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I. INTRODUCTION

In this lecture we shall give a sort of previéw,- of the
rest of the course. We are going to discuss the results of
the following experiment. Take a piece of quartz and evaporate
a thin strip of some metal, say, lead, on 1t, of thickness,
say, 10,000 A°, Allow this to oxidize, to a thickness of, say
30 A°. Then evaporate a thin strip of the same, or some other
metal, perhaps aluminium, at right angles. Hook up a voltmeter,

ammeter, and battery as in the diagram.

-

or
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FIG. 1

Keep this at very low temperature, say 1°K, and observe I vs.

V. What 1s observed is:




® -~ structure here - phonon
w — V  induced demsity of states
structure here : : ‘ '
Josephson effect structure hers, energy gap
Weak supercopductivity.

FIG. 2

This phenomenon is remarkable in that it cam be studied
both theoretically and experimentally to great precision, and
will probably become very useful as a tool in the future  to

map out some of the internal structure of metals.
A very elementary model of this phenomenon 1s as follows:

Represent the arrangement of metals by potential wells.

0
Ey ) — eV
7777777 | }Ea
FIG. 3

by




Electrons fill all the energy states in metal A below EA’ and
similarly for B, but EA.> Ep because of the battery. By quantum
tunneling, an electron in A can pop over intec B, >grovided a
state of the right energy 1s available to it. Thus only those

electrons in the shaded region can tunnel.

But suppose B is a-super-conductor. Then, there are no
states at the Fermi surface for electrons, there is an eriergy
gap. Thus, one must'raise the energy of the electrons by an
amount; at least the energy gap. This is the reason for the

gap In the I vs. V graph of Fig., 2.

Suppose we raise the voltage still further. Then electrons
will tunnel from a state of A into an excited state of B, It
can subsequently decay by emission of a photon, i.e., it can

give up some energy to distortion of the lattice.

This 1is a sort of final state
interaction which can effect the

tunneling rate.
FIG., 4

If there are particularly many phonons which can be emitted,
that 1s if the lattice can be easily distorted at this energies,
we will obtain a bump (or dip) in I/V.

However,; the most naive theory of this is quite misleading,
since renormalization effects are very important.

These effects are most naturally and intuitively described
by means of the concepts of field theory. We thus have to
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study the field theory of glectrons and pgdgogso It turns out
that only when we have sugerccgdgctors are interesting results

obtained. So we have to study superconductors.

The tools we use, are 2nd quantization, Greents functions,
Eeynman graphs, and dispersion relations. All of these we will
use heuristicélly, and not bother much about details and proofs.
I will take for granted some intuitive knowledge of the c:egtion
and destruction operators, v'(x), W(x') which obey thev anti-
communtation relations: |

{vxy, ¥* @)}
[vy, wae)

5(x = xt)
0

We will often use these in the Heisenberg representation, SOy
Yix, t) = o1HE y(x) ¢ HE
H=H - pN (p = E, of Fig. 3) (sometimes (x,t)=x)

Also, we shall usually expand

w(x) = — C k=x
AL

{Ck, kw} = 6 . (periodic box normalization)

and convert sums to integrals by

(zﬂ>3

The Green's functions are defined as

Glx-x1) = $<T (¥(x) ¥




where

T(A(t), B(t1)) = A(t) B(t1) t> &

= B(tr) A(t) t< ¢

< > means thermodynamic expectation value.

In the theory of tunneling this Green's function 1is impor-

tant. For most other purposes, the Green's function
. 2 ‘ : '
GZ:=<%) <Tlw(1) ¥(2) ¥*(3) #%(4)]>  1s more important since

it contains information such as the density correlations

{p(1) p(2)> where  p(x) = $*(x) ¥ (x)
We shall begin therefore, by obtaining some general properties
of the Green's function. We shall follow by calculating it in
a specific model; which should be very good. (It can be

compared with experiment).

We shall follow by extending the theory to supercondutivity
and discuss some vefy important results which are obtained in

- this way.

Finally wé shall discuss the tunneling, and how the phonons
are imaged. If we have time, we shall discuss the weak supers-
conductivity which is a spectacular recent development, but

for which the full development of the theory is ﬁot really

needed, yet.
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II. MATHEMATICAL PRINCIPLES

The properties of a quantum mechanical system composed of
many ldentical particles are described conveniehtly in terms
of second-quantized Heisenberg representation operators uﬁ(g,t)
and ¥(x,t). The creation operator ¥ (x,t), when acting to the
rightlon a state of the system, adds a particle to the state at
the space-time point (x,t) while ¥(x,t) is the operator which

removes a particle at (x,t).
' The density of particles at the point (r,t) is

Yz £) ¥ v)
while the total number of particles is
CON(%) = fd3r vHire) ¥(rt)

Similarly, the total energy operator H and in fact any

physical operator can be expressed in terms of ¢(;,t) and

¥ (r,t).
The equation of motion of any operator (not depending ex-
plicity on time) in the Heisenbéig representation is (h=1)

ig% =”E<(t), H(t)]

It follows that H(t) is well as N(t) are independent of time.
Then we can integrate the differential equation to obtain
X(t) = eHt x(0) o~1HE
The symmetry requirement on the wave function of any state

of a collection of particles is expressed by




Y(zt) Y(rrt) + W(prt) ¥(rt) =0
W(rt) ¥ (zrt) F ¥ (zt) 9irt) = d(z-rr)

where the upper sign refers to Bose-Einstein particles and the

lower to Fermi-Dirac particles.

We will be interested in the behaviour of many-particles
systems at finite temperature. For a system in thermodynamic
equilibrium the thermodynamic average of any operator { } may

be computed by using' the grand-canonical ensemble, viz.

where H = (H, 1= pN), pis the chemical potential and f =
= 1/kgT Zero temperature or § —co describes the ground state
of the system. In the energy representation the average can be
written as |

CU1>=5 <si{}lsd> ePEs /5 ePEL
where ° *

H|s> = E_IS)
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III. THERMODYNAMIC GREEN'S FUNCTIONS

The application of the methods of quantum field theory to
many body preblem can be greatly extended, just as in the quan
tum field theory, if we use Green's functions, which enables
us to obtain approximatioﬁs which differ from the expansions of

the perturbation theory9 belng as a rule the result of the sum

mation: of an infinite set ‘of definite’ terms of the: perturbation-

theory series.
- The one-particle Green;s_fqncéipn is defined by *
6(1,2) = <TI) ¥
while the two particle Green's function is defined by

G. <1234> <r[w<1) w2) ¥(3) ¥ (4)] S

where T represents the time-ordering operator and 1 stand for
(£y» ty). The operator T is defined by
+ + :
rfy(1y ¥H(2)] =¥y ¥(2) £ &,
L2 4@ YA <ty

the upper sign referring to bosons while the lower to fermions.

The G(1, 2) describes the propagation of disturbances in
which a single particle is either added to or removed from the
many particle equilibrium systemo‘For example, for t1> tZ the
disturbance produced by the addition of a particle at (32 ta)

propagates to the later time tl when a particle 1s removed at
*

Factor (-i) is purely conventional.
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Iy taking back the system to its equilibrium state. For t1< tZ
the disturbance caused by the removal of a particle at (rltl)
propagates to time t, when it is terminated by the addition of
a particle at the point Too A similar interpretation to many

particle Green's functlon can be easily given.

