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1. INTRODUCTION

“The first consideration we have to make concerns the question

of what 1s to be reparded as high _energy scattering.

In the theory of potential scattering if g is the range of
the potent;al, our approaches the asymtotic region for, energles
such that ka»> 1, where k is the wave number. .of #she 4ncident
"pdrticle.-'This_COnditipn means that very many. .partial - ﬁaves,

‘those with angular momeﬁfqm.up_tO-L:;-ka,:contribnte' to . | the
'SCdttéfing amplitude.

In Nuclear Physics, the existence of & large nuﬁbér;of reso-
nahcés characterizé reactions in the: low (500 - 1000 KeV) and
intermediate enérgiéél(l Nbﬁ_f 20 Mev). These ranges are of
counse only.roﬁgh"approximations;athey depend,'funamantaily? . on
the projectile, for instance, neutron induced .reactions start at
energies much lower than the thresholds for proton or a-particle
-rqactions, because_of the Coulomb barier. They also- depend- on
the,targéé nucleuss light nﬁclei ﬁehgvp quite differently “from
heavy nuclei. However, generally speaking, one can say tﬁat many
sharp ‘resotiances are Tound in the lower range and . broader ;-ges;-
nances' in ‘the’ higher ringe due to electromagnetic -and nngleaf
‘excitation,'respectiveiy.' These resonances reveal the 'structuré
‘of the nudlear 1lévels. -In the high ensrgy. region  (20-1g0.Mev)
~the main’ feature is the appearance of. many particle reactions
¢py-2n), (xy 2n) ‘and so-on. The nuglegs behaves like an absorbing
mediim which can be described by an optical pp;ential. The, -total



cross section approaches the geometrical limit 2mR®  where the
nuclear radius .R is the range of the average potential. Re=
actions above 100 MeV take place essentially through direct
collisions with individual nucleons in the nucleus, and practi
cally do not depend on the nuclear structure. They may be
-deécribed in terms of elementary particle processes. The range
of the interaction is of the order of the Compton wave lenght.
Thus one might consider the high energy limit for nuclear re-
actions to be around 100 MeV. This is, roughly, on upper limit
for the specific domain of Nuclear Physies.

In Elementary Particle Physics one has an analogous si=-
tuation. In the low energy region (below ~ 2 Gev) several
resonances of both mesons and baryons have been found. Above
this region many meson production processes are dominant, the
total cross sections seem to go down smoothly, slowly approach
ing é constant value and the elastic scattering becomes es-

sentially forward diffraction.

Both in nuclear reactions and in elementary particle pro-
cesses at high energies, the scattering 1s dominated by ine~
lastic processes. Hence in addition to the condition ka>> 1l
set up for potential scattering, the presence of very many open
ch;nnels 1s another characteristic feature of high energy col-
lisions. The energy has to be sufficiently high to give rise
to a fair amount of inelastic transitions in states with large

total an¥u1ar momentum J.
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We shall take these qualitative criterla as a starting
point for a discussion of high energy scattering of elementary
particles.‘ According to them-the high energy region is ex=
pected to be above 20 GeV.

The first attempts to give a théoretical interpretation of
high energy collisions of elementary particles were based on
the optical model, the nucleon being-tfeated as a '"greyor black
sphere™. Some interesting consequences of this model were
defived by Pomerauchuk (1956)1'2, He also discussed (1958)3
some implications of forward scattering dispersion relations
on the high energy behaviour of cross sections, in conection

with this model.

2. POMERAUCHUK'S MODEL

Pomerauchuk proposed the following picture for high energy

scattering.

;n the collision of elementary particles with = target
nucleon at high energies, very many inelastic channels are
open and strong absorption takes place. The nucleon behaves
like a dark grey or black body with a size of the order of the
pilon Compton wave length. The scattering at these energlies
would then have the following characteristics:

1) The total cress section o(R) approaches a constant 1limit
o (o) as the incident energy E increasés to infinity.

11) The total elastic cross section 1s of the same order of



magnitude as the total inelastic eross section. Since
there are a great many inelastic channels, one expects
- on statistical grounds, the elastic cross section to be

much larger than the eross section for any particular ine

1astic channel.,

iii) The elastic'scattering is predominantly forward aiffra-
tion. The reaction being strongly absorptive, the real
part of the forward amplitude cannot increase as fast as
the imaginary part when E — co, that is, in this asymp=
totic limit the scattering amplitude becomes purely imag_

nary.

Let us intrcduce kinematical varighles in the center of

mass system:

o
i

the square of the total energy in the c.m. system.

=
i

the momentum of the incoming particles in the c.m. systems
2 == 252 » %)+ (-2 )2] RS
as )4 )

t - the negative of the square of the momentum transfer. It

is related to the scattering angle 6 in the c.m. system .

" et oo

t =-2k2 (1-cos@) +—- . (2.2)

For equal mass particles Mi = M (2;1)'and-(2,2)ireduce tos
) ,‘ _

=Z (s- 41»:2) | (2.3)

t = = 2%(1~ cos 8) (2.4)



5.

The center of mass variables are related to the lab. engrgy‘:E

and momentum p ﬁ*JEZ-Mg of the incident particle by:

§ =¥ + M + 2EN,  (2.5)
k /5 o

p = — (2.6)
-

Let £(Sy t) (or £ (E, 6) be the (relativistic)  elagtic
scattering amplitude. Unitarity relates the forward scatter-
ing amplitude to the total cross section by

A

D
A
VS Xk
Hence it follows from conditions 1) and 1ii) that £(S, 0)/8
(or £(E, 0)}/E) is bounded.

0'=

S ol

Inm £(S, O) (2.7)

iv) The model predicts that the width of the elastie forward
peak (in the momentum transfer) approaches a constant
limit. Indeed let lto(S)l be the width of the elastic
forward peak. The total elastic cross section will  be

given by:
2 1t0(8)]

o

el. (2.8)

e
@ =—-|£(8,0)]
S 2
2 k™.
Since g, and £(S, 0)/S are bounded it follows that [t (S)| =
=0 (1), as s — . It should be noted that the total cross
section o (3) may have a 1imit and yet 0,3, although finite
may oscillaté; in this case the width of the forward peak would
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also bséillate. But if'ohl. — const.'then_lto(S)] f—iéonst°

as s =& .

Some interesting consequences can be drawn from these
properties. Let us first discuss the consequences of Pomerau-

chuk's conjecture 1i) according to which:

Oq1 X Oy, 3 Og1 O, (2.9)
where n is a given inelastic channel. If one considers re-

actions with two outgoing parfiéles oﬁly, the elastié scat~
tefing amplitude near the forward direction must be much
larger than the amplitudes for exchange reactions (helicity
exchange , charge exchange, strangeness exchange). Let us take
as an example ﬁﬁcleon-antinucleon scattering. We have the
following‘prbceéées in the collisions of antliprotons on a pro-
ton target: h

1) n+p — m+p

_gy§+§-4;§+h-

3)p+p — m+n
There are similar processes on avﬁeutfon target which .‘,are
related to these by "eharge symmetry".

For each of théée processes fhere-are five helleity ampli

tudes : ' i
I PRSP
ARLCE IR VRRCE AT BT
45 =3 3|3 D - K-35, 1)



4=t [ h-Ded B D
o= 2(3 % l 3 -3 (2.10)

A1) other amplitudes corresponding to transitions in different
helicity states may be reduced to the above ones by virtue of
parity conservation, time-reversal and G-invariance. In par-
ticular from G - invariance it follows that there can be no
transitions between singlet and triplet spin states. In nucle~
.on-nucleon scattering this selection rule 1s a consequencé of
isbspin invariance and fhe Paull principle. The first
amplitude @l in (2.10) corresponds to the transition in the
singlet staté; the remaining ones are the  amplitudes for

transitions in triplet states.

Now, according to our discussion, at high energies and
near the forward direction the helicity exchange amplitudes
must be small as compared with the truly elastic amplitnde.

This Iimplies: .
WI¥ Y 5 e 5 Ugkpy s (2.11)

The expression "near the forward directlion" is used here to .
mean that as the energy is increased, the scattering angle is
taken sufficiently small so as to keep the momen tum transfer
finite. One verifles, however, that in the forward direction

(6=0) the following identities hold: .

Ep3-¢4:|e=0 = 0, ‘p5:|e= JT0 (212

vhich simply result from conservation of the component of the
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total angular momentum in the'incident'direction; Hence only
the relation Y1 ¥, leads to a strong restriction. on the high
energy behaviour of the covariant amplitudes at fixed momen tum
transfer. These asymptotic relations imply that at  fixed
momentum transfér:

(#1/9,) =1 ; (¢5/9,) =1 3 (ws/wl 3 0. (2 13)

as E -~ oo, Let us now consider a new set of asymtotic spin
states, obtained by rotating the direction of quantizetion
through an angie about an axlis normal to the momentum of the

particle. If the axis is taken in the plane of scattering we

have: )
' f;_">“=cos% l>+isin I

l %>¢ =i Siﬁ% >+ cos 3 | l> - (2.14)
and

B lE-0a cosel(2 1) [4-D)) +o stna(- 10 |2 1)
-1 - |-18) s

11 = cosa(|3-1)+[-13)) s.in%é.(l%%)‘f |:'%;%->')




¢im

0]

‘P2a= cosfa ¢, + sin®« A
P - | (2.16?

Go = P50
' 2 2

Ypo = €08~ a @, + 8in"x ¢,

5o = P5 + 1 sin« cosw(tpz- cp4)

in an obvious notation. If Pomerauchukts rule 11) is applied
to the new set of amplitudes there results a new asymptotie
relation at high energles, namely Pr Pye Hence the four
amplitudes Py Poo ¢3, A have the same asymptotic  behaviour
at fixed momentum transfer. The out come of this analysls 1is

expressed in the following theorem:

Theorem 1. "The high energy behaviour of the scattering matrix
at fixed momentum transfer is spin independent 1if spin-fiip
amplitudes are smé.ll as compared with the elastic amplitudes”.
Then the total cross sections and differential - elastic
cross sections near the forward direction are also independent
of spin. The implica_tions of the previous result on the high’
. energy behaviour of the covariant amplitudes in nucleon~nucleon

and ,_nuq]_.e_on-_-antinucleon scattering is discussed in Appendix.

