cawponents with the special relativistic camponents for the

four-velocity,
ax”

-
u 1

—3

mmemmﬁdemmsﬂnthme-djﬁamimlmlodqg'ﬁ=%,mﬁweg¢c=l.m

therefare see that the u of (5-3-1.7),

(.aé
" ¥
-3

e £)

is now the analogue of the particle three-velocity. Far § we get, using the rela

tion (5-3-1.9)., and T, W =0

Y/ uv‘.
AT
Par " = {1,0} we have
N
B ——
Y1l - u?

(5-3-1.12)

In the next section we will see that in the limlt of a weak gravitational field
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sooz1+2¢

where ¢ is the Newtonian potential of this field, Hence, in this limit,

ty

n ' m¢ . '
+ (5-3-1.13)
V1-u? ;l—u2
Which is- the gravitational amalogue of the relation

m

1/1--~u2

holding for a charged particle in an electramagnetic field in special relativity.
Finally, replacing m, u* and $by mc?, v'/c? and ¢/c? and letting ¢+ » we cbtain

g- ‘ed

Brme? + & my?

3 +m¢

which asides from the rest-energy term mc® is the usual Newtonian expression for
the enerqy of a particle in a gravitational field,

5-3-2) 'Ihe-Interact_:_i.m of BElectramignetic and Gravitational Fields
The dynamical laws for an electramagnetic field in interaction with a
gravitational field can be cbtained fram (5-1-16) by variation on the A, The

Acticn integral (5-1~16) may be re-expressed so as to allow for a variational
principle of Palatini similar to that used for the gravitational field previously.

e putl - 4 e vo | 1
| § = — .3 dx )/-_g‘ £ g {2- F}I\J FDO' - F].l\’(AU,p- Ap-,o‘)} {(5=3-2.1)
mdtakeimhpendmtvanatimsmthef'w andtheA’_l ’I!nresultingfieldequg_
tions being
Fuv = Ap,v ~ A, o, | (5=3-2.2)

(/=g FHV) o 0 . (5~3-2,3)
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The former equations being just the definition of FIJ\J in terms of Au The second

set of equations are the Maxwell equations in presence of gravitational fields in
general relativity. |

If in addition there is a source temrm

- f A 3P d

in the Actimn ftmctimal,v-the-eqlntims {5—3—-2:3)-“-13&(:&:!__3

¢Fg BV = - emg® (5-3-2.4)

and the (5-3-2.2) keep wunchanged. From (5-3-2.4) we see that (/<3 F™) is a skew-
symmetric seoond rank tezusor density with weight W = +1, this inplieg that j“l ‘1s.
a vector dansity-ﬁith the same weight, .'Ihus, the dimrgencn of §H# 15 a scalar
density of weight +1. This may also be seen from the integral s ¥ 3, whibh
beingascalar:l;rp.‘t.‘ias thaua‘f’jndf: is a scalar and thus 3" 1s a vector
density with weight +1. Conputing the divergence of j¥ from (5-3-2.4) we get

j“u =0 (5-3-2.5)

hich is the law of conservation of charges and currents for the system. This
equation is oovariant since the divergence of a vector density of v;eigzt +1
coincides with its covariant divergence. |

The 3 has the form

ifa =} eiJ_dzi §,(x-2;)2} (5-3-2.6)
2

B
that is, we have a system of paint charges moving with four-velocity ii into the.
region where there exists the gravitational and electrumagnetic fields. These
particles in turn are sources for the gravitaticnal field, with an integral

=)= J a4x J""i 8,Cm5p) B L E (5-3-2.7)
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Therefore, the full Action integral imvolving the particle variables has the farm
- = t‘ui‘\) . - .ou 9

g E mijdz'xjdki 64(x—zi)¢8uv(x)zizi + g eivlqda;‘}‘dli 5, zi)Au(x)zi 5 3.2.8)

Variating the ocoordinate of the i-th particle, thezi,wegettheeqlmtiasofm-

tion
s . €. "y I
B {{"a}zf_ zi = =FM i) (5-3-2.9)
.

where at the right hand side we have the Lorentz four-force. This equation is:-a
gereralization of the usual geodesic equation, which holds for pure gravitational
fields. Note that the electromagnetic field is treated separately of the gravita
ﬁimalfieldinﬂlemeﬂxatmelaterismegemetryof-ﬂmespacs,asisseen
from the first integral in (5-3-2.8), whereas the former is introduced a poste-
riori by postulat:mg the principle of minimal coupling with the system of
particles, which gives rise to the second integral in (5-3-2.8). In a complete
unitary field theary for gravitation and electramagnetism both fields should ap-
pear as the geametry of the space, as for instance in Kaluza-Klein's theary 5
where (5-3-2.9) is cbtained fram a gecdesic at a five-dimensicnal manifold, the
gearetry of this manifold is determined from both fields.

Summarizing, the full Action principle for gravitational plus electro-

-magnetic fields and a system of point charges, including all interactions has
theform‘

il : - -4 i P il -
I =5 _f:;?d4x(R 27) awj/?d4xg g {IFWFpU

. Y RN
- Fw“cr,p- Ap,o)}- z m. J d&_’j dli 64(x—zi) /gw(x) z; 2, +

+ 7 eif d4'xf ay 8,Gre) A 8t
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5.3.3) The Dirac Equation in a Gravitational Iield

Frem the special relativistic formalismwe know that the Dirac wave
function transforms as a spincr representation of the Poincaré grouwp. However,
there is no similar result for the general transformations of the Riemannian geo-
metry of general relativity. It is possible to write a general relativistic wave
equation which in manyaspects resatblas.the Dirac equation, but which neverthe-
less: differs findarentally from the Dirac equation in special relativity. For
understanding the nature. of this différence it will be instructive to discuss the

invariance of the Dirac equation in gpecial relativity.

The Dirac equation

oy . .
.Yl-l F -m¥ =0, Yu YV -l-.yv Yu - Z_gl‘m | {5=-3=-3.1)
B }

will be form invariant under a Lorentz. transformation x'V = Lu-v x\’, if in the new

inertial frame we get.
!
i - ' =0
Y ax'™ ™

Inordertodetemﬂneﬂletransformatimla«for‘?andypwhidagives rise to this
form invariance, we write explicitly also the spinor indices. The equation

(5-3-3.1) takes the fomm

B\P- I
TJD‘G —'J"' - m q‘o - 0

We now show that the most general transformation for 'i’iisofﬂlefom
‘i‘]!_(x) - Sij 'i’j (x) . . (5=3~3.2}
with a constant unitary four-by-four matrix S. The unitamlty of S is imposed for

onserving the expression for the density of probability ‘l’; ‘Pi under the above
transformation. We then have for {5-3-3.2) in the new inertial coordinate system
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! ax°

'u ] . 1
o —— - 1=0
Yij ax° 5x’ m

9y

T

1 .-10 k §
Yii oy Sk " S e = 0

this equation will be form invariant if

‘W _~1la ¢
Yig ¥ o T Sim Yme Sy

{5+3~3.3}

Thus, the relativistic invariance of the Dirac equation under the Lorentz growp
15 achieved when ¥ and y" transform according to (5-3-3.2) and (5-3-3.3). It is
simple to verify that the anticammitation relation for the Y 1is also form
invariﬁit when y¥ transform according to (5-3-3.3).

Fram. (5-3-3.3) we cbtain
] - o + LU \
Yij " Sk SV o (5-3-3.4)
_ i
Takingminfinitesimaltrmsfmratimx'p=x“+euvxvands=e 2 AA =

=1+ieAAA we get for these relations. -

) . A '
SY, 0 TV ) - G =i et AL 00 (5~3-3.5)

B _ M M O . .A T u _
TR R T  FATE T Ti; " Mg Yi)  (373.6)

Now, the transformation law (5-3-3.2} for ¥, (x} is such that S is a function of
the Lorentz matrix L“\,lr which amounts to say that ¥ is a spinor representation of
the Lorentz growp. For infinitesimal transformations, it follows that e A, is
a function of the EW. Since hoth € and E}iv are of the first order, the only
possible way for satisfying this is to put € = ¢, Then

S-1+iewhuu, A]Tw -Aw
Therefore, the operator AIJV which acts an the V¥ is not a function of the

Lorent2z parameters oy and the only way for geting an explicit form for the ﬂw
is to take tham as depemientmtheya. 'Ihee:q:licitform_fortlmﬁwintems of



ﬂEYa isd;tatnedbyrequir:lngﬂaatther“ have the same form in all Lorentz
frames, §y" = 0. Inposing this condition into (5-3-3.6) we get.

el CT-'-iee'\’(ﬂ

H =
o Vi A ) =0 (5-3-3.7)

Moo
Bv,ik Tkj ~ Yik “Bv,kj

The vector space of all four-by-far matrices is spanned by the set of sixteeen

| i
basis matrices 1, v, v* v, v* =y ¥ ¥’ ¥* and z [¥*, v’]. Thus

" u ' 5 if A o]
Aau,15 = %v 515 * Puey Yag * & ev 0T YD 5 * ey, Yoig ¢ g gy !‘[Y Y Ji;

Substituting this linear carbination into (5-3-3.7) we cbtain

v gBVgHa ‘Bv o Vo pBY L
(€ ) = 25508 *2egf B Y+ 2e5b,y [Y Y:l

+2iceg cﬁ""J

&y YSr2ie, VysyH -0 | (5-3-3.8)

Bv

where use have been made of the commitation relation

YJL % Upd YA - 2i(glp .Ya _—E‘m : Yp) 'ogg - _:2__ Erp’ Yo:]
The equation (5-3-3.8} involves only linearly independent matrices, therefore each
ane of the several ccefficients must be put equal to zero,

Bv
Bv A

ch +H = 0 . | *

=0

€y & = ‘
1 C Bv eno
€A Bv Mg“+25: f En

the last of those relations is now used for chtaining the valueoffs" we find
f[ﬁ] 7 68 o)~ of &%

Hence,
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| [ 2 _ ."!"
gy = agyel t fB[v] Tx ™ Aay

With this A mcalculabeﬂmematribeyusingth:atS-l+e Au . For the

Bv
term involving the four-by-four identity matrix we will get a term e’ a a0

asﬂzeaimhastobeantisynmetric. By the other hand, the aw camot depend on
theewinthisfirstorchra;prmdmatim,itcamwtdependtoomtheyunatrices,
in other terms, it has to be a nutber. Since no such number is availsble, we have

topul:a.m)=.0, thus getting : _
Ay = fgg“]o SR E‘u’ y;l - (5~3-3.9)
which conpletes our proof, the Dirac spinor wave function transforms as
o¥er) = 1 VA ¥e - 2 ew-[m,'rv] ¥(x) (5-3-3.10)
wmder a Iorent.z. transformation. .
For writing a Dirac type of equatiq'l in general relativity we generalize

the anticommitation relation for the .Yll matrices as was done before for the Pauli
matrices.

(5~3-3.10)
T, =

anwﬂeyuathmﬂn_mdimbes. The ¥ still transforms by

Yo ¥ Yy Yy T 2 g,

{(5-3-3.9) but with point dependent matrices. In the tetrad method the Yll (x) is
given in function of the Yy of Dirac by

Y00 = b 2@ v,
Therefore, ‘P’u will not transform as ¥ under an internal mapping with a trans—
formation matrix § = S(x). Using the tetrad formalism we write the transforma-
tion of _'i' as _
v = 5 e B aye ) Ve (5-3-3.12)



. i-. . .o - ::.
‘@@ "7 Ef(ar_ -ch}

ROIE) (x) = etV hﬁa) h\EB)
and the a(a) (8y e usual matrices of special relativity, and thus are indepen-

dent of the cocrdinates. A quantity transforming as ¥ wnder an internal mapping
1s the covariant derivative of ¥,

o @) =7 @B, v )

(o) €8)
This implies, similarly to what we saw before that I‘ the internal affinity,
transforms unchr internal mappings as

C 1 ()8 @ (@) |
fhy~3¢ ()[(a)(B)u - T °(a)(8)] 'fe,n (a)(B) (5-3-3.12)

Now, it is smpletoverifythatthe 'Yu matrices may be written in terms of the
crumatricesoftheprecedingsecticnsby

sinca

| ¢ - (1 o)
L P R T ' =g, |
v v 'H v
0 c\} _cu_f, Uu cr\J 0 1

Further, the Dirac equation (5-3-3, 1)maybecbcarpcsedintotuoet;uatims for

u,
% R AR
q" ‘. T - .
. . 'u .
){A B 4
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u oA 3,

CTAB-X,}J m ¢B (5-3-3.13)

MP g mmx® . (5-3-3.14)
Replacing the derivatives by covarlant derivatives with affinity .er: o (a differ

ent synbol is used for the case of two-spinors, we will get a relation between
1:hea!\u andtheprevicnsru),wecbtain

dp@ ot + & 5 x) = m g (5-3-3.15)
. B B
cm(x)wA,u A A %) mmX (5~-3-3.16)

As we know, the value fqrt,[-_g.ﬁ is
A __ 1 . [eka. 8 ofa o
e&u BT R UBBR {c’p +.I‘°m o } (5-3-3.17)

If we write the equations (5-3-3.19) and (5~3-3.16) in the notation of four-by-four

matrices as
V@ +T 9 =y (5-3-3. 18)
oH H )
we will find
[ o
. .rn__ | . (ﬁA.B)
0 : A]_l

which is the relation between the affinities on hoth notations, A direct calcula
tion permdts to rewrite this equation also as

R § a a B :
I_‘u_ A Ya(YFp + I‘ﬁ}1 Y ) : (5—3-3._1_9):

where we used the formula (5-3-3.17) along with the formila far the'ru in terms
ofthed‘p'. This hter"fcumlamyalsobepmsmtedintemaofﬂxetet:radas

el o a a B
==Y 7Y by By u * Tan By’
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Thus, in spite of being possible to write a Dirac type of equation,  oovariant wnder
the full MG plus internal group, this equation differs from the Nrac ecquation

in special relativity since there is anymore no relation between the internal map
pings with the MG as was the case in special relativity. The most we have now is
a local relatiomship between these groups .

t
.

5.4) Nm-nelam}istic Iimit of the Einstein Theory

The basic structure of the metric g)W as describing the gravitational
fieldinganeralrelativity isdel:emﬂ.redl:wmposingthatthe field equations of
this theory as well as the equation ofmotion for all the bodies in this field
have the correct nomrelativistic limit, in the same sense that for instance
quantum mechanics degenerates inthe classical mechanics in the adequate limit, The
limit for transition to the nonr-relativistic region holds good for same types of
gravitational fields, the weak fields, or even for strong fields as far as we move ,
far way fram its sources. Doing such type of appraximation of the Einstein's
equations, we will cbtain just the linearization of these equations. As it turns
out clear, if we do just this approximation we are not cbtaining a non-relativis
tic 1imit since we cbtain a linear field equation similar in structure to all
other theories of gravitation in special relativity, The correct non-relativis-
tic limit io ebtained when we further impose that the velocity of all bodies are
- mach smaller than the speed of licht. We recall that in the theery of general
relativity all bodies are source of fields cne acting on all other through non-
limarinteracti_ms. If we impose slow speeds on these bodies we are imposing on
the generated field a limitation, this limitation is indeed just the imposition
that the static part of the field will be the largest one. All other parts due
to the relative motion of the bodles will be much smaller than the static field,



Having deing this, we interpret the resmlting static potential as the Newtonian
potential. |

The linear approximation for weak gravitaticnal flelds is cbtalned by

2 .Bu\,(x) - gu" * {w(,) . det (%v)« 1

consider the motion of a small mass (in order to maintain the weak field agprcod.—
mation) in this field. Then, we can neglect all gffects of thismass on  the
sources of the weak field. .'Ihis allows ps to take the geodesic equation as the
dmamical law governing the moticn of this mass in the given weak gravitational
field. This equation takes the form

dzz_?' 1 ouh az”  a®
it 2 A (g s - Q) e —m D (5-4-1)

Taking the approximation of a static gravitational field, which for our present

limit of weak flelds take the form '
%,o =0, q’o:i. =0
we will get for (5-4-1) for p =4,
dzzi_ 1 ’ dzk' dz£ c
el AL IR TR T o Yo 770

. i
j:lposingthat[%— <<:¢,wecanmglect.themdiuntem,andobtaql.n
- L S E
e —— —

de2 2 ax* $oo

Which is the Newtonian equation of motion for the potential
. el
LAl

in the above derivation we have taken the metrd.c-&_w with signature -2, so that

81 ="61j! 8m=1
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g =1+ ¢ -1 +2¢ (5-4-2)

In the static approximation goi=0,.andwe stillhavegij-.midl is smaller in
nagnit:(.ldethmgoo. The largest part of a weak static gravitational field is

Yoo
The equation cbtained by putting u = 0 in (5-4-1) is the law of the
conservation of total energy of the particle in this Newtonian field,

E=1/2m (dzlldt)z'-!- m¢ = constant

For conpleting the discussion of the non-relativistic limit, we have
toprmetlmtthe;_,Einsteinéquatimschge:mabeinthePoissmequatim for the
poi:ential %2 %c{= ¢ . Since the Newtonian theory assumes that only massive
bodiesaxem&softhegravitaumalﬂem,wehmtomemﬂnnght hand

side of Einstein's equations the stress energy tensor
1 'o'u oy :
’ z, |Z. .
Tw(x) = c Z m, f 6"(x—zi()\i)) Lt A, !

' 1
1 z ?
: 1

This expressicn is the Minkowskian stress energy[i:aasor. It comes similarly to
(5-1=-21) but supressing the term /=g in Sy Far our purposes it is sufficient to
take this teneor instead of (5-1-21). In the J.'i.mit of 8low velocities the
preponderant part is T°°, with value ?

1 c2 ]
[a]e] "
T°@) = ¢ E miJ 8* (x-2,) 3, dx, (5-4~3)
. e ¥l - -
o o
I
9% (x) ~ _e.zz m, J:S"(zx-zi) dli =g z m, & (x—zi) - c? O(;) (5-4-4)
1 1

Multiplying the Einstein tensar Gu v by gw we get -R, therefore the field equa-
tions may be written also as
R=- kg, ™ - k T°° (5-4-5)
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But since R=gW Rw,wegetinthis approximation

ReR% -k 1%, R =2k P @ (5-4-6)

all other components of the Ricci tensor, Rij and Rod." will depend on the veloci-

ties of the source particles and thus are of small magnitude and are neglected.

Coputing R° to first order terms in the deviation %&),md impos~
ing that the field is static, :tw0=Oand ¢4 = 0, we cbtain after same calcula
. r

.

tions

OO; T --—l'— 2 | l_
K E L) = T | (5-4-7)

Exercise: Prove the equation (5-4-7).

So that Eq. (5~4-6) beocomes.

Therefore the constant k takes the value,in temms of the gravitational constant G,

k= - 316 (5-4-9)

cli

and thus, for a point mass p(X) =m &° (X)

¢- —-G-Eakc“ E
r 8m T
and g is
o0
ke? o
g =14+ — — =1-%2 (5-4-10)
v 4 r c2r

all other g's being of second order in this approximation.

5.5) Structwre of the Einstein Equations

Presently we begin to discuss the necessary topics for applicatim in
the initial value problem, the Cauchy-Kovalewski prcblem, to be treated in the
following section. The matter then covered will be of impartance in oar future
presentation of the Hamlltonian formulation of general relativity. Thus,  the
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importance of the present discussion may be outlined through two different points.
First, it has importance fram the point of view of a quantization problem which
starts from the classical Hamiltonian formilation, as is the case for all spin
integers fields. Second, the present discussion will also bear importance in the
discussion of conservation laws for the fleld, since it treats directly with the
symmetry properties of the system which leds to the statement of a correct
problem of initial data for the field. In rather general terms, what we will
cover presently is a gereral problem of structure of the Einstein tensor, which
cames from the application of the second Noether thearem % to this theory. |

Consider a system described by the functioms Yp(xl, A= 1... N,by means
of the Lagranglan density
L{x;y, (=), v, p(x)) = L(z,y(x))

x=(x ... xn), p=1...n

W= fLdx .
- f

Cnsider the transformations
v (x") = £, (x;5)
P - P(x) |
which are assumed to be continuous with the identity transformation. These trans
formations defined on the Y &nd X spacds may be, or may be not, correlated cne to
The infinitesimal form of these transformations will be written as
7, =y, () + 8y, (x) ,
x'P - xP + sx (x) .
Such transformaticon groups may be divided into two classes, the first depending
on a finite mmber of parameters: {Gp} {(for p parareters). The other depending
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on a set of given functions {G, q} this notation was used since a set of fine-

tins, in the case q functios, depend on a infinite mmber of parameters.,

what the Noether's theoreis say is: The invarianee of W under GP gives
the cmservation of a set.of p functionals, {Qp}_,'ofer. In every case this
set may be identified to same physical variable of the system. Seoond, the in-
variance of W under {qu} amunts to a set {Iq_} of identities which involve the
fileld functicngs y € ¥ on each Ifi:aad point x € X This later situation is what
is called the second Noether theorem. We will restrict tothis later case.

The {qu} - may be nme properly described by same set of g-fumctions

ai(,x), i=1...q, by means of ‘
ox* = et £

: s ’ o (5~5=1)
Sy, &) = €7(x) n,; &) + e’p(x) Ypq &)

The fact that we have restricted_ the transformation law far_GyA&) in such. fom
that only the first derivatives of el (x} appéar, is characteristic of the tensor

lar of transformation. This case is sufficient for all known applications of
this thecrem.

Invariance of the fisld equations, the Euler-Lagrange equations for W,
irrpl:l.as that atnmtwe can sum a surface integral to W in the transformed frame.

JL(x;Y(E)) dx EIL(x';y'(x')) dx' +f.Qp de
) Q

'ﬂmebe.ingingeneralﬁmctimsofxand-y(x),theyareofthe‘saneorder'than
Gxanday.-Presentlymtaker=OsjncEa1rdismssimwillin&pend on the
value assuredbyop-. To first order we get

P+ ul, cass = o
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vhere oL .Ap 3L, y 2

ALaL, g4y . , Tes-a®—

ayA ayA,p ' _ x

We may write this relation ag

A " |

L 'S-yA + Y’p._ 0 (5~5-2})
where I is the variational derivative of L with respect to y,,

- - @M

and I® is a shart for |

™a=1axf+ % 1) 3y, (5-5-3)

Slbstitutidl of (5-5-1) into the (5-5-3) gives

e:i[l-“(nAl o/ 11E 1) - ot ii).r;l f[(am L)3'yA + L et YK; + L Gxﬂ '5 =0

Since €l (x) are arbitrary fumctions, the identity sign holds only if {each one of

" the cosfficients of ei, _ej‘u and eiuc vm:l.m separately. -
’ r .

at g e M-t eh =0 (5-5-4)
A vR vy BApL:-TpB .+(YP ghé L) 4= 0 (5-5-5)
YK:_ 3A-B L+ Yii _3Ap LE 0 (5~5-6)

We now specialize these general results to the case where the field variables Y
are the campomnents of the nmetric gw, and the transformation growp in the X~space
is the growp of general coordlnate transformations.

6x* (1) = %) ,
that is, the MG for general relativity. Then g = 4, and63=63.' ¥We have in

place?fﬁyAtlmﬁgwwiﬂlvalms-_

'B'aw(x) (s:,m % By 6“) A- —_ e aw a
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Hence
Mai = Myop =0 ‘
Yii - 5v1 - (gul 53 * gkv-ag) _
The Lagranglan density for gravitation, /=g R, contains up to seoond order deriva
tives of gw but is linear in these derivatives. This allows us to separate

the second arder derivatives as a divergence in the Lagrangian density.

L= /g R=1'+E§°

»J
with |
Y UV, 70 A - A o _
L' = /~g'g" ({m}_{w} {W}{ .. 3] (5-5-7)
K = /3 (smiga}*?— gm{ga})  (55-8)

L' depends just on gw and the first partial derivatives of 90 what really
plays the role of a.lagrangian density in’ the variational principle is L', not L.
Thus, we have to rewrite our formilas (5-5-4) through (5-5-6) for L'. However

r

W= f L4

P

is not- invariant under G, since depends cnly on gw and {]"N}, and no  imvariant
with such dependence does exist. But sinos
5W = SW' +§dcru N
I
where I is thebomdary of integration limitirgy Ry. Then, the surface iﬁtegral

gives .
, ! oM N N
‘f dUu K" = ——— 68&8 + —— X 6{\)(!} dO'u
2g 8 a{ A}
r z o va

" If we restrict to groupe which are the identity transformation onto the boundary

i —_

E, that is,

o fegm s
{Emu}_= _Ea u_(x)_*o ; |x] > E
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we will get OW = 6W'; so that in spite of W' being not zn invariant, the varia-
tion W' is an invariant for this type of groups.

Restricting to such grogps, we try to see what happens to the three
identities {(5-5-4) through (5-5-6). Such identities came frcm the expression

eil:LA(nAl—~ Yy I_‘I:;]_) - (L YA:.),:| [(BAD L)B’yA+ L et Yi + L 6"],9 =0

which omtaing ei(x) andei (x) inside a divergence. Thus, they will not contri

fH
bute to our case, sinceea(x) anélsmu ¢} vanish at the boundaries. We are left
r

just with the term containing G.‘i undl fferentiated,
i].A - Uy
et [t - v, 60 -ty J =0

this simplified identity, in our case is

gt [, S, )] 20 e

where : : o
AQ

and Ly ~ is just the Einstein tensor v’-—g'GM. The identity (5-5-9) may be brought
to a familiar form, if we write the explicit value for L'W,

TR TR AT = | _
G\);u_ (Rv_ 26\, R);u.. 0 (5~5-10)

Therefare, as effect of the invariance of the Action principle under the general
group of coordinate transformations the fleld equations isatisfy, or strictly say
ing, the left hand side of the field equations (The Einstein's tensor G,
satisfy four identities. These later may be locked as if they were four oondi-
tions on the possible solutions of those equations,

Further, if we write the variational equation giving the left hand side
" of the fleld equations, for empty spaces,
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oL’ aL'
/g 6% = CH - - ———
\%Bog,n / By
we will have
32 - ! 3% 1t 3 L' w8
+ - ——— = -z
By g T ag By O g o
aB,it PAO aB,u AT,V o

Expanding the sums over the gm'u and the gio,w we cbtain .