In our discussion we will only make use of one particle
Green's functions, whose mathematical properties we will now
discuss. In this connection we will also make use of the de-
finitions *

6% (1,2)

1]

L vt

6<(1,2)

n

=E SCACIRTED

We will assume that the Hamiltonian 1is invariant with res-
pect to rotations and translations in space so that GX depends
only on |r; -r,| and (ty - t,)
viz

6% (12) = 6¥%(1-2) = 6¥(Iry-r |, ty = t,)

We can develop some of the general properties of the Green's
functions by expanding out the trace as a sun over states.
Thus ,

1 6°(1,2) =nj§ <n|¥(1)m ><m|¢?2)|n> e”ﬁEn/z e” PEx
k

-iEnm(t1=t2)

-GE
=3 <nl¥(Lm><n| ¥ (2)|n> e e § n/zke'ﬁEk
nm

1E (t-t,)~fEn B,

+164(1,2)=3 e

nyMm

<nl¥(2)|m> <ml¥(1)|ny/Te
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Take the Fourier transform w.r.t. %, =t,. It then follows at

onces, that

G>(r1rauﬁ==ifeiwt12 G>(r1r2t12) =
= 21 3= 8(w=E_ e PER (n|4(1)|m><nl¥ (2)|n)

etc. (Note the 1)

Also the Fourier transform w.r.t. Ty=T,

@ e = 2nE 8(0-8,, Y PERKnC,|n> |2

6 (kw)

ans §@+E_ e Pn|¢mlcy In > 1°

G)(kw) = ewpfnG <(kw)

G)(kuﬁ has,the interpretation of density of states of glectrons

of energy w, momentum k. _ _

Gf(kuﬂ has the interpretation of density of electrons of energy

w; momentum k, or density of states of holes of energy - ws mo-

mentum =k.

St v . , - . , uv N _
Consider now the combination ¥(1) ¥ (2) + ¥(2) (1) accord-

ing as we have Bose or Fermi statistics. Expressing the Fourier

transform of this by the Gts, we have

Alka) = 6> (kW) F 6<(kw)

’ i u,_e;; 3

n

£(w) A(kuﬂ.
- [122()]a

&< (kw)
o 62 (kW)

]

where
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1
fw) =
W
Note that we have .
dw
- Alkw) =1
2w
and
A(kw) > 0 w>0

For free electrons, 2
k

A(kw) = 2m s |w-— +p
2m

free

In generalm A(kw) will in favorable cases have some behaviour

approximately as a §6-function.

Let us also insert a complete sum over states into G. Let

us write (for fermions)

T %(1) ¥'(2) = 0(1-2) (1) ¥'(2) - 0(2-1) ¥*(2)4(1)

Now R -+
’ eiw'(t1=t2)

0(1-2) = J -
2ri w =1y
. =00 _
Therefore, by the Faltung theorem of Fourier analysis,

- ( iwt -1k x
= |ad 12

12 6(12)

(dw & (ko)  G<(kw)
= — 4
) 2mr wewiti u»w“d?
Thus, Re G (kw) = 00 4.0 (pur)
P PR,
o= (0!
206 2T Wew

Therefore A(kw); which has simple properties, completely de-

termines G, and is, to first approximation, independent of tem

perature.
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The free electron Green's function at zero temperature is

1

_...kz
W= +p+ ip(k)
where

n(k)>0  k>k,
(k)< 0 k <k,

AlSO, aw' A(kw') )
G(kz) = — ' s 2z complex
2 Z=w!
=00

Sometimes, G (k wy) is first defined where

We = (2N+1)Pmwi (for fermions‘)
1

Note f(wy) = 00 1.e. wy are the poles of f£(z) =
N N "
S % +1

Y is equivalent to the integration above.
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IV. LATTICE VIBRATIONS

We now turn to a discussion of the lattice vibrations in
metals. The purpose of this will be to show that the small
shakings and distortions can be described by phonons , which
are quantized sound waves with properties like bosons. This
is a subject which is very simple in principle, but vef} aif-
ficult neumeriéally, (Actually, there are some difficult |
points of principle also,; which we shall gloss over). We shall
obtain the oder of magnitude of the phonon wave lengths and
frequencies. We shall'also obtain the coupling between phonons
and electrons, and discuss the order of magnitude of = this
coupling. Better estimates and fuller discussions of this pro
blem are to be found in such standard works as Ziman ( / ),
Péierls (5); and Pines (6). It is to be emphasized, however,
that the problem is not solved satisfactorily at present, and
In fact; one of the uses of the tunneling experiments in the
future will be to obtain experiméntal information on this

subject.

Consider that the ions are located near their equilibrium

points, the position of the i'th ion being
L =2ty
where aq is the position in a perfect lattice, and uy is small,

The kinetic energy of the ions is,
> 0N 1 2

k=1 i=1 M auf

sk
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ui,k is the kith component of the displacement.

and their potential energy is some (poorly known) function,
V(X o0 oXy)

ZZ;’L

V(alonnaN)+ 2 Hizk ujL Gik,jﬁ(alboﬁ).’- o o 0
193 kb

Since V(al Zoo,aN) is constant, we drop it. There are no

linear terms in u since the lattice is in equilibrium at

Xl = aqe The problem is to find what G is in a reasonable way,
and then diagonalize 1it.

The result is going to be that the normal modes are'harmonic
oscillators. We can reduce the diagonalization problem consider
ably, since G can only depend On ag=2ay» if we neélect surface
effects. We exploit this, as usual, by bringing in the Fourier

transform. -

Thus, let us introduce
‘ 3 Gifeay

g = I T = a,(£) e (D)
s poor

The vector f runs over values ZE (nl’ nys Nz )y if we make the
fiction that we have a crystal cube of side L, and impose
periodic boundary conditions. We can add to £ any vector G
such that G = a; = 2m. The usual convention is to allow
only the shortest inequivalent values of £. These fill what

is called the first Brillioun zone: G ag = 2m my -

It is easy to check that there are exactly N values of £
i(f“f') '1

in this zone. The orthogonality relation %" % e =8pp?
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The polarization subseript (p) runs from one to

three,
and corresponds to the fact that we may have to mix components

of u in order to diagonalize G. The coordinates q play the

role of normal coordinates for the phonons.

With this substitution, we find for the potential energy,
3 N -1 f(ai—aj) -i(fef') -a

e J * . r.
-lZZ> - ———— a(ape(e)
£ £ ppr=l 1,3=1 N m
+%:ek Gkk(aia ) el (£7)

p . P
a&
' *
(We have need the fact that u; is real, to replace it by 31).
If we perform the sum over ai-ajiand aj, we obtain

v=215" 2(f> qp(f) ap-(£1)
£op

where the polarizétion vectors e are chosen to make

§:: e h(r) th(f) s Liey = spp.,wg(r)
ksl
and

Mgy = Y emif-a1 ghle,

It 1s easily shown that w3(£))0 and that wp(£) = W (-£):

We have therefore formally diagonalized the Hamiltonian,
so it now reads '
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<2
0 *
1 l 2
H = -2 - + = w(f) q () q.(F)
2« 2°°p P p
o of aqp(f).aqp(f)

Finding the frequencies w(f) is a difficult numerical pro

blem. Having reduced the Hamiltonian to this harmonic oscil-
lator form, we introduce the usual raising and lowering oper-
ators to make the vibrations look like particles. Let,

qp(f) +

ap(f)

2

“Z“ﬁif’} 3q;(f)

1 d
Vpr(f5 aqp(f)

a;m a,(£) =

It turns out that the commutator is

+
and thus S
+ _ +

+
p 2 ~ 2p (Np 1).