. One ‘can carry out a similar analysis to discuss the iso-
toplc=spin dependence of the scattering matrix in the high ener
gy limit; as: was originally done by Pomerauchuk. The total
isotopic-sﬁin of -the nucleon-antinucleon system, for example,

is either I=0 or I=1. Let ¢° and ¢ be the amplitudes for
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transitions in states with I=0 and I=1 respectively. Then,
assuming charge indepehdance, the amplitudes for - processes

1), 2) and 3), will be given by:
et=el G eP = ltedly 5 @321 @0-¢h

But process 3) involves charge exchange and according to Pome-
rauchuk's rule its amplitude must be small as comparedl with
those for the elastic processes 1) and 2). Therefore $°~ %l

and ¢1 g‘wz in the high energy limit, that.is, the scattering
matrix for nucleon-antinucleon scattering becomes independent
of isotopic spin as the energy tends to infinity. In pion-

nucleon scattering the same result would obtain. One can in

fact establish the following theorems’sz

ifheorem 2. "If, at high energies and fixed momentum transfer
charge exchange amplitudes are ﬁuch smaller than elastie ampli
1 with
particles of a multiplet IZ’ then the asymptotie behaviour of

tudes in the collision of particles of a multiplet I

the scattering matrix in the limit as B -—F:oo is independent

of_isotppic spin®.

Indeed, according to Pomerauchuk's assumption the transi-
tion matrix M in isospin space is dilagonal in  the represen-
tation where_Ilz and IZz are diagenalsi it is, therefore, a
fqnct;on.og I1z and Izz_only. However, because of - charge
independence, it can depend on I,z and IZZ through the combi-

2_ - V2 4 o 2 (1 s 2 o, +
natlon I%=(I;p+ I,,)° + (Ipy+ Iy)< + (I;2* L,3)° but camnot
depend on Ilz and IZZ alone. It follows that M is proportional
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to the unit matrix, hence independent of_thq_total isotopic spin
12, A corolary of this theorem is that the total cross sections |
and the diffgrentia; elastic cross sections near  the forward
diréction are indepgndent of 1sotopic spin in the high energy
1imit. This property has been experimentally verified in nucleon
nucleon scattering at an incident momeﬁtum > 3 Gev/c. It should
be remarked thatfPoﬁeééuchuk's original formulation of his rule
on the asymptoﬁic behaviour of scattering amplitudes does not
refer to the dependence on the spin state. His statements for
total cross sections refer to spin averages over t'he initial states.
They apply to the scattering of impola:ized beams. It is, how=~
ever, apparent from the above discussion. that the spin  inde-
pendence of the scattering matrix is obtained on the same grounds
as the isotopilec épin ipdependence. One should then reformulate
Pomerauchuk's rule so as to exhibit in a transparent way the copm

mon source of these results.

Let us call "one-particle state" any discrete elgenstate of
the operator PZ, where P is the total momentum four-vector oper=
ator. Evidently the corresponding elgenvalue is the square - of

the mass of the particle. Let us then assume that:

“All physically measurable asymptotic states are direct

products of one-particle states™.

We shall i1llustrate these concepts ﬁith an example:
The striking difference between a proton and a neutron 1is a

familiar and all too common experience. It is fairly easy to
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prepare a beam of protons with given momentumj one can” quite f
éasily accelerate, stop§ or deteet them. What is involved in
all'these'expériments is the 1ong'rangé eiectromagneﬁic iﬂtex
action. Neutrons have no charge, hence no Coulomb:uﬁaraction
and ‘the processes used to produce or detect neutrons afe of
a rather different kind. It is true, that one can produce s
beam which contains both neutrons and protons of given mo-
mentum; however any experiment set up to identify a partiéle
would allways. give, as a result, either a proton or a neutron
but never a mixed particle. This means that proton and neu=-
tron are truly different particles. However, one knows thatin
spite of these differences there are also strikihg:ﬁﬂdlaritiés
between proton and neutron. At short distances, when strOng
interactions overcome electromagnetic Interactions, they have
essentially the same properties. The mass difference is very
small and most certainly, also of electromagnetic origin. One
believes that all the differences. between proton and neutron
are -Indeed of electromagnetic nature, but for very small weak
interaction effects. If one imagines electromagnetic and weak -
interactions switched off in the physical worid, it would turn
cut that proton and neutron would essentlally be two different
(isotopic) states of the same particie, the nucleon. Possible
stétes of a nucleon would then be a proton; a neutron or any
superposition of these two states. In other words, ohe_ could
érbitrarily chboée the axis of quanfiéation for the isoéﬁrnof

the one nucleon physical states. The superposition prineiple
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applies to states of the same particle but 1t has no physical
meaning to superpose states of diffarent particles. That 13
tha_reasoﬁ why, in the physical.world where 'elactromagnetic

interactioné do exist, one canpnot find a mixed nucleon.

Let us now consider states of two particles. An asymptotic
two pamticle state may be constructed by giving the states of
both particles. But an arbitrﬁry ghperposition of states thus
constructed might not be a physically pdSsible state. Indeed,
one requires that the state of the projectile and that of the
target be uncorrelated, since asymptotically the particles are |
so far apart that no interaction 1s possible between them so
as to produde a correlation. This precludes such QOmbinations
as ‘-/.:!'-3_ ([Nﬁ) + |P§> +]AAY). Let us now return to the original
discussion. A particle is labeled by a set of indices which
specify the prOperties of its states under certain groups of
transformations: spin for the Lorentz group, isospin for rotations
in a three dimensional charge Space (when electromagnetic and
weak interactions are neglected), baryon number and hyper-
chérge for two kinds of gauge transformations, parity for space
inversion, G-parity for charge reflection. The set of possible
states of a particle form a multiplet whithin which, each
. State 1is iébeled by the qnantum numberg_qii of any completé
set of cbmmuting variables (components of spin, isospin etec.),
associated with these transformations. Let lai p1> . be the
state vector of a particle with quantum numbers oty and momentum

Py and consider the scattering, in the center of mass system,
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of two particles in the 1n1tial state Ial pl, %, P, s A transi

tion into the final state Iml pl, 2 p2~ 1is truly elastic if

lal P1s % Pp) = 3(13, FRRIE S YO - (2.17)
o . , |
where_R(p, P') is the rotation mgtrix associated with the trang

formation P — Pi. We shall now state the following rule which

is a generali;ation_of Pomerauchuk's conjecture 11):

Generalized Pomerauchuk's Conjecture* "In the high energy 1im1t

and for fixed momentum transfer, any amplitude°_
)
< ‘91 pl’ FZ pzlmld'l Py “2 p2>
is (vanishingly) small as compared with the truly elastiec ampli

tude:
' ((!' ! d.' l|m| oL >
1 Py % Polmi%y Ppr &5 B,

if _Iﬁ]'_ pi, pé pé) 1s orthogonal to .Iot:'l_ p:;_, oté pé)"o
_Now it follows from this assumption thats

Theorem 3. MIn the high energy limit. and for finite momentum
transfer the scattering matrix is proportional to the unit ma=-
trix+in the space.of the variables which label the states".

Indeed the scattering matrix is diagonal, whatever the
choice of & set of basic orthonormal states in the space of
these varlables. Therefore 1t is prOportional to the unit

matrix in this space.

Theorems 1l and 2 are then immediate consequeﬁces of Theorem 3%,
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For instance, the scattering matrix cannot depend on the

total isqtople spin IZ, because I = 'f1+'i;-and the scattering
matrix, according to the theorem, does not depend on the com~
ponents of I, and L.

One can speculate on whether particie and anti-particle
should always be regarded as different states'of_fhé came object.
Actually they have the same mass and there exists a unitary
transformation ®(charge conjugation) which transforms one into
the other. It is therefore plausible to interpret them as
states. If so, a further result will obtain:

Theorem 4. "In the high energy limit the-scatfering amplitudes
near the forward direction, are invariant under the substitution
of one particle by its antiparticle. The total c¢ross sectlons
for particle and antiparticle collisions on the same target will

have the same limit".

Let us make, as a final remark, an Important qualification.
Ih:the framework of the optical model, the results | thus for
obtained should be valld for all finite valﬁeé of the momentum
transfer. However, in a more réalistic appfoach to the 5rob1em
some Iinferences of the optical model should perhaps be dis-
regarded. The theory has to be confronted with experimental
evidence, which 1s the ultimate test to sanctlon its yalidity.
At the moment, there ls quite definite indication of departurés
from some qualitative predictions éf the mbdel° One such evi-

dence is the shrinking of the diffractlon peak in proton-proton
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scattering, which by now seems to be quite nellwesiaplished7’8.
If,this.is indeed true, one has to reject prediction IV) of. ths
model and thetfirst_nart of 11) since the total elastic  cross
section would then be small as compared with the total inelastic
cross section. However, the second part of 11) may still hold
'true, since the number of inelastic channels increases fast
with the energy (at least linearly), whereas the total elastic__
cross section decreases slowly, perhaps like lff.nsn The con=
ditlions on the scattering amplitudes would then be valid .only
for momentum transfers below a certain value depending on the
process considered, and only for this range of values of the
mOmentum transfer, would the theorems be valid The same applies
to what was said’ about differential elastlc cross sections. On
the other hand, since the total cToss sections are related by
unitarity to the imaginary part of the forward elastic ampli-

tudes, the statements concerning them renain'valid;

An essentially'different approach to high-energy scattering
18 based upon-the:pOSsible existence of a higher symmetry in
| strong'interactions.' Ir the'synnetry is broken in a convenient
way, as for instance by mass’ splitting terms, then it would only
manifest itself at sufficiently high energies, when the effects
of mass differences become negligible. Uhder these circums—
tances, the isotopic spin indepenaence of the scattering matrix
at ' high energies can be deriveéd from the assumption that all
elementary particles belong to irreducible representations of

a seminsimple oompact Lie groupo This group woulﬂ be at least
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of rank two in order to include the comuting observables Tz and
S among its generétors. Rofations'in”isospin space would form
é subgroup of this larger group. The proof'bf {sotopic ‘épin
independencé at high energles 1s based on the fact  that _fhe
scattering matrix will depend only on the "Casimir operators" of
the group. A Casimir operator 1is an 6perator which comntesndth
all the generators of the group. For example Iz‘is a Casimir
operator for the isotopic spin subgroup but pot for the whole
group. Hence the theorem follows. The interest of this approach
stems from the faet that, 1f such an underlying symmetry sctually
exists, one would expect its consequences to show up in a range
of energles lower than that required for statistical consider-
ations, as invoked in Pomerauchuk's model, to apply. If so, the
scéttering matrix wounld become isotoplie-spln-independent at enep
gies much lower than those for which spin independehce (and
particle-antiparticle invariance) would also hold. The experif
mental verification of this prediction would be good evidencé

for the existence of a higher symmetry in strong interactions.