8 * L 3% L' | ' 3%t
it ag.dﬁ,e.agl&,o SAU.BO +!agaB,o askc 87&0.0 ' 3803’0 ag)\d,i '
3t L' 3% Lt 3L I aL'
+ agaﬂ,i alg)uc,o .83\0.01',- ' 38018.'}. .asla.j ot asaﬂ,i %o Pyt -a-;a—B
| (5-5-11)
so that the highest order time-derivative occuring in ¢ - is %4 00
Since -
G‘:g - c‘:‘g + {gl} e +'{SA} M=z

we see that indeed the left hand side of the field equations satisfy four ondi-
tions, the explicit value of these conditions is chtained by replacing (5-5-11)
in this later equation. ZLater on we shall turn back to these conditions.

Before closing this section, we shall prove in a clear and direct
- fashion the fact that the oontracted Blanchi identity follow from the general
invariance of the Action principle., Omsider the variation of W,

i -j e K ad &uv d,x
R4

This is a general farmula fram the variatiomal calculus. We specialize it for
variations induced by mappings of the MMG. In this case, we have from (5-2-3)
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- ¢
R
usingthedistributivep:tpertyofoovarimtchrivatives we have

T - _.J\ ax {078 &) £+ (g ) o Bl f 4x108 %) rRR ) )

R

4 R

&
Now, we use the fact that /4G is a scalar density with weight +1, so that from
(2-1-11) we have
- = i — — A -
(Fg);u -8 sH a4 {Au} 0:
thus _
Tw = —J /=g dax{Gl:z eyt G‘,‘: g J d,x{ (/=g e I =g ¢V EV) ;u}-

R, R,

Takingtheswmetrygm.pas&mi,sotha:tsu.md’éuv vanish on the boundary of
' !
integration, we will get (note that /=g G"mt,'\J is a vector density with weight +1)

Jdax(/? c;“‘\l;}?);\J -f/-fg‘c”"'gudov fI/%‘cl“aa{;v} d,x

R

»

4 L By

- J./-—s" G Ve, 4 -}T/-_s‘ Vg a, -+ o
R |

A z

Then

:VH H LAY

E‘H-—j\' -8 G}N +GI'NE ]'dx
R

and SW = 0 inplies in the contracted Bianchi idantityGl_l:; = 0. What we have
proved is nothing but the Noether theorem, we just  used g more direct & proof,
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5.6) The Initial Value Prcblem for the Einstein Equations

In this section we shall study the prcblem of initial conditions fbr the
Einstein differential fleld equations. This problem is of importance for the de-
termination of solutions of this equation in the following sense: suppose one
gives a set of camponents of g m_vtni:h.ad:'a.givmvahe of the x”:fpresmt.a solution
oftheseequaticrs,cnethenargmsiftheségwatapointinthefuune with
respect to x° are still a solutien of the field equations. Therefore, the know
ledge of the correct statement of this problem permits us with a prescribed way
for propagating given solutions in time, Besides this, the initial value prob-
lem will be important in the laydownsof a canonical formilation far the field, the
initial = point. towards the field quantization. Usually in physics, one  gives
the discussion of the Cauchy-Kowalewski problem in the framework of the canonical
foxrmalism. However, fram the mathematical point of w, this problem may  be
presented simply as the study of the initial conditions for a given partial dif-
ferential equation. We shall do in this later method.

Priar to the statement of this problem, is the determination of the
regien upon which we rest the initial valuves for the system. In special relativ-
ity this represents no problem since space-~time is absolute. In general relativi-
ty we shall run in principle in difficulties. We need to speclfy a space~like hy-
persurface uypmn which ﬂ'leCaudly data is glven, but the specification of such hy-
persurface is conditicned to the knowledge of the metric on the four-space, that
is', we apparently have first to solve the equations and only afterwards to cbtain
the initial data implying in sich solution. This should be a rather disappointing
feature if it indeed oocured. However, it may be shown that the specification of
a space-like hypersurface may be dme entirely in temms of general arquments ~ on
the behaviowr of - independently of the fact that 9, 18 & solution of the field

equations.
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In particular one may chocse sudch hypersurface as given by the set  of
coou:dinal:e‘ssa"l:iafy:l.ngxo=c,.ipw:i.thtimee-].i.kenormal111 =-6;’. For the signature
-2, '

AV ' _
| g Eu£U>0 .
sothartg°°>0. Also g < 0. Thus, we choose the hypersurface S :Ln.such form
thatincnn-coordinatesystanithasx°=catallpoints. We may further take
- 3 “(¥r'x°)
c=0. mSwesped.fygw=gu\§xr,0) and_g = o. Thus, on S

we know guv,i and guv,i'

Higher order spatial derivatives may be cbtained similarly on S. The

initial data gw (S) and g v (8) together with the differential equation ",R.u{,-é 2

form our Cauchy-Kowalewski initial value problem. Suppose we expand gW(xr, )

arond x° = o, _
ng(xr, z°) (x°)2 azgw(x‘,x")
] .

&, =% =g 5, 0) +x : + ..
Eu\‘} ) Sy ' 3 x° o 2 ax® ax® o

if we can get the tgn quantities %u,oo"‘r"‘q’ fram the differential equations

R, =0, in tems of gw(xr,xo) and g o(x’-',x°) plus their spatial derivatives.
r . .

328uv(xr’xo) | | 3803(31::!0)
- ' r o ) - _
o N %\, a8 x"x), __—_ax" , + space derivat. (Sf 1)

x
then by further differentiations in time we may get all the coefficients of the
previous series expansion. This will gives gwcxr,x°) undquely in terms of the
initial data on S, and we have solved our problem. Then, in order to solve the
prcblem we have to determine the form of the relations (5-6-1).

A direct calculation gives

=1 0 - - 56
v T 78 Buv,00 * Boo,wv T Buo,up T Bup,ue’ Ky -6-2)
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Ku\J = fu\) (SGB » Sas , p) (5-6-3)

Thus, mStheKWafekrmsincetheycmtajnjustfirstmﬂerébrivatiws of

Io*
An easy calculation gives
Rij(xr,_xo) -3 8% 81 00 * Mij (5-6-4.1)
Rbi(xr’xo) =T %_SOj gij,oo *Mo (5-6-4.2)
R, OF,x°%) = 2 g 85 00 * Moo (5-6-4.3)
vhere
Moy = B 2%, 80 (G50, gy T

'I'heMWare.givmmerantheinitialdata. Therefore we conclude that cur dif-
ferential equations, the (5-6-4), aretenequat:.msinjmt six unknown, the

g . The g are not present in the equations, and thus cannot be determin
ij,00 oM, 00 -
ed fram the initial data. The results dbtained are:

1) You, 00 1s left undetermined by the fleld equations, and consequently gou(xr,xo)
I 4
is undetermined as function of x°.

2) The 95,00 are determined by the field equations in terms of the remaining
r .
variables, caompatible with the initial data. But the six gij 0o X in lower
nurber than the total mumber of field equations, as oonsequence we have four
relations among the 9ug” 9u8,p and gaB,ij' For instance, if we use (5-6-4.1)
for cbtaining gij,oo'

o

ij,o0

we still have four relations, the (5-6-4.2) and (5-6-4.3) which represent four

-relatimsarrmgthegas, gdB,p mdgaﬂ,ij' They are



177

A TIPS

g4 + M, =0 .
ij,00 00

Lj.00 1o

1 0

4

~In particular, on S we also have four relations among the twehty elements formiug
wp the Cauchy data. This means that ciais data cannot be chosen arbitrarily;' but:
mst be consistent with these four cenditicns. These oonsistency cxmdltimsa;e
_not the result of the property that the field equations satisfy four identities
(the differential Bianchi identities}, but is related to this fact, ILater on,
when we study the Hamiltonian formulation we will see that the four Blanchi identi
ties give rise to the s¢ called primary constraints on the canonical set of
variables, whereas these four relaticns presently referred give rise to the second
ary onstraints. The presence of sources for the field will not modify the con-
tert of the differential Bianchi identities, since T;”: = 0, thus the primary con~
straints are not . modified by the presence of scurces. The field equations are
wmodified by the presence of sources, therefore the secondary onstraints are also

- modified by the presence of scurces. This znplies too for the statement of the
Cauchy preblem, .présently we cpsider spaces fres of souross,. *me presenca of
these extra varisbles will just wXify the right-danc side «f t%e fleld equations,
case where we get ) : .

e i T
g7 g

I
: -

Bij.80 " ;5
431 the Yemainilg being wnchanged in the mathematical formulaticn of the initial
value problem.

The geametrical interpretation of the fact that the Einstein’s equaticgs
fall in giving a dynamical solution for the c:cxrpme.nts-gou may be seen fram the
following argument: If we consider a coordinate transformation which on 5 is the
identity tragsformation, for instance an infini tesimal mm,-

r _o
M= g vl , X.)
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with | |

-Ea(xr’xo) -,x° fﬁxr)
whereas for all points cutside S the mapping is arbitrary, -The field equations be
ing invariant under such mapping cannot contain any variable which.dlahges under
the transfarmation with no compensation coming from other temms. It happens that
Yo is exactly such type of varizble since it measures an interval with a oconpo-
nent normal to S, -the &x°, -
da = (géu_dxe'dxu)uz
and thus will change under the mapping. In other words, by taking such types of
meppings we may give amy arbitrary value te”the”gou, thus showing that no pre-
scribed value may be set for these variables. The only possibility. for fixing
the-gbu is to choose a coardinate condition once. for all., For instance, we may
moomﬂmmdimmsyamsumm;tmegmnﬁg. 'I.-Iowever,we do not
sntend to do, this now, since this gives up the principle of invariante, we rather
take the g, as wndetermined varisbles in the Cauchy problem.

ILichnerowski has given a presentation of the Cauchy problem which shows
more clearly. the fomm assumed by the four relations.on the Cauchy data 37. He calls
this method by the Normal Form {of the Field Bquaticns. He uses the Einstein
tensor instead of the Rlccl tenscor, case where we cbtain

1

ej 00 _
G, 28 Ry *s ) Ry, (5-6=5)
=5 @R -3

oo o
n

L g, p (5-6~6)

Uaing the previous expressions. for the several carpments of the Riccl tensor we

write this as
© . 0 00 e
G, =8 Hij-+ g8 M (5-6-7}
o_1 00 o ] _
Go_—-'z (g HOO g Mij) (5-6 8’)
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Then, Gou is a function anly of the Cauchy data and of iheir spatial derivatives.
The normal form of the field equatiuns is to take for the first six equations Rij‘:
=0, andfortheremainingfcurequatimscql=0. This shows that the six equa-

= = _ 1 k1
tions Ri:'l =0 (or R:I.j —Tij-'zgij g Tkll detemd.nethegij'ooby
2 M.,
1]
-3 = = '
1j,00 00
or by : 2
g '("H--"'T..-%g..T)—

ij,o0 ij ij
and the remaining equations are consistency conditions (on S) upon the Cauchy data.

o
Sy fulBur Bug o0 Bap i) < O
Inthecaseocfpmsenceofexternalsamms,

¢® - r°
TR

these will be the secondary oonstraints present in the Hamiltonian formalation for

=0

gravitation.

Ih order to clarify further the content of this secticn, we will
give the carresponding problem for electrodynamics, and will stablish the simi-
larities between these two sitnations. In electrodynamics, which is a linear
vector field theory with null rest mass, the field variables are the potentials

Ai. = Ai(xr, xo)
Ao = ¢(xr, xo)
with field equations
' O a4, =0 | | {5-6-9)

The fileld equations (5-6-9) and (5-6-10) are a step‘ beyond the gravitatimal field

equations due to the fact that the later equ.atim,- namely the (5-6-10) is equiva-
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lent to a "coordinate condition" in the sense we used for the gravitational prob~
lem, 'IhisequatimispoésibletobesetsincatheAﬁ are arbitrary yp- to a
gauge transformation, so thatwen'naﬁrinposemthemﬂns omditim.. Similarly we
nﬁ.ghtirrposem.gw four conditions, the coardinate conditions. Iet us study the
Cmﬁypmmmﬂiﬂmmummum;mddetemmnsml@es with the
gravitational problem even if there we didnc;t-meanyma:ﬂinatecmditim.

The Cauchy data is given by the set of eight quantities on a given
space-like hypersurface, taken as x° = o,
! r r
& G500 =g G5
#x",0) = h(x")
¢ a(xr,ﬁ) = p(x")

Expanding the potentials in poser series of =
| -
, , r_o
(Al-l,oo(x X ))x°=0+"'
‘The solution far this problem is cbtained when we get the four quantities
(xr,-xo) and d:eo(xr, %%} from the fleld equations. Since now We have five
1

r_ o r o r _o,
Al_'l(x sX ) -_Au(x ,0) + x (Au,_o(l »X ))30_0 + ;

A
i,o0
~ field equations it follows that the Cauchy data is subjected to one ocondition,

which is just the (5-6-10) |
i o
Ay, + ¢ = Ai,i - .¢’° =0 : (5-6-11)

or, on the hypersurface x° = 0,

px) = £ () (5-6-12)

’ -
So that the imposition of the Lorentz condition as a gange condition has the ef-
f.ectofdzq:pingartmelarentoftheCaudmydata',-thepbxrl,-midz-is_givem as
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function of £, (x'). A similar situation for general relativity should eliminate,
formstmce,ﬂlegqlbysettdngthemeqmnltoégbymansoffarcoordinate

conditions. The same applies for the checking of the nuvber of equations, we
have ten equations GW=0' plus four coordinate conditions which gives fourteen
relations, and we have just ten unknawm, the g}N,OO' thus we will get four condi
timns of the type (5-6-~11). They are used for elimminating the non-physical varia

bles Top® .

Thus, after dropping the p(X") fram the Cauchy data, we are left with
fi(xr) ' gJi(xr) and h(xr). A similar reduced set for general relativity might be
9;45) gij'oucr) and g O}, Note that 90,0 Which depends arbitrarily on
the cholce of coordinates cutside of S is still present. Similarly in electro-
dmardcs we eliminate p = ?oblrtstillhaveh=¢vmid115mthmtically simi-
lar. This means that our solution for the Cauchy prcblem will involve gauge

invariant as well as gauge variant quantities.

The four edu.:a’c:l.ms (5-6~9) give By oand ¢ in temms of the elements
r 4 :
of the Cauchy data,

A,  @&F, x°) = Ai'kk(xr, x%) | (5-6-13)

i,o0

¢' oo (:r » xo) - ¢’kk(xr !xo) (5-6-14)

(we are using a metric SW with signature +2) By sucessive time differentiation
on {5-6-11) and using (5-6-13), we get at *° =0,

Fm 2
S0 " A" E O

r
¢,oo A:i.,:i.o gi,i(x)

hooo = &; 1o " Atuek "V fi,4 ()
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and so on. - Therefore, the solution for ¢ according to Cauchy's problem is

r o I o T (xO)z r (xo)a | | r
«x »X ) = h(x ) + X fi’i(x ) + "'""-2-— 8i,i(x ) + _"'6""'"' vZ_ fi,i(x )+---.
(5-6—15}
For the vector potential we find similarly
r _ o - o] r (x°)2 r (x°)3 I
A]..(x X } = fi(x ) +x S]-_(x y+ e vz fi(xj * . VZ Si-(x)"'-i- (5"6'*16)
2 6
Under a gauge transformation ’
ALGE 2% = A, G50 + AL GF 0 - (5-6-17) -
§&E 2% = ot A G a0 (5-6-18)

where A(Y) is a solution of the scalar wave equation [OA = 0. We take the set
of gange transformations vanishing cnto the hyperplane x° = 0,

A(xr, x° = 0) = 0, for all x €8

but: otherwise arbitrary. Expanding this function in power series of x°,

oy 2
!‘L(xr,xo) = x° ﬂ’o(xl:',ﬂ) + -(% A,oo (Xr,o) * e

. (10)2
= x% a(x™) + :

b(x") + ... (5-6-19)
2

the functions a(), b(x)... being restrictedbythe scalar wave equation. Then,

on S
Al (5, 0) = A (x", 0) (5-6-20)
¢" ",0) = ¢x", 0) + a(x) _ (5-6-21)

as_consequence, the vector potential Ai(xr.,xo) is gauge invariant on the hyperplane

x°=0. In other terms, A, is a finction only of variables associated to the hyper

plane, and doestit depend on the. chelee of gauge outside S, and is invariant, The
scalar potential is not gauge invariant on the hypezplane x° = 0, and pairs.  with



183

gou' whereas A, corresponds to g:l.j' We have from (5-6-20) and (5-6-21)
£} ) = fi(xr) (5~6-22)
h' &) = hxF) + ald) (5-6-23)

Taking the time derivative of equations (5-6-17) and (5-6-18) and setting x° = 0,
we find

gl (x") = g, ") + ‘,iﬁr) (5-6~24)

p' ) = px") + b(x") (5-6~25)
the equations (5-6-22) through (5-6-25) give the variance of the Cauchy dataon S
under the gauge transformations considered. However, the (5-6-25) as it stands is
not yet the complete story. Indeed, from (5-6-12) the p(x'} being the divergence
of fi(xr) has to be invariant on accomt of (5-6-22). Indeed, we have not used, as
yet,the fact that (OA = 0. From this equation we cbtain limitations on the func-
tions a(x’), b(x)..., we have

(x%)2

OA = (32, -3 A=x° by —~b&) +x° e + ... = 0

a, +
kk 2

since this equation holds at allpoints.(xr, xo),.tald.ngx°=0we get, at S

b(x") =0
so that from (5-6-25) we dbtain

p'(x") = p(x") (5-6-26)
Our conclusion is as follovs: The Cauchy series (5-6-15) and (5-6-16) giving the
fields on all space-time points from the initial conditions on S, represented by

the functions fi(xr), gi(xr) and h(x"), on a manifold where all gaxe transforma-
' . ey
tion are solutions of the scalar wave equation, and vanish on the hyperplane S,
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.willomtaingaugeinvariantawellga;gedepen&ntfmctims. 'I'hégauge invari
ant parts are those containing the £, (x'), the gauge dependent parts will be

those depending on g, (x") and on h(x*). It will be important for subsequent dis-
cussions, when we wili-stxﬂy.ﬂae Hamiltonian formulation of Dirac, to separate

these two different te.ms We indicate by Af[) A:EII) the gaxge invari-
ant andg&lmvariantparuofai The sae _for the scalar potential ¢,
a, = Al + a U0
L
¢ = ¢(I) + ¢(II)
042 g
A?) (x",x%) = £, (x") + ——= V% £.(x) + ... (5-6-27)
2 1 ) .
&%)
A GF 2% =2 5 () + 2 g, Fy+... (5-6-28)

3

I, r o _ 0. T 2 r _

¢ (x,x ) =x fi,i,?‘ )+ fi,i(x ) + ... (5-6-29)

x%)?2
2

3 (F x%) = nty + sl,i(xr) + ... (5-6-30)

We shall use here a definition which later on will be of inportance. We call any
quantity which is invariant under the function growp of the theory which leaves
unchanged the hypersurface S, but which changes arbitrarily the region mtsidsi s,
by D-invariant. Examples of these quantities for electrodynamics, where the fmc—
tion growp is the gauge growp, are the A(I)f(xr X, * another such quantity might

* W might agwtg the fact that l:he whole: A (x x°) is D—z.nvar:.ant, since A, =
Ai;) (II), and on S the. A(II) vanish. Thls shows that indeed A pairs

with 3ij'
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be the ¢m (xr,xo), but this quantity is zero on the hyperswrface S, as is seen
fram (5-6-29). In general relativity example of D-invariants are tha=gij(xr.(x°)
and its reciprocal eij(xx,xo) .

Still ancther farm for characterizing the field variables is frequently
used, specially in comnection with the exhamstivewarkby Arnowitt Deser and Misner
on the dynamical oontent of general relativity. This notation is an extension of
the usual vector notation which decomposes a vector into longitudinal and  trans-
versal components,

T

Vaviasyl

T Y o
Vi’i(x,x) 0

T oy
Eijk Vg."’k(x s, X) =20

Since a gauge transfcrmation on Ay just adds a gradient,

Al = A, + V. A
1 1 1

+
A=xT+30L

which transform.
| TaE 5% = kTt )
Blaf,x% =k lat 10 + et 10
so that A; 1s gauge invariant and ] is gauge dependent. This identifies the
transversal compenents with our ALY and AL with the 2D, By extension  we
might call ¢2 by ¢ ana the ¢TT) by ¢,

As 1t follows from (5-6-27), (5-6-30), on S the Ay is of the type "T",
4G5, 2% = 0) = Af‘t) *,0) = AiT
and that on S the scalar potential is of the type "L", that is gauge variant.
o, 0) = ¢, 0) = &
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misshowsthathmlythevEctorpotentialisaphysicalquantity,the scalar
potential is nan-physical since depends on the cholce of gauge. Simlarly, in
general relativity, on S only gij=gij(.xr, x> =0} is a physical variable, = the
gwc:r,m will depend on the cholce of the coordinates in the neighbourhood  of
the normal to S at the point x* € S, In the Hamiltonian formilation this will pose
difficulties, and we are guided mostly by the results which are cbtained for the
simple case of electrodyamics. In this cage, what we do is to eliminate the scalar
potential by choosing an appropriate gauge, ¢= 0. We still have the A U into the
description of the system. We will not enter into further discussions of this
subject since we will turn back again to these questions when treating the
Hamiltonlan formulation. We deserve to this paint a more detailed discussion of
these topics.

¥

5.7} The Linearized Einstein Field Fquations

In this section we will study the wesk gravitational fields, that is,
the fields which are characterized by a samll, first order, deviation fram the
Galilean flat metric tensor Su o+ Such fields were first considered by Einstein

himeelf in 1916 SO,

Because of the smallness . of the gravitational ocpling
constant the linearized form of the fleld equations resulting for these flelds is
applicable to a large class of gravitational phencamena. As long as we accept the
fullnmmnarﬂleoxyasmect,tomiderﬂwhmarfieldﬂeoryanmpmds
to take a very strong spproxdmation. Indeed, we know that there exist solutions
ofthenarlimarequatimsvdﬁ.dlommotbeappnmimatebyseries of perturbations
. starting with the linear equations., This means that all solutions presently taken:
of the linear equaticns, may bear little or no relation to solutions of the full

theory. However, tﬁereexistsanintezesttwards.thelmearapprmdmatimaslmg'
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a8 we do not know in detall the behaviour of the solutions of the full non-linear
equations. Still exists the hope of determine the necessary conditions in order
to spproximate correctly a solution of the non-linear equations by a series of
goluticns of the method of perturbations starting with the linear equations as
the first order approximation.

Thus, taking in mind that this is just an approximation, which must be

carefully. taken into serious account with respect to the classifications of the
solutions for the field equations, we may without further difficulties to under-
taken the linearization of the Einstein equaticns. The theory which emerges in

this approxination is a spin 2 theory for a field which does not interact with
| himselt, similarly to the spin'l fields of Maxwell or Proaca. This theory is
indeed similar to an usual theory for gravitation in special relativity, a result
o be expected since the non-linearity of the field equations came essentially
| frun the. imposition of general invariance of these equations, .. or ..equivalently,
of the Lagrangian density. The simplest possible form for the Lagranglan satisfy
ing this invariance was found to be non-linear in the field variables and their
derivatives.

We start by saying that for weak gravitational fields there always exist a
| coordinate system where the metric temsor g, is the sum ofgwandafimt
order deviation € ¢W. Iet us call this coordinate system by W.

8,00 = &y * € 0,0 (5-7-1)
Wiﬂiﬂlisguvwestértttlemwssary calculations for introducing the Einstein
tensor and then cbtaining the field equations to first order in €. First of all
we need the contravariant g®” to first order in e. Writing,

P = gV o+ e W

and inmposing that this is the inverse matrix to the =N of (5-7-1), we find
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gVx) = gV - e PP W 4o ) (5-7-2)

Since the Christoffel synbols are of the first oxder in ¢,
u & E O]J\’ -
. {DO'} (¢ %\’:p ¢DU,\J)
Therefore the Ricci tensor is ' '

o~ B
R =7 1 gpo(%,po % w "% po??

with
o= ¢

Calculating the scalar curvature R from this equat.i_a'n, we can form the compments
‘of the Einstein tensor, it is found the value

£
= (® - - fele) _
w7 B Qo0 ™ bip,0 = %, p0?) Euu 8700 08 by, op) 5-7-3)

By convenience, we introduce the new variables
lo
%\j AT (5-7-4)
This equation may be solved.ﬁor the qhv in terms of Ywas"

lo
%v-Yw—f&uvY

IntemsoftheywtheEinsteintensortakesthefom

£ £ (op0 - @y _ (0p0 opo AR “ -
Guv 7 (8 Yuv pa @ up o) v (& Y\Jp.d).u+ gI-l\J g (s Yﬁ?&pﬁ_).a (5=7-3)

Sothatthef:l.eldequat:l.cnsareﬁ

€ _ ,0pa _ ,ep0 . 0pT QAR - - ~
H [gpc w00 T € Typ,0) 0T @ Yyp o)t BB @ YpA.B).C;I k Ty G-776)

These equations may be simplified by a convenient interpretation of the symmetries.
presented by the metric A of the weak field approaximation. Indeed, from (5-7-1)
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m\eﬂfythatgwnaybeswjectedtoaﬁ)itraryPoincaréma;pﬁmgs

) S T A T - -
R N AT S

since the new gw still has the form of a weak gravitational field.

o

ax BxB

"y e - (R0 _ o0y ,<B _ B
B'W(X) Byg (X (Gu. ﬁu) 6y = %) 84g

ax'™™ ax'V
to first order termme this takes the form

&), @ = §w I NER SRS S TOX
but the infinitesimal ILorentzian rratrix-lw is antisymmetric. so that
~ D :
s‘w(x) “g,* € v = gw(x)
which proves our statement. Besides these transformations, we may perform gauge
transformations (these transformations will be seen to be just the gauge trans-

formations for spin 2 fields),
) x'u - xl-l + Ell(x)
where the £ (x) are first order infinitesimals, In this case
Y a_ -0 B - 8
gy, ) = @G-80 -5 )@ g+ e )
‘ o . : ; .
=gt by EL Ly Euy +0&2, € .€)
expanding the left hand side in Taylor's series around x,
1 o 9 - _ .
By @ T By T € 8y 8y TR G779
which has the form of a weak gravitational field (according to (5-7-1}} for
€ ¢1'1v(x) =€ ¢W(x) -£ u'\,(x) _Ev,u(x) (5-7-8)

Ehisiastemmumsaysthatﬂaepoint;bpamhntpanofﬂnmdcﬁeldisdetamE
eduptoatemsuv+£vunhemthe5u (X) are arbitrary infinitesimal functions.
r r
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The Riemann tensor R is invariant under the gauge transformations. Indeed,

Hvpo
the carpcnents-of-RWpU'up to first arder terms are
~ 1
Buvpo ~ T80 ,vp * Bup,u0 ~ Bup,v0 T Buo,up) (579

a direct inspection shows that under x' = 3" +£¥ (), we get
' -
oo ™ Ryvpo
Thus, the Riccl temsor and the scalar curvature will be too invariants in the first

order approxdmation,

AB

- = 9A8
Ry ™8 R g\ R

PAVE
is already of the first order. Then

oo 9iAB - OAB -
Ru\) g RuAvB 8 R‘u)wB Ruv

since Rlﬂ vB

- similar proof holds for the scalar curvature R. Therefare, the Einstein tensor is
gauge invariant, GW‘ = GW, and the field equations will be gauge invariant as
long as the source tensor Tw'is also gauge invariant.