-
o
i

Lt

Np(f) a;(f) ap(f) where

Np(f) is the operator for the number of phonons in the state
p.f. The phonons are thus to be regard as a gas of Dosons,
with wave number £, polarization p, energy'wp(f)° The Hamil-

tonian is, in terms of the a'sj.
. )
= +
H¢ z:ub(f) ay ap(f) (zero point energy)

We now consider the range of frequencies and wave numbers
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of the phonons. The wave vectors f are confined to the Bril-
~ lioun zone, which is a complicated polyhedron. If we replace
this by a sphere, we have

v
) :=(Z1r3"3vjd3f=——f2=lv

2
£<£ Fet, émr

hix 3_Y
or fo” Py where a N

The bulk of the phonons therefore have wave lengths comparable
with a few lattice épacing, or, in other words, most lattice

vibrations involve only a few neighboring atoms., The very
long wave length phonons are important for some special pﬁrpo-

ses, buf do not appreciably influence the tunneling.

An important thing to know is the density of oscillators

of a given frequency, i.e.

dw F(w) = %& S [5(0)+ dw - wp(f)) - S(w- Qp(fj)].

At

This function typically is complicated; and may have a graph,

as follows

Flw)

FIG. 5
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We want to glve a single number; such as w,s to describe this

distribution in a crude way.

Purely in order to simplify the writing, we ar;'going to
assume that all phonons have the same frequency. (Einstein).
This is not an anormously bad approximation, and it will save

us much notation.

We now consi&er how the electrons interact with’ the
phonons. The interaction occurs because the presence of an
electron tends to distort the lattice, and conversely, a

‘distorted lattice will deflect the electrons. To find  the
form of this coupling to a good degree of approximation is
very difficult, and is an unsolved problem. However the

basic idea is very simple.

Let the potential seen by an electron be (in the second
quantized notation) |
fdr3x w+(x) ZV(x-Xi) ¥(x)
»Expand '

V(xaxi)' =V(x-ag)-yy° v V(x- ai)

and put in the expansion for P The first term gives
z‘JdBX ¥ (x) VCX=ai) Y(x) i.e. a perfectly periodic potential
for the electrons. One should solve this part of the problem
and obtain Bloch wave functions for the electrons, but to
obtain simpler expressions and the order of magnitude, we use
plane waves. This is probably not a bad approximation in any

case.
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Thus, we have,
3 ‘ +
d - a(f)+ a (=f)
—Z oy e X 7y ———

11031 o (£3,7V( -a,)

i
X E.Ck eik,'.x.
k

In the 1'th term above, make the replacement X—»x+ a;. ALl

of the dependence on a&,then occurs in the exponential,

i A - o

We should have allowed also value f+ G, (Umklapp) but we sup
press these for simplicity. We obtain, therefore,

1
Fop = = «(Bht£)Cy, C,(alf)+a*(-£)) Syt 1ot
KN £
where d3
a(kk'f) = - E[ e(f) - VV(x) ollk=kt):-X
V) Vaultm ™ ©

Since o depends predominantly on £, .in most model approxima-

tions, we write it as «(f). What is the order of magnitude of

o ? For that purpose; replace

<=

1 _
- — 5 w(f) - w d3x — g

a’

(the range of the potential ~ a)

V"i‘ (same reasoning) V — €, (it 1s the potential of an

electron near an ion, therefore some few electronvolts).
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Thus

or «(f) = A(f).Jeowo where A(f) is dimensionless, and of
the order of magnitude unity. It turns out that the problem

can be solved even through A is not small.
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V. -COMPUTATION OF THE GREEN‘'S FUNCTION

We now want to ’obtain G(}f,w) for avndfmal metal. To do this
we want to exploit the facts which we have discovered; namely,

ué/€°<<1 but typical values of f are 1/a, and typical eletronic

wave vectors are also of that order of magnitude.

First, we consider the general structure of G(k,w). We
create an electron of momentum k, and later on destroy it  re-

turning it to the same state from which we started. What can
happen °

- s

The electron just' ' The electron emits a = It emits first
goes from one phonon. It has to one then another
point to another reabsorb it later. :

FIG 3 6 '

In general the contributions to G arise from the diagrams.

It daes something complicated something chpiicated then
: : - goes along again complicated -

FIG. 7

Write G in the form: G(kz) = 6%+ 6°MG® + ¢®M g Ma®+ a° +

g 1

+ G°MG . Where M is called the mass operator and G°= z-6, °
' PP |

We thus have G(kz) = — = 1 o Mathematically,

1-G°M 2= Eyx~M(kz)

it is more convenientr to w;ite Zy a complex number, instead
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of w. Then M(k,z) has a dispersion relation, since G does.
1 [T(kwt)
M(kyz) = — | dwt —
2r 2 -
It follows:
i
M(kywting ) = Y(kw) - 3 [ (kw)

where p r( y
— . k (]
S(ke) = — [a —_—
2w we=w

Thus, since A = -2 Im G(k,w+ 1v), we find

-
E"ek‘zﬂz"i‘ [

A(kw) =

Suppose r ‘is very small, then it is a well known formula,
A(kw)=~ 21 dlw- €1 <7 (ko))
(to be compared with 2w &w- € ), the free case).

‘ Actually, for given k, A has the interpi'etation as giving
the pré‘:;ability that ei’chef Ck or C; will create a state | of
energy w, relative to the "ground state". For the free gas,we
can obtain only states of energy £k. Now, there is a width to
the state of [ 1.e., A(k, w) has the form: (in the case of

interacting electrons).

A(kw)
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By the uncertainty principle, r‘l is regarded as the
lifetime of the state. All of this holds if [ 1is small (This

turns out to be true for w<K wo)a
We note also that in this case

A(kw) 27 G(w—ek-z (kw)) = 27 2y G(w-’Ek) .
where E, = Ek +3 (k Ek), i.e. I (k) is a "self-energy" correc-

tion. ' | Z£1=1_<§§>
ow w:%{

Z, 1is a renormalization factor. It comes about because we
have injected the electron suddenly into the metal. (It 1s pos
sible to show (Exercise:) that 0<Z {1l.

The other electrons have to adjust themselves (in a time

gl-(— 3 the ions adjust themselves in a time %— , afterwards,
o (o]

there is left a long lived state, lasting for a time F o There
is the possibility that the other electrons dontt ad just them-
selves, etcj they do something nasty, or a sound wave is created.

Only with a probability Zk will fhe long lived state be created.

Of course JA(w) dw/2m = 13 so the §=function eanit be the
whole story. And this is clearly true mathematically, since ir
(0)/3w) 1is appreciable, ['(w) must be appreciable at some fre-

) and again near w~& .

quency. Where ? Clearly near w-~w
We actually expect [ to be small for w/w, <<1 and k

near k . We are going to calculate r in a moment, but we can

say now the general idea. [ is the rate at which an elsctron

leaves the state k, Ek° Consider the rate due to creation of
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one phonon. This rate will be, by the golden rule
= o E +w - B 0
r 2#% (@ (q))* 8(B, _ +w =) Keq

Let us look at the volume in k space for which these pro-

cesses can occur.

FIG. 9

Hatched volume is region over which k -q can run.

This volume is proportional to w%., The (matrix element)?
~(1t turns out) is proportional to q 1.e. it is bounded by w.

Thus [-mwB/wg since [  must be an energy. The factor
of wgz has to be verified in a more explicit fashion, which we
will do later. ’

In a similar way, we can see that processes like)’\’y

lead to [ coul ~w2/e°, which except for a very small region
m((a),,zlt?;9 is negligible until w~E°. The plot of ["(w) vs.

turne out to be:
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' e
M (e [ (\@;”*

|
|
!
r/E<<14° 1 ¢, 1~ F/E«]_ <1 €o Bk

If we are willing to keep w<X W,s then r is smail, A=
= 2r Z, dw- Ek) and the whole business looks a great deal like
a free particle system, with altered energy levels. Most pro-
ﬁerties such as thermodynamical ones, (tunneling is not oné) _
depend only on Ek and not on Zk sincé the electrons involved
are not actually injected suddenly from the outside so theré

are no transient effects to consider.