%, POMERAUCHUK'S MODEL ANRD DISPERSION RELATIONS

We turn now to an investigation of items 1) and 111) of -
Pomerauchuk's model,'in connection with fofward scattering dis- .

persion relationsB.

Let f(E, 0) be the forward:scattefing amplitude for elastic
collision of a particle of momentum p =4J62-m2 with a target at
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rest, D(E) and A(E) the dispersive and absorptive parts of £(E,0):
£(E, 0) = D(E) + 1A(B) . (3.1)

In the physical region A(E) is related to the total cross section

by

- ;p;', B
A(E) = Im £(E,0) = — o(E) (3.2)
Acceording to i) -and- ¥11) we have the following asymptotic con-

ditions as E =~ goo:

- ooo)
i) A(E)/E — const. =

4 __
ii) D(E)/A(E) — 0
When this information is introduced in the dispersion relations
i1t turns out that the total cross sections for scattering of a

particle and its antipartiecle by.a given target approach . the

same limit.

To fix ldeas let us consider the scattering of protons and
antiprotons by protons ang let £,(E) and £ _(E) be, respectively,
the elastic forward amplitudes for the ‘processes:

I, p+p = p+p

II, p+p —> p+7]
We shall take, for simplicity, protons with positive helicity
and antipi-etbhs with 'n'egat:ive helicity. Tn this case there will
be no contribution from the one pion exchange termn Under the
assumption that £, (E)/E 1s bounded at large E, one can i write
dispersisn- relatigﬁ;s- for D (E) with two subtractiensg ‘'which we
make at E=0, -We'.have'- the;s
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. o ®
.- ) 0 aBr A(E1). E J p'dB! o'_,_(E’)+cr_(E')
+EDt +-— -+
D, (B D(° ED +( - Jﬁﬁ B4 E 42 ] Ei2 |[E14E E14E
| ~M+4p Zram o=

”(303)-

These integrals are principal values.

The first integral extends down to an "unphysical region"
cof'respondin’g to annihilﬁtion channels of the. antiproton-proton
palr, below the physical threshoid. We take the even and odd
combinations G+(E)= ¥ (D, (E) +D_(E)):

- M © ' ' o
s (215 Do), E? (g€ A_(E) EP [ piaB =) (-
_ Y= D(0)s —— | : 1)+ 1
G+ E D( - I E! IZ_EZ 4.”2 I Bt E"" . (E ](E‘Z-Eg)
| -M+4P /M M (3.4)
A_(Er) |
G(E) =E 4D (0) -""J‘ B'2. B2 +
~M+4 /ZH
5 @
E plaEl
+ = '[o:,_(E')-.-o'_(E'):I (3.5)
ar? ) 5'2 g'2_ g2

~The first result that energles, when the asymptotic conditions
~implied. by Pomerauchuk's model are put in these relations, may

he expressed ih the following way:

Theorem 1. If the total cross sectlons o, (E) have a 1limit
o, (o0 ) and ¢_(E)/E is bounded, then they have the same 1imit

o:,_(oo) = g (oo )",

Indeed the first two terms of (3.5), inside the brakets,
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approach a constant as E — o . The integration in the last
term may“be1split into two partsl.from*M to B and from B, to
‘% 5 whepe E, 15" s0, chosen that, for E}Eo, |c'+(E)-c (E) - AI(C
.where A= 0, () -~ 0_(®). The first part again contributesa
constant in the limit E —w0b 3. in-the second part one:replaces
fgf.(ﬁ;',°;?;bY,its:1%MJtié;zwhgzeypqn this, term behaves. asymp~
‘totieally 1ike -9;2 Ln B, Sipee G_(E)/E 15 boynded 1t follows
that one_must_hgve.41=_0, A certain amougt;pf care is required
in dealing with a princ;pal;value int§gnal;speciallg;1f .one
recalls that the point at %n}inity 1s an accumulation of branch
points of £ (E), wa?ﬁér, the{progi;ge'have:oﬁtlined'above can

' be-made rigorous in the folloifiﬁg wa-y

Consider the last integral inside. bfa'kets in (3.5)

Q0 - .2 . -
E /1 _ h(E )
S(E) = - J dgs o - (3.6)
T Et=E E'-l- B Ef '
M : :
where: ‘ _
h(E) -.;E- (6,(E) - 0_(8)Var T (3.9)

.8ince h(E) is bounded and contintous, h(-_ and gﬁ_}_ aré Hilbert

transforms of class L;(:—.oq, €0 ) ‘80 *that. one can: take the-inverse
9.

relation E L
h(E) 1{ @B g(E1)
—_— iR . _' i SHB'B)
E\ w . E'. _E v E'-
-OO

Now ‘let us assume that for E)M, g(E) satisfies a Lipschitz con-
dition *:

* A.ctually it would be sufficient to requira a Lipachitz condition for BXE >H
and with |n{<h_.
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Jg(B+h) -g®)IKK (B @30)  © (3.9)
Then, in L E B oo
h(E) 1 ag' g(E" -
J’_ - dE' = & = J'dE“J s . (3,10)
E' L . J B'-E" E

one can interchange the order of integrations, so that:

E + 00 :
h(B') 1 dB' B'-
) = dB' == | g(B') — in . (3.11)
| BY ™ : E' B'-M
M - 0

Since g(E) 1s an even function of E, (3 11) may be cast into

‘the form'
E o o}
h(B*') ! ag' E'+E E'+M
— dE =~ g(E ) --—ln
-} E! . T B! ' E'=E E'=-M
M 0
le's)
1 ag’ B'-%
= ;J’ g(E') = in By + const. (2.12)
- + _
0

‘But assuming that G_(E)/E 1s bounded, then g(E) must be bounded
and since L Ln

E +E

tive, 1t follows that

y for positive B and El, is always nega

dae

- o o0 .
' E'+E
”g(E)_h‘ E'+E élglm-ax.'J" = lEoe |
- 0
@
. : dx x+1 : :
= Ig]max J; In I s I = const. {(3.13)
o
E nEry

Hence dE' is bounded. We can express this result in the

¥ B
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+ fallowing way:

_ Tneo:;em a- "If the dispersive amplitude G _(E)/E 1is bounded
--and satisfies a Lipschitz condition (3. 9) for E) M, then the
integral

t.

' . , .. . L. ‘.
2 (6 (B") - 0 (B")) — (3.14)
B! , E'

1s bounded and the" iﬁfegrimd sattsfies a Lipschitz econdition
with the same o™,

The last statement fallows from a theorem on Eilbert trang
forms, satisfying a Lipschitz condition (3.9).1° Condition (3.14)
was obtalned by Amati, Fierz and Glaser J_'I.... It 1s a pecessary
but, in general, not a sufricient condition for the boundedness

of G_(E)/E. As a consequence of this theorem we' have the

following:

"Corolary: "If, as in Porﬁe'réucl;luk!s model, the cross sections
have a limit when E —*oc0, then the boundedness of (3.14) re-
- quires that o (E) and o_(E) have the same limit." L

This is precilally the statemézit of theorem 1.

- In order to, establish su;t'fiqient conditions for the bounded
ness of G (E)/E, et us  write: -

h(E') 2E [ gm* ~ h(E':
g(E)-——IdE( + ) -—JdE ..( :
E-E E+E/ E' = ). B'+E' RB'

M

_ EJ’ dE h(E') 2E J ‘@B h(E')
-

E'2 _g2 E' T

= gl(E.)'d .g'z(E)

.EI +E : E.' . .
M ' (3.15)



-Let us assume that the intagrai' | _
| o : , |
h(E) 2" h(E) | \.
— dE = 2 dE (3.16)
-\, B . . E. : L
T | M
exists. Hence the function h‘é-E-)-, where h(E) is defined by (3.7)

for EZ >E§ and h(E) =0 ~ for EX <:E'§, belongs to L2 (=00, o) in
the variable EZ. Then_a_ccqrding t6 a fundamental ~ theorem on
Hilbert transforms 7, g (B)/E also belongs to L*'cw, o), that

As:

+00 2 +00
_ gl(E) .2 . 2 dB
— | 4B =4 | g(E)° — - (3.17)
B _ E '
“00 0

exists, which implies that gl(E)z ~— 0 "in mean", for E ——;
but, it does not necessarily follow that gl(E) is bounded' . Hoy

* Since h(E) is a continuous function of E, [} (B) is continuorua almost
everywhere and the points for which |81<E)> §, for E)E , form a set of

' intervals. The length of eny such an interval tende to- zero when E = .
A8 an example consider the functlon:

h(E) =0, (RCK); h(E) =(’3 )p [(E;n) ( ne 1 -; )]-Vn(ml) , (n< 5 ¢n +1j

which is continuous and poaitivo in. the inteml (M, o) and tende to
-zere waen.B = o, Now:-

e h( )
E

g(E) = 5J 4B ——
B'-E

M

| P
behaves, for large B, like -v@) almosy everywhere, but for E =n M,

g(E)~ al™P, For %(p(l, g(B) is not bounded but aince rh(k')z dgB!
exists, then [ g(E')2 dB' also exists, that is g(E) =0 ¥ #in mean,
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ever if one assumes, as béfore;-thdt WCE) satisfiss & Tipschitz
condition, then gl(E)jalso satisfies a: Lipschitz condition 10
‘and in this case the convqrgencézdf‘thQ{iptégral (3.17) plainly
implies that z,(E) —0,

