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lo Free S

Before considering the effect of erystal environments on

the energy levels of magnetic ions we ghall first

briefly the theory of the energy levels of atoms in the

review

free

state. The energy levels_of the hydrogen atom are given by -

the solutions of the wave equation

87
72y +

(E-")¥=0
hZ

where V = -~ %? » The éolutions of this equation are
form

¥(zy 8, ) = R(r) Yo, )
when the functions YT are spherical-harmonics and are

portional to

PT( cos 8) o1M¥

vhere the Pf( cos 8) are Legendre polynomials. .

We note, for example, that

Pg = eog¥b
+1
PI = sige

Each wave function of hydrogen 1s specified by

of the

pro-

three

quantum numbers n, 1, m. The quantum number n determines the

energy and

ngme4

hon?

B = =

where n = 1y 2y 3, veveeu. . The quantum number 1 determines
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the total orbital angular momentum and n> t+1 so that 1 =
=0y 1y 29y 3y sesvses « The yoantum number m determines  the
Zz component of the orbital angular momentum and
M= ey = g+ 1y vy +L
States of the hydrogen atom with §{= 0, 1, 2, 3 etc are
known as 8y Py dy £ states etc and a state withn = 3 and
£ =1 s designated a 3p'statb. |

There are three degenerate p states withm =1, O,

and their corresponding angular factors are

P,y = siné &1¥
Po = cos ©
= gin® '-:l.'P

P
We may generate more useful functions with their maximum

amplitudes in the x, y, z directions by taking the linear comh}

nations

]

[{]
M

Py P4y Y Py “ 3in® cosey

Py = P4y = P3 = 8in siney =y

We have neglected numerical and phase factors in the
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above expressions. In a similar fashion we may take linear
combinations of d(f = 2) functions giving functions with the

angular dependences

(x® - y2) - (32%-19)

' ,T

+ ‘P +) . + S
6

If we neglect spin-orbit and spin-spin coupling the Ha-

miltonian for an atom with many electrons may be wrltten

e 2al 2
h . e e
#-- T e-r Tz
8nm 1 1 Ty 133 Tay
Because of the electrostatic interaction between the

electrons one cannot separate the variables as in the single
electron case and the solution of the wave equation must Dbe

obtained by approximate methods.

As a starting point we get the set of one electron eigep

functions which are solutions of the wave equation with the
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Hamiltonian 2
h

ﬁo':‘—'"' Zvi"zv(ri

grm 1

where V(ri) is an effective potential for the 1%R

electron. A

more exact solution is obtained by adding the perturbation
2 ol

=‘Z """"'Z —-—Zv(ri

_ i T1 1y Tiy 1
To get the best zero order solution one chooses V(ri) to
make ¥ as small as possible. If we are dealing with an e-
lectron whosge ry is greater than that of the other electrons,
the field of the remaining electrons will approximate a charge
(=2 +1) e at the origin so that V(ri) = - f:;- and the nucleus
has been screened by the remaining electrons.
The eigenfunctions of‘ﬂ% are called atomic orbitals and
are similar to the hydrogen atom'eigenfunctions. As befores
each orbital is labelled by quantum numbers n, L, m and we

have 2s, 2p orbitals etc. In this case however the energy is

a function of n and { and 2s and 2p orbitals have different

energles.

In most atoms the energies of the orbitals lie in  the
order
lsy 28, 2ps 38y 3p,y 48, 3d, 4py 58 ... etec.

The electrons of an atom in its ground state occupy the
lowest orbitals without violating the Pauli Exclusion Princi-~

rle. A state of an atom in whiech the number of electrons in

each orbital is speéified is called a configuration. The



normal phosphorus configuration 1is
(15)2 (25)2 (2p)° (38)2 (3p)3

We shall not be interested in closed shells and we shall

consider only valence electrons.

Let us consider the configuration pz. If the electronic
interactions are'heélecté&.the various eigenfunctions arising
from the configuration are degenerate. If we assume Rugsgel~-
Saunders coupling and designate the total orbital angular
momentum L and the total spin angular momentum S we find that
the electronic interactions split the configurations into

terms denoted by their L and § values, with different energiles.

In the case p2 we have two electrons with Ll =1 and
ﬁz = 1. Combining these vectorially we get possible L values
of 2y 1 and O and possible S values of 1, O.