The Landau theory is based on this fact, and describes
completely all phenomena in this low frequencylregion in terms
of the function E, (which Landau does not calculate) i.e. it
essentially behaves as a free particle system, with energy Ek
replacing €. (The change of E, as a function of the number of

exclted quasi-particles must also be taken into account).

(]

The Landau theory is very halpful in deseribing all the
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low energy phenomena. However, it is possible to extend some
of the considerations right through the region about w,s and
to solve for [ (phenomenaologically) as long as w<{§, (even

though w wy).

The fact that the electron phonon system can be described
simply when w Eo is based on the idea that although the pho
non frequencies are small, their wave=vectors are not. In other
words, typical phonons involve only a few neighboring ions, but
the disturbance is very slowing moving, since the lons are SO

heavy.

Consider a quantity such as .r(}g ,w). Let us examine the
scale of energy involved: This is clearly Wy 3 if we change w
by'wc, we obtain an appreciable change in r. On the other
hand as a function of k, ["is slowly varying, i.e. it is neces
séx:y to change k by something of order go before r' is apprecia
bly affected. All this is a sort of dimensiénal argument based
on the idea that since there is only one length introduce into
the problem, r must Jeépend only on that length. If some other

fundamental length appears, we have some new physies (e.g. su-
k=ko

ko

perconductivity). Since we one always going to consider «1,

we expand

-
Ckw) = [[(w) + (k=-X%k) -a-g: ()
[y = r(kow)
o I

o N o

ok kg

If the restriction “’<<“’o is made, we could do the same for w,
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and we would obtain [ (w)~0. (This is the Landau theory).

The same holds for J (kw). It is replaced by Z(w)EZ(kow).
More precisely since '
[[(xwr) dor

21r We wr
we have ) (kw) Z(kO)*-Zl(kow), where Zl’ i1s the integral, which

because of the subtraction, involves only values of w'{w. J(k0)

2(kyw) = J(k,0) +

depends on the high frequency absorptions, so to speak. If Cou-

lomb interactions are taken 1nto account, we would have

k-k, 1 1
2 (k,0)~ - Ap+ k| 7~ = where
' ko ¢ .

m, is a partial effective mass from the Coulomb interactions and
OAp 1s a shift of the chemical potential. If phonon interactions
only are taken into account, } (k0) is a factor w,/E, smaller,

2
and can be neglected. We suppose, therefore, that Ek = k—.-p +

2m
+ 3 (x0).

Consider again

' 2
Alkw) = r(kw)/{lzu-ﬁk‘-z (wﬂ + %;[‘2}

If we regard this a function of w, for fixed k, there may be a
broad deformed peak near w - Z(w) = fk but the width and struc-

ture can be comparable with w itself.

A(w)
. (Pixed k)
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1.e. A(k) is sharply peaked in

€, when €, 1s measuneduon the

scale of E_. A(Ey)

In words, this result 1is:
An electron of definite momen=-
_ tum, near the Fermi suffaee;
-may have a range of energies
which cannot be neglected, but, an electron of definite energy
near the Fermi energy, will always be found very near the Fer-

mi surface.

Another way of saying thiss

g(x) A(kw) 2nN(0) g(0)
(21r) |

where g(k) does not change unless k is changed by k- N(O) is
the density of states at the Fermi surface, neglectlng "the

self-mass corrections.
This is true, even thoughiwe cannot replace
Jdu:A(kw) by fdw 2r Zp 8(w-Ey)

We nse this result to obtain the answer to the simplest tun-
neling problem. To do this, we must develop a formalism to’

treat the tunneling.
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VI. TIHE TUNNELING FORMALISM

In this lecture we want to develop a formalism for treat-
ing tunneling. We shall folldw the simple 1deas of Bardeen.
PRL6(57) (1961). A somewhat more convincing and formal deriva
tion has been given by the author to be published in P.R. Aug.
(1963)). Usually, if we have some barrier we calculate a -
transmission coefficient by considering an incident wave, and
a transmitted wave. The transmission coefficienty I remind
you depends most strongly on a factor (squared)

- Jle(x)dx
e %o

where K(x) is ~/2m (V(x)-g-g)

(We represent the barrier by a ¥ _
potential V(x), and treat the

electfons as independent, to X il
obtain this approximation).

That is, the amplitude of the wave-function drops off exponen-
tially inside the forbidden region.

What was pointed out by Bardeen; was thaty, since for thick
barriers, the transmission coefficient is very .small, one can

treat the problem as transition between nearly stationary states.

Let ¢o be the many electron state at time t=0. (It could
be a state in which the electron is to the left of the barrier).

If we don't allow tunneling, the state will evolve in time ac-
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acording to
-je ¢t
- o
Qo(t? = e Qo

Suppose we allow tumneling to take place, then5  according to
time dependent perturbation theory;
=iE t =iE ¢

§ = @0 e + Z @ e av(t);

.whegg>ﬁhe>Qv are states with the electron on the other side of
the .barrier. We can find the_tgggsigidg rate across the bar-

rier, by the usual golden rule i.e.

2 _yw =
';;%-,Ia (£){% =w mz 1,5 (5-E,) &, F 8(E,B,)

We have to evaluate the matrix element
T, = ](b (H-E_ )P,
Let the coordinate X be perpendicular to the barrier, and let

X=0 be in the center of the barrier. When the electron is
to the left of the barrier, H §_ =E_§, so

T, = I Javy oo argfax ¢ - £ )4,
- I.,f.fd‘rlodeN de@z(nmﬁ;o)(boa QO(H=EV)€]

“Where © indicates that the integral is to be taken over-the~fg
. gion to the right of the barrier X >0 and we have subtracted a

- zero, by the same reasoning. Since E, = o) we have
l : 0o * 9
T"z.,,:—- ooo d‘[‘ 00 0dT dxm ¢ = é)
G P R I A P [” ox



) -% [Jx(oﬂvo

Jk(O) is the total current operator across the barrier.

In the other words, the small perturbation (HAEO) is just

=g- 3 (0)

The same result cam be obtained as follows: Let the Hamilto-
nian of the whole system be

Hp + H + T
where
_ + +
T =) (C. C, +C,CIT,

Ty
Trg = - %Dx(oﬂrl

and Hr is the Hamiltonian of the electrons on the right, and’

with

Hz is'that of the electrons on the left. This is plausible
intuitively and has been verified (with certain reservations)
iIn my paper. We shall therefore accept this result and pro-

ceed.

Let us consider the current across the barrier.We treat
the tunneling operator T by the golden rule. The rate for
electrons to go from right to left is: '

— »
ar %I(fl )2 T4 CL c 10> ] 3E,~Ep-eV)

and similarly for the rate from left to right. To obtain the
current, we multiply this by -e , and the left-right rate by

e,
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Therefore I
T=-2r el K2 T, ¢y crlo>|2 §(E = Ep - eV)
£
- z;mz T, Cr ¢y 10312 §(E, =By +eV).

= -2'"'0 JE : : ‘Z T <frlcr‘0r>< f"|CI|0) >l2 6(E0-Ef-eV)
b f ff r; B . ¢ “ "A

3 +

- I T lc710,5< lecxclopl 3(Ey - Eg+eV)
f fm .

dwr

< wzme| — | — T i1, 1 §: [Ke,10,10,312 27 8w, = Bgp* Egy)
2w Va1 8 rQ’

Z K%,IC,il 0> |2 2r 8(w£=E gt Eoﬁ?"}'hlﬁ(wx;-wlnev)
f2 ) .