On the other hand, for g,(E) we write:

i nay 2T | T meEn
L - h(B- ) : 1 1 2 ¢ b
-& g8’ == ' "V [= - - = |ag! —
‘ gagE_) 7 JdE_ = --"FJ 48 . h(E,) (E, E'#E)‘ " Id el
M | B M .
. \3.18)
Since h(E)'is bounded. then:
s E !
T, n(E")
g_z(E) -= J.-dE' — = Q(l) (3¢19)
o T B! - o
M

| Wheneli%;(o;(E)-c;(E)) exists, one. can actually shou,.uithout
difficulty ‘tHat (3.19) 15 O(I). Then the boundedness
¢f§(3,14)_is a necessarx,ﬁnd suﬁfiéient_cpndition ;ﬁof,_.gz(E)
to be bounded.
. We have thﬁs"proved;the follnwiﬁgitheorem:,

Theorem 2. "If the integral (3.14) is bounded and (3.16) exists,
h(Ejnbeing given by (3.7) and satisf1§§;a Lipschitz, condition
of the form (3.9) theﬁib;(ﬁJngis'popndedz“

We remark that a sufficient condition for the existence of
(3.16) 1is tht [h(E) .InE| be-bounded’, hat Lss
(o527~ o () = o 18y T},
So far we have dealt with the odd combination of amplitudes G (R).
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'Let us turn to the even c.omblination-xG;‘F(E)...a-_-m_;_inspe_ction - of
(%3.4) shows that the asymptotlc. behaviour of G (E)E is de-
“termined by the behaviour of the last integral. Let us assume
that (o, (B) + o_(E)) approach a limit 20. One can write:

e o]
p'

o dE
l

(o,(E") +a-(B") - 20‘)+0(E"1) (3.20)

where the integral is of the same form as in gl(E). Therefore by
‘the same arguments as used before 9’10, if (c‘+(E)+0‘_(E)) ap~-

proaches the 1limit 20 in such a way that:

oo II

p! 2 & dE

J (0'+(E ) + o (&' )-Zcr) (3.21)
B E'

M

exlsts, and the integrand satisfies a Lipschitz condition then
G, (E)/E =0 as E —=o00. Hence:

Theorem 3. "If (o, (E}+ o (BE)) satisfles a Lipschitz condition
~of the form (3.9), and approaches a limit 20 so that the inte=-
gral (3.21) exists, then G, (E)/E —0 when E =00 ."

& : et

- Opne should emphazise. the fact the one cannot prove a simi
lar result for the difference of the dispersive amplitudes.
Actually 1t would be in no way inconsistent with dispersion re
-lations to. assume that G_(E)/E remained finite. On the  other
hand if one believes that at high eﬁergiés the scattering amply
tude becomes purely absorptive and since (o (E)-o_(E) —0,

then one can write down the dispersion relation for G_(E)/E,
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without subtractions. This unsubtracted form seems to fit well
with experimental results. . One can understand why it is the sum
of the dispersive amplitudes which can be shown to vanish at infi
nité energ&, whereas 1t is the difference of the absorptive parts
which display this behaviour. The reason stems from the fact
that dispersion relations are satisfied by the causal rathqr
than by the Feynman amplitudes. .Now, for the cgﬁsal amplitudes
crossing symmetry gives: _ | o

£%(E) = £S(-E)" (3.22)
whereas for the Feynman amplitudes one has:

£f_(B) = £ (-E). (3.23)

-Recalling that in the physical region for a given process the

causal and Feynman amplitudes coincide one hasg:

DS(-E) # DS(-E) = + (D, (E) + D_(E))

AJ(-B) * A%(-E) = 7 (A, (E) + A_(B)), (3.24)

The results so far obtained for forward amplitudes may be Iim-
mediately generalized to the case of fixed momentum transfer.
Pispersion relations for fixed, limited values of the momentum
transfer:(ltl('tl)-have been rigorously proved for certain
processes, as for.instance, plon-nucleon. scattering. The as-
sumption of Mandeistam's representation for a given elementary
process, enables one to derive dispersion relations for fixed
values of the momentum transfer on the whole complex plane,

with branch cuts on the real axis. Introducing the varlable:
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t
=B + — (3.25)

4M
one can write down dispersion relations for processes I and II

with fixed, real momentum transfer, in the form:
' M+t/4M '

2P v /A (E', t) A('t)
d H - H
+§—_ . ; +§ + ,5 (3.26)
P 512 5125 ) 51: 5
M+t/aM - -

where we Have made two subtractions: (at £= 0) and the integrals
are -again prineipal values.* Contrariwide to the case of
forward amialitud'es-, the last integral here, has also an unplysi
cal reg"’lori- for-'values of &' below the physical threshold ‘30 =
=M - fﬁ- .~ Moreover, if |t| is sufficlently large the dig-
persive and absorptlive amplitudes are no longer real for all
values of £. But, for gk (or §'> &, under the | integral),
they are, of course, real and physical. Therefore, in.the high

¥k dispersion relation of this form holds, for instance, for a pair of
.. amplitudes £ (s, u, t) and £_(u, 8, t), which, in terms of the covariant
anplitudes defined in (4.4), are given by:

-lh!z(rur +F +F) 8 3]

] -..-....-—_—'E'- — —_— =
f_=§: Eaz(l?l* 2Fz-2FB- 1?5)”’ (-J'1+ z_rso 2]?&* 1?5)]

" For'forward scattering they coincide with (¢, -%;) and (¢ L 53).
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energy reglon, once_the condition.lglygoxis gatisfied, one can
apply the same arguments used for forward scattering, to show

that:

Theorem 4. "If, for fixed t, the physical amplitudes' are bounded
and the absorptive ampliltudes tend to a limit wvhen E —®, then

this 1imit is the same for the scattering, on a given target , of

particle and anti-particles with the saﬁé momentum transfer (and
spins reversed)".fAll these results were already obtained at the
end of last sectlon (Sec. 2, Th; 4); from the cénsidefation of
the smallness of inelastic channels as compared with the truly
elastlc ones. It 1s remarkable that one can also derive them
from quite a different standpoint, based on the 1ndependent as
sumption of boundedness of the scattering amplitude and the

validity of ﬁispersipn relations. It should be_pointed out, that
'the_assumptions involved here, from the physical point of vlew

weaker than those regquired in the former treatment.

Let us, finally, take into account the isotopiec spin in-
variance of the scattering matrix. It will be convenlient to
reforpulate the preceding results in terms of cross sections and .
amplitudes for transitions .in states of given total = 1sotople

spin. Let us consider the processes:

Ia) A + Aé — Ay + A,

CIa) &)+ A, > A+ K,

where Al’ AZ’ AB, A4 belong to_different_multiplets with isotoplc
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spins Il’ IZ’ I3’ 14, respectively. Let fI and EI denote the

amplitudes for transition Ia) and ITa) in states of total
i1sotoplc spin I. The crossing relations for these amplitudes,
with fi;ed momentum transfe: between the pair (Al, A3) are
derived.in Appendix B. The result is:*

I .
£ u ponapg(Sapst) = Z: Or7e t'F:L__,‘_4P3__’l (Hs8,t) (3.28)
where: - :
0pp, = (21t +2)( 1)2(11+12) LI (3.29)
Iy I, '

and - ;1 iZIi is the six-} symbolla. I IZ= ;4 as In the case
of elagtig scattering, OII' satisfies the orthogonality con-
dition:

= §

2 Oruy Op1, = S1up, (3.30)

I
Using ﬁhe unitarity relation between the total cross section
and the imaginary part of the forward elastic amplitude, equa-
tion (3.28) enables us to formulate theorem 1 in the fol-

 lowing way5:

Theo:eﬁ 5. "The total eross sections for reactions (Al, A, )
and (Al, Iy ), where Ay and A2 belong, respectively, to multi-
plets with isotopic spin Il and IZ’ are, in the asymptotic
1imit B —+ 0, related by: |

o1 A (11,1 )=T (21'+1) IRCERES L 1, 1 of 5 (Ag5-3,)
172 I : Il I It 172 .
(3.31)

where the helicities refer to the center of mass system.”

* The interchangs S s——u, leads to 5"'*-5.
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An analogous formulation may be given for theorem 4.

4. GENERAL ASYMPTOTIC PROPERTIES OF THE SCATTERING AMPLITUDES

The method of dispersion relations has proved very useful
and extensively used,'for the analysiS'of elementary processes,
glving definite information on the nature and strength of strong
interactions. Its subsequent and fundamental development into
the theory of the Mandelstam representation opened the pog
sibility of a dynamical dsscription of thé'scattering in terms
of the analytical properties of the scattering amplitudes and
a few coupling parameters. However, it was sbon realized, from
the begining, that a major difficulty which always arise  in
connection with the application of this method is the question

. of 'subtractions required for convergence ofl_ the dispersion
integrals. This question is directly related to the asymptotic
behaviour of the amplitudes. The problem was first tackled in
relativistic field theory by Froissart %3, Assuming Mandels-
tam'!s representation, he derived bounds imposed by unitarity
on the asymptotic behavioup of forward and non forward aﬁpli-
tudes. Later the problem was more generally discussed by Mar-

tin 14 who considered the limitations imposed on the = scat~
tering amplitudes by the requirement of unitarity alone.-‘

~In this section we shall essentlally follow Martin's alge
brale approach in the investigation of some restrictions imposed

by unitarity on the elastic scattering amplitude and- its
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asymptotic behaviour. .-

For simplicity we 'ta.ke the scattering of +two scalar
particles. let |°°1> and |rxf> be the initial and final state
of an elastic collision with total energy vS and momentum
transfer =-t. The elastic scattering amplitude 1is:

(25,29, 252002}

f£s,t) = ~ (a kA (4.1)
| -

where Py pz-are the initial momenta and pl, p2 the final
momenta of particles 1 and 2 respectively.