The resulting S and L values cannot be combined arbli-
trarily since the exclusion principle must be considered and

1

the only allowed states from the p> configuration are >P, 1D and 'S

(the superscript gives the multiplicity, 2s + 1, of the level).

According to Hundt!s rule the state with maximum S is
lowest and, spins being equal, the state with maximum L is
lowest. A schematic energy level dlagram for the p2 configu-

ration 1s given below.

We have also shown in the figure the effect of spin-orblt

coupling on the energy levelss The spin-orblt coupling arilses
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from the interaction beétween the magnetic dipoles arising from
the spin of the electron and its orbital motion. s

This interaction, for the case of a single electron, may
be written in the form

A A
;(I‘)’.a 8
with n® 1 Su(r)
: ;(r) = 5
Zmzcz T
- where u(r) 1s the potential in which the electron moves.  In

an atom wity more than one valence electron the spin-orbit inter

action may be written

St 1,
1

where we have neglected spin-other orbit interactions.

eletrostatic 3Po
intersection

3 spiﬁ:orbit'interactioh

It can be shown that in a many electron system in which
the energy levels are characterised by the-total‘value of L
and § that the spin-orbit interaction may be written

A

AI.-S
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where )\ is a radial integral depending only on L and S. Keep~-
ing then within a system of levels specified by L and S we note
that '

~ Fal A

J=L+8
and.
=12 +1%+20L-§  so that
§ =1 (R-12.8

o

‘and we find that

A

The energy difference between %he level J and J-1 is
AE = E(L,S,J) = E(L,3,J-1) = AJ
and this is Lande's interval rule.

The energy levels of a free lon are perturbed by a
crystalline environment and an investigatiom of experimental
data shows that the strengths of the erystalline electric
fields fail into three categories:

a) Strong field case in which the electrostatic interaction
between the electrons on the central lon and the electrons
on the neighbours (ligands) is greater that the electro-
static interactions between the electrons on the central
ion. This situation occurs with strongly covalent systems
e.g. salts of the 44 and 54 transition groups.
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b) Medium field case. in vhich the .electrostatic Ainteraction
bgtwe&n_elgqtrogs/on,tha.centralpian_anq the field. of
ligands (henceforth referred to as the crystal field) 1is
less fhan the electrostatic interactions between electrons
on the central ion but greater than the effects of spin~
orbit coupling in the central ion. This situation 1s typ}
fied by iron group (34) ions.

¢) Weak rield case in which the effect of the cry:tal fiela
18 less than the spin-orbit coupling. This situation is
typified by rare earth (4f) fons.

We shall confine ourselves to cases (b) and (e) since
most work has been doné on these'systems and we shall first
discuss the crystal field method for dealing with the effects
of a lattice environment on the energy levels of a transition
group ion. We shall dlscuss an alternative method, the Bo~

iecular orbital method, at a later time.

Crystal Fleld Theory

An outline of the crystal field approximation may be
obtainsd by considering the configuration 361 (T13t) The
Single d electron may qccupy any of the 5 orbitals which have
equal energy in the free 1on.-‘If_nsgative;charges - are. -now
placed'at'i Xy XL Y wuu J 2 thQufivé fold degeneracy &s raised
and we get a de(tZSP triplei Llower and a dr(eg) doublet higher.



in energy. This situation ocqurs whanulronagroup'ions are
placed in regular octahednalacrystalline*envifonments. We can
glve a crude qualitative explanation of the splitting of the
d orbitals by noting that an electron in dy(]|x® - y2> y |32% = r2))
orbitals, which point diregtiywat the ligands, is: expected to
have a greater electrostatic interaction wiﬁh the ligands than
an electron in d€ orbitals {xy>, lyz )‘, |'zx>)_ which point
_between the ligands. Pursuing this-viewpoint-we'éonsider the
case 3d9(Cu ) which may be treated. as a single hole in an
otherwise filled shell; this will find its lowest energy in
the d» dﬂublet. The separation between the d« orbital
doublet and the d€ orbital tripiet is called 1CDq and is
about 10,000 cm -1 for divalent iron group ions and about

18,000 em™t for trivalent iron group ions.