This follows if we take the states Ty L to be wave packets of
definite momentum, then (f. lc [ ><o lc lfr‘

= -l<f IC IO >|2 for exampl_eo C

‘I‘hus: \ a0,

= 2 < >
“J = - 2me 2 |'rr\ | J - {GR(r, “’r’,%‘”“’z’
ol - T RS
- GR (r, wpn ) GL(2 )y Wy } 8(0.) QJ% eV) . | | )
This has the usual interpretation according to the Golden Rule:

The first term is the rate at whlch electrons of energy w,
state r, are transferred across the barrier 1nto a final state

of momentum 1, energy u& " ¢¢ 1s the density of these  final
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states, and the total current is obtained by summing over all
initial electronic states. G¢ is the density of these
initial states. We perform the integrals:

; JdBT {da/ [dwl dea AR \ E.( ) ( )]
= =2re-4 . p|flwy - f u%
(2r)? J(omy3) 2m J2m

s 2
Doing the integral over d3r first, then over dsl
. oe)
- 2
J =-2re-4 Np(0) Np(OX|T,,| >ang1es Idwlf(w) - fw-eV)|
=00

= 87% % v Ny(0) N (0)< 12>

The same result can be obtained when Ap~2m Z, S(waEr) but then
it has to be recognized that

r r 1 aer

dr dr dw dor dr 4 _ 22 T dr
ow

Renorm. P§ oP_ . -
NR(O) - Ly = Zo *——5 a_E— = NR(O)
2w D

In this case, the wave function renormalization Zr cancels the
mass renormalization. Thus no experimentally interesting re-

sults can be expected.
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VII. GRAPHICAL ANALYSIS OF THE SEIF-ENERGIES

In this lecture we want to analyze the graphs contributing
to M(kz). I will give only a heuristic argument. To be correct,
one should write down the expressions in perturbation theory,

and examine them.

The graphs can be arranged as follows:

Graphs for M(kz):

N R
T

___ﬂQZZZ;_

- The top line consists of self energy correction to the phonon.
The second iine consists of self energy corrections to  the

electron. The third line consists of yertex corrections
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We really should have introduced a phonon Green's function, etc.
We shall take Migdal's word for it, however. There is an im=-
portant shift of the phonon energies, but no appreéiable width.
S0, we say that the phonon energies arecgq, and the coupling is

still«xq where these are renormalized, but we keep the same

_ name.

The second line we can include, by replacing it by [,/fvx\

Let us estimate the relative order of magnitude

of correctlions such as

I q2 Each will contribute a factor
4 2
foeg 1%~ () B

Then, there will be some energy denominators, for the times a,

by ¢y where a) we have electron + phonon, b) electron + 2 pho-

nons c) electron + phonon.

These energy denominators will have to be of order Wy irf
there 1s to be an appreciable contribution. The phonons will
always allow a small denominator, but the electron has to be
confined near the Fermi surfaée° in order to do that, we cut

down the integral over ki by a factorwo/Eoo

The same is true of the integral  over k",
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In region (¢) there are two possibilities. (I) We absorb
q,. We automatically have a small 4

energy denominator. Therefore, ‘ v

2
1
Ty 2 22% &
(I)Nwo EOE2w3~w0
o o

(II) Graph) we absorb g, first. In )
‘general the electron k" will be far from
. . . k!
the Fermi surface. Its energy denominator
will be E. a

w k
(III) Graph~w, Eg negligible.
o

In general, we cannot allow phonon lines to cross. This
kind of analysis can be extended, and eliminates a large class

of graphs. I invite you to find the graphs "responsible" for

superconductivity.

Let us believe the analysis: it is no doubt correct  if

superconductivity is not present. Then

/M_Bkék"w" w'
Mikw) = :

k!, w?

there is no vertex correction.

According to the rules; such a graph is written:
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2
dw? loc, | . 1 1
M(kw) = +1 )3 G(kiw!) -
2r q N ' mnuﬁ-wq+i w-=-m’+wq-==ivz

The expression in the brackets is the phonon propagator, (at T=
= 0), The factor +i in front is put in to make +the answer

come out correctly. We show below that the imaginary part of

this, r y 1s given by

»
C (ko) = 5_‘: ()| J—-“i- (67 y0r D 8wmurmg) By,
2 q q
| k'sq
kiw?
+ 6 (krw!) Slwr=w=-w ) § ' 2l
)fq:’q ; "q’ Ckr-k-q
k,w ' -

This expression could have been written down at once ir
we remember the Golden Rule, and if we belleve the Interpreta--
tion of G> as the density of states, which are empty of elec-
trons, therefore available to an electron in the final state.
G¢ 1is the density of filled electron states, or conversely,
G¢(<k, -w) is the density of states -available for holes. At

zero temperature, r(k, w) is the lifetime of an electron, for

w > 0., Hence the first term.

For w<0, [ (k,w) is the lifetime of an electron below

the "Fermi energy" or the lifetime of a hole, of energy, mo-

mentum ~=w;. =k
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Thus
2
r(k,w) 2: l“k"‘k A(k' ,w—wk k')

1o flwea )+ trw, o))
“k 2 etk

1st let us suppose o = Woy Wy = W, (Einstein's hypothesis). |

Then we can do the sum over k' by the formula obtained in

lecture V:
N(0)

[[(xy0) = 27 T IOLOIZ E_=f(w=fwo) + f(w+wo)]
( N(0) >
= 2 — |o| 5 lo]>w,
o , .
ﬁ | (T=0)
=0 jwl<w
(s
L
( W=y
Y (kw) |°Lo|2 log
T P w+w0..
oL | |3,
ow 4
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The more general case can be solved by noting that wy .,
does not depend on |k'| appreciably (since |k!| = k,+ small)
but only on the angle. It is a trivial matter to convert the

angular integration of k' to |kv -kIZ = k124 k2. 2kkt cos©
; 2
dlk-k1|% = 2k, d cos® a4, , = 2r gt )™

2%
Thus in general, —
N(O) 2
[(w) = 20 — dw, F(w )loc(w )] O(lwl—w ).
: P
where - qu
F(wq)=—-v-d——, 8(x) =1 x>0
2 w
2k0~ q - =0 x<0
B () ZwN(O)
T - F(w)]o(w) |2 L w>0

aw 'p'
[[(w) = N(w)/q(w)
~ Insofar as [M(x ,Q) is given by the formula derived in
the text even when w~E_j that is; when [ (|w]) — constant,
for w = 0o it follows that ) (k, 0) = 0. However, this is not
precisely true. In terms of the graphs,; it means that the graph

makes contributions alsc

for k' well a ay from - ‘the

k! Fermi surfaceo This contri-
____Q_——» bution is, however, practi-
k. k! cally constant in both fre-

quency and wave nun;be‘r’, .and

is therefore of,ﬁo iﬁtgresto
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VIII. SUPERCONDUCTIVITY

In this lecture we begin to study superconductivity. There
are new physical entities involved, and corresponding, new di-

mensions of length and time,; which show up in the self energy.

The key idea is the concept of the Cooper pair. This 1s a
bound state of two electrons (which we believe to have total
spin zero). It is remarkable that even very weak forces suf-
ficé to bind the electrons. The reason is that the "low"
energy electron states are near the Fermi surface. There are
many more momentum states available to the electrons, of low
energy, than there are in the nelghborhood of zero momentum.

It 1s an easy caléulation to show that the amount of kinetie
energy needed to keep a pair of electrons within a distance'go
of one another gdes as 1/‘5‘; In Eo when E. is large. (Compare
with 1/§§'for electrons in free space). If 50 is greater than
the range of the forcss attracting the electrons, the mean po-
tential energy will drop as §;3o Hence, by taking ¢, large
enough, the kinetic energy can always be made less than the

potential energy,; so the electrons will always bind.