Besides this, the field equations chvicusly display covarlance  with
respect to the Poincaré mappings. The property that the field equations for the
ten unknown qi-lv are gauge invariant shows that the field equations (5~7-6) may
. be further sinplified by imposing a gauge condition., In order to show that the
present situatiom is entirely similar to what happens in electromagnetism, and in
the spin 2 flat formilation, we give the correspondent treatment for those
cases as an example,

For electramagnetism, we hawe in place of Iﬁwm the gauge invariant

field strength FW and the field equations are

v _ .
F,v ]
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the potentials Au are not gauge invariant, similarly to ours ¢|-N but erraybe
thm@mtasifitwemmcperatomactingm&uandgivingasresultagauge in-
variant quantity.

Indeed, we may put
- - o (a0 a - 0%
Fiv™ A T AL .(611 %~ &% Bu)Aa w Ay
similarly we may present Ryvpo of (5-7-9) as an operator equation on the gauge
variant Gy

1 2 A LT a2 oh 2T a2 A 2 = aAT
Ru\)pc Z{Guscavp avapam auapaw Gvaaaup}sl'r Ouvpcsl'r

mtbeaboveexpxeegimforowehmefortheMamellequatims

(6“3 3, a 3V 2 )AL = 3,

L
(al:!aamu

TheA a:edeteminaduptothegradientofmarbitraryfmctim,sothatwe may
impose on them one condition. The field egquations being entirely given in tems
of the gauge invariant Fw.a:e,ma«ra:e'o;ftlus arbitrar.l*ty in the Au We -thus impose
the subsidiary condition of Lorentz.

3% A =0

o q
case where the sbove field equation goes to the D'Alembertian equation with a source
function jll'
. DA]J =3,

The gange functions &(x) which are allowed are now those which satisfy the scalar
wave ‘equarl:icn.

O =0

For spin 2 and‘null rest mass, similarly to photon equat:l.m.s_een, we have g gauge
. variant potential AW W , and introduce a differential operator which acting on
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AI-N yields a gauge invariant .qimt:l.ty. This q:erator may be
A

Ao sA
Ope = 8 3 = 85 3,

since

A A A
Qu[po,] . (,Gp 30_ 60, 3p)Aux 090' A].I)t
is gauge invariant.  However, we still can introduce the cperator

AT _ oA oT a2 _ A (T a2 A eT a2 _ A . T a2
Ou\JpU 6}160' va Guﬁp 3W+6\J6.p aw 3\,50 aup

‘which gives. too a gauge invariant quantity.
AT
ﬁﬁlﬂ pal = %uwpo A
This later cbject, the 325-"’] 7o) has all the symretries of the Riemann tensor
R oo - Feally, the ‘Q[uv] [p] 9ots identical to R . if ve make A identical

to the metric 9 The field equations are the Fierz-Paull 38 equations for spin
2 massless fields,

= 1 .
%v:QuV"’fAqu'Tw |
P 980 . 9B
R = & Bpiro £ 80 %,
sinoethez\waredebemﬂmeduptoﬂlehwwledgeoffaxraﬁ:itraryfmctimssum,
we may impose on them four conditions. These oconditions are just a generalization

of the Lorentz condition for spin 1,
o
3 Ay ™0 | (5~7-10)
go that the fleld equations simplify to
1
0@, -3 &uv & =T (5-7-11)
- g8
A=3g AaB
As we note, the Flerz-Pauli theory for a symmetric second rank flat tensor is
indeed very similar to the linearized Einstein equations, we may therefore impose
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too in the case of general relativity, in the weak field approximation, conditions
similar to the (5-7-10). In this case they are called a8 the Harmenic cocrdinate
cnditions, suggested first by de Donder and by Fock. They are written for the
Y.I_N(er

87 v

up ’o(x) =0 (5-7-12)

The field equations (5-7-6) then simplify to the D'Alenbertian type of egquation

with a source function.

Tuv,po
These will be the equations for the gravitational field in the linear approsimation.

7 8° &) =k T ) _i (5-7-13)

The Harmonic condition is then interpreted as a gaugs conditieon, & fact largely
used in all the applications of those equations. Allmdimsaxelmered and
raised by §. Iet us now see how the Yw(x) transform wnder a gauge transformation,
fram (5-7-4) and (5-7-8) cne gets

. = _ A _ ) A
IO ROIE SYARCORE WANCORE AN
mli?.plying this by the gperator 8"“ au we cbtain
VO - 9 Vo -9, gua A
8 vy o = & Py, (@ TR ETE, |
in Qrder that the transformed Y'W still satisfy the Harmonic condition it is °
necessary that the gauge transformations be such that

8% Sy =08 ) =0 (5-7-14) o
Which is entirely similar to the presexving of the Lorentz condition in: Electro- |
dynardcs, case where the gauge transformations are subjected to s;atisfy the wave
equation. Thus, we use only gauge transformations which preserve the Harmonic
coordinate conditions. They are the transformations satisfying (5-7-14) and form
a amb—grap- of all poasible gauge transformations,
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6. SOLMTICNS OF THE EINSTEIN EQUATTONS
6.1) Solgtium of the Linearized Einstein Field Equations

We begin this section by discwmssing the solutions of the lineavized field
equations of Einstein. The reason for that is twofold, first we begin by the
simplest possible situstion, which for didactic reasons is quite logical, -Sec-
ond, the knowledge of these simple solutions will serve as gulde marks towards

the wnderstanding of the content of the full solutions, Besides the cbvious
argument that due to the emallness of thé gravitational coupling omnstant,
' these solutions serve for characterizing a large class of gravitational fields

of interest,
As we have seen, ﬁnmleariaadEinsheinequattmsnaybeputinﬁeﬁorm

€ opo - e
78 Yu,e0 k Tuv (6-1-1)

plus the supplementary condition

opo .
-0 e | -
g Yp,o’, ) (6~-1-2)

'I‘hé gengral solution of (6-1-1) is

.- £ Y (x) = e% (%) (x)
(1)

m YW is asolutimoftheequal:imwiﬂiﬂae source berm, a particular
soluﬁdl, _
-k ' 1y 2 '
Eq)w ) =3 Id“x 8 ((xx')?) Tpv(x ) (6-1-3)
(2)

and Yov is a general solution of the equation without the right hand side,
the homogeneous equations. In discussing these solutions we shall consider sev
eral spiclal shtuations, o

(a) Statlonary Mass Distributions,

Using the general fo:::rulas.'l‘}_l puuuuvhere ot is the four-veloctty of_
the source particle, we get for a particle at rest at the arigin of the spatial
coordinates
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T, () = m §30x)

all other camponents being null. Then
(1)

€ Yoo () = %I dx? f d,x’ §({x-x"?) §q(x")
- 'i‘??f ax! J dx' S((xl-x )2~ '-D?) & &G
recalhngﬂmtmthennearapprmdmaﬁimﬂ)emleofﬂ\enetricistdcenmr

by the flat SW. Integration over x! gives

W ,.
€Y o =52 [ ax) 8(Gxix)t - ¥

Using the formmla

G(xk-a&) - {6(x+a) + §(x-a)}

2|al
which in ocur case 1is

ft % "“2 1 (! l-v + 5(x'= ‘-rl }
6((’- d-“oj) - X ) - ;—: (xd_xo + :l) (xo xo- x ) __

we get

g I

e A1) 1 *i
£ Yoo(x) - %—E -l:::-[- {Idx; G(x;—xo+|;|) +f dx; B(x;-xo’-lxl)}

each cne of the above integrals give ane, so that their sum is equal to 2, there

A

fore
(1) km
€ Y -

21T|;| (6-1-4)

Rewriting this in terms of the %Ubytsingthefonmla

1
‘H.N "YW 7T guv Y
(1) (1)

and recalling that the only non-vanishing YI.N is the ¥ oo! e get -
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¢o:i. =0
1
¢’0{:} -E. YOO
1
¢rs E 6!’8 YOO
Thus,
km

goi-EdJoi-O

km

[ ' '
gt"a 6rs( 1+ 2 Yot))- 51‘-- 1+

-+
4| x|

substituting k by its explicit value - -a“—(-:-, and using dimensions where the

C
velocity of light is_c, one finds

2Gm
g =1-
00 czl;I
8,1 = 0 {6=1-5)

2Gm

g =6 -1 =
T8 ra czl;;l

Wesee that the linear approximation holds good only if 2@4/rc?<<l, where r =

= |§ . This représmts*’a limitation on the possible values for the mass M

source of the field (in this example the field is static). At the surface of

the earth this ho;l.ch good since there
26M/Re? 2 1077

Even for the static gravitaticnal field of the Sun, case where M 1.9%1033 d,

R % 864 000 miles, we cbtain

26M/Rc? 2 1078
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What happens is that the Sun being in gaseous state, its mass is distributed in
a large region, thus R is large as compared with the mass of its several parts.
This tends to make the above ratio smaller than it should be if for instance
the Sun were not into gaseous state. For the stars of the type called as
"white dwarfs" which are small in size yet are very massive bodies (for instance
they are about 150,000 to 800,000 times the mass of the Earth) with all the
mass conoentrated in a region of the size of the Earth or even smaller, the
aboverat:l.orraygomtothevalmlo-3. For the Neutronic stars this is even
lower than this value, eventually reaching the wpper limit of ane, This gives

an idea of the wide range of application of the linear approximation,

For general stationary mass distributions characterized by T, o(X) with all
other components of 'I‘W zero, we hawe
(1) Too("")

k
£ Y oo(x) - -2-1? d3x' —;:E— (6-1"6)

A multipole expansicn is cbtained by expanding the denominator into poeer series
of x't, (r = %))

1
1 - !l .!-_ l 1T a8 i
-i__fri--? x (r)'r.-l-zx X (r).ﬂ'l- -
(1) k M 1 1 1 .
EY 5o = ﬁ{? - Dy (?).s *% Qrs(?).rs T e (6-1-7)

Taking into acoount that Too(xJ ie just ecual to the mass density p(x), the
first term is the fleld of a total mass M ag if it were at the crigin (gravita-
ticnal moncpole field). The second term represents the dipole field and the
third the quadnpole field, and so on,
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4 -J%o(x) 95
D, -_st T () dx
Q. = f Gxx -1 6 )T (%) dx

By a suitable translation of the axes Dsmaybe set equal to zero since T, (%)
is positive (no negative mass), as result no dipole field of gravitaticnal
origin does exist,

In regard to how a linear field solution may approximate a full solutim,
we may say here the follcking: In the previous expansion only the first temm,
describing the monopole field M/r, exist as a first term of an expansion of a
full solution, the Scwarzschild solution. At present is not knowm if the
quadnpole and higher moment terms correspond to expansions of exact solutions.
Such terms correspand to fields produced by nonspherically symmetric mass dis-
tributions, for instance an cblate sun or earth, Thelr existence in general
relativity is thus not fully determined. _

(b) More General Solutions

Wemayallo::gortobenmzembyintmducingamceTorb:),thatis, a

stationary source with a more general structure than the previous one, We then
(1)
have for the extra component eym(;),

m T _(x') dx'
08 3 6~
“Yoa® TFH | T oI o
Expanding in Taylor's_ series of E'E'_
(1) P 1 | B .
€ Yog &) = Tkﬁ 25 =)+ b (6-1-9)

=l A
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where
+
P’ = JTos(x) d3x

.
5,5 -J' x, 1,6 dyx

This solutlon must satisfy the gaue ondition (6-1-2). Since presently the

field is time independent, this cendition reads as
(1) '
Yy
(1) C D -
applied to the vy, this gives vy =0, From {6-1-9) we get
o8,s

= . -
Ylli i 0

P =0
B
1
Saj " T %5 * B Sgj
M'nerears=—usrandsa:efwrarbitraxycmstmts. Note that the B is as-

sod.abedtoﬂesymetriqpartofsrs,wnreasﬂmeamconespmdtomesked

symmetric part of Srs'

'Ihesymetricpartofsmmaybeseteqmltozexobysuitablechoice off
gauge, indeed, by taking the transformation
xV e +eV@

with gauge functicn

k B
E°(x) = — —

2r x|
EF(x) = 0

we have (from here on we shall supress the £ denoting infinitesimal part since
this is clearly understood)
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we have.

wos * % _Eo,a -gs,o = ¢os _Eo,s
or

' = lo '

Yos = %s_fgos ¢ = %os
which gives

1
k
Y'os = s _Eo,s " Yos _Eo.s = Yos " 77 B (-I';-l-) .

and according to the expression for Yos,weget

(12 k 1 '
Yos = '4_11,' asr -l:xrl- i + v (6—1—10)

But TV x7 - T %V is just the four-dirensional angular morentur  tensor
for the linearized gravitational field., Its spatial part is the total angular

momentum of the sources.

Me - j(*r“ a7 - 1% x)dx = a"® (6-1~11)

(1)
thus, the field Yog Gscribes the behaviour of an uniform rotating mass dis-
tribution with angular momentum M=, Such type of contribution to the rela-
tivistic gravitational field was omsidered in relation to the effect of rota-

tion of the sun over its planetary arbits. 39

() Gravitaticnal Waves in the Linear Approximation

For empty space~-time regions, TIN = 0, the field equations for -yw, or for
the ¢u\)' reduce to the D'Alembertian equaticns,
{:]Yw - Q {(6-1-12)
Iet us consider the case where v, depends enly on x and x° = ct, that is a plane
wave, The wave equations possess solutions given by arbitrary fimctions of xex®,
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Taking a solutﬁ;l.c_n repregenting a wave propagation along the positive direction
x, we have

0
Y Yw(x x )

v
Thege solutlons are subjected to the Harmenic gauge conditions YW"’ =0,
which in the present case read as

Yuoso - Yllln'l. =0
(our signature is taken as -2), Then, indicating differentiation with respect
to »-x° by a dot,

“ Yo = Typ = 0 (6-1-13)
This equation is integrated, and we get.

+y .=0 -

Y ul

Ho
we todk the oonstant of integration as zero since we are interested just in the
varying parts of the field., We thus have

Yoo = ~ Yo1

Q0

Ylo - Yol =T Yll .
(6-1-14)

We may subject all variables to any gare transformation which satisfy the wave
equation, that is anyf;'u(xa) such that EIF,']"= 0. Ta]-:.'l.mg_.sIJ =£u(x—x°) we have
this condition satisfied. The Yov transform as
- -F - A
Vv =T " Euw TSuu T EnEn
which presently take the form '

Y ™ Y “Su "Eua t ﬁwoéo Y



202

The £ Y (x-x°) are four quantities to be chosen as we want to, We pick them out

such that the four equatians hold

Since

Yo3 = Y03 *53

1 ! - -

Yoz * Y33 % Yop * Y33 = 2§ - 2§

a direct integration gives for the a”(x-xo) the values

£ Gx) = 3 J (ryy * Y39 dGex®) - ;-f Yo (e d(x-=x%)

£,(xx%) = - J‘ Yoo x-%%) d(x—x%)

£ 3(3-30) = - f‘v 02 (jx—xOI d(x-x°)

(6-1-15)

In this new gauge frame (we drop the lines for brevity) we get, from (6-1-14)

and (6-1-15), *

* The eqs. (6-1-14) are satisfied in this new frame since the E,'u satisfy the

wave equation oV = 0, which as we saw is the necessary condition for pre-

servation of the Harmonic gauge relation Yuv’v =0,
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o o o
Yoz Y23 0
Yo3 Y22 O
°o 0 0

That means, the YIN are represented by a symmetric second rank tensor with

null trace in the plane YZ, This plane 1s orthogmal to the direction of

propagation of the wave, and since this tensor has just two independent com-
ponents, Yoo and Yoy We cnclude that the plane gravitational wave 1s a
transverse wave with polarization given by two functions v,, (x=x") and

Y23 (»-x°), That is, two different states of polarization may ocour.

(d) Time Varving Scurces

For the situation where the source termT ispresent mddqamchmx",

we may take directly as solution of the field equation the integral (6-1-3).
For sources which are bounded into the three-space this solution satisfies the
gauge condition (6-1-2) provided TW satisfies

™ ag (6~1~16)
»V

where

v oA ova

We thereby cbtain
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since T"V is bounded on the three-space, the first integral stgnding o the
right hand side vanishes as result of the Gauss theorem. Thus
3 _ .
—-j THO »® dx = j ™ dyx (6-1-17)
9x° -
Similarly we prove that
3 oo _r . ro s _ p80 T
— | T xT «® cl3 J‘ (T x + x) d (6-1-18)
ox©°

Taking U = r in (6~1-17) and nothing that T is symmetrical we cbtain

3
J‘Trs d3x = % — ( (Tro x* + T%° xr) d )
ax

Frem (6-1-18) this reads as

32 _
JT“ dyx = -;- —;;J T9° xT x® dyx (6~1=19)
ox

If we now use the relation

8 () = 6(x - 2) = (g3 + sexe-[zD)

2|x
which for our case should be written for &((=-x')2?) = 6((xo-xl'))z- (_?e-i:")z) as
. 1
§Cx")?) m ——e— {8(x x!#[X=x" ) +6(x ~x!-|%%' )}
2ix-x'

expanding ]§-§'|_l in power series of X',

-~

2|x|

1
-% (—-— [6(: -x +|x—x'|) + G(x -x —Ix-x'l)]
x'" x'v G(x -x +|x—x'|)+6(x -x -|x-x'|) ver
(&), =T o=

1
8(x-x"')2) = —— [6(x -xo + ]x-x'l) + G(x -x —lx—x":l

+
E e
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Thus, the solution for the field equatian will be

€ Y, (0 = !‘i‘,;f x' §(Ge=x")?) T (xl, ¥

Iet us take p=r, v=8., We get

k ! n
€ Ypq (x) = > EJ‘ dx; d3x' [G(xo-x;+ x' [y + G(xo-x;-|;—§' I)-_-ITrs (x;.‘f') -

J

1 -
-2 =} "dx;j‘dsx' =" MoGx ~xl+[E2'|) +
|x| ’u w -

+

2=

Integration on x'° yields,

1rr

€ ¥, () = 12‘-1?4 d.x' [T“(xo+|§-§'|. x'

20%| J 3
L
O [ .
-5 = dx' T (x+|x—x‘| x') +
x| /,ud
3

Using (6-1-19) this takes the form-

k

I" Illl

€ Y., x) = %— r: + _f:k
|| ||

|

with
k xk
n ===
x|

Where I are the moments of the matter density,

+

T m L3 a3 Bt ) LI |
I, Jp(xo |x-x'{, x") x. x! d
. .

- - ol ) S T |
Irak jp(xo:tlx-x I’_x ) X ¥ %

> -+
G(xo—x;—|x-x' |):| Tr. (x;, ;') +

1
—_— [ ax' L) x4 2 U e z
([;[),uv‘ dxo'rd:ix x'" x ES(xo xo+]x—x_ |)+6(x° X! lx-x |):'T“(xé,x')...

+- -+
) + Trs(xo—lx-x |, x'):] -

x' T (x-[x-x'| x)]

(|x|) ES [ 'vT“cxo+|;-_;f|.;->+x-uxﬂfTrs(xo-'l‘-;-;r-l,;_s)]*...

(6-1~20)

LR N §

t
33

T
d3x
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the primes indicate differentiation with respect to x°. In explicit notation,
the (6-1-20) is

k 1 : 1]
€-Yrs(x) - -l—;-i- ers(xo.x) + Iré(xo, x)) +

nk in "
$o—_— I+. ( +) . I- ( ’ +)_ +
l;| 2 | rak “For* rsk ¥ T - (6-1-21)

The integral with the + indicates the contribution of the advanced value of the
matter density at the time xo, and with sign ~ means the contribution of the
retarded part of the matter density at x°., A similar calculation for.  the
remaining compenents of the ¢ Yuv gives,

. O
ey (x) = S RN SR @t e 1Ty L, (6-1-22)
ro ﬁ I;,I l;l 2 |'x*la rs s
+ .- r : T _8
> > -3 T o b
00 [x{' 1| r oo 2 |;| a I8 rs .
(6-1-23)
where acoording to the same notation
*
I (xo: ;) - j p(xo * |;';' | ’ ;') d3x'

+
e B = [oa® ¢ B3 2 e

These solutigns will be of importance later on when discussing the prcblem of
interaction 6f the radiatien with the sources.

6.2) Soluticns with Spherical Symmetry - The Sciwarzschild Fleld
One of the first, and perhaps still the most important, exact solution
of the Einstein equations was cbtained by Sdwarzschild 40 which imposed the

ccnditimofspheﬁ.calsymetrymﬂngwmﬂring&tﬂmesmet:I.rr‘ethatit
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be static.

Initially we will work out the most general form for a symmetric second rank
tensor displaying symmetry with respect to the three-dimensional rotation growp.
If this happens, we have fram the Killing equation

= = - p - =P _ p -
$ SW(X) = gup';' W 8ov .E’u xw’pE 0
for the Euclidian Killing wector *

EP = €%, ET) = (0, ™ &5

rk kx

as it may be easily checked this equation becames identically satisfied if N
is a function of the distance r and of x°. Taking u=0, v=r we get

ir eik k

- . E - . = 0
Eoi 8or,i x

again, this equation becares identically satisfled for g or of the form

_ r
Bor © g(r, x°) L
T

Ofcw:se,vhatmd:tainedfmnﬂnpreviousrelatimsisﬂmtgorm:stbea
function of r and x° times the 5, By convenience we wrote this functien in the

form abovwe, For u=1r, v =r,we gt

- - - E -
8.y € g _ € g X 0

which similarly as before implies in

That is, sr.. +gs’r =0,
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ik
X x

By () = Y(ms X8y, # Ar, ) —
In sumnary, the imposition of spherical syrmetrymthegw implies that the

camponents of this tensor are given in terms of four arbitrary function of r and

xoas

goo(x) = a(r, x°)
8, (0 = B(z, x°) x'/r (6-2-1)

gik(x) = y(r, x°) Sik + A(r, x%) x* xk/r2

We now lock for more general mappings, consistent with the curvilinear structure
of the manifold, which leave the (6-2-1) form invariant. It may be proved that
mder the mapping

o= f e, ) x?

xX° = £,0', x)
the relations (6-2-1) keep the same form in the new coordinate system. We prove

this as an exercise.

Exercise: Prove that (6-2-]1) are form invariant under the above mapping,
Solution: Take for instance the Ty r W have

ax® o™ 0  ax® e’ ax° 3x° 3x°
1 (x') = + - + — + '
sl‘k(x ‘ -E;:z -?;:ﬁz Sm(x) ax'l ax'k  ax'k ox'i 32‘0(3) ax'l 3x'k Boo(x)

bynotingﬂlattptonoaboﬂiﬂlexsmdﬂle.x'sa:ecartesimmordinatesfor
the three-space.

sz g of, x't x'£
= f §, +
ax'i 11 or' r!
ax° af, i

axti srt !




so that
R ag, x™ x'F 3, x'1x?
1 1y = £2
8 (x') = £ g, * £y oo - Bim* L) - = gy *
2
: k
of 1 af, x'
*- —_ ] —_ x't x'£ x' 1k g, t+ ¢ 2 g+
or' rt? fm ! ar' r! io
£} 3 2 »
. 3f, x't of, 9f, x't x'z x'k of, x't x'k
* f, — —— + 2
Vot pt fro ar' o' r'? 520 ar' r1?

An inspectian on the structure of the eguations of the mapping shows that

ravyx®x®=¢ 1

1

thus
x £, x't x'?
— =
r fl I" : I"

Fram (6-2-2,3) and (6-2-1) we get

850 ™ alr, x°) = olf, ', £,(c", x;)) - ', x;)
i x'%

o, X - —— = 0

8oi "~ 8(r, x) -;' B(fir" fz(r" x;)) r! ¥eEt 20
i k
o o X X

By = Y(x, x)8, + Alr, x7) -
_ N <l gtk

+ A(flr', £,(r', x;)) .

r

= y(£, ', £,(c', x;))sik +

= y(r', x;) Gik +r(r', x;)

x

r

X

12

'k

209

(6-2-2)

(6-2-3)

Substituting the later of these relations into the previous form for gj'.k (x') we

get

t 1 - 2 2 2 12 2 12 t
Bi, (%') = X £y i * {r £] + f;’r. X't o+ f1,r' Tr +2f fl.r. v (X+1)

t3 2
+26, €, L YH2E L f TS

r y

2,

r!

i

x'k

T

4} e
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. X
= F(rj,x'") Bik + M(z', x'°) -

which proves our initial proposition. Thesarreproofrraybedmeforgéiand'

1
Yo0°

| We can use the previous transformations which depend on two arbitrary func
tions, the fl and £, in order to eliminate two of the four arbitrary functions
.whid'x appear in the definition (6-2-1) for gw.. This is cbtained by adequate
choice of the £, and £, First we rewrite the transfommation law for g, by
wsing directly the expression given by (6~2-1),

2 of, x'i 2 m 3f, x'% " x?' =
1 (x') = | £, 6] + ~—— — x' £, 8 +——— —x""l ¥ §, <+ +
glk(x) i ar'* 1! ® ! ar! T tm £?
ax* 3x°  ax® axt 3x® 3x°
+ : + +

Bx'i axtk ax'i ax'k Pot ax'i ax'k B0

This gives, after some easy steps

) 9 2. 9 5 xri xlk
' 'Y m : v S S —_ :
sik(x )=y £ aik ¥ futr or! g A ar? 2y ar! fafY __';-2_— *

ax° 3x° ax ax® ax°

+ +

L7 pol gk oo

- [] +
ax't ax'k  ax'i px'k %o

Choosing £; = - v V2 pa £, = £, = x'°, we get 'i’-’i'%= 0,and thus
ax!
| ik
' ™ = t 10 - O
Bip () = 8y + MG, x'T = x7) )

However, to be correct with our signature -2 would require that a minus sign be
present in the first term of the right side of this relation., But since the
cholee for y(rs ¥ in (6-2-1) 1s arbitrary, cne may choose - y(r, x) there,
which implies in writing the above equation with the minus sign in the first
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term, Dropping the lines, which are now unecessary we can ascertain that g (%)

may be written as

r _8
X X

8., (%) = - 8 Mz, x%) (6-2-4)

r
thus, we already eliminate the Y(r,xo). We still have the freedom to make map
pings which do not change (6-2-4} but which dtmgethegor,orthegoo. They

are of the form * (this is a second possible choice for flandfz)

B . .8
X =X .

x° = F,(r', x'?) .

under this mapping Tek change as

+
5x° 3x° af, [Bx* e,
! ? IR ev—— ¢ + - - .
SOk(x' ) 3%'0 Eok Bx'k' 800 x'© - * ax'k ¢ '
taking
Wk
of, g x
ax'k u —:'- .