The sign of the splifting.of the d-orbitals produced by
eight charges at the corners of -a cube is'Opposite to that
produced by six charges at the vertices of.an octahedron
because the d€ orbitals are more closely directed towards the
chargeg at the corners of the cube. We also see that on this

model the threefold degeneracy of a p.orbital 1s maintained in

é cuble environment.

We shall make our discussion more quantitative by
considering an iron grotup ion at the centre of'a.regular octa-
hedron of six charges; Since we have already described our 4
wavefunctions in terms of spherical harmonlcs we shall expand

the potential at the central ion in spherical harmonics about
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the central ion as origin. We assume in making this sxpansion
that the d-orbitals do not overlap the ligand charges and hanoe
that the potential due to the ligand charges e a selution of
laplaces equation
‘Va Vago
We may write for the potantiul at a point (ry 0, @)

00
V(ry 8, ) = 3 ): Ay ob s 7 (0,9
Lu0 mway
where the Af are conatants determined by the surrounding oharge
distribution and the g? are normalised spherieal  harmonies

defined as

1« $=|m| )
— 2L41)(4 - || F™ 0cs §) ¢3}2¢
ar (L+ {m)}) L

Yf(9,40_= (-l)L

The Hamiltonian corresponding to this potential is

o +4
“OZV(I'J, OJ"P) ""2__ L_.Al':r ‘OJ."’
b £=0 m=-g

where (rJ, GJ, ¢3) are the coordinates of the Jth elesotron on
the central ion and 2 covers the valence electrons, Only a
limited number of tgrms in the expansion of V need ¢o be
considered. The term with §= 0 ig spherically symmetpie .and
13 responsible for the greater part of the lattice ensrgy, or
heat of solution of the cation. This term {s of no intereat to
us since, to a first approximation, it glves rise to a unirorm

shirt of all levels with the same number of elestrons,

Consider next the integral [¢ U$AY where y and & are
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. . *
d wavefunctions. The density ¥ ¥ can be expanded in spherical

harmonies and does not contain harmonics with £>a. If { 1 &

spherical harmonic.with > 4 the integral vanishes by . the
orthogonality relationship for spherical harmonics. If ¥ and
¢ are £(1=3) \_wavafunctibns the integral vanishes when 1> 6.
It is also aﬁparent that terms in the expansion of V with odd
are odd- anhd need not -’be"‘ct-:hside&-.ed bﬁcause under inversion of
the co-ordinates for these terms [¢* U%4Y = O since ¢ and ¥ have
the ‘same parity: |

We can reduce the number of.terms that need to be
considered still further by realising that the potential  must
reflect the symmetry of the ligand éonriguration. Let us
consider  a regular octahedron with the z axis (tetragonal

axis) as polar axis. The potential at (r, &, #) is the same

as at (r, .8, ¢+ %) and since the ¢ dependence is of the form

ij""P, m can _only have the values O or % 4(imle L), It is now

apparent that for @ electrons at the centre of a regular octa-

hedron the potential V takes the form
¥ =a ¥ (e, ¢) b-Erg(e, 0+ 14 (o, ¢)]

By considering other symmetry operations of the octa~

hedron which leave V invariant we find that
o _4 | /_5_ ' -4
A4 T I—Yz(e,¢ﬂ)+ 14 {Yi(e, P) + Y4 (9, ‘P)}

veebixteytefad st

v

or
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in Carthesion coordinates. The quantity D is readily calcu~
lated from the surrounding charge distribution and is found to
be D = é? §§ for a regular octahedron, where Ze 1s the charge

on each surrounding ion and R is the cation-anion distance.

For a single 4 electron at the centre of & regular octa-

hedron the two different groups of d-orbitals have the energies

-~

Eje = @ (dxy“)a V r2 sine ae dr d¢ = = 4 Dgq

-t

E._ =e |(4 12 72 41n6 dr 46 de = +6D
xz_yz ' 4 q

dy J
4
2{r ) e .
vhere q = « In general, we define

108
(et =J.[r(r):| ot 12 ap

> 1s the overage value of rt. over the 4 orbital.

A

where <r

The integrals over the angles are separable from the r#dial'

integrals and give the numbers -4 and +6. Calculations of Dgq

on a crystal field model are in very poor agreement with
experliment.
It should be emphasised that the appearance of the

expression for V depends on the choice of the polar axis. For
example, if we chocse a trigonal axis of the octahedron as our

polar axis the expression for the rotential will have the form
V=ay, + b(Yé +Y,7) .