The unita:iﬁy conditions gives:

1 .
Im £(s,t) = I‘:_(Zpgo_ 2p5o 2095 Zpég)i

Z CRENEVEECHIEARE oy 8(pp=py). (4,2)

where the sum is extended to all open channels in the inter-

medlate states. Taking absolute value one has:
. 2 .2 1243
| Im £(s ,t)_|\< I-é: (Zplo 2P5¢ Zplo 2p50 )
Tl <@ 1T In) (nlTie) [(2r)® &(p - p,) " (4.3)
o If_ _ 'L n 1

and applying Schwarte Iinequality to the terms in the sum one
obtains:

1 .
|2 £(s,0)1 ¢ — (2afy 2B 2035 2p;2)? L% (el Indl? +

+ [<nlTloyd%) x (2m)* 8(p, - )
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1 . _
= — (2o 259 Zplo 2320 Zl<n|'1‘|°f-1)l%(‘a_lr_)f&(_pn?pi)f In £(s,0)

. (2.4)
Therefore our - first result is:
Theorem ;. - For all physical Values of s and t one. ha5°
]Im £(syt) {Im £(5,0) = (4.8)

Next, in the forward direction t=0, in the center of mass system,
(4.2) gives:

. .
[ Im £( s_,0)| = —6_;(2.?102_1’20)2'(%'Tl“1>la(-2"')46(_pn'pi)+ inelastic

1 k 5[ P10P20\ 2 5
é;';;:J'Ka lTlai)l ( - ) | —“mjlf(s,t)l a9

0

1 k 5 ¥ dt
>— — [{Im £(s,t))94Q = == |(Im f(s,t)) —-—(4 6)
ar /S 2v/3 2 12
=4k

In the last step we have used the relaf:ion (2.4) between the scat

tering angle and the momentum transfer.

Iet us now write: x(s4yt)

IIE f(S,t)l —&21{ ﬂ/-(i (407)

%0

where a is the s-wave scattering lenght and s )2

. From

3o = (my +m,
‘theorem 4.1 it follows thatyy for all ph&sical values of s__and ts

a(8,yt) als,0) (4.8)

Taking (4.7) into (4.6) one obtains:

(S‘ )G-(S ,0) > azkz J 8 >2d(s,t), dt
5o 4 _4k2(s° | | 2

2k
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(3,0) 2[alsyt) - (s30)] -
1) —( ) ( ) it (4.9)
2 o _ '

Let us assume that for sufficiently large s, say s>s', m(st)
converges uniformly, with respect to s, to «(s,0), as t = 0",
Then given an € one can find a positive to, independent of s,

such that for - 4 to <t <0, one has:
cw(s50) - als,t) <= (4.10)
AL bl : a4 _

Then (4,9) gives 0 2[(syt)~ als,0))
) | dt

aZ ; s \x(s,0) s\~
4 \ s, b s,

0 <€ : €
aa s (5’0) S z > .. g q(S,O)-E
D~ |— ac t. | = (4.11)
o 4 s so 0 \S¢
-4t 0
. Hence
a(s,0)-= <= tn (a2 t,¥2n (s/s,) (4.12)
2

Now one can find an s" > st such that for s) s" the rfght hand
side of (4.12) becomes less than-z- « Then for s >s":

m(S,O)<e (4-13)
This result may be expressed in the following way:

.Theorem 4.2.~ "If for sufficlently large s,

injIm £(s ,t)l/h:(s’./so')

converges uniformly to fn Im £(s,0)/fn (s/s_ ) as t =07, then



Im £(s,t) _ : .
e 13'bOundedgby_anyzpositive power 'of s, ‘however small."
As'a; immediate consequence of;this theorem we have:

Corolary. “If Im f(s t) has foiilarQS's, Reggé's asymptotie
behaviour p(t) (—3-)“ “where i(t) and «(t) are continuous functions

of t, then d.(O).{I." :

This important result follows from unitarity alone without
any assumption about the analytle properties of Im f(s ,t). It
was obtained by Martin, ué;ﬁé ‘the partial wave espansion of the
scattering amplitude. It_ has also been derived by - PFroissart,
but starting 'frdip the Méhde'l_sta_'m repfese'ntlat.ion,\ therefore, under

the restrictive éssumption of_analj.city°

Let us now consider the partial wave expansion:

£(s,8) =-;—}: (21+1) £ (s) Py (cos6) (4.14)
1 |
and Im f£(s,t) = _.S. X (2!."-1) al’(s) PL(cose) - {4.15)

where al(s) = Im £y (s) Unitarity for- partial waves implies
that: ' ' o

1512 K © (4.16)

. 8ince IP (cos®)| {1, theorem 1 can readily be obtained from
(4.15). Let us investigate the behayiour of Im 7(syt) near t=0.

Taking logarithmic derivative of (4 15) one obtain-

1 75 L+1) 1
) (21+1) al(s)

d

— in In £(s,t) =

at =0 Imf(s,O) k { 2 akz
(4.17)

where:
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Vs
In £(s,0) =— 7 (29+1) al(s)- ' (4.18)
k
The expression(4.17) is positive definite .as expected from (4.15).
Since the factor &L%;ll is an increasing function of L, {t is

clear that, for a given s, a lower bound of (4.17), with a
subjebt to the condition (4.16), is obtalned when:

ap =1 <L
ag, < 1 | - =1L (4.19)
ap =0 PRI
where L and a; are determined by (4.18), which glves:
Al o= 4 £
In £(s,0) = [ T= (24413 + (2142) ay =4 (124 (21+1)ap) = %2 12
L=0
(4.20)
where:
(2L+1) ap = 12- 1% = (L- LY(T+ L). (4.21)

The sum in (4.17) gives:

% fapl)al £(£2+1) =§ [(u ')3 i- (24- 1):|+ L(I.-!- %)(L+i)aL=

<1212
= i- LIS 1)+ L(L+-32-)_(;+ 1ay,
LR ataEs DI (4.22)

The last step can easdly be proved with the help of (4.21).
Taking (4.20) and (4.22) inte.(4.17) and using :the optical

relation:

| o(s)
k. xmr(s,O) -kZ 2

(4.23)
/?' 4n' ?
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where o(g) 1s the. total cross iedtion,;;qr;e obtains:

ps

S f(s,t)| gl == (4. 22)
which gives a El.ower bound. of (see (4.7)_)..-
- Qn Im f(S’t)l = !n (f‘)d'(s,")) (4-25)
dt , t=0 "0
provided that o> ﬂz':. At high energles this expression 1is the
Kk .

inverse of the width of the diffraction peak. Therefore (4.23%)
gives a lower bound for the inverse of the width of the dif;_
fraction peak at a given energy .1.n terms of the total cross

section.

'Let us now derive an upper bound for

| Im .'i.'(s,t)l
R(s ’t) = —
Im £(s,0)
From ('4915)‘ one obt;in_ss |
[Im £(s,t)|¢ — ¥ (21+1) ai(s)lPl (cos8)| (4.26)

k £ .
But the Legendre pélynomials are bounded by‘ |

. ’ 2 . h
lPl(cose)IS\/ — (4.27)
o V(e Z)eene

Since this bound is a decreasing funetion of L, then,; by
an argument enterily similar to that used before y an-’ upper:
bound ‘of R(s,t) is obtained when one "z"-eplacé's (4.27) into (4.25)
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and takes the ag's given by (4.19). - Transforming the sum into
an integral one obtains:

e casote 2t 4 (53)77 4 (1-2)

1\
v2(1+3) oy a0

‘At high energies L is large and (4.28) gives:

4 b
R(s,t){ =4 [————m- (4.29)
- 5 \{rLgen ©

Using (4.20) and (4.23) one obtains:

5+

-t

R(s,t)(g\/—< ksen6> N (4.30)
4 1™

Since at high energies and flxed momentum transfer € is small
and |t|=x% sens. Taking |Im £(s,t)| as given by (4.7) one

s \a{s,t) - a(s,0)
2 4
) REN-AF- (2.3

and if the conditions of theorem 2 are fulfilled then:
G (3E) ()T (a.32)
lt] T/ \%e |

that is, the total cross section cannot inereasse as fast as any

has:

stitive power of s, which 1s again the result expressed in
theorem 2. If the total cross section o (s) remain finite as
the energy increases, (4.30) will not be a useful bound for
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small values of t. One hass in this case, to take. .for ‘the
Legendre polynomials, at small angles, a better found: . -than
(4.27)., Hartin has discovered that the function.

By (cos 6) = [1+ €2+41) stn {[ (4.33)

is an upper bound for the Legendre polynomial 1) (cos ©), whieh,
1ike (4.27), 1s also a decreasing function of L. It has the
following properties: -
1) :Byleos®) > |Py(cos ©) |
1) B =R()=1
111) By(1) = B (1) = & 1(2+1)
iv) Bh(cosel » By (cose) for (5> 14
for lsin 6 —w.

v) kz(oose3~
- P. sin

Hence B (cos 8) is a tight bound of P (cos 8) for small 8 and ,

for large !, has, apart from a constant fdetor, the same asymp-

totic behaviour as (4.27).

Since By(cos @) is a decréasing fuhctio_n of 1, then  upon
substitution of [Py| by By in (4.26). |Im £(s,t)| would be
maximum 1f the a,'s are given by (403_.9),. Replacing then the
sum by an integral one obtains: o |

|Im £(s,8)|< ‘f{ 3 ([1”.(1.-1)3111‘2 ]3/.4“- 1)-/sin29+

*3 [y 1] } L teae

Ll

wherefrom one can show, after some aigebraic manipulation, that:
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n(s,t)s§ ([1+i(i-1)smae]3/4- ])/-f-(i-l)sinze  (4.35)

which is Martints result. For high energies and fixed momentum
transfer (€ small) one has from (4.20) and (4.23):

o o(s) . ol(s)
T(I~1) sin6 =~ k% sin® @ ey P
4 : 4T
Therefore (4.35) hecomes:
o(s)|t] 1374 o(s)|t]
R(s,t)S,% 1+ -1}/ —— (4.36)
4

4

In contrast with (4.30), the bounds (4.35) or (4.36) approach

one, when © or t tends to zero.