This phenomena, discovered by Cooper, is fundamental to
superconductivityo However; we have the ldentity of the elec-
trons to take into account. If we put two electrons into a

Cooper pair, they will immediately exchange with other elec~

trons, losing the effect, unless the other electrons are al-



ready in the same Cooper pair state.

We Vcan rephase this remark as folléws: the pairs of elec-
trons are more like Bosons than Fermions. Like Boéons, they
prefer company (the operator a;iNk> = /I_\I';_;L'!Nk+1 ). The Bose
factor enhancing the material occupation of the same state,
_makes it possible for the Cooper pair to exist at all. We can't
have a state in which one pair of electrons is bound, but in a

different state than the others; for example.

How do we describe this mathematically ? Iet
F(xl x23 be the pair wave function

To create a pair, we operate with
- + + 3 3
Then, the ground state is .
N> = HFQEIZ 10> where |0) is the vacuum.

It is automatically anti-symmetrized. The BCS form of the

wave-functions is usually more convenlent. Let F(xlxz) =

i _ _ + 4+

= % S -k ik(xg X.Z) then [F=C % 'l}“k/uk Apf Byl
k Uk

The BCS wave function is

+ +
“‘;rv(Uk +’U’k 8 d aakl)M)

where |N>is proportional toc the projection of the BCS state
into a state of N particle39 and Uk = l«=’\f}2{° The main advantage
of the BCS formulation is that the state IN) is difficult ¢to

normalize, whereas that of BCS is already normalized.
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We shall not use explicit wave functions, however, but we

shall exploit the fact that

a_x| akTIN> is proportional to |N=2) (Except
the pair k, =k is absent).
Why ? Because, whenever an electron is present in state kt
there is also one in state =~ kl», coming from the same F operator;
one F is eliminated by distorting the pé.iro ‘Since N is.very
large; 1t is convenient to identify N, N + 2, ete, as BCS have

done. Then we can say that
oy} 2t # 0
Nambu has introduced a convenient notation for studying

this problem. Call %(x) = ¢1(x) z/’-i'(x) = ¢2(x) then -

{0, v¥} = 8-y 8y
Let L
Gij(xy) =1 <7 ¥,(x) zlf;(y)>

1,
Gyy = Gyys Gpp = = Gy Gyp = 7<T %(xw‘(y»#o
We can also introduce jg G$ Ay M ete, which will be matrices.
It is easy to prove: |

Gy G5 A >0 (hermiterm, positive)

*

G2y, =G(z )y, det G(2) £0 (Im 2 £ 0)

dw Alw?) dw?
— Alw) =1 = G(2).
2w Z =Wt 2

In the simplest approximation
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k=33 7/——— where A is the energy gap para-
meter.
The spreading of the wave function F, is determined by'the range
over which , varies, l.e., for £y ~ A or €y (k- ko)vo
o . . v
-3 ck o~ 2 -
A ~10 k kO v or Sx~ X o B

‘ITVO

-E--go ~104A°

The radius of the "bound pair" is therefore enormously greater
than the range of the forces binding it (which range 1s only
a few A®). This fact has very important consequences. It means
that impurities do not have a very serious effect on the bind-
ing energy of the péirg‘at least so long as they do not change
the phase of the electrony. However, we shall have no need to

‘exploit this fact.

-

: The Green's function formalism in the matrix notation is

" practically the same as before.
There is one important modification:

Consider, for example, the kinetic energy
EER A TN R MR Bt NIRRT
| 2\ Zn kt “x T V-k| “-kj - k' 371§ “ki Vg

1 O o
+ const.; 73 = - RN
- \0 =1/ . -

In general,vwe can rggard the CI as creating an electron qfrspin
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T and C2 creates 2 hole of spin 4. But it is not convenient to

keep this too much in mind.

Again, the electron-phonon interaction is

2] -

R | ‘ + + | +
= :{Z:d—(q) (aq+ a_q)(Ck+q1 Cep = Ciq} Cx}?
,q v

§ ot.(q)[ _q] Z (T3)3 5 Ciagt ckj
)
This rule may be summarized as follows: The electron kinetic"
energies,are replaced by T3 k? and the electron~-phonon inter-

action replaced by T a(h).

3
- For examples
o 1 o
- 3 k

Suppose we try perturbation theory: Since only the matrices
;,‘TBHenters into gog or into H, we shall be able to obtain only
the matrices g):§3 in any result, eg. G 1tself will be diagonal.
If

: 1
g =
»then, according to perturbation theory M(kw) = M1+ M?’U . In

the superconductor, thils result is wrong. There is turns out

that
M=ML+MTy Ty

(There is a certain ambiguity: M could have a part with éf;éi
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equally well, but a gauge transformation can be made to eliminate
this term). M is a self-energy. There are several ways we can
regard it. For example,; we can think of it as being dﬁew:té a
self-field'of the electrons on this case, a sort of - self-con
sistent fields of all the other electrons. The fact that M' can

contain some off-diagonal terms we may interpret as follows:

a) The electrons can set-up a self-field which does pot
have the original symmetry [g, 3:_3] = 0. The original gymmetryis
broken. This interpretation has been fruitful in speculations

about broken symmetries of elementary particles, for example.:

b) The off-diagonal M;» may be regarded as the field gene<
rated by the electrons playing their role of Cooper pair.

c) Suppose, M, = M3 = 0. Then

1 o w+’t' 5 +T, M

. =3 Yk =1 Y1
G = - : =
WeTp € -Ty My =sk M%
The diagonal part of G say Gk is .
G\)+€k 1
wl4+el M8 Mi
«w
+£k

Thus M%ﬁ»+€k 1s a contribution to the ordinary mass operator.
It means that an extra electron has the possibility of being
captured by some Cooper pair of momentum -k, a hole propagates,

Q4

and it is released. Regarded in this way
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G12 Zl is a factorization of the two-particle Green's

functions.

We now study how a self consistent field can arise. Consider

again the process, described by the graph.

..Bach-of the heavy line is a matrix, so this is really a short-
hand for graphs. - Ists -

(W}

0 (a)

(0) is the direct propagation.

(a) is the ordinary self energy part.

(b)  a phonon is emitted, it is absorbed by one member'of a
_ .Cooper pair, the other member being in the same state
‘as the initial. The two excited electrons then bind
aeach other.

(¢) (4) similar interpretations apply.
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Next

x 2 2
2
= = Yt 5, + N * 1
2 1 2 2
1 2
A 1 (a) @ °

()

In this case there is no zero th order term. The important

feature is a graph like (b). If we iterate this many times we
find ’

k¢ *,

kt =
We can regard this as a vertex

correction



48

It is easy to verify that all the energy denominators are small.
It is therefore essential to take into account graph of arbi-
trarily high order; which describe the exchangg of phonons

between electrons of equal and opposite (or nealy) momentum.

It is tricky to count graphs in the ordinary notation, but
that of Nambu is very elegantly designed to do the hard work for

us.

The generalized mass operator is, therefore

1 MG
‘M. = Jd3k| deo? -—_2._'-_:[:3 Q{ (knwu) "T"B D(www' ’ k...kl)
(o) P

where D =

1 » 1
- - q = k=-kt
W= =uh+i? w=uﬂ+wq-iv

The original method of analyzing this expression was (in effect)
as follows: The exchange of a phonon, described by the D pro-
pagator, was argued to give rise to an effective attractive po-.
tential. Since it is usual to treat potentials as causing an
instantaneous force, («(q)iz/p D was replaced by some potential
-~ V(q). It was further argued that this potential acted only on
electrons near the Fermi surface, with in an energy distance'~Q5

from it. It was idealized, théreforeg to be constant within

this small region, and zero without. Thus,
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1
M = J Sk fdwv T Glkwt) T(-1)
(2r)? -
€I,

where V is constant.