We will cbtain g(':k= 0, and therefore we eliminate 8'(c', x'°), in the new
frame., We now have to show that this new mapping will not change the results of

the first mepping, that is, will not change the value -1 for Yv(r, x). We have,

3 , 3, of,

Y +
ek oi0 " pd Bko T Gl Gprk foo

sik(x') = sik(x) +

B> ::'k xt o x't x'k
6i.k a et 2 M, ) £t 2

* This mapping is of the previous general form for £, = 1, and is permissible
1

as was shown, The change in gsk under this mapping is compatible with (6-2-1)
t

since it gives g:Jk = Flk(r" x'%) + B, (x', x'°) l‘?. )
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Therefore, the g,; in the new frame have the same general form of (6-2-4), the
only change is in the arbitrary function multiplying xrxs/rz, but this is not
relevant. Similarly, we can show too that g 0 iz not relevantly éffecbed by
any ane of the two previocus mappings, that means, under any one of these trans

formations we will get
¢ (x')

00 ¥(r', x')

g

Thus, after all possible recalibrations, we arrive at the result that it is
always pcesgible to reduce the most general spherically symetric seocond rank
tensor to a form depending on two arbitrary functions of the distance r and of
the time coordinate x°,

8,,(X) = a(r, x°)

gos(x) =0 (6-2-5)

T _8
X X

8, (X) = - 8__ *A(r, x°) =

It is of cbvious interest to use spherical coordinates for the three-space (the
metric in (6-2-5) is given in cartesian ccordinates x°)

x! = vy gin¢ sind

x> = r cosd gin

X =1 cosd

Besides this we also make the substitutions

o = ev, A=1- eA

Then,
800 " ev(r’ =°)
SDB ‘.q: -
o .
g1, - eﬂ.(r. X )' 8, = :2’ By = - 1‘2 sin2 g (6"“2"6)

The symbols of Christoffel for this metric are

-
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12 ¥ 33

0 ) 1
=%eﬂv
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where the dot means differentiation with respect to x°, and the prime denotes

the same with respect to r.
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The nonvanishing components of the Einstein's

(6-2-7)

(6-2-8) '

(6-2-9)

(6-2-10})

Since we consider the field equations for empty regioms, the two functions
v(ir, ¥ and A(r, x°) will be determined by the equations G]\'; = 0, As result of

the Bianchi ic’entitieB,GE.u = 0, it may be shom that ¢} is a linear ¢urbina-

tion of the remaining components of Gﬁ, therefore the fleld equation Gg =0 is

a consequence of the other field equations,
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Exercise: Prowe this property.
Thus, we are left with the equations

“A vl 1
e — -;. - -;- = Z;‘_- (6-2-11)
r r T '
-A A’ 1 1
e —r — ]} () (6-2-12)
2 2
r r T
A=o (6-2-13)

For determining v and A, Summing wp (6-2-11) and (6-2~12) we get

v'+‘A'=0

v+ A= ¢(xP) , (6-2-14)

As we have seen, we have the freedom to uwse any one of the above mappings which
pzeservethes;hericalsynmtryofgw. Of these mappings we have selected two
types which have served as simplifying frames for the sped.ficat_im of the gw.
It is still possible a further simplification by chocsing a third mepping which
is a simplified transformation as the type used for making the gor vanish,

x° = f(x'o)
under this transformation we get,

f =
81‘8 grs

3x°
By =

=0
or  ax'% ®

or
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ax® \?
' - _ . - £2
oo (3x'° ) 80 = f €0

where we used that 9or is zero in the initial frame. Cmsequently, only the
Y0 changes, but this change is not inconsistent with our previous requirements,
Indeed, this change is just a multiplicative factor £2 in front of Gy = %
transforming this function to £2(x% a(r, x°), or

81

00 = (r, x°) = éz(xo) alr, xo)

But since o = e’, this is equivalent to add to v an arbltrary function of x°.

o
g"w -e’t = :fz(xo) alr, x%) = éz(xo) eV = ¥V =)

We use this arbitrarity in the specification of v, which says that both v and
v + $x°) are equally good, for writing (6-2-14) as

v+ A=0
Then, as consequence of (6-2-13) we get v = 0, and thim both v and A are  in-
dependent of x°, What we have cbtained is the statement that all spherically
symmetric solutiong of the field equations of general ml&l::l.vity have
necegsarily to be static: g°r=0amigm, 90 are independent of the time
coordinate x°, In other words, the fact that the field is time independent is
a direct consequence of its spherical symmetry, and is not a further imposi-
tiocn on the system. The solution which we are discussing refer to regions
where '1‘1‘l v S 0, for instance it means the fileld of a static mass distribution
with finite size, with center at the origin of the spherical coordinates, The
conclusion, that 1f 'I'W is spherically symmetric and 18 zero for r greater
thmsarevalma,tlmgwiathe Scwarzschild field for r > a, is knom as

the Birkhoff's thecrem 41.

Now it remains just to determine A a8 fimction of r. Using (6-2-12),

which pessess as solution
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2¢c
e-n’-evnl—-—..
r

where c is a constant of integration, from (6-2-6) we get

2¢
Boo(r) -1 =5 °

gosmo'
. 2 2 2
311--__'2:’522'-r'333'_r sen” §

Conparison of this solution with the solution for the linearized equations of
a static point mass located at r = 0, the equation (6-1-5), we see that both
have to coincide at large values of r, sinoe asynptotically the wesk field ap-
prmd.mticn applies, then

2c

z—l-—-—
Ir r

g =8
this relation is equal to the g7 ©of (6-1-5) if we set

| ¢ = Gm/square of the velocity of light

where m is the mass of the point source, To close this section we glve the

valwe for the Sciwarzschild field in the two types of coordinates used. In

spherical coordinates plus the time x°,

- r2 gen? @
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for a point source at r = 0, and in general

1l ~ - 0
-1
2¢
v -7
-r?
0 - r* gin%@
For cartesian coordinates, we get from (6-2-5)
-1-28
&0 1 r
Bos 0
%E. <F «®
8 - - 6 - -
re e 2c’ T

1—-—

r

where ¢ may be given by the previous relatiom, It iz also useful for same
purposes to use the so-called isotropic form of v’ cbtained by the mapping

. .
: r o
x5 = (1 +o— ] x', x° = x'°

2r!
and glven by )
c - _
. 1~ e
8o L
1+ °r
. soa =0 {(6-2-15)
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Finally we note that for r = « the field tends to the Minkowskian metric §,
in any ane of the above coordinate systems, This cames out naturally, that is,

we did not impose this asymptotic behaviour for cbtaining our solution.

It should to be notedhmthesymtetxyoftlnﬁeldwasachcisive pro-
perty, indeed, we have solved the non-linear field equations withé;u:t ay ap-
proximation, and such integration involved no- problem; this was possible due
to the several simplifications coming from the symretry as well as fram | the
use of the adequate coordinate system

6.3) The Scwarzschild Singularity; The Tcpology of the Schwarzschild
Field '

Let us study the behaviour of the Sdwarzschild solution in spherical co-
ordinates, Later we will use other types of ooordinates. First we pay
attention to goo{r) =1 - 2c/r. Due to the fact that in particular the ocon~
stant ¢ for a pointlike distribution takes on positive values c = Gw/c?, we
shall take it as positive for physically possible distr:l.butims. Then, it
caes that gootr) is smaller or equal to e,

300(1’) €1
the valwe 1, ﬂxe)_mper bound, being reached asymptotically for r -+ «, The graph

far 9o 88 function of the r is

+I [ e et e T 1 o 1t 1 et v o
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As one sees, the value of ¢ is an important one for stablishing the several
points of interest for To0° At r = 2¢ the Yo0 vanishes.

As we know fram special relativity, the proper time of an event is given
by setting the dx’ equal to zero in ds?, Thus

c? ( differential of

proper time’

2
) - g, (1) (ax”)?

which gives,

(differential of) - m dt
proper time oo

vhére dt is the differential of time for the external cbserver. Therefore,
from goo(r) £ 1, we get that dr < dt, where dr 1s the differential of proper
time., This means that at finite distances fram the gravitating masses there
is a "slowing dowm" of time as measured by the cbserver moving in this region
(the proper cbserver) in comparison with the time of the external cbserver,
which for instance may be placed at r = 0, the origin of the field. The dt is
equal to @t at r = », that is, asymptotically where there is no field, the.
"slowing down® in time disappears. It tends to et smaller when the preper
cbserver moves away from the sources of the field, This gives as result the
cbserved effect of deviation towards smaller frequencies of the light cbserved,
or emitted, by the cbserver inside the field region as oompared with the same
phenarena in a region free of fields, Since we will not tum back to this
type of effect during these lectures, we give nov the explanation of this
effect. Consider the following idealized experiment: We have two cbservers,
e 1s free of the presence of fields, the other is the proper cbserver for
the Sawarzschild fleld, and moves in a finite distance from the gravitating

sources, This later cbserver receives a light ray oaming, according to him
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withafrequcyvp (pétands_ far proper), measured as a certain nuber of vi
brations per seoond of its local time (proper time). The same light ray  as
cbserved by the first cbserver, which we may pictorially call as the "external
cbserver", will have a frequency given as a certain nuber of vibrations per
.seccnd of its time., Now, since one secnd for the “external cbserver" is equi
valent to several seconds cfpropertine,mhavebyputﬁnglsec for the

extemal cbserver as N sec of proper time,
K wvibrations-

Y =
BEC

K vibrations
v o= -

P N gec of properties

1

v

that means, the light cbserved by the proper cbserver as oc:rpaxed with the same
spectrlmforttﬁfreecbserver, appears tbbeshifbedtavardsﬂmezed. The same
argurent holds good for emitted rays, All light emitted by the chserver  in-
gide the field is deviated towards the red as ocompared with the same light e-
mitted by the free cbserver. In particular for emitting some light ray with
frequency v, cbserved at spatial infinity, we need initially a photon with a
higher frequency, part of its energy being lost for crossing the gravitational
barrier. Nevertheless, this is an idealized experiment, What really happens
is just a similar situation, what we have idealized is an experiment where there
exists a variation in the gravitational potentials given by: Yoo (r) for the
Sdwarzschild field minus zero, for the extermal chserver. We can consider now
a difference Yoo (r) for a strong flield minus g 00 (r) for a weak field, for in—
stance the fields of the swn and the earth, Our arquments still hold, since the
difference in potentials is not essential, and thus, light emitted atthe sur-
face of the sun and cbserved at the surface of earth appears shifted tovards the
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red as compared with the same licht emitted at the surface of the earth., This
is the so-called gravitational red shift of light. This effect is a direct

onsequence of the slowing down of time in presence of gravitating bodies.

Tumingbad(toﬂaedisamsimofﬂlefomofgoo(r),wseethat the dis
tance r = 2c is not possible for physical cbservers since it implies that Y0 =
= 0, and this in tum gives a null proper time at this point, which is unphysi-
cal. Alsoallregicnforr<2cisnotposs:l.b1esincetheregooisnegative,
~and again we get in trowble for defining dr in this region. Thus, only the
regimr>2chasagoodbehaviour,in'ﬂmisregimgooisbomdedas

0<g°°(r){=1, for r > 2c ,
The 2c 1is called as the radius of Scwarzschild., For the sun it has the value
of 1.47 km, for the earth is 4.9 mm,

let us nov consider the g, (r), the graph of this ocarponent, which is the

radial component of gw, is
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An interesting fact arises, for the region r < 2¢ the signs of Y0 and g,, are
aoposite to the correspondent signs for r > 2c¢. That 1s, it locks how if the
. signatm changes sign when we proceed towards the Scwarzschild radius. Never
theless, this argurent is not correct since we cannot cross this radius with a
physical reference system, since at r = 2¢ the g,, 1s divergent and the Y0

vanishes. Both results being wnphysical. Again the region r > 2c  presents

a correct structure for g, ,,
g,,<-1, r>2

the value -1 being reached asymptotically for r » «», The distance from the
r

center to any point in space is / /=g,, dr, and since - g,, > 1,
0 _

T
[ /g, dr>r
0

(the equality sign holds for points at infinity). Consequently in the presence
of fields the ratio of the circamference of the circle drawn through the origin
to the radius is less than 2.

The value r = 2¢ is called the Schwarzschild singularity. We will see
that this sincqularity is not am intrinsic property of the Scwarzschild solu-
tion but rather a consequence of the coordinates used to cbtain this solution.
One direct indication is given by the value of the determinant g which in spher—
ical ooordinates is regular at r = 2¢, g = - r" 8in?6, Furthermore, the

scalar quadratic in the curvature, rHYPO , 1s also regular there, Since

R
uvpd

the structure of the gravitational field is described more properly by Ru\) o0

than by g‘W itself, it follows that the above singularity cannot be of physical
significance,
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Exercise: (:crrput:t:'e-Ii.l_mpcr for the Schwarzschild field in spherical coordinates,
Calculate pro el , and get its value at r = 2¢,

Eddington in 1924 42 showed that the Sdwarzschild singularity may

be removed by the mapping

Ty, x%°ax® + 2¢ log (r'/2¢e-1) . {6=~3-1)

The metric tensor in the new coordinates being (these coordinates are x'°, r,
8 ¢)

+ 2 0
r
_{1s 22
(1* ‘?) 0 .
Y | (6-3~2)
0 - r2
0 0

This g{N is no longer singular at r = 2¢. To avodid this sinqularity we have
taken a point dependent translation almg the timelike axis,

1 O

x'° =x°* e , £(r) = 2¢ log (r/2¢-1)

Thus, the singularity was transported to the mapping finction, since £(x} is
singular at r = 2c, Therefore, x'© is sinqular at the Scwarzschild surface,
From the previous formilae we see that two singularities are present for gw,
e at r = 0, the other for r = 2¢. The first being really a singularity in
thgiretr:l.c, a fact to be expected, the second being just a singularity due to
the choice of coordinates, such as spherical or cartesian, Several authors

3

have studied the behaviour of these singular points 4 , the results cbtained

may be sumarized as follows,
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r invariant singularity’ singularity
representation in metrie ?: in coordinate
of curvature ' system ?

0. infinite yes yes
as ¢/r’

2¢c finite no yes

Kruskal *? has shom that the removal of the Schwarzschild singularity may be

achieved by a choice of coordinates which is simpler than that done by Eddingtmn.
At the same time the use of these coordinates allow a maxdmal singularity-free

extension of Scwarzschild's field.

In order to clarify same technical terms used, we give here sc:rre_; defini-
tions: A manifold is said maximal if either every geodesic emanating fr'cm: a
given point has an infinite length in both directions or this geodesic ends on
a physical singularity of the geawetry (a singularity which camnot be  mapped
avay) .. If all geodesics fram a given point have infinite length in both @i~
rections, the manifold is maximal and coplete., Clearly, a manifold which is
maximal but not complete poesess singularities which cannot be mapped avay,
Thus the study of these topological properties of a manifold are important
since in last instancy they serve for characterizing the existence, or absence,
of physical singularities, This as compared with our previows way for knowing
if a glven singularity was physical, or not, is a greater tedhinical. improve-
ment of the theory.

Iet's turn back again to Sdwarzschild's line element in spherical coor-
dinates.

2 2¢ 2 !
dg® =+ | 1 - =— ] dx% -
Y o
1 -2

4

dr? - r? do? (6-3-3)



The radial light rays moving on the direction ¢= ¢0mthepla‘nee=8
given by taking ds? = 0 and dR® = 0.

1 2 2 23 2
ar? + &, 1~— }dt2 = ¢
2 Qight -

T

therefore, the slope dr/dt for them is [ c » m*

+ ¢

-\ Slight
dr + 2m*
— . @ l] = ———
dt r

since this is the effective velocity of the light rays in the field, If
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are
&)

we

drawthegr@icofdr/dtasfmctimofrwemayseeﬂleactualdistxibutim

of velocities along the radial separation to the canter of the field in this

coordinate system,

g

o i .
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the above velocity is a three—velocity and does not have a covariant signi-
ficance. Only the four-velocity defined by u" = dx"/ds has such significance.
This means that the abowe distribution may appear different for another oo~
ordinate system, However, it is interesting to note that a photon in  this
coordinate system cannot reach the Sdwarzschild singularity r = 2m* (we
indicate ocur previous c by m* for avoiding rrﬁ.smderstmding with the letter ¢
which indicates the velocity of light in flat spaces) prooeeding from the re—
gicn r <2m*, since there it gets an infinite inertia. By the same arqument
the photen cannot start from the Sciwarzschild singularity r = 2m* and travel
towards the region r > 2m* since at r = 2m* it has a null welodity, since the
field is attractive it canot go away starting at rest in r = 2m*, Thus, two
regions are possible for the photons, but the surface which connects these
bnoregimséamotbezeadledbyﬂm. The region r < 2m* acts as if it were
a bounding region for the radiation field of photons, and all photons in the
region r > 2m* tends to come towards the region r < 2m* in the direction of

decreasing r.

We have seen that the most general spherically symmetric line element

has the form.

ds? f(r,t)dxg - h(r,t)dr? - r? go?

Kruskal proposes to tzke £ = F?(r}, and h = f, case where we get (he uses

signature cpposite to ours)
ds? & F2(r)(du® - av?) - r? an? (6=3-4)

where u, v, 6 and ¢ are the new coordinates, where the ds has this form,
Identifying (6-3-3} with (6-3-4) we may derive the transfarmation equations
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connecting the spherical coordinates plus time with the u, v, ® and ¢ ne

finds,
1/2 T o
. r X
usje——-] em cosh| w=— |,
2m* 4m* .
‘ilz r 0
r ' x
Vw| ——-1 -ezm_*senh _—
2mk 4m*
with inverse
- T
_-1 eIE; = y? - y?
2mk
Q e
X v 1 2 v
w—— = gretg h| — {= 7 arctg h | —ee———
bise u u? + v2
and - r
32w - Ty
F2(r) = e .

r
These transformation equations hold good for the singularity-free region
r > 2m*, At r = 2m* both u and v are equal, and for r < 2m* theuand_v
are imaginary. For r > 2m* the equaticns written above inply that u > |v|.
Thus, the singularity-free region r > 2m* corresponds to the quadrant
u > [v| in the u-v plane. Licht rays moving radially in the r~x° plme

will correspond to straight lines with slope + 1 in the u-v plane,
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The singularity-free region r > 2m* is represented as

el

"
0‘¢.o:¢:¢:¢:¢:¢:.
DOOQLLR?
X _060'% N ‘%0.9:.:
(XXARN
N oonsaee

The curves r = const, are mapped into the hyperbolae u® - v¥ = censt., and

the curves x° = const. are mapped into the curves

utv el

arctg h(}:) u%‘.log— =
u .
u-v 4m*

where * [c| indicates the omstant value for x°. Several curves are indicated

in the next page.



229

“\’no. 0:: ORK 0
o SRR
,ow

)

)

s0000
0’0.0 0’0. ’0,0

00

ON

‘The region of the u,vmanifoldvheretheglmof (6-3-4) is regular is the
part bounded by the two hyperbolae r = 0; that is, u* - v* = -1, The cuxva-
ture invariants (in particular the scalar curvature) becames infinite along
these bownding curves, which zepresali:amysical singularity of the field.

The conplete manifold is represented by the coordinates u, v, @ and ¢,
SO as we have represented above only a part of this manifold, To get an idea
of the structure of the full manifold an which Kruskal's metric is  regular,
let us onsider the submanifold v = 0, that is the axis u, as we move almg
this  eads fmﬁ.+mdmn1:o.mecngm,rdecreasestoamnnmva1mzm*
at u = 0. As we proceed crossing the arigin towards u = - *, r increases go-
ing asymptotically to + ©, We can draw a picture of a cross section of this
nmifoldoonespmd:lngtoamemtmtvaluefore,.saye=g-,bycmstruct-
ing a two-dimensional surface embedded in a flat three-dimensicnal space in
such way that the metric on this surface is |

de® = g du' + gy dff = £2 du? + x? sen® T df
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{(the u here corresponds to the role of the v respect to the choloe of signa—
ture), This surface thus corresponds tov=0,9=g-. We dbtain

On this surface various u = const. curves are traced out as ¢ nms from 0 to
21, The ¢ = const, curvesmfmntheedgesofthenppersurfaéethmugh

the throat, and out toward the edge of the bottom surface. 'I‘hesarrekir}d‘of
"picture holds for all Sdwarzschild sub-mnifolds for x° = const., these sub
-manifolds are parts of the shaded area represented before. Thus, taking
into cnsideration the drawings of the page 228 and 229, we see that for in-
stmcex°=000rrespmdstothea:d.su,thatis,ig:tapxesentedby_mefun
set of values for u. This means that we may interpret a drawing similar to

the above as a connection of bridge in the sense of Einstein andRosen43be-

tween two otherwise Euclidian spaces. Wheeler and Fuller 4 have proposed a
different interpretation for this maximally extended singularity-free mani-

fold. Retaining just one Buclidian space, they stablish a connection be—
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—_— a G 4 o
Bridge bejtwe&n two Euclidian
ey Len
S~

spaces. It represents

) maximally extended Schwarzs-

child metric at x‘_’ = 0.

tween two particles by speclifying these particles by the th.roat_ofthe hole
ocorresponding to each ane of them., The comnection is then stablished with
all geodesics ruming without crossing any singqularity.

77 T T I L L ITIII LTI
Vo e A O 0 e v v e

Since j't:he Kruskal's manifold contains singularities at r = 0, the intrinsic
physical singularity of the point-like solution of the field equations, the
maximal extensicn is singularity free in the vegion p-> 2m* but is not com
plete since we cannot :I.nclwi; the region r <:2m*, If we include this regien,
no singularity will appear. atr = 2m*,__.sincn theré *.:he metric coefficient
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F?(r) of (6-3-4) is finite, but F*(r) goes to infinity at r = 0 as 1/r. There
fore the Kruskal manifold is not complete in the sense we defined before.

If we compute the geodesics for the Kruskal manifold, for instance by
considering the familiar x, x° plane and using the metric as given by (6-3-4),
we will find that every geodesic follovwed in any direction, either runs into
the barrier of intrinsic singularities at r = 0 (v® - u? = 1), or is continua
ble infinitely with respect to its "natural length", This shows according to
our previcus definitions that the Kruskal manifold is not carplete.

There are several interesting features of Kruskal's geometr$ which will
not be discussed here. Further informatiom may be found cn a work of wheeler
in Gaavetrodynamics and the Issue of the Final State, in Relal:ivity Groups
and Tepology (Gordon and Breach, N, Y, 1964).

6.4) Cravitational Fields With Cylindrical Symmetry
Similarly to the work done in the section (6.2), we begin by locking to

the most general form taken by a seoond rank symmetric tensor invariant wnder
rotations about a fixed axis, that is, that has cylindrical symmetry. We take
this axis as the Z-axis. An infinitesimal rotation by an angle © about the
Z-~axis is giwven by

This transformation will generate a symmetry Killing field &P if

- - P P o Pu -
85, (0 Bob v " Bvb T Byt "0 (6-4-1)
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In the present case the Killing field will be
Ep - (-0y, 6x, 0, 0) .