Thus far we have made no use of the analytleal properties
of the scattering amplitude: Let us proceed further by
investigating the limitations on the high energy behaviour of
the scattering amplitude which result from anaiiticity in mo-
mentum transfer. We shall assume that £(s,t) is analytic inside
an ellipse in the cos® - plane, with -foéci at cos® = +1 and
seml-major axis a=z1l+ c/2k2<n+l). The Legendre polynomial ex-
- pansion 1s convergent for z=cos® inside the ellipse and may
be used to define the function f(s,t) in this domain. Then for
t real and in the interval 0<t (¢t = t:/ka".1 one can write:

Im £(s,t) = {E—E L (22+41) Im fl(s)_ Pl(l-!-“z'i—z-) (4.37)
let us assume, as usual, that Im f(s,t) is bounded by a poly-
nomial N(s). Since Pf,( z) is positive definite for z real and
larger than one, it immediatly follows from (4.37) that:
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Inm r1<32-_ , — (4,38)
(214-1) P (1+1: /21: )

But for x >1 we have 1

B (x)>‘/ (x+ x -1)"
r(24+1)

Hence Im fhis bounded by
N(s)
4 L+1/

where '
U= x, +»/x§ -1 (4.40)

Im £,€ U"1 (4.39)

X, = 1+ 'tO/ZkZ = 1+ o/22M¥) (4.41)

- From (4,16) one obtains: ‘
A 1’4 =172
EAN
2 \U+Vz
Relations (4.39) and (4.41) exhibit the exponential decrease of

(4.42)

the partial wave amplitudes. They are effective for R » L where
L is determined by the condition:

N(s) r L T
_ I Ut =1 | (4.43)
. | ‘ 202D
For simplicity we shall take for L: .
N(s) UV =1

(4.44)
or

= in N(s)/in U o (4ua8)
One can use these results to deduce bounds for the amplitude in
the physical region. We have:
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E{ENIKY é Z (21+1) fL (s3] }7 (cos)]

{L=1 3} o + 1/4 .
& ' l-. 1 - N& i -1/2
A sin® {E -2(“. 2) | gz_:( +, ) \ !,"'JZ' 7
| (4.46)

where we have used the bound (4 27) for P!(cos 0). Por large s,
u~1+/%/k, and (4.45) gives: |

L~in N/L (1./—/101”':”T
~ + ~
o W/tn (1445 s
Hence the two stimsj in (4.46) will asymptotically give:
.l ~% 13/2.4
o0 + /4 NL’Z ) '
= (1) o =f/2< - Z(ul) Ve .
= £+ d 12-) =
/8
1/4( LAYV L2, T e ppva(EY g 1/4
| 2/ J‘Ei B-172 2 \ tq

| | n-(1+ 0(gnt n))
Therefore |f(s,t}| 'is asymptotically bounded by:
3/4

4 /s - 3/
[ £(s,t)|< - — In”  W(s) =
’ |_m3<t) i 87 °
C. [/.\34 : T
= — /2 g+ o(1a/2 )) (4.48)
m(to> (0772 0+ o o ®
where eq is a con.stant.w On-é.ca.zn ;Jbta:_ln_a_ gimilar .bound for

If(s ,o)l sy from:
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Ve " |
|£(s,0){& -;-LZ (2441} £, ()]
The result is:

s - B .
|£(s,0)| { == In® N = c, — In® s - (4.49)
26, o

The bound (4.48) applies to the amblitude for scattering
at angles © # 0 or w: One can rewrite (4.48) in terms of fix

momentum transfer t:
s

' YUY, 2 g (4.50)
4 4
el gy

|£(s,£)]< ci

Evidently (4.49) is also a bound for [£(s,t)].

In (2.48, 49, 50), we have'eiplicitly exhibit the depende-.
ence on to, which is Inversely proportional to an. In fileld
theory analificity in the cos® -~ plane has only been proved
inside the Lheman ellipses 17 whose semi-major axls behave, for
large s, like l+C/2kaso This gives t = e/s. In this case the
forward amplitude could increase as fast as ~ 42 In®s and the
total cross sectlon could behave like -~ s lnaso On the other
‘hand the assumptions of analytlcity in momentum transfer and
the boundedness of Im f(s,t) are both'cdﬁtained in the Mandels-
tam representation, in which tg =4 PZ is the square of the
total mass of the least massive state in the crossed channel.
Thus Mandelstam's representation 18 implies the 1imitations
(4.48-50) with t, = 4 p% for the asymptotic behaviour of the
scattering amplitude, and from unitaripy and (4.49) the total

cross section will be bounded by:
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t

C , _
o(s)<4L 2 § = 2 fn?g - (4.51)
| o N TR

that is, it'cannpt inerease faster than-lﬁzs°

These results were first dﬁtained by Froiésart, assuming

- Mandelstam's representation. Actually, as observed by Greenberg
aﬁh'Loﬁ 19 and is apparent from the above'deduction, one does

not need analyticity in the whole t cut-plane, but only inside

an ellipse which collapses to the real axls (-o0,0) by terms of

order 1/k°. |

5. MANDELSTAM!S REPRESENTATION AND ASYMPTOTIC BEHAVIOUR

.In this section we shall be concerned with the restrictions
upoﬁrthé'spectral’function in Mandelstam's representation which
obtain from the conslideration of asymptotie properties and
unitarity.

In the first place we consider the following problems As
one gr;tes down Mandelstamts representation for the scattering
ampiféude a certain number of subtractions has to be made in
order to ensure the convergence of the double_int’egrals° In so
doing a nﬁmber of single spectral functions are introduced 1In
the fépfeééntatiéno Now one might ask whether these single
1sﬁeq§ga1“{png;iqns‘gould be chosen arbitrarily or to what
extent. are . they determined by the double spectral functions. Let
us write; rollowing Froissart 13, the general form of  the
Mandelstam representation for the amplitude £(s,t,u), with an

arbitrary number of subtractions sufficient for convergence of
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all the integrals:

1 SNtN P (s,t)
flsytau) == |}

t ' .
2 e - ds _dt + Pstu
s N (s' S)(t -t
tp gM oip(s')
+Z _ dst + P, 2::0 tP s (5.1)
. th B - N .
p=0 ” g st-s P1q=0

where N, H, L are arbitrary, sufficiently large integers, Cpq
are constant coefficlents and Pst p Means a cyclie permutation
of (s, t, u) Let us consider two possible scattering ampli-
tudes fl(s,t,u) and fz(s,t,u) both satisfying Mandelstam's

representation with the same double spectral functions pij'
Their difference Af = fa"fl will have the following repre-

sentation:

f(S,t’u) = : -

M tpj SH AO'lp(S')

-dgt + P +
. stu
p=0 T J g'M s'-s '
: ac, thst (5.2)
P90

where Ao = '0'2- o7 and AC = Ca- c_lo

' In'thé”phyéicai region of the s-energy channel one has:

In order to comply with the boundednese conditioms implied by unitarity
these zust be cancelations among the various terms in this expression in
the high energy limit of each channel. Thus one expects to exhist re-
lationships connecting the coefficient of the polynomials and the aingle
spectral functions to the double spectral functioms.
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Im Af(s,t,u) =¥ P Doy (Y= (2x2)P Aoy (sH1-cos®)P  (5.3)
)

Since 0 Tm £, ,(s) 1 it follows that |Im Afy [¢ 1. Hence
(2x2)P Acrlp(s) must be bounded, that is, for s —= oo

Ac‘lp(s) = 0(s - p). (5.4)

Therefore one can undo the subtractions by dropping the factors
M _

S—ﬁ and changing accordingly the coefficients of the poly-
St

nomials, with the exception of the term with p=0 which still

requires one subtraction. Actually one can go further by

making the expansion:

Ao‘lp(s')' p=2 s'e g'p-1 Acrlp(s')

— st E -y Adlp(s')ds' + dst

- §les q=0 gq*l Sp-l gleg
(5.5)

when the convergence of the integrals on the right i1s ensured by

(5.4). Therefore ome can write:

M &P (g'P-1 Ao‘lp(s‘) p-2 P
Af(s,t,u)=Z —J - ~ dst -: I +
o=l ) gpl st-% =0 gq+l Pq
1 (s Ao-lo(s") L |
+_[._ ———— Qs "Pstu": Acpq tP 52, (8.6)
T/ 8" (s'-9) P1a0

where '
‘= & |a'd
Ipq | JS Aaip(s')ds' o

Now the amplitudes -fl(s'.,t',_n)_ and i‘fz(s, t; u) are asymptotically
‘bounded by (see (4,48)y (4.50)):

e(sy £)1<cy 8Un 8YY2 (s£0) (5.7).

*
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£(s, cos®)<c, 8¥/4 (In 8)/2 (80,1 (5.8)

Then Af(s, t; u) must also satisfy such inequalities. ~ For
fixed values of & # O,r, the dispersion integ}'als in.‘(5.6) ou_.
0(s) for large S. Then one can easily be convinced that in
order to have Af(s, cos®) bounded by (S-_B-) 1t 1s necessary that:

=0 Ac! =0 (5.9)
Tpa and  ACpg i
with the exception of Ac;o.