It was also desired to keep only those corrections of

specific interest to superconductivity. Thus, it was assumed

M=T,A, G-= 1/(0= &) Tz =Ty A

In other words, ordinary self energy corrections are neglected

G 1s diagonalized by the Bogoliubov transformation

=1 _ 1
Y G G =
w='§3(Ek°iv])
sz(vi::gs*Uk'%)
G+ VE =1 U - VE =2 /By Zukvsz'
A k
By = g§+A2

= ¢ 2_p2
I; G5 = (w+£k’£3=l‘lé)/E> - B+ iv]

1

(the + 1y comes by analogy with G°
W=THE + ivl(k)liB
w +T,E&
5k -
= — = @+ 5 € )0 € +1y)
2 2 3 'k k
W= By - 1y )

N >0 since € 1 >0
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Then
i 3 v A
Az o —— |37k det
4 2 2
(2r)= w'©=Ep, + iy
w
o
Y 1 ) 1
I=V = PVN(Q) = ae.
Kt
(zr)® B, 2 /E 5 + 47
0

If V N(O)«1, the approximate solution is

1
w o=
1=V N0 1 ° _ VN(O)
= og z—a A-—-COO e

which shows the famous exponential dependence. The number N(O)V
is treated as an adjustable parameter, and could not be cal-
culated with any reliability. (VN(O)~ lalz/wop ~E/py so VN(O)
is independent of isotopic mass M). The fact thatAewoc M Swas
regarded as an early triumph of the theory,; until experiments

showed that not all superconductors followed t'his simple law.

In this from of the theory, N(O)V is treated as a phenomeno
logical parameter [ioe o O is measured,; not predicted] o A great
number of eXperiments are correlated in this way. Howeversy some

important questions are unresolved by these approximations.

A) the dependence of A on crystal structqre, electronié;
structure, etc, is not understecod (A is not predicted).

B) the dependence of A on Wy OF on M is r;ot correct in
all cases (isotope effect).

C) the structure of A as a function of frequency

(measured in the tunneling experiments), is not predicted.
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The greatest advance in the theory of superconductivity of
the last two years, {by Swithart, Morel and Anderson, and

Schrieffer, et al.) is the removal of this simple approximation.

| From the present point of view, it is rather amazing that
the 0ld set of approximation to M was so successful, ] since
greatvvioleﬁce was done to the physics of the electron phonon
interaction. We shall tackle the problem in the same way that
the normal-state problem was handled, except that here, we

cannot obtain explicit solutions. It does not simplify things

appreciably to consider only the width, either. We  introduce
the dispersion relation for G into M and performe the integral

over w'o.

Then

— sy’ 4 - 3

Notice; M = M(w); by the same arguments presented previously.

Suppose o oy “ﬁ = w,. Consider that M has the form

M(z) = 2(1=2(2)) 1 + 2(z) A(z) T4

We have dropped the term«in:gB since we will see later that it

is small.

Then
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1 |0L(0)|2
2(1=2(2)) = Sk |dw A (ks 1)

Cok P
1= flw?) £(w?)
e &

| Z2=w! =W, z = w' +w,

That is,kz(].»Z(z)) satisfies a dispersion relation with a non=-
negative weight function. A = % Tr A. In the same way,

x(0)1?
{631:9 dev il [ACkrw )]y
P

7(z) &z) = =

(2r)?

1-f(w)  flw) _\

= (@l = = )t *+ W
Z= W wo Z=W °

-l

We know only that [A]; = 32-7' Tr A T is real.

Consider now

® g 7(2)+T,E + Ty 2(z) Aa)
(zr) ) A (ZB-Al)D) - €8
z Z(z)+ T4 Z(z) A(z)
= = 271 N(O)

2 2(z) V7% - N(z¥

We have to determine later the sign of the square root. Using

Alkw) = = 2 Tm G(kyw+in )

w + ‘tl A(w+)

[di A(k ) = 27 Re -
2 Sw+)2 - [a+)]?
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Since All >0, the sign of the root is such that

Re w W2 - A(w)2 30

For w small, A becomes real. Hence Re vo° - A(w)2 = 0 w<‘Ao
where Ao = A(Ao). That is to say, there are no states of
energy less thand . Alkw) =0 |w|< AO. We thus have an

energy gap in this formulation also. -

We can use the formula derived in the previous line,

namely

A(k,w) = 27N(0) Re
(21r) Vw8 - A2 (w)

to simplify the equations for Z(w) and A(w). We obtain,

N(O) v 1= f(wr)
@[1-2@)] = |awr o, |2 —== Re e .
P AN w=ol=w+ly

flwe)

&
w= w't w, =iy

wv
Using the fact that Re 205 we can rewrite this
w2 - A2
P o ocg N(0) 1 1
W (1l-z(w) =J dw? Re -
I /' 2 _ A"Z P w+w!+wo=ir] w-’wc+wo-1?

o

In a similar way

1 j ozg N(O)
A(w) =--—-—-de’ Re l

Z(w) A / 'Z‘: A2 P

o



1 !
. 7 +
ot -1 - w1
“In a similar way
00 _
' 1 A’ « N(O) o
A(w) = —— | dw' Re 5 '
Z(Q)) /Q)"ZQ A'Z - ; R A
o .
1 1
+

w*““*“b‘iq wvnwﬂ%-iq

since in this case the factor Re { } is odd.

Wé.éye going to study these equations, but firstwwe mus£ 
generalize them to include some of the effects of the. Conlomb
interaction. Aiﬁhough we can't hope to calculate exactly, we
do know that only at very high frequencies will there be a
contribution to the absorptive parts (Im Z, Im A). Since we
only need A(w) for low frequencies, the detalled structure
will be washed out, and its effects can be described in terms
of two parameters: The total mass of the distribution, and

" the position of the center of mass.

In order to get all the signs straight, we can think of

““the Coulomb interaction as being simulated by the exchange of’
a "Coulomb" of frequency w,s and coupling - labIZDA(We' need
the - sign, since the effect 1is repulsive, and the eXchange ‘

of one meson always gives an attractive force. Thus we have
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to supply the sign by hand). Thus the phonon propagator and
coupling is modified to be

2 1 1 > 1l 1
o

o - - = -
We W, +ir1 w+wo-= i\) w=~w0 - i\? w+ Wy = 1\7

Therefore,; we obtain

1

e 0} —
N(0) ' [ 1
"‘W(l=Z(w))= ——’de' Re 2 ag : -
P A ‘ /w'Z - A'Z l w+wl+uuo=-17 W - u)+w°-i?_
O

.2 1 _ 1
c W+ wse + wc=. j_vI w? = w+wc+iy1

which is a negligible correction, since w, vE D> w 5y 4 5 w. How-

O
ever, : (.8 '
1 N(0) A 2 1 1
A(w) = — T dw' {Re ——————— g +
Z(w) ) /wtzgdz w+wv+w0-j_vl . wl-url-wo-i-j_rl
(o]
1 1
=0 +

Clautwi+w w'! =w+ w

e c

It is convenilent to simplify this ewhat,; by recognizing that

the last term is nearly independent of w, w'. Thus, we replace

it by2= Ug o 9 and cut off the integral at Z-o.Jc. Here
o w (s
U= —% ';Q (U is a number independent of isotopic mass). We also

OLO (63
give up the Einstein approximation in writing down the final

result. F(coq) was defined previously.
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2w

. c 4
1 A ( 5

Alw)y=—— Aw? Re = dwq Flw ) a“(w )

Z(w) /2 A2 ) 4 4

A
(8]

i 1 U
+ : o oo
w+w9+wqmiyl wl= w+ wqe i)? 6)0

The cutoff is needed oniy in the term containing U.