Taking u = 0, v = 0 in (6-4-5), we find, by noting that £° is null,

i
800,1 §7 =0
Qr,
3300 38on::
y - =——x=0
ox oy

this relation implies that x and y are contjgined within Y00 only through the
cobingtion p = A + y?. Ths,

(6-4-2)

8, = £, 2, x°)

Taking now 4 = 0, v = 1 we get

oo

k K _
“ 8y 51" By x® "0

»
for 1 = 1, this takes the form
L TRCT

-8 +—-—"y- —x =0
02 9z ay

801~ ®o, 2y X (6-4-3)

(6-4-4)

VM OIM

!Ig o
8o~ ¥p, %, X))

in analoqgy with the case of'.'spherical symmetry, we can easily prove that this
relation is satisfied., The relatien for i = 2, '

- 892 Bg2
301+ y - —x = 0

9x 3y
will be satisfied too. The equation for i =3, simplifies 1o g, 4 Ek =0, or
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98y, CE- PN

y - - x=0
ax ay

which simllarly to the case for 90 is satisfied for
g8 = F(p, z, x°) (6-4-5)

Now, take u= 3, v=1and 2,

3g 9g
- gy, * n y - "N e
9x dy
3832 3832 )
g31 + vy - x= 0
ox oy

these relations are satisfied for g,, and g,, of the form

8y = ¥p, 2z, x°) zx/p? | (6-4-6)
g2 = 0, z, x"zy/p’ -

Itmajhsoutofﬂedimalaﬂytheelmtgmtobe calculated. For

this element we have by taking u=1, v =2,

98;, 98, :
Bi1™ &yt y- x=20 {(6-4-8)
9x oy

and for the three diagonal metric components we get

o8 o8
~2g ey ——x =0 (6-4-9)
x 3y
38,, 98,
2 g,,* y - x=0 (6-4-10)
ox ay
9855 LR :
vy - x=0 {(6-4-11)

ox oy
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these last relationships split into two growps, the first involving the g2,
dg;1 and g;z2 formed by (6-4-8) through (6-4-10), and the other involving anly
g3 as given by (6-4-11). The soluticns being

By = = 8. Y0, 2, X% + x(p, 2, xN)x_x_/o*
forn, m=1, 2. and

£33 = A(ps Z, xo) .
In sumary, from what was seen, we have six growps which divide the several
ocoponents of gw as

1) Involves Door 38 given by the relation written previously with

solution

8, * £(0, 2, x°)

2) formed with g,, and g,, with solutions
go1 ™ ¥p, zZ, xo)x/p
Bpo ™ o, z, xo)Y/p
3) fomed with g, a8
B3 = F(p, z, xo)
4) formed with g,, and g, , as
B, * ¥p, z, xo)zyfpz
g = ¥p, z, x°)zx/p®

5) inwvolving the q,,, 9;, and g2z as

L]

By = 6nm ¥(p, z, x°) + x(o, 2, xc')xnxm/f::2
6) inwvoiving the g,, as
8s; = ~Ap, 2, x°)

As consequence we have in all seven arbitrary finctions of p = vX’4y%, %
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and x°, Similarly to the case of spherical symmetry seen before, we may
introduce the full growp of mappings which maintain this form for 9, invari
ant., After this we select gppropriate elements of this group in arder to
sinmplify the form of gw. Instead of going through all details we just quobte
sore posgible tremsformations. First, on the coordinate plane x-y we get a
similar situation of spherical symetry, so that there it holds the previous
discussion, Taking a transformation which is the identity transformation on
thisplanebutoorrespmdstoanedxoa;d.sas

x° = f(p, x'%

we may similarly to before set the g,, and g,, as zero, By taking a trans-
formation which is a translation aimg the symmetry direction

x=y =0
given by

z =2z + £(p, 2', x)

all other coordinates fixed, we can set the g, .eqmltozem,-by selecting
the function f as

£=-2z' + op, x% .

By considering transformations on the symmetry plane x-v we may still set
equal to zero the g,, and g;;. As result, we are left with just five metric
elements, It may be shown that these remaining cawponents may be mapped to
the sinpler form inwlving only two arbitrary fimctions. (for static fields).

u

Boo "2 » B8, =0, By, =0,mn=1,2

om

Bsa = ~ e’

By ™ e ¥ —Gnm + (l—e-v) = xn}

» Ba-ﬂ = Os 11 = -l-l-(psz);. v o= \’(ppz)
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Weyl has investigated the solution for the field equations for g v
of this form. In the exterior region (where 'I'w is null), the field equa-
tions are '

3%y L 3%y

Ry S——t+ = =t ——a (6-4-13)
p* P dp ol
v TR A '

f o2 (_) N __)_ o (6-4-14)
3p 3p ox . R
v 3T T _

K3 S — - Do = 0 (6 4-15)
3z ap 9z
alv 3%y e 2 au\? o -

Ky seegt—*7 I—) * |—] | =0 (6-4~16)
3p?2  3z? 3p 2/ | '

Due to the Bianchi identity the last equation is a cmsequence of the first
three:

9K, 9K, ou .
Ky S wm # =+ p — K, ) (6-4-17)
3p oz 3p

in addition it also implies in

oK, 9K, au
3z ap oz

The equation {6—4-13) is just Laplace's equation in cylindrical cocrdinates
for a function with ~spherical symmetry. In order to get the correct asymp
totic bevaviour at spatial infinity, the solutions of this equation must
have the property that u(p, 2) ~ 0 for |¥| » @, In addition it mst  be
finite and well behaved outside samwe finite spatial region whexe T, 7 O
{i.e., in the exterior regim)}. Such type of soluticgls may be fond., From
(6-4-14) and (6-4-15) cne finds by a further differentiation
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3 /fov 3 (av) ]
az \3p/ 9 \sz/ bz

3 [ auoap
- | —p — ——— [ 0 s
20 ap 2dz -

(6-4-19)

in the exterior region. Thus, the solutions of Laplace's equation are subo-
jected to satisfy too the (6-4-19). A solution of Laplace's equation  sat-
isfying all this is the well knowm potential-like solution

-1/2

R S R (6-4-20)

Representing a point singularity at the origin p =0, z = 0. Recall that
72

Kl-

= - 478 (r) and for the exterior region r # 0, this gives §(x) = 0,
This solution satisfies (6-4-19) at all points except at the origin.

Replacing back the value (6-4-20) for u into (6-4-14) and (6-4-15) »
one finds by integration

p?

VD I — (6-4-21)
' 4(p? + 22)?
Thereby we have gotten a cylindrically symmetric solution of Einstein's equa
tions in the exterior region corresponding to a point singularity at p = 0,
z =0, Its explicit form being cbtained by replacing (6-4-20) and (6-4-21)

~1/2

Boo * e(pz+zz) = P_Ur. Box ™ Bgo " 8pz ™ 0
_e 1 |
4et r
B3 "~ e ’ 831_. -8, " 0 - (6-4-22)
- - p2

gnm-el amt |1 e x'x pimn=1i, 2
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In spite of representing a point singularity, this solution does not correspond
to the Schwarzschild field, Indeed, a glance on the form of V(p, z) shows that
this function is not spherically symmetric since it contains only p? in  the
nurerator, and not r? = p? + z? as it should be for having spherical symwetry.
Therefore, the gl1 v of (6-4-22) is not spherically symmetric. This means that
this solution corresponds to a particle with multipole structure. The case where

two sinqularities exist on the z axis, that is, for

which for p = 0 is singular at z = 0 and at z = b, was studied 47. In this case

we get the result that if v(p,z) is an exact differential, that means, if (6-4-19)
holds, then this equation will not, in general, be satisfied on the line joining
these two singularities. Thus, not all possible regular solutions of Laplace's
equation (going to zero’bin spatial infinity and finite and continuous on the
exterior region) are allowed., If we intend to consider these solutions we have

to exclude the line joining the two singularities from the exterior region.

6.5) Null Gravitational Fields-Exact Solutions Representing Fields of Radia-

tion

A large class of exact solutions of the empty-space Einstein's equatiens have
been found for which the corresponding Riemann tensor is everywhere of the type
N in the Petrov classification scheme, The interest of these solutions lies in
the formal analogies they have with the plane-wawve solutims of the empty-space
Maxwell equations. Similarly to the electromagnetic plane-wave solutions, these
so called null gravitational fields must be considered as an idealization since

both type of solutions are unrelated to any source structure, as they should be
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for real wave solutions. The first type N field was discovered by Brincl‘:mamn48

in 1925, but he did not associate his solution with the radiation field. Later

Rosen 49 rediscovered a special N field, but rejected its interpretation by

means of arquments which are now considered incorrect. In 1956 Rabinson >0 re-

’ é,
<

discovered, independently, the Brinckmann solutions and attributed to them the

actually accepted interpretation of "plane fronted gravitational waves".

The guiding ideas in most discussins of wave-like solutions of the Einstein

field equations is that the Riemann tensor Ru Voo

strength in the gravitational theory analogous to that played by the Fwin elec

plays the role of a field

tromagnetism (note that as we remarked before, in the weak field approximation
Ruvpc possess a gauge invariant interpretation similarly to FLN in electro-
magnetism), and that g,, is the potential of this type of field similarly  to

the Au in electramagnetism. The analogy is not camplete since R depends on

UVPo

the second derivatiwves of gu\) while depends only on the first derivatives

FU v
of Au. We must recall that besides the possible formal analogies between these
two Eypes of fields, such as the transport of energy and momentum, which exist
for electromagnetic waves and has to be shown for gravitational waves to exist
too, gravitational waves are essentially distinct fram electromagnetic waves in
relation to the behaviour of the generating sources (however, for plane waves
this may be put in a secondary place since we are in the radiation zone),
namely, the electramagnetic waves are originated in the charges but they do not
transport charge away from the source, whereas gravitational waves are origi-

nated in the masses and transport mass away fram the emitter, since they trans-

port energy out of the source.

In order to stablish the analogy with the plane electramagnetic wave it will

be necessary to recall the properties of these fields, we do this now, Starting.
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from the empty space Maxwell equations for F,u v*

g% 8, F =0  (6-5-1)

Uvpo . _ ' e
€ va’ =0 (6-5-2)
The plane-wave solution for these equations is

9 ikx xx
Fuv(x) = v e , (6=-5-3)
as long as the four-vector k, satisfies the conditions

H 0]
k FU\) =0 (6-5-4)

weo 2 S 5
> konp 0 (6-5-5)

Expressed in terms of the vectors Eo and ﬁo these conditions are

> > > o

Ek=0, H.k=0 (6-5-6)
> =-> >

H x k - E,w=0 (6-5=7)
-> > >

Eo X k - Ho w=20 (6-5-8)

where
kM = (w, ﬁ)

w is the frequency of the wave, and k is its wave-number vector., The equations
(6-5-4) and (6-5-5) for ?u L+ are linear and hamogeneous in both 1?“ padk, we
will show that they possess non-trivial solutions for 811\) only if both ?W and
k11 satisfy the following conditions,

Q UV _ 22 2y _ =
Fqu —Eo Ho 0 (6-5-9)
_]__ HVpoQ [o] =+ - - e

g qupG o Ho 0 (6-5-10)
KMk = w?-%2 =0 (6-5-11)
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o)
For proving this we start fram the fact that Fuv is a second rank tensor and ku

a covariant vector with respect to Poincaré mappings. Thereby the ku can be .
Y

characterized invariantly according to its geametrical behaviour as a time-like,

r

space-like or null vector. Each case has to be separately studied. We start sup-
posing that kﬁ is time-like. In tlils case there always exists a mapping such
that in the new frame the ku takes on value kl'l = (k('), 3) . Direct substitution
of these values into (6-5-4) and (6-5-5) gives 9"1 , = 0. But since gw is a
tensor, it will vanish for any other Lorentz frame, thus showing that the (6-5-4)
and (6-5-5) have only trivial solutions if kli is time-like., For k11 space-like
we can mapp to a frame where kl'l = (0, k;, k), k; ), we can choose the orienta-
tion of the spatial axis such that k] =k{ =0, or k' = (0, ki, 0, 0). Replac

o .
ing this in (6-5-4) and (6-5-5) we again cbtain F = 0. Once more, due to the

]
o [
fact that FW is a tensor, it will vanish for any space-like ku. If k11 is a null
vector, k* = 0, by a Lorentz mapping it may be put as klli = k,, k;, 0, 0), with
k, =% k.. In this case the (6-5-4) and (6-5-5) will have non trivial solutions.
Such solutions satisfy

E. =118

E . =H, 6 =0, By, = F Hyg o 0

01 01 02 02

where §o = E%, the same for H . 2s it may be seen these non-trivial solutions
satisfy the conditions (6-5-9), (6-5-10) and (6-5-11) as we wanted to prove. By
an arbitrary Lorentz transformation which transforms the particular null vector
k{i = (ko, + ko’ 0, 0) into an arbitrary null vector the previous solution will
transform into an arbitrary solution satisfying the consistency conditions
(6-5-9) and (6-5-10), since these are invariant equations. It is also instruc-
tive to note that the plane wave is characterized by two independent camponents

8 8
of Eo and ﬁo’ in our previous frame they were ]%2 and §3 (or H, and ), show

ing that the wave has two states of circular polarization,
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ﬁ Therefore, the plane electramagnetic waves are the fields satisfymg the two
ocnditions (6-5-9) and (6-5-10). Since these two quantities are the field in-
variants we can characterize an electramagnetic plane wave by the property that
the two field invariants are zero. By this reason, we call this field as a null
field, Null fields have associated to them a family of null ar light-like
vectors ku satisfying (6-5-4) and (6-5-5). For our purposes it is better to
rewrite (6-5-5) as

Bp k 6] - 0 ' (6-5-12)
In general relativity null gravitational fields are those belonging to the Petrov
class N, that is, with all curvature invariants equal to zero, and with a family
- of light-like &mcﬁas.ku satisfying *

. . u ’ P
R W[-OU kl} ] (6~ . )
5 L]

In addition lﬂemmtmsurofsxﬂxfiem,inapty@am,calsufferdis—
omtinuities anly across a null surface. The physical meaning of this fact lies
in the property that the plane fronted wave repmesents the propagation of a

field singularity along light-like dizections.

The solutions foumd by Brinckman.an@ rediscovered by Rabinson can.be represent
 ed by .a metric O of the form

0 1 o 0
-1 2" - O

By = o b : T o (6-5-15)
0 0 0 1

* in analogy with the equations (6-5-4) and (6-5-12). v
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with H a function of x!, x%, x}. The empty space Einstein equations reduce in

this case to a single equation

%0 3%H Sy
St 5=0 (6-5-16)
ox: :
while the pr g 1s given by
1 .0a . 0b 3%H '
Ru\)pO' =7 Gu\) po '{;T;'-; s (a, b = 2, 3) (6-5-17)
X 00X

which may be seen to satisfy (6-5-13) and (6-5-14). Thus, =T is flat only if

H is linear or independent of x* and X .

In order to shed more light on the way that a metric of the type of (6-5-15)
is introduced, we consider now the problem of specifying the geametry of the
space by means of null hypersurfaces. In all applications of the formalism of
relativity the space-like hypersurfaces appear to have a dominant role, is on
these submanifolds that we specify the Cauchy prdblem, the first step towards
the canonical formalism and subsequent quantization. They are as result intimate
ly connected to causality. The fundamental reason for such apparent daminant
role cares from the fact that a space-like hypersurface is the relativistic term
for the Newtonian "instant of time", However, recently,it emerged the fact that
the null hypersurfaces are also very important in explaining the physics of the
gravitational field, Indeed, if causality is associated to an ordering in time
of the phenamena, the agent transporting the informations, the light ray, propa-
gates along null hypersurfaces which will cross two space-like hypersurfaces in
a certain order of crescent time, so giving the causal effect. Several efforts
carried out in these last years have proven that the behaviour of the system may
be explained by means of null hypersurfaces in a form which is not more campli-

cated than it were in the conventicnal treatment. In the coming lines we give a
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short introduction on thiis 52.

let us consider the hypersurface c(xa) = constant, in the four-dimensional

hyperbolic space of general relativity. Then, R

-

do =0 dx' =0 s
» R ¥

introducing an affine parameter p we rewrite this as

dxu
o, —dp = © ik dp = 0
’u dp ’u

do =
the four-vector M = dxu/dp is tangent to same curve lying on the hypersurface
and ¢ " is normal to the hypersurface. Let us consider that this hypersurface
[4
is null, that means, the interval between two arbitrarily given events on it is
light-like,

ds® = g, dx" dx’ = g0 M uY dp? = 0

which is equivalent to take the line joining ¥ tox + & as a null curve.
As result, v¥ is a null four-vector, Uu o= 0, but this vector is also

orthogonal to o w o . " =0, This inplies that ¢ u is also a null four-vector,,
’ ’

M
dx]'1
'[_]1'l = ev— & gu\) o (6_5—18)
dp »V
uv - —5—
g o'u 9,0 0 (6-5-19)

This result is characteristic of null hypersurfaces. Next we prove that the ija
form a family of null geodesics on the hypersurface, that is, a family of geo-
desics on the null hypersurface, With this end we calculate the covariant.deriva-.

tive of . Fram (6-5-18),

AT Vs = Mo - (A
Uy (g o’a);v 8 {c,w {W}o’)}

and form the combination Ulf v 0¥, A direct computatic:: then shows that
’
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MooV Ho ) - [A VP = -5
1A g {c,a\) {ON} c’):}g S 5 0 (6-5-20)

which proves that the curves &= (p) are a family of geadesics on the null’
hypersur‘face. We now take new coordinates as follows: for x' we take g, for x2
we take p. The two remaining coordinates x* , x* will label the geodesics an
each hypersurface 0 = constant. That is, the sub-space 0 = x! = constant is
the locus of points x*, ¥, x* and on this locus the relations ¥ = f(x?) and
x* = h(x?) define a set of curves on this sub-manifold with coordinates x*, x?,
¥ . These are the geodesics on the null hypersurface. Which this is the case

it is easily seen from (6-5-20),

TR
U;\)U 0
hereUu=-——dxu=6“—gWo =g™ sl =g, Alsou =¢ =6!, Then
dp 2 Y v ' ’ : !
P | | S | S
U 2 U U " S, =U 02 62,2 g, 0

therefore the UM = 6121 = g}“ is tangent to the geodesic and the Uu = 6111 is

normal to it., These choice of coordinates generate a metric of the form
(6-5-15) ’
H1

0
L]

or

N 1 :322 : me
g = il tlfoeil ety m, n=23,4
t om | m H ’ ’
0 18" | 8
| 1
0 |} :

and is interesting to note that it starts with g!! = 0, quite differently of

the usual Minkowskian gu\) which locally reduces to 1 or -1 along the diagonal.

L 4
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Clearly this happens in the original coordinates x', x°, x°, x".
Iet us investigate now how these metric campanents can be build wp fram the

concept of tetrad. The first tetrad vector is chosen as the normal to the hyper

surface.

L =0 . (6-5-21)

Since it is a general notation to denote the tetrad by letters lu , Eu, ﬁu, n,
we used a different letter to denote o " which was called before by Uu. Next

’
we introduce another null wvector n" normalized by Zu nt = 1, and two unit space-

like vectors g“ and qu orthogonal to SL},J n?  and orthogcnal to each other.
€ul=£un =0 , qu£u=qun=0
H - U = H = -
E gu =-1 ’ E T‘u =0 » T] qu = -1
Instead of the real space-like vectors Eu and qu, it is convenient to use the fol

lowing camplex vectors
1

o' = — gV - inth (6-5-22)
‘/2' .
. _ 1
- 4 ahe — gMeingh (6-5-23)
3

The four tetrad vectors Zu, nu, mu and ﬁu are null, and satisfy the ortho~

normality relations

L nu=—m ;ﬁ‘J=I
u u
- 8, 1 - n, i =m, m“=a'uﬁ”= (6-5-24)
= mu=5L I—nu=n mu=n Eu=0
5} H 3 u

Since we constructed these tetrad vectors for building up with them the gw of

the form written before, we are in the coordinate sys em used before, or xt =0,
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x* =g, ¥, x* labelling the null geodesics. In this frame we can satisfy the

conditions (6-5-24) by putting s
= w o} + g 6l (6-5-25)-
nf el s ol x e, k=3, 4 (6=5-26)

with w, Bk, o and Xk = (x3, x%) arbitrary functions of the coordinates ¢, p, x°,

x4,
In these coordinates we also havg

Lm0 =8, Moo=l (6-5-27)

as consequence of (6-5-24) one gets for the metric in terms of the camplete set

of wvectors of the tetrad.

P L M T A L i (6-5-28)
since
g = ('Q'u) = (0,1,0,0); n = (nU) = (1, a, X ’ Xk)
m= @) =, w, #,8; m=a@ = ©, 5, B, B
we hawve
} ]
01 1 /0 o0
Il AT
MV _ -};ifiii__ﬁi---
0™ g™
‘ |
0| J
vhere
2% =200~ |w[®); & =x" - B - W™ g == @ BN+ BV 8™ (6-5-29)

The g"¥ of (6-5-28) is form invariant under the transformations
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,Q,'u = 2}1 vu = H 1M = H eiC (6_5_30)

for real C. We also hawe invariance under Ky

-

a

M = 2,1,1 a'? =¥+ BoM + Bt Bfﬂ,u, o'? =¥+ B (6-5-31)
The transformation (6r5-30), in the tetrad, corresponds to a rotation of the
spatial axes as fixed by the two linearly independent space-like unit vectors

£¥ and n? Indeed, from (6-5-22) and (6-5-30) one gets

E'u=€u cos C+nu sen C

n'l‘l = nu cos C -Eju sen C

but always we can mapp SO ast¥ = (0, 1,0, 0) and = (0, 0, 1, 0), for example;
and thus cbtain that this transformation is a rotation in the coordinate plane X-Y.
The transformation (6-5-31) represents a rotation around the direction of the
tetrad vector lu, therefore we call it by a null rotation. It depends on two real
parameters since B is camplex. Thus, we have a three parameter group of sym-
metries for the metric (6-5-28).

It is of interest to get a more ooncise notation, witi this finallity the fol-
lowing notation is introduced

& ,n ,m

¢ IR TR Vil ™
for the null tetrad. Then, the relation (6-5-28) can be put in the form familiar

’Eu)’ m=1,2,3, 4.

to the calculus of tetrads
- (m) (n)
gu\) z(m)u Zmav N
and

= 2 u\)
"m @) - *myp *@v &

where n @) () is the flat-space metric in these coordinates,
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1 0 o
0 0 o0
(n) (m)
n =7 = <
(n) (m) 0 O __1 “
0 -1 0 o

The results of this section are of importance in the exhaustiwve discussion of the
radiation field and of the asymptotic conditions on the curvature tensor, or as
it turns better, on the tetrad camponents of the curvature. We will not go into

further details, but refer the reader to the literature 53.

6.6) Solutions with Sources

So far we have considered solutions of the empty-space Einstein's equations.
There exists several solutions for fields in presence of sources. Of this type
is the Schwarzschild field in the region exterior to the sources, so that we
have to consider two regions for complete specification of the solutions. These
are usually named "exterior solution" and "interior solution". In the
section (6,2) we have treated the "exterior Scwarzschild solution", In compari
son to this exact solution there exists the approﬁm& solutions describing
the "interior Schwarzschild field". Another important exact solution is that
describing the "exterior field" for a charged massive particle., In this case
the field may be approximated to that of a pointlike charge at rest, and is
thereby a generalization of the "exi;erior Scwarzschild field". In the litera
ture this is called the Reissner-Nordstram field 54. Also of same interest
is the gravitational field of a spherically symretric distribution of incompres
sible matter, In this case which presents a maximm of symmetries it is

possible to cbtain the "interior" and "exterior" fields without recuring to
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approximation methods.

6.6.1) . The Reissner-Nordstram Exterior Solution s
For TW we use the Maxwell stress energy tensor ) ?f’}

L Jl. p @9 @ '
Tu\) 4 {4 guv ch F Fup F\)} : .
since this field also presents spheriéal symretry the metric tensor is described

by two functions of the radial distance r as was seen in the section (6.2). A

- method of integration similar to that done for the exterior Scharzschild field,

will give the solution gy
26m  Ge?
8 = l - ——— N
00 2r ctr?
1 xr xS
grs - T 6rs * - 2
goo r
gos =0,

in cartesian coordinates. The Yoo written in terms of the Schwarzschild radius,

here denoted by L is

2 2 2

g = 1—r°/r + e ro/2mc r

00
therefore the electrostatic energy which gave rise to the last term in Y90 has
the effect of removing out the singularity in g ., at r = r_, since there the
Yoo is different from zero

'goo(ro) = e2/2mc%(1/ro)
the electrostatic term e? r(/ch2 r?, is of the order of the Newtonian term r_/r
for distances equdl to . -

r=1/2 e?/me? ,
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for the electron this is of the order of ‘the classical radius e?/mc? = 10”15 am,
If one tries to find out the zeros for Yoo that is, the values for r fram
1- rO/r + e? ro/2mc2 r? =0
or
br/fr =12 (1 - 8%/mr cz)ll2
(o} (o]
we see that no real solutions occur for l-8e2/nﬁ:0c2< 0. Thus, no real zeros for

exist if e?/Gm? > %‘- Since for an electron this ratio is of the order of

10*°, e®/Gm® & 10*°, we see that in this case no real zero will occur for goo" :

gOO

As cansequence the Reissner-Nordstrom solution is regular all the way down to the

intrinsic singularity at r = 0,

6.6.2) Gravitational Field of an Incampressible Ball of Fluid

The first solution also considering a finite source distribution is found on
the Schwarzschild's paper. We have treated before the exterior solution. In
this section we treat also the interior solution. Iet us take a sphere of
incampressible fluid. The stress-energy density Tw is in this situation given
by the special rela{:ivistic expression replacing SW by gw.

TUV HV

(c?pt p) u' u’- p g

v v
(e +p) u u’-p g"

We look for a solution of the Einstein's-equations which is both static and
spherically symmetric, Therefore, the gw may be mapped to a form depending on
just two functions of r,
v(r)
e.
_e A ()

gv = -2

0 - r? sen?0
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Furthermore, the field considered is that generated in the rest frame of the
cbserver, that means, for the doserver moving together with the mass center of
the distribution. For it ui = 0. We might have considered the case where ui=
= ci, where the ci are oonstants, since this still generates static solutions.
However we will take these constants as zero by passing to the rest frame. For
the cbserver at rest in a certain point we hawe

ds? = 800 dxg

but
uw® = dx%/ds = 1/(800)1/2

and since Y F=1, L= u;I. The field equations have the form of the equa

tions for the Scwarzschild field, with the source term, and simplified by the

condition v = 0, A = 0. This will cancel out one of the equations, the Gy =

=eMA .
£ 1A 1
0 - A - 2

Gl=e|—-—) -—=kope (6-6-2.1)

r r r

- 1 V' 1
Gy =e’|—+—] - —=-kp (6-6-2.2)

' 2 r r?

vi= A'
G2 =@ = % e E)" +—;-\)'2 + - %v' A'J = -kp (6-6-2.3)
r

where as before a prime denotes differentiation with respect to r. Due to the
Bianchi identities for Guv , it follows that Tg.u = 0. This represents a condi
tion on p(xr) and p(r). We have,

Moo ol Mygh oAy o
Tv;u T\i.u'+ {ul}Tv {W}T)\

= [}czp+ p) uu.ué]’u tp ot {ﬁl} (c2p+p)uk u, - {3v}(c2p+p)ua o+
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which gives after some calculations

1

(6-6-2.4) »

we can use this equation in place of any of the above field equations, we will

do this later. However, we cannot use all above four conditions simultaneocusly

since this is redundant (for dbtaining the (6-6-2.1) through (6-6-2.3) we used

the Bianchi identities). Thus, we have three field equations for determining

four unknowns, the v, A, p and p. Therefore, it is necessary to know the equa-

tion of state which relates p and p for the fluid. Our procedure however, will

be the most general ocne, namely, we will assume that p = p(r) and then ocampute

v and A as function of p, and finally camwpute p(r).