The representation (5.6) of f'(s,t,u) is thus reduced to:

M th 5'P-1 Aoy (s) 1[ Aoyo(st)

Af )= —_— dst+= dst+AC!
(sytsu E R g S T oy el 381G,
+ P . (5.10)

Consider the channel for whiech t is the energy and let t — o
with the momentum transfer S being held constant and negative.
The boundedness condition (5.7) requires then, that for p)a:

_ Aalp(sf) _
js'p"l dst = 0 (s<0) (5.11)
8' =g

and by analytic continuation it follows that crlp(s)= 0. Therefore
the representation for the difference of the two amplitudes is

of the form:
1 { Acrlo(s') Acll(s') '
Af(s,tgn)-; + PP ds'-l-Ps,t’u"'ACoo

s! gie-g
(5.12)
Since the single spectral functions 610(s) and 011(s) are deter-

Hqler

mined by the s and p waves 1in the 3-energy channel, one concludes
that within the framework of the Mandelstam representation one

can arbitrarily introduce particles with spin zero and one but
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not of higher spins. This limitation corresponds and is closely
related to the criterium of renormalizability in field theory.

We shall next discuss the so called Gribov Paradox. 20

' One important feature of Pameranchuk's model is that the
width of the difraction peak remains finite as the energy tends
to Infinity. The asymptotic behaviour, predicted by the model,
for the amplitude f£(s,t) is: |

S £(sy8) 2 s £(t) (5.13)
This behaviour was shown by Gribov to be inconsistent with the
Mandélstam representation. For simplicity we shall corsider the
scattering'of isoscalar particles without spin. . According to
the Mandelstam representation, unitarity in the elastic regilon
of the t-channel, gives for the spectral function the following

expression: ‘

P1 (g48) = =
2 1677 /T .

where the Integration is extended over the region:

sl>, 4p2; sz) 4,u_2; K>0 (5.15)

ds, ds, (5.14)
K(ts s, Sq» 32)

with
K(t3s ,slgs Y= (t-4p2)(s +sl + sg ~ 283 ~ 238,~ 2875,) - 4s8,s,

' | (5.16)
and Al(s,t) is the absorptive part of f£(s,t), for the reaction
in which s is the energy, analytically continued in the variable
t from the physical region t <0, onto the spectral reglon
tz.4p2. The asymptotic behaviour of the absorption amplitude
in the physical region t <0 is given by:
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' -.:Ai(:sr,t;m g I (L) (6.17)
Let us assume that, for t> 0y the asymptotic. behaviour of -'Aj-_IJs-,-t-)
is of the same form (5,17}, A;(s,t)=~s a (), where for t> 4y
a(t) is complex. Since for fixed t, Al(s ,t) is: ap | incroasing
function of 31 in the asy'mptotic limit, then for large s, _mofst
of the contribntion to the integrals in (5 15) comes from o the
region near the boundary K= 0, where 84 and a'.2 are both | large,
behaving like +'s. Then for large s p(s,t) will be givon by the
following asymptotic expression.

1 _
p(s,t) T —— ﬁa(t)l K(t:s58118,) é_slszdsldsa |
For large s the bomdary curve. K= 0 is approximately given by
the hyperbola:. T _ T
4 s sp = (t-4p2) S (5._.1'9)’
along any direction not parallel to the axis 84 and :=:‘2 Let us
introduce new variablea__”u and . .defined by- '

2 ,
51

The domain of i‘ntograt‘.-ion of these ‘new— varlables ta-lcing the
hyperbola (5.19) as a boundary curve is:

. (o y/a)< v (n/ny); . m udl o (5.21).
where u, = 4(4;&)2/3(1;__ 4}12)0_. Therefores - .
1 1 4 u(uod_,
(5,8 ——— [a(8)]2 (t 4 2)3/2 J [ — (5.22)
Pz 2 T ) Aw A
u u_/u
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whence, performing the integration, one obtaing the following
‘asymptotic expression for pla,t): |

la(t)]2 s 1
913(3,'1:)-:.' F | (¢ -4;12)3(2- — ( In —-+'0(19: C(t)s Ln g
16r2 /T 24 u, (5.23)

But, Mandelstanmts representation gives_:
p13(s,t) = Im Al(s,t):'s Im a (%) (5.24)
vhich is inconsistent with the expression (5.23). Gribov shows

that the paradox still remains should the asymptotie behaviour
be of the form £(s,t)~5™ InP s £(t), with Rew 31 and e BY -1
He proposed an asymptotic behaviour with o= 1l and fB<¢-~1 but
this implies a eross section vanishing at infinity.

Although Gribovts Paradox strongly suggests that Pomeran-
chuk's model for high energy scattering is inadequate, if the
amplitude is to satisfy Mandelstam'g representation, it is not
altogether conelusive since £(syt) could, conceivably, have an

asymptotic behaviour for t,}4p‘2 different from that for t <O,
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APPENDIX A - Asymptotdc behaviour. of the amplitudes in-nucieon:™

= nucleon and nucleanenxinncleonaecatteringa:

In this appendix we shall discuss. the asymptqtig behaviour
of nucleon—nucleon and nueleon-antinucleon covariant. amplitudes
within the framework of Pomeranghpkﬁsumedel,;_Let us: eanslider -
the process: . -
1" i‘ﬁa ™ MR

=t [
II) . N+ NZ — Ny +8,

I11)- N1~"+ Nl‘ —_ Nl * NZ

1w

where N stands for a nucleon and N for an anti-nucleon, o Let
P12 Pp and p1, pZ, be, respectively, the initial 'and "final |
momenta. for process-I.. . Conservation-of total 'momentim gIves.
p1+-p2-— 91*'P2 . HN(A’I)
The ampIitude for this process depend on two scalar variables.

We ‘shall use the Mandelstam invariants defined bys

s = (plﬂ-pé)a\
t = (py=pg)° (4.2)
n = (p]'_-'pa)-a

where,; in the center of mass system; s 1s the square of the

total energy, ~t and =-u the squares of the momentum transfers

for the pairs (1,1) and (1,2) respectively. They satlisfy the

relation

s+ t+u = aMf (A.3)
The momenta for processes II and III will be denoted by the

same letters, but with the sign reversed for antinucleons. The



51
scattering matrix for- each process may be expressed in terms of
a set of ten covariant amplitudes, five for each isotoplec state
I=0 or I=1. ‘These amplitudes may be chosen, as in ref. 4),
by analogy with -decay four~fermion Interactions, by writing
the F‘eynman amplitude for a given isotqpic spin transition, in
the following way: 5

I _« I in
Fo =22 Fy (0,+ (-1)* 01) | (A.4)
i=1
where the upper index is the isotopic spin I=0or I=1, and

0 "u(pa) A, u(pz) u(pl) Ai u(pl)

o (A.5)
oi-u(pl) Ay u(pz) u(pz) Ay u(p,)

where the A'g are the five sets of covariant Dirac matrices in
the order (S, T, A,I Vy P). The F's are funetions of the
variables s, t, u and satisfy the Mandelstam representation.

The hel‘icity a.mplitudes (2.10) are related to the Fts by
(Refo 4’ 4 17)

P+ 0 =3 -1 [MZ(F +(F +F,) cos) - (4% - W2)F, |

'(w?- P)= 13; E % Fy +(|:zgz.- Ma_jl;?zfﬂz?é‘)cqse»f 3}{2.3‘3- pZFs]
ittty P At P et )
(‘P ﬂP )= l [:ZMEF 2321? - pZ("Fl"' 21;34_1?5)]_ sin2 &

$ = -—'H(F2+F4) E sine.

r

where, here, E and p are the energy and momentum of a nucleon in

the center of mass system. From the boundedness of the helicity
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amplitudes one can easgily deduce .that im.the. phygical. region-
all the Frs are bounded when E - .co. -In addition, the rela-
tions ¥ =, qh(i, J=Lewad)y. Pe<<¥yjy -8t Fixed momentum = transfer
t, mean that: . SR
@y - “’1 ( ); | 5_-0(3) | (A 7)
They imply in the following restrictions on the covariant
amplitudes in the asymptotic reglon of large st

¥~ ¥ —O(s) — - F1+ 2F,-F, =0(1) (A.82)

A .--503- O(s) —> Fy - 2F + 2F, - F = 0(1) T (a.gp)

% -.*Pl= 0(s) —> - F1-+6F3+ 234+F = 0(1) : (4.8c)
¥ =0(s) —+ F,+F, = d(‘é*’)’ R T (4.8d)

Similarly, fsotopic spin 1ndépendéhce in the asymptdtic region
gives: R | o | - .

FJ - Fy= o) o (A9)

Now, the”amplitudééi?&(é;u}t)'féf'procesé I afé'related to the
amplitudes F(u,s,t) and F(t,s,u) for processes II and III by
the so called "crossing relations” or FcrdSsing'stetries“;One
has (Ref. 4 2. 1?) -
Fj(s,u,t)'“ pII" f;]k 1{ (u,s,t) (4.10)

where the first variable in the argument of this functions F)

and F standsanr_the energy in the corpesponding'processJ and:

1 | , -
3 =3 | (%&11)
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“l 6 4 +4
12 0o o 1
C=2|10 2 2 1 (4.12)
10 2 2
'_-1 6 4 -4 -1

Since Pomeranchukts conjecture applies to nucleon-antinucleon
scattering as well, the Frs must also satisfy the asymptotic
relations (A.8) and (A.9). One can verify that these relations
are; indeed, invariant under the transformation (A.10). On the
other hand, one can obtain from (4.10), similar relations
between F?(s,u,t) and f?(t,s,u) by making use of +the Paull

principle which requires that:
F(s,,t) = (- PlCs,t,0) (4.13)

Therefore, corresponding to (A.8) and (A.9) one obtain the fol-
lowing asymptotic relations for the fi(t,s,u) at fixed t and

large s:@

(h.82) —> F, = 0(1) (A.148)
(A.8b) —= Fy = 0(1) (A.14b)
(8.8¢) — Fy+ 2P +F, = 0(1) (A.14¢)
(A.84) = F"1+§2+'f3+§4 = O(s_i') (A.144)
and

(4.9) — 'rig* = 0(1) (4.15)

The helicity amplitudes & for process III will then have a
pole as the momentum transfer u(or s) ~=~ o and the residues

of the pole for t=0 and taking into account (A.14) will be
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glven by: _
- - - 1 .
Res. ¥; = Res. ¥, = 3. 1im ;Fé(o,s,u)
- - 5= (4.16)
Res. ?s = Res: ¢4 = Res. Pg =‘Q :
and | |
RsPi=0 | (4.17)
As anticipated in Sec. 2, (A.8b) and' (A.8d) do not imply  -in

gtrong’ restrictions on'the bahaviour of P(t,s,u) when 't —-0,
g =00, as the conditions (A4.16) on the residues of the pole
result, exclusively from (4.14a) and (A.l4e). - This behaviour
of the helicity amplitudes is formally the same as 1f there were
a pole in the energy at t=0, in the state of angular momentum
J=1 and G-pari;ty:even° Since, by (A.17) the pole oceurs
only in the isotopic state I1=0, these results coincide with
the predictions of a model in which the asymptotic behaviour of
the scattering amplitude is dominate by a Regge pole whichrmwes
along a trajectory with the quantum numbers of the vacuum, the
S0 called Pomeranchuk trajectory, passing through J=1at ¢ =-0..
Therefore, both models predict the same relations for _ithe.
asymptotic amplitudes in nucleon-nucleon and.nncleon-antinucleon

forward scattering as well as for the total_oroqs sections.