AW‘e now undertake an analysis of these equations. Thej have
been solved numerically by Schrieffer, using a fairly realistic
phonon distribution funotiono However,; the main features can
be seen in the following way: We first make thé Einstein ap=-
proximations « =« w. =*>w_ . We next uncouple the equations

, q °© q ©
by assuming Z(w) = 1. We have now to solve

2 o0 ‘ '
Alw) = Re - — + -
. Y A /wﬂ_ac Aﬂ?. W +w+ w0=1\q} wwmw+wo=-iv1 L%

o

"There are two features of interests The first is the magnitude
of A(O) as a function of the parameters, since A(0) plays a
role of the BCS gap parameter of the simpler versionms. The
transition temperature is proportional to A(0). In particu~-

'lar‘, the dependence of’A on w, is of interest (isotope efféct)
The other feature of interest is the structure of A(w) in the

)
structure of the tunneling current.

neighborhood of w~w_o This structure is reflected in the
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To examine Ao we ignore the structure. Only values of
wig w, are important in the phonon terms: We replace A' =A° =
= A(0), w, = . The integral is readily performed (for w =0),

and the result is (dropping terms of ~ Ac/wo)"

2&)@ (ch . A"
AOYA A0 fn = =p J Re =
AO AO R w'ZQARZ
where
N(0) U
A= 20(0 9 p= = A
Q)op 2

Neglect of the Coulomb term yields

A@ = 2w, e=L/A (the BCS equation)

To treat the Coulomb term we break the integral into

Zwo 2@)e
J + J In the first, we again put A'=A°
A 2w

0 (] w N\
A .
and obtain = p AC0)Y An <ZZ=">° In the second, we drop the
o

in the square root,

2&)0 ; (e Al
A0) = (A=p) A(0) Ln<T> =p — dwt

1
o) w
Zwo

We now replace As by some average A,. Next, we need to calcu-
i

.late Alo For values of w of the order of ‘%wes A(w)'VAl.,

- The first terms drop completely, so
' 2w We

o
Al =-pA(0) in <=zz>==;JA1 In o
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These equation are solved at once for Aos and yield

i 1

=1
Zub n -1
élﬂ el A ennereadll B [} ~}1%]
, e
B | 1+4 In ™y

0
This iss the effective couping constant A is reduced by the
Coulomb repulsionsy; but the Coulomb repulsion itself is reduced._
because it acts over such a large frequency interval thét the
can adjust to it, i.e. it is less effective because it aéts

over very short times.

The problem of the prediction of transition temperatures,
and the isotope effect, is the problem of putting numbers inte
this formula (or somewhat better versions of this formula). A
can be estimated quite reliably, to say, 10% or better. It is
usually about 0.4 u is less reliable,; but the formula is less
sensitive to 1t. w, is pocrly known, but the formula does not’
depend strongly on it. However, no doubt 4n E?HVZ==8 is known

()
to perhaps 10%. p* usually is about O.l.

According to the most recent work, (of James Garvin (un-
published thesis)) the fermula is not in disagreement with the

datay and certainly follows the general trends.
The isotope effect: i.e.y the value of

dln A

§_ =
I 3 W,

%2
= 1ep /(A-p*)

is also not in disagreement with experiment. For metals such
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as lead, when Iln wo/wg~  u*£0.1, and 5’I~1 as observed. For
the transition metals; where there are both 4= and s- bands ,
the effective value of the w, 1s much reduced, u* ~ .2 and

81 ~ 0, (In w,/w, is much smaller for the transition metals).

We next take up the variation of A with frequeney. The
only frequency variation of interest occurs for wLaw,. We
again replace Z(w)~ 1, and put A=A° inside the integral.
Then A, = In A is given by

/ Mo N(O) A,

() = = : lwl>w + A

2 — (e} o}
P mwluwo)a-Ag

=0 |wl<w, +4,

_Az(w)




60

If we take into account the spectrum of phonons,

A W) "N(O)[ (w V(e ) |? ~o
AR dw, Flw )i (w , :

That is, the shape of the function F(wq)lot(wq)lz is nearly re-
produced, but is somewhat sprevad out. In frequencies w«r—cho ,>
3w, ete. there will be additional structure, which arises it

this first approximations is used in an iterative procédure o
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Scalapino and Wilkins (PRL 10 336 (63)). The result of Schrief-
fer et al. for Pb. The'apprbximations discussed befofe in 1i-

nearizing the equation are worst for this metal.

The shape of Al is related to that of A2 by a dispersion
relation. We reproduce below the results of Schrieffer for
lead. He has used a simplified description of the phonon dig- —
tribution. Lead and mércﬁry are the metals in which the elec-
tron-phonon coupling‘is strongest and the approximationcnOKAo
is worst. The crude approximations made previously are quite
bad in this case. There are fwo peaks in the phonon spectrum
of lead, the transverse at about 4.4 x 10”2 ¢V and the longi-
tudinal at.twice.that value. Bumps 1n.A2 can clearly bé obsgrved

at the value nw1+AO9 n=1 25 3y 4o
We are finally equipped to study the tunneling. As before,
the cu:nent is

dw dw,

: e 2 1 2T <

I = 2mey iTkJLi | — GR(kwi) GZ(QwZ)
k,i a2 2T -

- Gpluy) 67 (Re,) 8w, - 2')

- doy < |
=Y T ¢1% |— Ap(ko,) A, (Qw. - eV)|f(w, -eV)= Flwr)] -
Z.kz o ArtEey A 1‘*[:;e ]

' These G's are the ordinary ones. (diagonal elements of the
matrix functions). Suppose the Ap is for a superconductor, and

AL for a normal metal: Then
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wq

I(V)=ZTreJ’<ITk l2>2 N-(0) 2 N,(0)|Re
L L R >
- /wﬁ - Alwy)

E‘(ml-ev) - f(wl)] duxy

oI eV
— = 2pe? <1Tﬂ,‘2> 4 Ny Ny Re ' — ~
Vv ' N ev)? - AeV)*

The gross features can be understood as follows: Treat A<eV,

Then : : a 2 ad
a1 1+A1-A2
- nN const. + . -
ov , 2eV

as eV‘-*Ab, A.2 shoots up, andadl comes down, so there is a dig
in the neighbdrhood of those points. The effective density of
states in reduced by the possibility of phonon emissions.

As we reach a frequency at which a great number of phonoﬁs
can be emitted, A2 increases, and4ﬁl decreasesy, by - the dis-

persion relation. Hence there is a dip at these frequencies.

Experimentally, it is more interesting to tunnel between
superconductors, because the sharp peak in the effective den-
sity of states of one superconductor can be used as a probe to
pick out details of the density of states of the other one.

The van Hove singularities (discontinuities in the slope of the
phonon density of states function Fﬁnq) can be seen in this way,
although detailed shapes are clearly harder to analyse.
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In sum, we have seen that the electron=-phonon problem.can
be studied by means of Green's function techniques, and that
_ubecause the speed of sound 1s so slow in comparison with that
of the electrons, a very good approximate solution can be ob-
taihed. The tunneling functions acts as an injector of elec-
trons, consequently the -tunneling is described in terms of the
one particle Ggeen's function. In the case of a superconductor,
the phonon spectrum is imaged in the energy gap function which

is in tern reflected in the tunneling current.
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