Clearly this will be pos-

sible essentially due to the sinple form of the above differential equations.

Indeed, multiplying (6-6-2.1) by r> we have,

1

ke?pr? = (e_x r) -1

which can be integrated to
k

4nr

r
e(r) = 4me?S p(r') r'? dr'

0

(6-6-2.5)

where C is a constant of integration. It is natural to require that p(r) = 0

for r ;iro. In this situation if we compute e (@)
_ k e(r,)
e Mo, 1+ 2
brr
putting
k e(rg)
ME = = co——

8

for r>rowe get

+ &
X

r

(6-6-2.6)
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we cbtain € in a form identical to that of the external Schwarzschild  field
plus the term C/r. In regard to dimensions, we note that k has the dJdimension of
T2/ML, e(r) has dimension of energy, MLZ/T?, so that ke(r) has dimension of
length which shows that the dimensions in (6-6-2.5) are correct. The constant C
has dimension of length., What (6-6-2.6) says is that the length k e(r,) as seen
for the cbserver outside of the distribution is just the Schwarzschild radius of
the distribution. We may interpret ¢(r) as the total internal energy of the

fluid contained within a sphere of radius r. Thus, e(r,) is the total enerqgy of

the fluid (supposing our previous conditicn of boundness on p(r)). The quantity
e(rg)

- is then the toétal mass of the fluid, similarly to the mass for the ex-
te:'ior Schwarzschild field.

For the determination of v(r) we make the Schwarzschild's assumption that p(x)
is constant for r < rye Of ocourse this is not be expected to hold true for a
star, however with this simplifying assunmption we will be able to get the general
features of a more realistic solutiom, even if we lost sare other details. For a '
discussion of the integration of the equations (6-6-2.1) and (6-6-2.,2) for
various equations of state that might exist in the interior of a star the reader

may refer to I. Iben, in the Astro. J., 138, 1090 (1963). Detailed discussion

of this would conduct outside of the scope of our lectures.

The suposition that p is constant allow us to integrate directly the equa-

tion (6-6-2.4),
k v(r)

c?p + p(r) = const. e 2 (6‘6"2.‘;‘7)

Subtracting (6-6-2.1) fram (6-6-2.2),

-A
S— '+ V") = - k(e p)
r
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from (6-6-2.7) we cbtain

Fvaafar v
e —t — = const. (6-6—2.8) .

r r

For p constant the equation (6-6-2.5) becomes

IS

=2
e

It

2
1+kc2p£-+-c-:-
3 T

writing
3

pc _ ™ csee——
k R?

we have

_ 2
eA=l-—£— +£
r

o

This expression for e * is substituted into (6-6-2.8),

1 ,
5V 2 C
e2 \J'_-];—-r-+-g- + — + — » = const.
I p2 g2 R 3
Integrating one finds 1
7Y /. x?
e =A-3B 1 - = (6-6-2.9)
R2

The term containing the constant C is divergent at the origin, so that we hawe

taken C = 0. From (6-6-2.9) we calculate v(r), we find

1 / r?
FV= log [A-Bvy 1l-— (6-6-2,10)
R2

so that
2Br
vt =
2 2
R} (A /1 - -3 (1-%X
R? R2

Replacing this value for v' together with the expression for e * fram (6-6-2.5)

A

(where p is taken constant and C = 0, the result being e " = 1 - r2/R?) into

(6-6-2,2) , we can calculate the pressure p inside the fluid. After same camputa-
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tions one gets the value J— h
3V 1-% -4
. R? (6-6-2.11)
R " L
T y
A-3V1-% \
R2

The two constants A and B are fixed by imposing that p = 0 on the surface of the
sphere (all particles forming the body do not move normally to the surface but
only tangentially to it,since in the opposite case the surface would not form :a

boundary for the camponents of the body) , and that e’ joins on smoothly to the
Schwarzschild field on the surface *, One finds,

Replacing this into (6-6-2.9), we get for the field fimctions inside of the

sphere of fluid
v 2 2
7_3/,.0_1 _F .
=z Vir—-3 1 == (6~6-2.12)

e =1l = - (6-6-2,13)

ar'xd: for the piessure inside the body we find,

* According to our conditions on the source distribution p(r) = 0, p(r) =0~
for r > t,» 80 that Tuv = 0 outside of the body. Since Tuv is spherically

symmetric this implies by Birkhoff's theorem that By is the Schwarzschild
field for r > r g
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r )
2 2
J1 -2 - /1-ZXo
R? R?
) = pj . (6-6-2. 14)
——-———\ .’V
1'2 rz
_3/1-—-3— 1—-2- L
\_ R R J

Since r varies fram 0 to o in order that this solution be real is necessary
. that

r; <R* = - 3/kpc? . (6-6-2.15)
If we require that the pressure on the fluid is everywhere finite, we obtain
from (6-6-2.14) the condition

8 r2 | (6-6-2.16)

2
. < -
ro 9

Indeed, the singular point for p(r) is r such that the denaminator of (6-6-2,14)

vanishes,
2
r 2
3Vi-2-vi1-I .
R2 R?
which gives
r2 = - 82 + 9 rg . ‘ (6-6-2.17)

if it happens that 9r2 -- 8 R? <0, no such r does exist and thus p(r) is finite
for all values of r. The condition following from this inequallity is Jjust
the (6-6-2.16). It is also very easy to see that p> 0 on account that r < rye
This Jjust says that the above p(r) is indeed physically reasonable in spite
of being cbtained without a deeper analysis on the structure of the body. The
equation (6-6-2.17) gives the several values for r on which the pressure may
becare infinite. In particular if r2 = 8/9 R?, the pressure becames infinite
at r = 0. For any distance d away fram the center, p will be infinity if -8R%+
+9r; - @® = 0. Thereby, the validity of (6—6?2.16) is a condition of stabili

ty for the distribution. This condition being an upper bound for the radius of
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the sphere; the . represents an upper bound for the possible amount of matter

which can be packed for generating a static and stable solution of the Einstein's

equations. This maximum amount of matter will be }
_ 3
Berit ~ 4/3mp F?‘O?crit ’
where,
(x) .. = (8/9 k)%

o’crit
that is, for stability m < Mt

Using (6-6-2.16) together with the explicit value for k we find for M.

it!
(4 ) 8 3/4 [/ 3 c* 372
me = (47) o(8)
crit 3 9 8mG

this value for the maximum amount of matter will depend on the value for the

density of matter p. For masses greater than Moy

as result of the unsuppcrted gravitational attraction of its various parts. Once '

¢ the fluid begin to oollapse

begun, such a contraction would continue untill all fluid became concentrated

o a point. -

While the assumption of incampressibility, as was used here,is wnrealistic
from the intuitive point of view, the use of more realistic equations of state
does not modify the existence of unstable collapsing states. Oppenheimer and

Volkov 56

have considered the case of a cold neutron was. - Matter in this state
might be imagined to exist in a large star after all thermonuclear burning had
taken place and gravitational forces had overhelmed the pressure of the elec-
tron gas foﬁed by beta~decay of the neutron gas. If the gravitational forces
are sufficiently strong, inverse beta-decay would take place and eventually all

electrons would be carbined with protons to form neutrons 57‘. Oppenheimer and
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Volkoff integrated the Einstein equations when such matter acts as source of

the gravitational field and showed that no stable solution exists for a total <>

-

mass exceeding 0.7 solar masses, the critical mass for this case. For “‘larger .

masses no static solutions of these ‘equations exist and the star would undergo
g;ravitatimal collapse.' What happens to matter as it is compressed into an
ever- decreasing volume is an open question.* Even the assumption of a hard
nuolear core will not inhibit the oollapse. Indeed, at best it would imply
in a state of incampressibility and even in this case an infinite pressure will.
became an infinite source of enérgy jér the gravitational field, which in tum
will produce an infinite gravitational field. Some suggestions have been put
forward, as for instance Wheeler's pfoposal that for exceedingly high  densi-
.ties, mass is campletely converted into radiation which is strong enough ~ for
‘beating the gravitaticnal attraction and move away. Alternatively, one may
‘imagine that beyond a certain small region it is no longer permissible to
treat the gravitational fieldciassically,but it have to be treated as a quan-
tized system. In any event, essentially new and at present unknown physical

laws must come into play in this region.

7. CONSERVATION IAWS IN GENERAL RELATIVITY

7.1) Introductory Concepts

The concepts of energy, mamentum and angular momentum have a fundamental
importance in both classical and quantum physics. In the Newtonian mechanics
we need to know the foroce field acting on the system in order to determine
its state of motion. Nevertheless, frequently, we really do not know in all

details the structure of these forces, or it may happen that the individual
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description of the system in terms of its cawponents turns out too mich
involved. In such cases the knowledge of general conservation laws such as
conservation of charge, energy or angular marentum serve to characterize the

system as a whole.

From the point of view of its historical appearance, the first of such
quantity was the kinetic energy introduced by Leibnitz under the name of "vis
viva". Conservation laws for the kinetic energy and for the linear mamentum
allow us to salve problems of collisions between particles, even if we do not
know the real mechanism of the forces for colliding particles. In general the
total kinetic energy of the particles forming up the system is not conserved.
In the case where the foroes have origin in a potential, we can generalize
the concept of conservation for the total energy represented by the sum of
the total kinetic enerqy with the total potential energy. As example of this
process is the motion of a projectile neglecting the air resistance. This
process of generalizing the conservation laws by introducing new quantities
so as the total sum is conserved is characteristic of the developrent in the
knowledge of the dyhamics of the system. With the end of retaining conserva-
tion laws in presence of electramagnetic radiation we have to recognize that

the electromagnetic field transports energy and momentum.

In special relativity energy and momentum form together a sole physical
quantity, the fourvector of mamentum, so that it has to be conserved as a
whole. This result . is ccasequence of the homogeinity of the four-
dimensional Minkowski space. This same conclusion may be stated in terms of
the fact that the density of energy and of mamentum, together with the stress
caponents form a second rank tensor T a8 with respect to the group of Poinca-

-

ré. This tensor is divergence-free.
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If all relevant forms of energy have been taken into consideration, total energy « »
and momentum are ocbtained fram this tensor by suitable integrations over the -
three-dimensional space. Similarly a third rank tensor Moc [BX] skew-symmetric on

a pair of indices, represents the angular momentum in special relativity.

Difficulties will appear in connection to the notion of energy in the
general theory of relativity. The space-time in this theory is not a flat sym-
metric space as was in special relativity, in which energy and momentum were as-
sociated to the hamogeneity of all four directions. The finallity of this
chapter is to present the relationships between conservation theorems and in-
variance properties, with special emphasys on the definition of energy in general

relativity.

Jor illustrating the connection between conservation theorems and proper-
ties of invariance associated to physical cdbservables of the system, let us
consider the following example: the motion of a particle in a static spherically
symmetric field of forces. There exists four quantities which are constant of
the motion, the three camponents of the angular momentum of the particle plus

the energy of the particle. (in the non-relativistic mechanics).
> d-> -> > d+ > >
= &L P .
d/dt M EX Pt rx I rx F

- &V/dr.Z/r is parallel to r. For the

which is zero since F = - grad V(x)
enerqgy,

dE/dt = d/dt(p?/2m + V)

[
* |
.
|

The last conclusion was the result that V depends only on r, but not on time,
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The linear momentum of the particle, S = mi", is not cnserved since there is a
force field acting, having the origin of coordinates as the center of the field.
If we make a translation of the coordinate system the field equations will not
be form invariant. We can translate the existence of these four conserved quan
tities by saying that in-a static spherically symmetric field of forces the conser
vation laws are ‘consequence of invariance of the Lagrangian wndex.a growp of -
continuous transformations with four parameters, formed by the rotations around
the center of the field and the transformation t' = t+a. These later form the

theorems of conservation associated to the four invariants M and E,

The connection between invariance properties and theorems of conserva-
tion are contained in two general theorems of Emmi Noether. Since in the:
chapter five we have already proved those theorems presently we will wuse
them directly. . |

We frequently shall use the concept of a weak conservation law, such a
law is one which is satisfied only on the path followed by the system. In other
words, given the Lagrangian (or the Lagrangian density) of the system, if the
variation on it,generated by same symretry group,has the form of a divergence ¢

along the path for the system,

Hoeool 3

1 P i\)’
—— Hoeoeld
ax\) 1 P

§&=¢

We cbtain p weak ocmservation laws. This is just the statement of the first
Noether's theorem, As example of this let us consider the Lagrangian
L=L @@, ;@)
H4

for same physical system. Taking a translation of the coordinates,

SR S RS N
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we have the variation in L.

L' =Lt (xra), qij (x+a)) = L () + ajqij(") »qij(x)s qij(") + azqijz(X))

or,
i, i 1 gy 3L
L =Ll x), ¢ . X)) +a q,—r+a q, -
sJ sJ aql sJQ/ aql.
s
but
i, i i i g 9L
8L = LrB=L(q"  (x+a), q*,(x+a)) - L ), q; (X)) = a —
s] J 3X’Q’
thus, we get
_23'6_513'3 213‘6
§f=a ——=a q,—+a Qg =T
9xl »] aql 9'J aq]’-j

Using the Euler-Lagrange equaticons of motion (this is just the point where the

weak character of the conservation law appears), we write this as

8L . s d 38 . ?L
- 2 _ 3 1 L1
6‘6 = a -._E =a’ q j —-E 5 +a q jﬂ, —
? ’
ox ox Bq’z Bqtj

which may be put as

L= a —z =8 — |4, T
9X 9xJ '™ 3q

Therefore, we have the weak conservation law for the stress-energy tensor of

the system

3 .
o —-.-Ti=o
BxJ

j L
BT g %4
1,
9

This is the relativistic conservation law of energy and momentum if we hawve

=
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four coordinates xi‘, as is the case in relativity.

The second Noether's theorem states that invariance of the Lagrangian
wder a group involving q arbitrary functions inplies in the existence of g
identities among the left-hand side of the Euler-Lagrange equations.

First of all we need to clarify further the difference between weak

conservation laws and identities. This will be done by means of the follow-

ing example. Consider the two Action integrals

. )
gt axf
I, = a., (x) —— — dA
1 k™ g a
v
R _
. A Y
‘ dxt  ax®
1, = a., (X) == —— dA
2 ik a\ i
\/

where aik(x) is a symmetrical matrix independent. of the parameter 1. We have,

indicating derivative with respect to A by a prime,

" oa,

: . ik . d

L os1, = Ll gk 6> + a,, x'T — 555 ) ax
2 2 axIll ik a

considering variations vanishing on the boundaries,

' da,y d
Lar o | (L1 ok m iy s K\ an
3 611 J ( x'" x 8x —_— (a‘ik x'7) &x }dx

2 ax di
which gives.
; ‘Baik aaim

1 - 1.1,k L Rogi ni m

5 11 7' x axm ;}—-x S X a, . X §x dA
thus, Ba.ki da,

1,4k _ T Y L i

5 X X Sl ¥ x'7 x im = 0

9xX
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-Since the second termm is symmetric on (1,i) we get

aaik aaJ'.m L . . V ¥
1 'k ,1 nl _ :
3 mo ok i )X X Ce, X =0 .
X 9x ox E
multiplying by the inverse of a, ., we obtain
¥t (oY xE xt o | (7-1-1)

where {]J;Q} indicates the cambination defining the Christoffel symbol if aij is

the metric tensor gij' However this is not claimed.

i 1 ir aark aark aa’kl
=3 +— (7-1-2)

5% %K okt

These are the Euler-Lagrange equations for the Action integral Il. For the other

integral we have.

G(aik x't x'k)
) x't x'k -1
oY Bk 2 —
a_ x'" x'
rs
which gives
' da.
. 1 ik .
Gk _ 1 ik L i d k
Gaikx x'" =5 x'" x 8x +2a,kx ?de
2 x'T g'8 axt
rs

The Euler-Lagrange equations then take the form.

1 da, da.
1 _,i ,k 1K e i i
-z--x' x' - x'V x'"T - a, x" = 0 (7-1-3)
a_ x'Fx'® | ox™ BX'Q' ’
rs
We have,
dxk dxk ds
di ds ax

where
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ds = a x'™ '™
mn
tkm' ’ 4
ax* L .
ds ds

2
Multiplying (7-1-3) by QA » and noting that a factor 1/ds is already present in

this equation as a nmltiphcative camon factor:, we get

R
e T T S

This is the Euler-Lagrange equation for Iz. Is this last integral which gives
the Action integral for the motion of a test particle in a given gravitational
field when Amn = Ym- The two Euler-Lagrange equations in spite of locking

similar have certain fundamental differences. First let us consider Il’ This

integral is invariant under the partiular parameter change

with constant €, Indeed, wnder this change

i .
; 4= ; a :
x‘ L} 1 .

a' ar
Considering variations of I, which do not necessarily vanish on the boundaries

) d .
611 = Jog 8x" dA +. | - (a,, x'* ka) i
m : dk ik

where of are the left hand side of the Euler-Lagrange equations On the path
followed by the system £ = 0, so that
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d ik
8I, = | = (a,, x'™ 8x)dXx .
1 a ik

Cansidering that ka is induced by a parameter change of the type considered .-

€y
. -

before.
k ax* k
§x == S8)h =x"" ¢ ,
dx
Since £ is constant we get,
d ik
611=e -—-(aikx' x') dx .
dx
Introducing a Lagrangian Ll
d .
k
SL, = € — (a. x'lx')
1 a ik .

Invariance of Il under the parameter change then implies in

d
e — (a.
a t

Xk x't x'k) =0

but since £ is necessarily different fram zero,

d ik
— (aik x'"x'") =0
dX

This is an example of a weak conservation law (holding along the path for the
system) associated to invariance under the parameter change in I, Inour
initial definition of Il we have not given any explicit value for a&mns OF for 2.
If one takes A equal to time, the parameter change will be a translation of the
time origin, and invariance of Il under this transformation will represent the
law of conservation of energy. By the other hand, 12 is invariant under the

general parameter change
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under which the x'k vary as

T dA!
no xeférenoe whatever is done with respect to the form of the fimction 4(3).

Again we consider variation in I,, since now ka will be a fimction of 2,
ka = x'h-t SA

no cnservation lavwillbe.}:btaimdby omsidering a variation along the motion
for the system as was dine for I,. e to this, we instead tske variations
vanishing on the limits of integration.

m.
51, = IJ?N 8x" da

.mdsmosethattheyaregmerated-l:y&z‘ of the form given above, In this

case the variation &X° is tangent to the curve followed by the system, and thus,
acoozﬂingtothecalmluéofvariatimswehavethatnovariatimatall:is gotten,
since we do not have two paths to compare. . This in turn inplies that 6I, is the
dlfference between the I, with itself, and therefore vanishes identically.

P61, 0
which implies in
L 0, . (7-1~5)
or,
2% . dx axd |
g X4 =t ([} — =0 (-1-§)

' Recalling that 612 is a variation alemg the same path, it does not inply that.zm
is necessarily zero. Thus, the equation (7-1-5) holds identically,even if .q“ is
not nuil. This example shows how identities relating the Jeft hand side of the
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Euler-Lagrange equations can be obtained. They will appear whenever the Action
integral is invariant under a function group. In this example 12 is invariant .
under the function group with function ¢(1). One gets so many identities as
available functions exist, in this example we got just one identity., By the
other hand Il does not present a functional invariance, but just a finite type

of invariance under the cne-parameter group A' = A + €. As cansequence one

weak conservation law is obtained.

7.2) Weak Conservation laws and Identities for a General Classical

Field Theory.

In this section we shall apply directly the two Noether theorems to the
praoblem of stating conservation laws for a given field theory in the classical
stage. ILet the field functions be the continuous differentiable functions
yA(x) s A=1,,..Nand x = (xl...xn) , possessing the Action integral

W= éL(x;yA(x), yA’i(x), yA,ij(x)) dx

L being the Lagrangian density., The field equations are

W

Ay, = =0.

8y, ()
Cansider general gauge transformations,

y (0 =Y, (y) | (7-2-1)
x' = X(x) , (7-2-2)

which leave the field equations form invariant. These transformations are called
isametries. We consider isametries which are continuous with the identity trans-

formation.
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yax') =y, (x) + 8y, (x)

x' = x + 6x(x)

LS 4
The Noether theorems then imply that W is invariant if s
A8y, + 5l =0 (7-2-3)
Ya i~
i i oL oL oL
St™ =L &x + > - Bk > E'yA + N gyA,k (7-2-4)
a,i a,ik A, ik

- Two situations are of interest., The first is dbtained when the isometries form

a growp Gp, depending on p parameters,

sxt(x) = eV s-i<x>
By, @ = e n, @
Te, = e 1:i

1 U

u=1l...p, i=1...n

In this case the (7-2-3) and (7-2-4) are simply

A _u b i =
L € nAu+€ tu,i'o
Which represent p weak conservation laws, since for LA =0 we get 11; i< 0.
r
o The second possibility is for a growp qu, depending on q arbitrary

functions e (x) » V= 1,..gq. For our purposes it will be sufficient to write
8xt (x) = €¥(x) £ () (7-2-5)
By, = €7@ ny @) - €’ vy, (7-2-6)

Substituting these relations into (7-2-3) we get an identity involving the e’ ’ '
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. linearly.

v V
d the .
£, an e'lj

,i

v i v ij v -
+ ° + P = . . .
F\) € (x) F\) e’l(x) Fv e,lJ(x) 0 v

Due to the fact that the e’ (x) are arbitrary, the coefficients of e’ ’ Evi and
’

e’ 13 have to be set equal to zero separately.
!
F, 20,
i_
F v o,
ij_
F v = 0.
Nevertheless such relations are still too much general for being useful. We lock

for identities which are hamogeneous and linear in LA. The (7-2-3) are not hamo

geneous due to the term TS'tli which depends on the 2. such type of identities
14

are cbtained when € (x) is such that it vanishes asymptotically. In other terns,

we shall restrict to the sub-group E«q of qu formed by the functions e’ (x) in

(7-2-5), (7-2-6), satisfying
s\)(x) +0, |x| +>

e\:i(x) > 0

pe 08 ces st

For this sub-group we have for (7-2-3),
st Ty, e ST
Q Q

But

which vanishes. Thus,
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Since the region of integration is arbitrary,

L 8y, =0
A i'

substitution of (7-2-6) gives .

A,V v i, . "

L(e Nav E:,i YA\)) =0
Partial integration dropping the surface term gives

\V A A i =
which implies,on acoount of the arbitrariness in the €V (x) ,

A (7-2-7)

1]
o

A i
L7 n,, * @ YA)’]-_ =
These are the general Bianchi identities. For the case where ﬂle-yA (x) are the
metric coamponents gu\)(x'), and i = 1...4, with g = 4 they will be just the

contracted Bianchi identities of general relativity.

The existence of these identities will imply in ambiquity in the solu-
tion of the initial value problem for the yA(?c, x°). This prcblem was already
treated previously and its limitations were interpreted as a prescription for
separating physical variables fram the other variables. Here, for completeness
we include the proof that (7-2-7) will limit the nurber of possible initial
Cauchy data. Let us denote the highest time derivative of Ya inside LA by ylin) .
Then, if they appear linearly in LA, which is the case of all known applications,
Vviz for electrodynamics or general relativity,

A _ AB

L ylgn) + AA(y. y(m)), m<n (7-2-8)

replacing this into (7-2-7) and ocollecting the term with the highest order time
derivative,

AB o _(n+l
@ Yav VB )+

0 (7-2-9)
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The exact form of the terms represented by the dots is not important, all that

r

matters is that they depend on derivatives of Ya with respect to ¥° of the order
n, or lower. Since all derivatives of Yp at a point are arbitrary, it follows

that

o' Yo, = O (7-2-10)

Therefore the matrix ocAB possess so many null eigenvectors as is the range of varia
tion for the v. We have called one of the several coordinates x~ by "time",

however, fram the mathematical point of view this is just one of the n possible

values for x-. In relativity indeed x° is a coordinate-time. In this case we

get four null eigenvectors for o>, and thismatrix is of the form o™ P In sum

mary, the matrix aAB is singular,with n linearly dependent null eigenvectors.

(n)
Ya
derivatives., Part of them will not admit such solutions. In general relativi-

2)
ij

As consequence we cannot solwve (7-2-8) for all in terms of the lower order

ty they are the four g(z) The remaining variables, the g( admit solutions.

ou’
The Cauchy problem can be formulated campletely only for these later variables.

This . fact was  interpreted before.

7.3) Continuity Equations in General Relativity

Follcwing with our treatment let us consider again Naether's identity
(7-2-3). We take here the situation where the mapping functions €’ (x) are
zero on the boundaries of the four-space (the p;fésent treatrent is specific
for general relativity, so as n = 4, v = 4 and the Ya is just the gw, l;ut we
continue to use the y-notation). The eV (x) arise frdm the symetry mappings

of the theory,

x'V= %+ ev(x)
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We will write the identity (7-2-3) by dropping the § in the divergence temm in-
volving the ti. This has nothing of profound and is just a matter of conveni-
ence in the notation . Alongside with (7-2-3) we use too the local identity
(7-2-7), the Bianchi identities. For G , they are consistent with the identi-
ties (7-2-3).

The equation (7-2-3) for the cholce (7-2-6) may be put in the form

u A _V AV oo L

t’u+L e (x) nAv(x) L E,chAv‘o . (7-3-1)

Using the identity (7-2-7) we write this as
®u = 7-3r2
" =0 (7-3r2)

where
®u= T L (7-3-3)
Yav °

From (7-3-2) we may infer that @Hmay be written as the curl of a skew-symmet

ric third rank tensor, a "superpotential",
@ = U[‘Jgj . (7-3-4)
9

Historically the first superpotential was introduced by Freud 58 in oconection

with the Einstein's pseudo-tensor. From (7-3-3) we cbtain, solving for t",

WA Vi AP [uo] -3-
t L™ e7(x) YA\)(X) +U T - (7-3-5)
However, we have also the explicit expression for t¥ which is given fram

9

=4
Noether's theorem by (7-2-4). For Einstein's Lagrangian density Kamar ~° has

shown that it reduces to

0
thad — @ -V e )j,o (7-3-6)
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where we recall that here gyA = E'gw =g In the proof of this rela-

+ € L]
IFAY Viu
tion we have taken that gu v is solution of the field equations, so that LA =0y »

Then t" = U[“"_-c]J and fram (7-3-6) one gets s
’ i
/=g '
ol L 2 ey, = g el) (7-3-7)
k s ’

The nonuniqueness in tH = Uﬁjg] is dbvious since the e!(x) are arbitrary func-
tions. This arbitrarity is similarly verified for the superpotential Ul:uo---l .
Besides_ this we can also sum to t% an arbitrary curl, VEW] o thus obtaining a
new t!' “,

L A

e}

and corresponding to this a new superpotential U’ [:uc_]

ut E“Cﬂ = UD‘“’] + V[lio']

By convenient choices of ¢¥ (%) and Vl:w:l (x) one can cbtain all the various stress-
energy pseudo-tensors and corresponding superpotentials *. Due to this we cannot
really ascribe to any one of them a definite meaning, as the real stress-enerqy

tensor for the gravitational field. They all share the same ground in the treat-

ment,

For campleting this section we write down the various pseudo-tensors

which have been proposed in the literature. The first was the Einstein's pseudo-

tensor defined as 60

aL!

po,V -
%801

where L' is the reduoed gravitational Lagrangian density (a function only of g‘p v

(7-3-8)

v__ u:_u'
/‘EEtv_ § L' + g

and g,u'\)’d) .