A?PENDIX B « General crossing symmetry for isospin applitudes.
Let us consider the transition matrix 1n spin and
1sospin space, for process Ia (S@Co 3), defined by. '

‘T’(plpz, p3p4)(arr)4 6(p1+ p2 p3 p4)- " J,d4x dy %z av
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L . N _ _
x exp.i(p4.w_+ PgeZ = Ppe¥ = pl.x)<_S4(w)83(z)TE>4(w)¢3(z)1?1(-x)1)2(_y£|_
: x = > .
8,(x) 8,(y) (B..l)
For particles of spin zero S(x) ;E]xj-ma, and for spin-% par-
ticles §?x) T - 16xﬂ-m. The matrix eiement of the T-mafrix be~-
tween free particle spin and isospin states, give the Feynman

amplitude for a transition In these gtates.

- Now it follows from ‘G-invariance of strong interactions
that the Héigenburg field operators for particle and anti-
particle are related by a unitary transformation £ defined by:

£71 d(x)6 = $%(x)

6L Hx8= ) = T4 et (3.3)
where the sign + applies to boson fields and the sign - to fer-

cb(x)T (B.2)

mion fields in the last equation. This operation of charge conju
gatlon 1s the same as tha: defined by Lee and Yang. The unltary
matrix C acts in both spin and isospin space and has the follow

ing properties:
(B.4)
clsc = -387; ¢ l7¢ = -7 (8.5)

S and :E are the spin and isospin matrices, respectively. Ap=-

plying this transformstion to the fislds ¢, and $, in (B.1), the

right hand side becomes:
1Jd4x'd4y d4z’d4w exp.i(p4w + p3z - Py - plx) X
T

T = e : T e - e = 24 ;
X {cal<sa(y)s3(,z )T EPg(y)ﬁPB_(z )@l(xﬁf:(wl)] 81 (x)8,(w)> 04} (B.6)



whgregTéé means-trgnsposéd 1n:the-3p&ce of: the variables - ~of
particles 2 and 4. The minus sign in (B.3) for fermion fields
1s_¢ompensgp9d by a charge in sign of the Tvpibduct_ . ghengﬁhg;
fields ‘1’2 and "194 are interchanged. If one '-e;prQSS" (_B.G") : in

terms of the transition matrix g for process IIa, then, com~-
paring with (B.1) one obtains: _ ._-

T (p1pp3 Papy) {c ']’(pl - Py3 Pz Pp)C, } 24 )
Under the substitution p, > -p4, the"invar;ants def;ned by
(A.2) are transformed in the following way: s <= u,.t <=t,
so that (B.7) relates the amplitudes for .process Ia with energy

S to the amplitudes for process IIa with energy uy and the

same value of the momentum transfer.

We are now interéétéd on the transformation of 1isospin.
indices under the crossing 5ymmetry (B.7). So we shall for
thé moment 1gondre the trénsformatioﬁ properties of the stateé
ih-drdiﬁary space. If |p>’ 1s an eigenstate ofVszwith eigen-
value g, then it follows from (B.5) that Clp)fhgs'the eigen—l
state |-p>y but for a phase. In order to determine the phase
lgt us consider the representation ﬁith I éiagbﬁal and the
_zushal-phase conventions. Siﬁce Ix:is ghgn'symﬁeﬁric- and -::y
| antisymmetric one obtains from (B.5):

, €I_=-I,C (B.8),
Therefore: | o |

1 - - 1 - - il Tett '
Clpy==<c M1y = (-1)* Ao .7 el = (-0 *‘% ,T-fyl-0=

= \?(-1)1'# I‘P) (B.9)
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The arbitrary phase n 1s usualy taken igual to one. With this

choice one has:

2 21 +1 for isobosohs T
= (1) = : - {B.10)
-1 for isofermions '
As an example the nucleon isospinor (p) transforms under this

n
operation into (_%) . ‘

In order to get the crossing relations between isos_pin
amplitudes for processes Ia and Ila we take matrix elements of
B(7) between states' |}l 1 pj).' The result is

fP]_PZ;,'%P4(pi’ pzi p3’ p4) =

= (_1)12"'_14' K2 = Hq -Efll- " pB-pa(pl" -5 s -p,) (B.11)
where f and f are invariant matrices in spizi space only. It can
be shown that in the special system where p1+ p3 = 0 and if Ml
}13 and MZ ") helicity amplitudes transform in a llkewise man-

ner but there is no change in sign of the helicities.

The amplitudes for transitiong in eigen states of the
total isotoPic spin may be writen as linear combinations of the
q,mplitudes f . with Clebsh-Gordon coefficie;!zts. One can then
yfite.

1!12; H 3#4
- PZJ ng(_f;lpl_!-Ize)ng(13’"3;I4F4')EF1,-;:4;;:3,-F (u,8,t) x

_ I +I,+
< (ZDy'2 4"‘2
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s
. - + I + +
- (u,s ,t)(‘l) 2 ,‘a Fé

(B.9)
}l
IMa.king uge of the sy‘mmetry properties of Clebsh—Gordon - coef-
ficients one finds after some ma.nipulation

2(1,+1,) {11 I, I

f (S,u’t)lw" Z (ZII -|-,1 )("'1) 13 I I} f (u,s,tl (Bolo)

T
11 12 Il
where 11 1 yf is«the-ﬁ—_i--symbolo The crossing matrix:
51 . |
Oprt 2(1,41,) 1.1, 1
II's (or'+ 1)(-1) 172 prtes } (B.11)

LI, T

satisfies the 6rthdgonaiitf?cdﬁ¢if10h3;‘

: 2]: +ZI o " - 2I_+21
Z(aI+1)(z:'+1)(-1) ! 11 IZ T ..(-1)'.3 45 y
- | I, I, 1 ;3 I, '
L e 2i;+21 ST T (Bal12)

The reason for the factor (-1) 2774 45 that for lsofermions-
% =.m1 according to the usual convention.

APPENDIX C
We want to calculatq an upper bound for the sums
L-J.

USTA3441) Byleos@)+ aL(2L+1)BL(cOsB) “ (c.)
o | -

We take first aL- 0 and evaluate the sum by the method of
integration. - The functibn’ vy = (L+1)B£ has 1its concavity

turned downwards for [+ = 5 = x>0 (See Fig. 1)
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4
/..—-'—-Y (‘!'*._')B!.
]
-
- .
-3 g R x=4+1
2
Then: B+
1 |
sy + yﬂ_lK[ y dx (c.2)
1-%
22 y£<2 Jy dx + (yp_1+¥,) = T+ (yp_y*+7,) (C.3)
0 + :
where ' ,
3/4
I, 1~ % {EL+(_L-1)L senaﬁ:] -1 }/senze | (C.4).
Then Lotge) Ty Bt VYT
R(s,t)< — = — — (C.5).
12 (-1 1+ (1/1-1)
This bound is slightly better than (4.35) for one can shown that
Ita1
by (C.6)
Y1-17 Y% Y 3 -1 _

The equality holds in the 1limit L =1, Indeed (C.6) is

equivalent to

{ (L-1) (L-'l E.‘*'( L-1)L senae:l 4 + 3-( L-1 )} senZ® [1+( L-1)L senze] 4

or
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L
l (L-1)L sen20+(1+5 (L-1) sene [(1+(L-1)L sen29)4 1],(0

or writing x = (L-1)L sen®8;

X 4
"'31"” (1‘“%3) (1+.x) -1](0 (C.7)
/ \ 1 1 L '/m-l
I—‘. = %E-"' 1"'1/39!129] e = = _. < ~ S=
| 2L 14 Nex/senfe. 1+4/TFR X

Therefore the left hand side of (C.7) is less than:

i'x+ (41 + 2~/1+x) I:(ll.-!-zc)‘.l‘/4 -]J =

It

- ‘l‘{(m)" 3x42)3/4 4 3(x01)%/ 40 (xe1)V/4 } -

n

3
- i‘ (x+ l):l‘/4 Bx-ﬁl)l/%- 1] <0
Then (C.7) hoids, hence ‘also (C 6 ).

- When aL#O we write L-L=8§ which is related to ~ar, by

2. 1.2 = (L+1)% = a(2L+ 1) | (C.8)
Then: l ' . . . 1
aL(2L+1)I:1+ L(L+1)sen2:| = 6(L+L)EL+ L(L+1)sen ] 4
L atry 4y (c.9)
and L% |

L-1

2:7 +2 aLYL<2JY dx"'(YLl ) 6(yL1 le
0 .

+ 8yp_gtyp) =2 f.v dx + 'E"J_.-é)';*r;_l + 5"&1]#3;0
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or. -t
L. ; '
2% vy +2 apyy, £2 JY dx Hyp_1+v,) = If 4+ (yf.-l+ v,) (C.11)
3 :

Hence the results (C.5) and (4.35) for L an integer hold true for

L non-integer as well.
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