*
which have been proposed in the literature.
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v

-2k ¥ = e R -~ Y- : — . ri
k L\' & g gUV,O 3
8,00/ ,0

The conservation law for the system represented by the sources of the field and
the field itself being

|- -3
E9JV9H 0 (7-3-9)

e ¥ - (7-3-10)

TR u
E\fj e (T + gEy

von Freud showed that the superpotential for it was

TR o
2k /=g FU\)E"’:| = 84 {g(g"° pr - gw‘ "9 A

For dbtaining this expression, for U[up] from (7-3-10), we used that TH = L GH
FV v kv

and for Et\)u used the (7-3-8). The Einstein pseudo-tensor suffers from a very

serious drawback, being a function only of g’p'v and g

v, 0 it may be"set. zero

locally by a choice of coordinates. Therefore it cannot mean the stress-energy
tensor for the field. For solving this difficulty M@ller has introduced his
stress-energy pseudo-tensor as 61

-
(o}
"J,MEMU[t] c”/:i(Tu*-t’u)
M-V g ’

with

[vo] ol _ o [ed] ., o [ov]
MU“ 2 U5 ‘611) 5 - * 6, 5%

\)d oT, . )
g 8 (gm,.r - gm’a) : (7-3-12)

* |0
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the Mgller's pseudo-tensor Mt\)“ being dependent also on the second derivatives
of = is free from the - previous difficulty.

Another proposed stress-energy pseudo-tensor is due to Landau and
62

t&’%‘
Iifschitz

gW = LU“[\)C’:I o= 8 (T + ")

o] | o we [vo]
LY .o /8 8 o L0

Besides those pseudo—tehsors there exist various other candidates, a general ref

erence to this may be found on papers by Goldberg and by Bergmann 63.

Let us now prove how to obtain the Mgller's superpotential from the
general superpotential given by the equation (7-3-7). For this is sufficient to

pﬁt e (%) equal to constants, e’ = c. Then, we have in (7-3-7),

. =
wo| _ av (M u o o
U[ J B K (g {\)a} -8 {va}) ¢

a direct and simple calculation shows that this equation is just

/=g
1 IV A

a
) (g)\u,\) - g\)a,)\)c

Using (7-3-12) we write this as
U (e c) MU a  ©

which shows how to recover the Mgller's superpotential by choosing the e¥ (xX) as
four constants. Similarly all other superpotentials may be reconstructed out
of the general superpotential of (7-3-7) by other choices for e¥(x). This also
serves to show that really we have an infinity of possible superpotentials, and
associate pseudo-tensors t\;‘l depending on the value taken for the arbitrary

functions e (x) standing in (7-3-7).
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Since the interpretation of this seems at ttw moment rather questionable,

and it:is an open subject of research we finish here this section, .

|
B

8. THEORY OF GRAVITATICNAL RADIATICN

8.1) Globally Conserved Quantities for Manifolds Possessing Killing¥

Fields

In the case where the manifold possess certain number of Killing fields
it is possible to set up integral conservation laws and interpret them as physical
quantities associated to the gravitational field. These integrals are inportant
in the discussion of gravitational radiation. We start fram the general super-
potential UEw]o:'EL’Eq;(7—3-7) , as it is seen fram this equation U[‘w:l is a skew-sym
retric second rank tensor for the arbitrary vector e’ (x) . Take ¢’ to be a Killing
vector of the gearetry, eV =1’ (we take T as a time-like Killing vector defining
a stationary gravitational field). Iet o be a space-like hypersurface and S its,
boundary. Form the integral

P =§ TUDJG] 4z, - (8-1-1)
8

we indicate _EU[“":I a‘s.‘ the superpotential taken for e¥ = V. This integral can
be taken as the total energy contained within the volure bounded by S. Indeed,

mapping soO as " = (1,3) and taking ¢ as the hypersurface «° = const., we cbtain

o w

- lox] i . ‘_
P § TU er_, dzrqerim dx
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since for a constant 7 we get

T

"IRary /=g - '
al _ OV U y_ MV (O o OVM 7 _ WV,0 <
U[P g -k- g {\)a} g {\)a} T = —k_ <g {vo} g {\)o}> X

For giving a definite exanmple of this method we further simplify by considering

a static gravitational field, or = 0. Then

1 g

1 Fey
S

Taking into account that in this case

e A
[e]e}

we hawve

N‘IN

§F —-? IR N

9%

Applying this for a Schwarzschild field generated by a bounded source distribu-
tion, and taking S as a sphere with radius "a" greater than the radius of the
distribution. Assuming that the total mass of this later is m, we have.

00

80 = 1/g" =1 - 2¢/r
1
= ;1 = e —2_c
85 = Ve (1 r)
322 = 1/822 = - r2
8, = 1/g*% = - r? sen®0

in spherical coordinates. Substituting these values into the abowve integral, we
find P = m. This shows that the appelation of energy for the integral (8-1-1)

is in certain sense correct. This can also be proven directly from (8-1-1).
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Indeed, writing
T QY 7
T o

where % is the time-like Killing field, and applying Gauss' theorem we get

. [wa] T
P -é‘ U dzm \I‘ UL dcn :
S o 9

thus, for the reference system where the % assure constant values, or even if
one retains the possibility of % varying with the ocoordinates,

P = Ju[ucj e dcxu + J' 'r°‘ ?L[ucj do
o o

a’o ’G o u

introducing the pseudo tensor tg of energy-momentum

we get

mapping to the frame where ® assume the canonical values written before,
= |t = °
P f to dcu J‘ to d;x
c v

where we tock o as the hypersurface ®° = const. This shows in general that P

behaves as the energy inside the volume V. Fram the calculations done before

we have for the superpotential associated to the Killing field,
/5

o] _ ' OV(M,, _HVO
‘ll.gj e (g ) -8 {w})

a short calculaﬁ'q,on will give
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ov _HA

g g (g (8-1-2)

/g
] - —

AGL,V g\)oc,)\)
and this, as was to be expected, is the Mgller's superpotential. Therefore , €
this type of superpotential is associated to the energy inside V. The case -
which we just finished to discuss presents an exact Killing symmetry field. Some
times it is meaningful to construct an integral like (8~1-1) for situations

where we can at most introduce asymptotical Killing fields. Such fields  will

exist if one can find a mapping such that asymptotically . <

| o} 1
= -+ —
g'L.l\) g]J\) 0 (r)

where r is the distance fraom some point on a space-like surface that is asymp-

totically parallel to an x° = const. surface. In this case the Killing's equa-

tion is,

9 p +0 p + (-1.'.)=
Bl vt Byl t OF)=0.

Consequently the Killing field is given by the ten parameters of the Poincaré
P Y

grow, £P = ¢ y Xt e, cofrésponding to this asymptotically flat manifold.
In this case we get for (7-3-7), by éutting.‘;p = epxh x}‘ +ep,
UEUU_] = g% QL[_-PU] A, o uﬁ“ﬂ (8-1-3)
E". A o o
where | . )
[uo]n _ oV MA _ iv 0 P
Uy = Q; Ay~ 8 Aow> (8-1~4)
[uo] _ S TR O A 1
| Wo™ = —1:- g B g B - (8-1-5)

and Ag\); and Bga are a short for

A 0 AL My A
AW—Ganf{v-a}x
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Mooy
B\)a {va} ‘

We see that in this case we have ten cbjects u[“"] . The 1ntegral (8-1-1) will
take the form, where S is the surface on the spatial infinity. ‘

= o I T o :
P—IEU[’UJ dou-e}\lax‘e Ja (8-1-6)
with
A oA [uo
Ioz Iu[a,a. dcru J"u, ] dc
o

These integrals are independent of the parameters sa)\, e% inside the hypersurface
o, and are independent of the hypersurface of integratim since both integrands
have null divergence. Taking o as the surface x° = const. we get the result that

the ten integrals

A | qqloodr -
I O‘-J—\‘u_a’c 4 x (8-1-7)
J—\?L[oﬂ d, x "j‘ dax | ' (8-1-8)
are independent of xp.' | The second - integral: is just the total marentum

- for the gravitational field inside the volume V. The first . integral represents
the ‘conservation law of the total angular momentum pseudo-tensor of the gravita-

tional field inside V. The explicit expressicns for the corxéspmchnt densities

r&[uo] { ( v vas} (8-1~0)

u\)
[wolr L <g 5 - g s " + g {”}x-g“"{"}x (8-1~10)
k.

being

Q.0
Ne)

That is, ‘u[m] is the Moller s superpotential and thus t ' is the Moller's
pseudo~-tensor of mamenturmr-energy. ‘U,[ o]k will be the superpotential for the
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density of-the angular mamentum pseudo-tensor, note that we have two terms in

this tensor, an intrinsic angular mamentum density (the spin density for the
field) and the orbital part. These results which hold in the asymptotic region
are entirely similar to what happens for any field in special relativity, that

means in flat space-times

8.2) Gravitaticnal Radiation

In a previous section we have already discussed same topics related to
this prablem., Presently we give a samewhat more detailed exposition of the
general situation for this subject. In discussing the prablem of gravitational
radiation we are quided essentially by the knowledge we got in studying the
electromagnetic radiation. Unfortunately, the gravitational theory differs in
several respects fram electrodynamics and such differences reduce significantly
the value of this analogy. By the other hand there is no experimental data to
guide one in defining the concept of gravitational radiation, as consequence we

have to use this type of anategy.

We review briefly the concepts which lead to the existence of electro
magnetic radiation., First of all there exists source-free plane-wave soluticns

characterized by the conditions that
| = |H], EH=0

or equivalently, by the condition that there exists a null vector k" such that

\Y - oUvpo -
Pk =0, ¢ Fyk, =0

We have seen that similar plane-wave solutions exist tor the Einstein equa-
tions. However, the most general solution of Maxwell'sequaﬁ.oné in the presence

of sources may be put as the sum of the general solution of the hamogeneous
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equation, the plane waves or superposition of them, and a particular solution

associated to the sources. Thus we may write,
+

+ A'J (x)

_ ik.x
Au(x) = RM e

+ ~ o+
Xuk“ =0, & =J\ §(GmxN D) (x") dx'

+
&~ (x%) = ——{6(|x| ¥ X )} E]G-(x ) = 4w 6, (%)
and for the fields,

_ ik.x +
Fu\)(x) = 811\) e + Fn"lb(x)

=k [11 V,:l (x) = AEE}’:)]

This camplete solution clearly possess more physical interest than the pure homo
geneous solution. Indeed, these solutions lead to Poynting vectors whose integ-
ral over a closed surface surrounding the sources gives the energy flux out of

the sources, and this may be directly confronted with the experimental measure-

ments,
+

We can put the expression for A;(x) in the familiar form by integration
over x'°,

; R > >y

+ J}.l(xo :fx-x'], 2"
AT(x) = - d, x'
o |x - %' %

The structure of this potential for large values of r = |x| will be

|
A-(x) =—J\ < *r 1‘ —_— SQ d x'

for the retarded solution only the signs written on the bottom should be consider
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ed *. At large distances fram the source, the field over a not too large region

of space may be oconsidered as a plane wave, In this case the fields E and H are

A4

related to each other by E="Hx K, where K = R’/k. From the integral written ?

> 1 o (0] . T o e e
above Ai__— I f(xi) , where f(x+ ) is the fmctlon . RS
n x.x'
-5 - .
f<Xf>=I3 Xty , X' ) dyx' = T Ep)
-— r

Thus, H= curl T _f(x?) . In differentiating this expression we may take r as
constant. Indeed, differentiation on r would generate a term 1/r which is small
as compared with the original term. However r will contribute to the derivatives

as factor inside f(x? ). So

curl %-?(x+) = % curl F(xD) .
- - gt
which gives,on account of, curl —f(x.?) = Vx? X , and by taking the retarded
- - axe. ‘
solution, -
vx®=-Vr =-n
! df ad
H==—nX e— = = — X' n
r dxf dx°
which may be put as
=% xn | (8-2-1)
therefore,
_________ E=Ex mx 1 (8-2-2)

. Therefore we may expand f(;') =

. > >

At large distances from the source |x|>>|x’
> > >, . > o .9 .

=|x-x'| for fixed x in power series of x' and stop with the first term, Thus

f(z') = £(0) + x'. V£(0), and an easy calculation gives
> >
]
£G) =r- 22, r= x|,
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We note that the fields at large distanoes are proporticnal to the first power
of the inverse of the distanoce to the radiating source. Therefore the energy
flux as given by the Poynting vector will be proportional to the square of 1/r.

We have sald before that this class of solutions are approximately
plane waves over small regions of the space., The conditions fixing this
behaviour are those written at the beginning of this section. Presently they

will hold up to terms of the order of l/r ,

v 1\ _
Fqu + 0 (;%> =0

QUVP 1 )
£ F k + — =0
v p O<r2

Indeed, applying Maxwellequations in the asymptotic region where there is no

sources, for the cawplete solution presently considered, we dbtain

’ [o]
F *Y=F k' +F V=0

’
uv nv v

F =A -A = (@&,6%)
uv H,V Vel = -

Since the fields go with 1/r their derivatives will go with 1/r?, thus
o v 1
+ 0 — =
Fuvk u (rz ) 0

o 1
+ 0% (=) =0
p <r2>

These are the oconcepts which one tries to apply directly to the gravitational

ouvp 8
£ Fuvk

radiation field. 1In doing this one faces immediately with the crucial problem
that no exact solution for time-varying sources is known. So that one is im-
mediately forced to use éppro:d.mate procedures, such as weak field solutions or-
multipole expansion methods. In doing{‘ft:hat,one is usually &carced to make use
of coordinate conditions (which in _the weak field approximation are just gauge
oconditions for the radiation field). Up to what extension the use of such
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coordinate conditions will influence all relevant physical conclusions is not
known, therefore we do not know how to separate in a clear fashion the results
% ¥

which are independent of these coordinate conditions from those which depend on

them.

In addition to this difficulty, one is also faced with the prdblem that
a definite, geametrical formulation of conservation laws in general relativity
is possible only when there exists one or more Killing wvectors, at least in the
asymptotic region., However, conservation laws are necessary if we are to be
able to calcul_ate' the amwount of energy radiated by a source. As we said before,
the absence of exact time-vaying source solutions forces us to use approximation

methods. In what fdlows we give a short summary of such methods.

8.2.1) The Approximation of Weak Gravitational Radiating Field

Einstein was the first person which discussed the possibility of grav-
itational radiation. He used the weak field approximation for doing this 64.
Suppose we have a continuity equation of the type t“u = 0, by integration over:

3

a volure V contained inside a surface S which independs on xo, we get

; .
—Jtodv+jtr dv = 0
10 , T

v \%

d ,
—_— J‘ t° av +§ tf'n ds =0 (8-2-1.1)
dx© r

' v S

Then, the rate of change of S t° & in V is equal to the flux of this quantity
v
across S. For ascertainting that this is correct, we have to make sure that S

is really not varying with time. In general, for a Riemannian manifold this is
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anly possible when there exists time-like Killing fields for the gearetry. For
arbitrary gravitational fielés in V it turns out questionable the existence of
such vectors. Therefore, for applying this simple procedure we have to oonsider
simple models for the gravitational field. One of the simplest models 1is the
weak (or quasi-weak) gravitational field. In this case there exists the Killing
vectors of the flat-space metric (or for quasi-weak fields will exist the

asymptotical Killing vectors of the flat-space metric) and a x° = const. surface

can be constructed. The second step is the fixation of the valwe for tH,

Einstein used his expression Et\)u for this. This is reasonable to be
done for the linearized approximation since then Et\)“' is a mixed Poincaré
second rank tensor., Using in the expression for Etvu the fields as given by
time~-varying source splution of the linearized field equations (the Harmonic

gauge condition is used) seen before,

8p\) =g ++ ehu\)
- _1lo oAV =0
w - Yy T 7T B Y B Yoy :
"
ey = k Irs .
s 4T r
' " r
. k Ir 1 s I s X
Y T - o—— 7 n —— ee s ’ n T —
0 4w T r? r
r s I"
k I of Iy 1 BB e
EY === =+ + = + .
0o 4 T r? 2 r?

where the primes denote differentiation with respect to time, and the several I's

represent the maments of the matter density calculated at their retarded valve.

I=fp(§,x°-%) dV‘
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- > 0 _ I, . T
I=/pkx x -2 x &

_ > o _r _r
Irs—fp(x,x C)x x

dv *

substituting these values into Et \)u and computing E = [ toO av, we will get for

vV E
(8-2-1.1)

dE G d%Qrs d® Qg
—_—= - o (8-2-1.2)
dt 45¢° dat? ac? -

~where, >
> |x] “r _s 2 I8
Q. = plx, t = == (3xx-r6)dv
rs c
\Y

is the quadrupole mament of the source. Taking the system earth-sun as generat-
ing this quadrupole mament, it may be shown that it yields a rate of energy loss
of about 200 watts. Einstein, and later Eddington, calculated the energy radiat

ed by a spinning rod, and found it to be

32 G I?
P=——
5 e

where I is the mament of inertia of the rod. A rod 1 meter long, spinning as
fast as it can without beaking apart dwe to internal stresses, will radiate about

10-30

ergs per second. These considerations make it gppear unlikely that gravita
tional radiation will play any role in energy transfer in physical processes

except under the most sensitive extreme conditions.

8.2.2) Asymptotical Conditions for the Radiation Field .

Even if the field is not treated as weak, one might hope to use asymp-
totical methods for discussing the gravitational radiation. Here the prdblem is
the formulation of boundary conditions on the field, so as the integral of

(8-2-1.1) be defined, and sj.multaneoﬁsly not excluding the possibility of energy

s K
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radiation. The first important contribution in this direction was due to
Trautman 65. He supposes that the gravitational field in question defines a
scalar field u(x) on the manifold whose gradient, k = u is a null vector,
k* = 0, This “vector field is used for constructing a congruence of rays on the
manifold by requiring that the tangent to the rays passing through a given point
is equal to k" at that point. To give an idea of how this may be imagined, let
us take a flat space-time and form the functions

u(x) = £x° X |;|) = f(ni)

then, the contravariant vector k" will be, for signature -2,

>

df X

ku=——-— 1,'.7.'—+ =§”\’uv
9
dn, | x|
and the covariant ku will be
>
af X
= — (L2 =
Hoan, x|
therefore
k2 =0

the radial distance fram the oﬁ_igin, r= |_§| , satisfies, by taking f(n4) = x° -

- x|
k! " X
— = () . k" = 1’ ———
r2 /}‘Jp I;I

for curved manifolds this later condition gets generalized to
r? /s v W

KM
—->=0’ ku=8u\)k =guvu

In this case we call r as the "luminosity distance".let us assume that asymptotic

ally there exists a mapping such that
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_ 0 1
" & * (i) (8-2-2.1)
In this case the asymptotical form for the field equations imply that )\: b=
W 58 A satisfies the wave equation plus the de Donder condition. "
1
* = — -
DAW O(rz) (8-2-2.2)
* 5V o oL -
AW O(rZ) | (8-2-2.3)

The (8-2-2.2) implies that a derivative is dbtained to the order 1/r by multi-
plication with k",

1
_ 1) 1 _
&, = Mav,p *O (7)‘ I Ko O( 2) (8-2-2.4)

r

)\* = i* k <+ O L
UV,p0 A P \ r2
' *
Indeed, a further differentiation gives )\ =i k k +0 L

uv,po U p o r2
k is null, this satisfies the wave equation (8-2-2.2). The condition (8-2-2.3)

2

similarly *

and since

takes the form -

* v _[. _lo olo, v _ 4f1 o
111\)k ..(1”\) > gu\) g 1)\0)1{ —0(;-2-) . (8-2-2.5)

With the values (8-2-2.1) and (8-2-2.4) we camute the Einstein's pseudo tensor in

the asymptotic region. . The result is

gt et v oL (8-2-2.6)
Vv r3
where
1 ¢ |
- ATV _ i 0 opo ., 8-2-2
£ 3216 ’ <1“\’ 2 fw ® 1"‘) ( 7

* 3 : %
Both 111\) and 1W are of the order 1l/r.
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the quantity £ is of the order of 1/r*. A surface integral of Etg of the type
(8-2-1.1) will be definite and could represent the total energy radiated by the

66 has sho,{a that the value of this

sources of the gravitational field. Cornish
integral is insensitive to which of the various stress-energy pseudo-tensors are
used in its calculation, provided that the boundary conditions (8-2-2.1), (8-2-2,4)

and (8-2-2,5) are satisfied.

For further justification of these boundary conditions as being approp-
riate to fields representing gravitational radiation, let us compute the asymp-

totic form of the curvature tensor of this field, since

1
= 3 . — 2- .
8uv,00 = pv Kp Kot O (r2> (8-2-2.8)

with ju\) of the order 1/r. The asynptotical de Donder condition will be

1
. _lo opo. v o_ _ _
(Ju\) 7 & 8 de>k 0 <r2> (8~2-2.9)

a straightforward computation using this condition will give as result '

r2

1
_ l . _ _ -
Ru\)pO' =3 k[u J\)] ['p kO’] + 0< > (8-2-2,10)

the explicit form for this is
1 y 1
-1 P _ . _ . + : ok Y+ of—
Ru\)po 2 (ku J\)p ko ku J\)c kp k\) Jup ko k\) Juo p) (rz ,
Let us campute from this fornmla the quantity Ru\)p s kM. we get, using that k? =
= 0'

A | .
u 1./.u ., u .

R k" = = (k" - k k) +o0f—

wea 2( Tuo Bv ko T K Jypp Ky ; (rz>

But fraom the de Donder condition (8-2-2.9), we hawe
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u 1 o oAt H 1
1 = e 3 + —
KW Jp =7 8 8 )y K YO0l

LY 4
therefore, up to the order 1/r we have
u 1 oAT 1 1 -
Rvoo ¥ =78 g (Rykgky = kjkgk) + 0 2 =0 2] (8-2-2.11)
Similarly we can show that
1
R k =90 — . 8-2_2.12
uw [po “A] 2 ( )
According to (8-2-2.11) and (8-2-2.12), in the asymptotic region R is type N

Uvpo
in the Petrov classification., We have seen before that plane-fronted waves were

all of type N,so that asymptotical gravitational fields satisfying the Trautman's
boundary conditions have properties characteristic of plane fronted gravitational

waves .,

8.3) Characteristic Initial Value Prcblem and the Radiation Field

Bondi and his group 67 were the first to lock for solutions of the
Einstein's field equations that satisfy the Trautman boundary conditions and
which describe radiation from a bounded source. To solwve these equations they
give the initial data on a null hypersurface instead of giving this data, as is
usually done, on a space-like hypersurface. These null datum is then expected
to characterize the radiative field. The possibility of giving data on character
istic hypersurfaces arises in connection with the simplest (one-dimensicnal)
hyperbolic differential equation

32 ¢ 3% ¢

- =0
c?at? 3x®

Usually, for solving this equation one gives ¢ and g% ,at t=t_. The general

solution,
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d(x,t) = f(x-+ ct) + g(x-ct)

is then characterized by the Cauchy data, taking to= 0,

A(x)

£(x) + g(x)

df dg ’
B(x) c| ————— -c¢| —————r
d(x+ct) £=0 d(x-ct) £=0

And this solution may be represented by the Cauchy series in powers of ct,
c?t? d%A citd dzB_

(x,t) = A(x) + t B(x) + + + e
2 gx®? 3! ax®

However, this general solution may also be characterized by giving the values of
f(x+ct) and g(x-ct) on the two characteristic lines x + ct = 0 and x-ct = 0,

Indeed, the differential equation may be put in the form

1 2 3 1 23 3 :

- w— = em— — — o — = (

¢ ot 3x ¢ 9t ox
calling x + ct by £ and x - ct by n, we have

3% ¢
3EN

=0

But from this equatitn one gets immediately that
39
— = F(&)
o
1)
— = GV
on

which are first order differential equations with solutiomn

¢ = £(8) + g(n)
The camplete systen; can be characterized by the two datum £(0) and g(0), since

we have just two first order differential equations in the variables £ and n.
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These two datum are just another form of giving the two necessary initial condi-

tions for solving the hyperbolic second order wave equation.

For the case of general relativity we begin by constructing a family of
characteristic hypersurfaces u = const. and an associated ray congruence with
tangent wvectors ku = u’11 such that kl;u # 0. In addition to the null wvector k¥
one constructs another null wvector nll nomalized by n. k=1. Both are real

null vectors. To cawlete the null tetrad one forms the cambinations

1
m =-— (q - ir)
H /f H H
1
m, = — + 1
n /i'(q” 1ru)

with two real unit space-like vectqrs qu and ru which are ort;lmgonal., The m“
and fn'u' are two camplex null vectors. The four null vectors ku', nu‘, mu' ’ I—nu form
a tetrad of null vectors. We hawve

nk=1, mm=1, k.k =n.n=mm=mm=0 .

We also require that 9 and r11 be orthogonal to k" and nu, which gives
k.m=k,m=n.m=nm=0

One then defines a luminosity distance r along each ray, and mapps to coordinates

%M = (u,r,0,¢). The tetrad corresponding to these assignements of coordinates is

just the set of four null vectors of the type considered.

u = const.
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They can be written in tetrad rotation as z’ia) = k" ’ ‘ﬁu, mu, ) with recipro
cal z(a; = (nu ’ ku ’ ﬁu, mu) , satisfying the orthogonality condition

(@ ¥ _ (o) o
2 2ay T %4 .-

plus the completicity condition

(@) A _

zu Z() Gu .
Bondi then shows that the field equations may be divided into three sets,similar
ly to the deocxrpos’:‘.ﬁm'inGi = 0 and Grs = 0 correspondent to the initial value

problem on space-like hypersurfaces.

(L) kM Gu\) =0, o' m Gu\) =0 (main equations) .
2) o B’ Gll\) = ( (trivial equation)
(3 o n’ Gu\) =0, n" oV Gu\) =0 (supplementary conditions)

In all we have six main equations (similarly to the six G = 0), one trivial
equation and three supplementary conditions (all these later four correspond to .
‘the four Gu° = 0). One can then show if the mainequations are satisfied every-
where in a space-time region, the trivial equation is also satisfied everywhere
and the supplementary conditions are satisfied everywhere if they are satisfied

at one point on each ray.

In his search for a solution of the field equations that permitted the
construction of this structure, Bondi restricted himself to axially symetric
fields,

ds? = C du? + 2D du dr - r? l}“(d@— A du)? + e %(sen?0 d¢2)] (¢ (8~3.1)

with A, C, D and o independent of ¢. The restriction to an axially symmetric
field is not essential to the method but it simplifies the calculations. If we
treat such a field as the metric, the area of a wave fromt u= const, r = const

is equal to 4r r?. Furthemmore, such a field is the natural generalization of
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the form of a flat geametry cbtained by mapping to coordinates (u = xC- r, r, O,

¢). Note that here one takes c = 1, and the retarded time is put as x° - r, sq,
as to conform to the signature -2. Indeed, a flat geametry written in spherical
coordinates plus a time L = t, is given by the line element.

ds? = dt? - (dr? + r? 40? + r? sen?0 d¢2)

mapping to the retarded time u,

one gets for ds ,

ds? = du® + 2 du dr - (r? d0%+ r? sen?0 d¢?) (8-3.2)
By camwparing the line elements given by (8-3.1). and (8-3.2) we easily see
that we must set up the following perturbative series expansion in the parameter

r.

> o]
] i
o CEE=
+ +
() o

e A
[X] B/ [ A

(8-3.3)

lw] (@]

] il

- =

+ i
Hle LR

! :

o +

T~ °
Sle Al
S’

(note that the term dud® in (8-3.1) has no counterpart in the flat expression
(8-3.2) so that A begins with a tem 1/r). The quantities n, a, m and 4 are
functions of u and 0 alone, and describe the presence of the field of gravita-
tion. The metric field of (8-3.1) and . (8-3.2) satisfies the asymptotical

Trautman conditions,

With these metric camponents we set the field equations in the form

given before. They represent differential equations in A, C, D and «a. Bondi
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then shows that gizen on a u= cmst hypersurface, the remaining quantities
appearing in ~ (8~3.1) are determined by the main equations up to three functions
of integrations, that means three functions of u and ©. The choice for these func
tions is then restricted by using the supplementary conditions. As result one
finds a = d = 0 and m is determined fram the knowledge of n, that is from the
knowledge of o. This later quantity is an arbitrary functin of uand 6, and
thereby n is an arbitrary function of the same coordinates. Bondi calls %% as
the News Function. To understand the reason of this appelation let us assume that
up to some u = const hypersurface a field is independent of u. Then the.only way
in which this field can vary beyond this hypersurface i8.if the change in n. is
taken to be non zero beyond it. The news function can therefore be interpreted
as describing the radiation due to an initially static source.* On the other hand
the function m is closely related to the total energy of the system. In the static
case 2B = 0 (since u is a time) and also from the field equations it follows that

om _ 0. One can, in fact, show thatinstatic case m is just equal to the total

=5 =
mass of the system as calculated using ‘¢he of the superpotentials. For the nm-'
static case Bondi defined the mass of the system as the average of m on all angles,

™
M(u) = 21- { m(u,0) send® d9. With the help of the supplementary conditimns we get

T
M 1 on 2
_z-fj (-3-5) gen® do . - (8~3.4)
du

Henoce M decreases when there is news. This decrease in M can be interpreted as a

loss in the total energy of thesystem"dlet’c‘radiatim (what this is a

(%%)6- (-g%)uguo’; (u-uo)(?ﬁl)uwo’é, taking (‘g%)u-uo,e'g’m‘?t (%—3—)8# 0 for auA ‘

du®
u # u,- Besides this, the source which is static at u = u, does not generate: at -

Coeas . . - _ on
. this retarded time a flat geometry since n(u, 8) = n (uo, 6) + (u uo) (Fﬁ =y, 6

= n(u,, 9 # 0.
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radiatife field is seen from the fact that it satisfies the Trautman radiation
conditions). Sachs 68 has shown that the Riemann tensor associated to the Bondi, -
gearetry has the general form

N III D

RE==+ —— + =+
T T T

v - (8-3.5)

where the indices were supressed for the sake of simplicity. The letters N, III
and D denote, respectively, tensors of Petrov type null, IIT and degenerate.
These tensors are covariantly constant along a ray and‘all have ku as their
single eigenvector., We see fram (8-3.5). that to the order 1/r the Bondi-type
field leads to a Riemann tensor of type N, as was the case if it satisfies the
asymptotical Trautman conditions. This again indicates the presence of gravita—
tional radiation. This radiation is then directly related to the existence of
3’n

a news function, sinbolically we may write N = 5——2- .
u

The expansion (8=375f is a particular exanple of a general theorem
proven by Newman and Penrose 69, and usually referred to in the literature as
the peeling theorem. They have shown that given the tetrad of null vectors Kk,

n, m and m satisfying the properties seen before, the field gu\) can be put as.

=2k + 2 m
& TR T ™)

Using this relation (which is just the basic equation of the tetrad calculus)
they campute, for this general null tetrad, the Riemann tensor and get (again
supressing indices)

R = N(k) + III(k) + D(k,m) + III(m) + N(m)
between parenthesis we have placed the eigenvectors associated to the sewveral

types of curvatures. In empty spaces they show that N(m) = O(r_s) implies in
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III(k) = 0(r ), TII(m) =0 (¥ ), D&k,m = 0(r °) anc:nik) = 0(r ') in agreement
with Sachs' result given by . (82375),.

| To finish this section we discuss the role of existence of gravitational
radiation. When discussing this prdblem fram the point of view of general rela-
tivity we have just treated the field asymptotically, that'is’in'the wave ‘zone
characterized by adequate radiation conditions. In this region, as was seen,
mathematical solutions can be constructed with the correct behaviour of fields
of radiation. Besides thié, we can also construct plane wave solutions of the
field equations. However, this is not the entire solution of the prablem. To
make sure that such type of radiation does exist we have to study its inter-
actions with the sources. Indeed, if we would be able to correlate secular
changes in the motion cfthe sources with the gravitational radiation produced in
the wave zcne, we oould have the best procedure for the experimental detection of
this radiation. Unfortunately we do not know an exact solution of the field
equations in presence of sources, and as we said before we have to use perturba- '
tion expansions. These are of two types, the slow approximation in powers of l/c
or the fast approximation in powers of the gravitational oonstant G, Both types
of soluticns, along with the chosen coordinate condition do not always lead to
the same physical results (the variation in mass of the radiating sources)b.m top
of this, we might think in using a Minkowskian theory for gravitation, and there
do these same perturbatioms. The final results will in general depend on the
theory chosen as well as on the type of perturbative series used., However, if
we avoid all this treatment by using the equation (8-3-4) ~ we have a well
prescribed fornula for calculating the loss in energy of the sqizrce. Nevertheless,
we do not have any experimental support te enforce tais.
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APPENDIX

EXPERIMENTAL TESTS OF THE GENERAL RELATIVITY THEORY

A ~-1I) Motion of Test Bodies in a Schwarzschild Field

A test body is by definition a body that, when present in the field of
another cne, does not disturb the configuration of the original field. The
motion of test bodies in a gravitational field according to general relativity
is governed by the equations of the metric geodesics determined by the metric

gw, obeying the Einstein field eguations.

The motion of the planets around the Sun is well described as geodesics
of the Schwarzschild field. We have already seen that the metric can, in this

case, be written as

26M/ ¢?
1- 0
) r
-1
2
L 1 - 26M/c” (1)

Buv = | r

2

-r

0 T - r? sin2%0

The equations of the geodesics are dbtained by the variational principle §S = 0,

as we know:
P! . P!’ P’
‘ 1/2 ds dx :
_ ) 3T RNCR] - _ - l-—_ U o\
8pp 1 -aj[gwg g] A = 8 = dx J 7 S(g,, £ £) @

P P P



B! 13
dA di
- l— ) (B2 TERY) LU 2\ - -]; oua\) o )
fzds [gu\),a 8" &g +23u\>£ Gg]d)\ J[:s- Zg“v'aEEGE dx +
P P

, .
dA , d) d 1

+ — g E"acsE) =j [— MEVsEtar- — | —— g EY) 62V dx] +
PR ] 35 W0 2\ ey W

P
P'
1
o + —— g e’
s' () Fuv 1p
Then,
|
1 d 1
EPET - — [ —— A\ sgY an =0
J\Zs'(k) POV ax (s'(x) o >
P
A (R ) R
28' () P9 a \&') P
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(2)

o'u (AV) =
gy& & =1 (3)
and
d
. 1 L0 20
~ |g,, &° } T8y, =0 (4)
is [p\) 2 Spg,v
Subst:ituting- (1) into: (4), @hd remembering that (P) = (£°, r, 0, ¢),
d L. o
— [0 8 ] =0 (5-a)
d [ . 1 (o) 2 1 3 €2 2 ¢y
- '{.‘3\ — - - . B - 2 » = , .
= - fll r] 5 800,1 &) 78111 ¢ + rO%+ r 8in0 ¢ 0 (5-b)
d @ L]
—_ Erz Gﬂ + r’gin® cosd ¢* = 0 (5~c)
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d

(5-d) — (? sin%0 §) = 0
: ds

If we orient our frame of reference in such way that 0 = .721 and 0 =0 iniﬁ.af—
. d ] _
ly, (5-c) gives us & [1:2 @] =0,

r20 = conmst. IR (6)

Then, the motion is confined to the plane @"=% o
(5-4d) rZCL = h = const, ' (7)

850 £° = a (8)

X

(5-a)
(5-b) is too camplicated. Iet us use the first integral (3).
dé°>2 ar\ , 1
Boo\ ™ | * 8 — ) - =5
°% \ d¢ o 62 .

Now we can write, using (5-a) and (5-4),

2 _up2 dr 2 42
o r'/h goo+311£ - r°=r'*/h

r d¢ r
h..dr\? h? 2GM/ c?
- |= =) to{1+—}[1- =0
x® ¢ r? T
h hr' (¢) ' . .
1] - [ —
Now let's use Ty u(¢); = u' (¢) , which gives
du? GM
-l —] + a% - (1+u?) (1-2Xu) = 0 , where ) =
do h ¢?

Then, we have the equation
(u')? = (a®-1) + 2 Au - u® + 2)°
Now let us review the same kind of problem in classical mechanics. Using the

fact that the motion prooeeds 'in  a plane (@ = %) , the kinetic energy will be
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'.l2-=-2-m(;2 + r? ¢2) (12)
where the dot means now differention with respect to time, =~ Considerimny a
central potential of the form
A B
Va-—=—— (13)
r rd
We get for the Lagrangian,
= 1 .2 2 '2 é _.n; e
L Em(rv+r <f>)+r+rs
d oL oL - d oL oL
-]~ =03 ==} -—=— =0 7. (14)
dt 3¢ 3¢ dt \ or or
2 =2 (15)
We now use the energy integral:
2E 22 2 2B
—m T - o (16)
m r2 mr mr3 o
But
d , d £ dr
dt dp r® d¢
2E 2 dr\® 22 2a 2B
—— R — —_—— + en = mas = e———
m 2 do 2 mr md
h,
With ——— = u(¢$), we get
r(¢) S
i S 22 2A 2B .
——— I e (uv)2+__u2‘___u___u3 -
m h? . h? " mh mh?
2Eh? 2 Ah 2B
(u')? = + Ju - u? 4 u’ (17)
m 82 ml? nilh
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Camwaring (11) with (17), we see that we can make the following iden-

tifications:
2Eh? | Ah B ,
=a?-1; ——= ) = (¥
m 22 m 22 m2%h
e L
withA=GM,and A = —— we have h = — ,
th C
and then
2E
0 -1 =—
me?
GmM 22
B =

This means that the general relativistic effect may be interpreted as

being equivalent to a perturbation potential of the form - =2 , over the
r3
Newtcnian potential, with B given above.

To solve the problem, the term u® will be treated as a perturbation

because of its smallness.,
In first order, we have already solwed the problem.

The apsidal distances may be cbtained fram u'(¢) = 0. Then, in first

order,
(u')? = - (1~a?) + 20u - u? = 0
w= AT A2 -maty |12 (18)
or R
w o= A+ [AZ - (1—a2)] 1/2
- .1/2
u, = A - [}\2 - (l“uz)]

tWe know that E <0)
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The difference in ¢ during an increase fram u, to can be easily
Ya %

obtained: *
2 du 12 %
(u"* = (up - u) (u-uA); e Y [(uP-u) (u-uA)] '
1 Yp

R du u -3 (u,+ep)

¢P - ¢A =\J - = gre sin = T (19)

- - /2

) [(u u, ) (up u)] _;_ (up - u,)
A “A

Returfilng -t6 the exact BEguation (11}, and setting u'(¢) = 0, we have three roots
Uy, u, and Uy The ‘equation is
1

W -—uw+ru+@-1=0 (205
22X ' :

A property of this equation is that

u +tu, tu =— ) (21)

For small values of A, we can assure that w2u, and u, & u,. Then,

(21) shows us that u,; is very large, and

2 duy = 1- 20y, +w,) .

u' (9)

]
I+

[?k(u—uA)(u—uP)(u-u3i]1/2
1/2

|
+

W @) = % [Fumuy) Gw) {1 - 2 re) - 220} ] ,
1
2 u ‘

|
| +

u'(9) = [(u—uA) (u.P—u) {1 - 2)‘(“A + up)} 1-

1—21(uA+uP)

* The followihg analysis is found in Mgller's book - Theory of Space-Time and

Gravitation.
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We can now express the equation as

du 1 . "v
- 31172 T 172 T 2w, 1/2
N o L ey

which can be expanded in powers of A. In keeping just the zero and the first

dp = X

e g

order temrm, we dbotain

4 = = 1+ 2wy + w1+ 2]

[(“'“A) (“P““)] 1/2

1+ Au
¢, = ¢, = [1 + )\(u + ):l J\ du (22)
P A uP l:(u_u ) (uP_u_:[ 1/2

This integral givesus¢P—¢A= [].+>\(uA+ uP)rl[l+§-( uP)]n , which, after
linearization, gives for A¢ = 2(¢P- ¢A) - 21 the formula

Ap = Bﬂ)\(uA + uP)

As we know, u, and U, here are only slightly different from the corre-
spanding roots from (18). Then, up to first order we can write u, + u, = 2\ by
(18). Then finally we get for the perihelion advance Ad, per revolution

Ap = 6mA?

oM \?
Ap = 6T —
ge
where % is the  angular momentum,
The following table gives some values forA¢ per century: The experimental values

are obtained as differences between dbserved values and those calculated from clas

sical celestial mechanics taking into account the perturbations of other planets.
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Planet Exp, value |[Gen, Relativity

\" y
Mercury 43".11 * 0".45 43".,03 :
Venus g".4 t+4".8 8".6
Earth 5.0 r1'.2 3".8

The large error in the dbserved value for Venus is due to the small eccentrici
ty of its orbit, and the fact that eA¢ is the dbserved quantity. (e = eccen-
tricity).

It is important to remark here that this is the only classical test where

we get an effect of second order in G.

A-II) THE RED SHIFT OF SPECTRAL LINES

A - II.1) The Necessity of a Frequency Shift in Gravitational Theories

If we admit as a postulate of all gravitational theories that all fields
interact with the grayitational field, and if we assure that electromagnetic
radiation in particular couples with the gravitational field of a particle of
mass M by a coulanrb type potential, the most cbvious guess is a potential ener-
gy for a photon of the form

V = - ohv(r) —(;4-
er
where o is same constant and hv(r) is the energy of the photon at a distance r

from the mass M,

Then, if a photon of energy hv(r) is emitted at a distance r from M, it
would arrive at infinity with energy hv_ given by the energy cmservation equa
tion
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) GM
hv = hv(r) - chv(r) —
o c?r
and then
GM
v(r) - v, = w(r) —
c?r

The constant o in this empirical law should be determined by experiment,
or the entire law should be a consequence of a general theoxry if it gives ac-
cont of the experimental results. We will see below that general relativity

confirms the above formula with g = 1 and %VI__ << 1.
r

Then, we see that a photon emitted in the Sun with a frequency v will
arrive at the Earth with the redshifted frequency Vg given by

v-vg A GM
E — . (4_a)

2
Vv v c¢“R
@

The redshift is usually given in terms of wavelength difference:

Ag- A 1 GM
z = - - 1m— (4-b)
A Av ¢c“ R
1 - T ©
M
if <1l .
c R@
Also if we admit the principle of
equivalence we can infer - qualitatively - —>
[ 31>
the necessity of the redshift, ILet us A B F =mg
analyse the situation described in fig, Fig. 1 - Two identical clocks on

a rigid rod one at A the other at
1, Clock A sends a signal to clok B, B, the rod being accelerated by
2 force F.
that lasts t = 3 to arrive at B.The clock

B has a velocityv=gt=%2at the
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arrival time. Coamparing the rates of the clocks as :wen from B,

T= 1-0-z

<1 + -> ) (5)

By the principle of equivalence this same situation happens when two clocks

gk_rest. distant % from each other are stationary in a gravitational field

A
TA:TB 1+:2- (6)

Formula (6) shows that the clock at the lower potential will have a longer

g = -V¢, and by (5) we get

doserved period. If we consider the case for atomic clocks with a period for

ane of the spectral lines, we get from (6)

Ay T 2 Ad
— G D we— (7)
Ag ¢?

which is equivalent to the formulas. (4).

A-I1,2) The General Relativistic Redshift Between Stationary Bodies

We consider a set of null geodesics representing the history of the
wave crests of an electromagnetic wave transmitted between -~ stationary posi

tions corresponding to different potentials,

If there are n such crests and ds and dsE are the intervals measured
in each position between the first and the last une, we have *

n = vds = v ds; (8)

* - For more details, see Synge, J. L. - Relativity: The General Theory, North
Holland Publishing Co. (1960), p. 122,
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where v is the frequency of emission and Vg is the frequency of reception.

\)E _ ds (9) )
\Y] dsE e
Then,
AV v - Vg ds
— = 1 — c———
V) Vv ds

In the case that source and cbserver are at rest in a stationary universe,
their world lines are t-lines. Now we face the central prcblem when we speak
of identical clocks. Experiment tells us, within the possibilities of
present day equipment, that if we pick wp a standard clock and sinchronize it
with another one located at a neighbouring point (the neighbourhood should be
so small that the space-time may be regarded as locally flat there and the
clocks should be at the same state relative to the gravitatiénal field), this
sinchronization is indfependent of the location of the neighbour in the space-
time, Although this assumption seems logical, we must take care when we want
to apply these conocepts to a region where we are not certain if any "device"
we can use as a clock could survive when it passes into that region. For
exanple, what can happen to a "nuclear clock" when it enters the world of a
collapsed body ?

Returning to the case of source and receiver of a licht signal, if
they are at rest - in our stationary uwniverse, we hawve

dt = dtp (11)
But ds = 'Vgoo‘ &t and dsg = Vgoo dtg, which together with (11) and (10)gives

Av g 1/2
—_—=1- |20 (12)
M. gt

00

Y
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When we apply this to the Sun-Farth system,

Av ) 26M
— 1 - 1 -
Vv . R cc R ¢

(13)

gives the redshift in terms of the frequencies.

In Astrophysics it is common to use the redshift fornmla in terms of

wavelength difference:

(14)

This formula has been tested in several ways, indicating evidence for the
gravitational redshift. Among the most interesting and conclusive experiments

we may list the following:

1. Redshift of the Fraunhoffer lines of the Sun: *
The problems faced when one uses a spectral line of the Sun to test the
above formuila are: |
a) One must study the spectrum coming from the limb of the Sun, betause
in central positions there appear spurious Dogppler shifts due to

granulation (convective currents, mostly radial).

-b) One must choose symmetrical lines, because the effect will be estimated
by a measurement of the distortion of the line-shape. The asymmetry in
the line shape caused by the relativity effect should also be singled
out from the various broadening mechanisms that may also distort the
line shape. |

* For more details, see Bertotti, Brill and Krotkov in Gravitation: An Intro-
duction ‘to Current Research - Louis Witten (Ed.), Wiiey (N.Y.) (1962) and
for details of spectroscopy, see Griem — Plasma Jpectroscopy, Mc Graw Hill,
N.Y. (1964).
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c) Better estimation ocould be dbtained with a better quantitative wnder-

standing of the solar atnbsphen\ic plasma dynamics.
As an example of a typical line, we take the following:

A = 5890 & (Sodium); AX, = 13 mk (relativity); . natural width~10" !mf

R
Stark width; W_ = 1.2 x 1028  and My =2 x 1072 of
0.8 x 107! uf

Van der Waals: WW =1,2 % 10—1 mk and A)\W
Doppler (Thermal) width; WD = 36 mf
Then we see that the only problem that can hide the relativity effect is the

existence of macroscopic streaming giving rise to a Doppler width of the order

of 36 R,

This type of experiments do not contradict general relativity, but also

do not consist in an experimental confirmation of the formula (14).

2. The study of the spectrum of white dwarf stars (of the same nature of the

above study, but with % much greater).

3. With the aid of the Moesbaver effect, Whid’l uses very precise neasurements
of gamma ray lines emitted and received at different levels in the gravita-
tinal field of the Earth. This is presently the most' importaht method of
testing the relativistic formula, and the reader should consult the paper .

of Pound and Rebka, Phys. Rev, Letters 4, 337 (1960 .

A-IIT) Bending of Light in a Scdhwarzschild Field

Although we can infer the bending effect to be possible by some enpiric
al arguments, we will not discuss those here. We proceed with the same
method of section A-1, with the single modification on the first

integral (3) of the geodesic equations, giving account of the massless
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nature of the photons. We point out here that we may neglect the photon spin
because it is always parallel or antiparallel with the direction of motion,

and for this reason it does not affect the geodesic equation. *

8, EV? + gy, 12 - 12 4% =0 (1)
£° = a/g,, (2)
r’ ¢ = h/r? (3)

Then, usin'g the same notation as in A-1, we get the analog of equation (a-1-11)
for the photon orbit:

(u")? = 02 - u? + 228 (4)

For analysing the solution of this equation, we can follow an usual perturbation
rethod.

|
Takﬁ.hg the derivative of (4) with respect to ¢, we get

"

u" +u=3)u . (5)

u = u(c) + u(l) i

The zero ordef equation gives u(o) = uéQ) cos¢p =

Wl &

cos ¢ and then we get in
first ordet the equation

2
(ucl))”;*' oD 2Ah

= cos?¢ (6)

We lock for a first integral of (6), and it can be shown that using the initial
conditions we get

2
u(l) = 2‘%— (cos?¢ + 2 sin? ¢) (7)
R

andthen,withu=%andx=rcos¢,y=rsin ¢, we get

-

2 2
Ah X +2y

X =R = e e (8)
R k2 + g2

* Corinaldesi, E, and Papapetroy, A., Proc. Roy. Soc., A209, 259 (1951),



316

For very large y, (8) becomes

2)h
XwR-— |y (9)
R

Using 2 =3L , we get for
hc?
the deviation angle ©

4 GM
0= (10)

Rc2

This formula first derived by Einstein gives the relativistic effect of the

bending of a light ray in a central gravitational field,

The experimental verification of the above formula is a very difficult
task. Until 1969the only way to do this was by means of the Solar total e=
clipse method (see Bertotti et al., loc. cit.). For rays grazing the limb

the deflection angle has the value of 1".75 for the Sun.

But with the development of the long base-line interferametry technique
for use in Astrophysics *, giving very high angular resolution of radio
sources in the centimeter region of the spectrum, it is expected that a more
meaningful test will be made. In fact the Sun passes close to two of the most
intense quasars, 3C273 and 3C279, and their separation i,s"4.5 deg., sothe measure
ments of the deflections may be made differentiaily.. This type of experiment
was recently carried on by the MIT-Lincoln Lab Growp but the results have not

yet been analysed.

A-IV) The Prdblem of Existence of Gravitational Radiation

This very inportant test will not be discussed here. The search for

gravitational radiation is associated with the name of Joseph Weber, who claims

*  Burke, B, F, - Long Base-Line Interferometry, Phys. Today (July 1969).
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that finally gravitational rBdiation was detected iy hi$ long base-line
system of aluminium cylinder antennas. * Since the gravitational waves alter
the whole geametry of the space surrounding the experimental apparatus, the
only way we can detect it is by the measurement of the Riemann curvature tensor
that appears in the equation of the geodesic deviation

625“
(TR TR I
T + Rvpo u £ u 0

where W' is the tangent unit vector along the geodesic and Eu is the displace
ment driven by the time-varying Riemann tensor. This displacement should be
felt by a macroscopic 'bodyfas a stress, and so the antenna should convert gra-lp
vitational radiation enei:gy in stress wave energy in the elastic body. To
detect the very small strains caused by so small stresses, piezoelectric
quartz strain gauges are used in Weber's equipment. Using aluminium cylinders
as antennas, detection; is only efficient in the lower longitudinal (acoustic)
mode of 1657 cps. But of course many other geo:rret'ries could be used in the
laboratory, although all of them have small absorption cross-sections, The
seismological study of the Moon seems to give same hope in using it as a anten
na.. The first studies have shown that it behaves very well as an elastic body,
and when its normal modes of vibration are well studiéd it will perhaps
constitute a very good device for measuring Riemann tensor caused by gravita-

tional waves,

* Weber, J., Phys. Rev. Letters 22, 1320 (1969). The theory and description
of the experimental method is Jisted in the bibliography of this important

paper.
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