Although this expression lcoks different from that already

derived using a tetragonal axis as polar axis, they are, of
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course 1ldentical.

If the symmetry of the octahedron is less than cublc ad-
ditional terms are introduced into the-expressién for V. Ir
we have a distortion of the octahedron which 1s axial about the
tetragonal axis then terms in YO and Yz are added to V. If the

2
symmetry is orthorhombic then terms in Yg and Xz are introduced.

Elemen of Crystal Fie 0 0

In general the easlest method of finding the matrix
elements of crystal field operators is to use the operator equi
valent method developed by Stevens and others. They have shown
that, with certain symmetry restrictions, the matrix elements
of a crystél field operator are proportional to the matrix ele-
Iments of a similar operator in which x, y and 2z are replaced by

Lx’ Ly and Lz' It must be remembered that Lx’ Ly and Lz dc not

commute so that

elactrons

The equivalent operator for the cubilce crystal fleld

De 2 , (x4+y4+z4—-gr4)

electrons

operator

1
Dep(r4> ;6 {35 Lz4 - 30L(L+1) Lza_"- 25 1'.-22 - 6 I{L+1)

+ 3151+ 1)2 } + Dep<r %{Lﬁ + 12 }



The proportionality faector P has been given by

Stevens.,

Tables of matrix elements of equivalent operatorshave been given

by various authors and are oollected in a booklet available

the Clarendon Laboratory.

Matrix elements of the cubic erystal field operator

for 4 electrons within an L =3 manifold (e.g. N12+,3F‘).

3 -1 -3 1 2 2 0
Dg X 3| 3 V15 “ |
-1 | /I8 1
-3 3 /I8
1 B 1
; -7 5
-2 5 =7
0 | 6

The matrix elements for the promotion and demotion

operators L _ = Ly +1Lly and L_

LlLy L,> = {L(141) -

L‘_IIL, L= {L(L+i) -

and it is apparent that the operators 1&_, I;f will connect the

states |L, L, and L, L + 4>,

= _LX - iLy are

¥
L,(L+10} |L, L#1>

L,(L,-1 )}* [L, Lé;l >

Let us consider the effect of a cubic erystalline

at

environment on the 31'-‘ ground state of the N12+ ion. We neglect
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spin-orbit coupling and from published tables write down  the
matrix elements (3, Lz.lv-|3’-1‘;> » To determine the elgen=-
values and eigenfunctions for this system is a trivial problem

and they are given below with |> = ILz> .

,\/g |1> 4-\/%- |.-3>> 6D_q
0>
» F‘S (41-2%)-\%_ 11y - \[g '13)1
By - -\Fg‘l-3>> - 2P

Vi 1-0]
I"2 (ﬁzg)\/?l:lz)’ - I-'z)] - 12 Dq .

Since Dq 1is positive for N12+ we are left with an
orbital singlet ground state and we have here an example of
"quenching" of orbital ahgular moment;um 1:1 a crystalline
environment. 8ince Dq = 10,000 cm":‘L only the ground state 1isg
Populated and.if we ,Jneglect spin-orbital coupling we have

"gpin only" magnetism.
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Crystal field calculations for rere earth ions go through
in the same way as for iron group ions except that we now
operate on eigenstates |J, sz> instead of |L, sz> and the
nomenclature adopted is somewhat different. The cryaﬁal field
operator for a cubic environment is

v =5 03« 5 of 4 53 of + 5} of
= B,(03 + 50%) + B.(0F - 21 03)
where B, and By are general 4™ oraer anda 6P order parameters.
The simple numerical relationships given above between Bz and
Bﬁ and Bg hold only for a regular cubic environment. The term
in BG is not considered for d electrons and the operator
B4(02 + 502) is identical with the cubic crystal field operator
already given for d-electrons, although different in form. In

terms of equivalent operators we find
02 = 36 -Tz4 - {30 J(I+H) - 25} Jzz - 63(391) +332(391)°

4 .1l 4 4
0, =3 @7 +73%)

02 =23 (Jz6 - 105 {3J(.T+1)-7} Jz4 + {105.12 (3412
- 525 J(J+1) + 294} .rzz
- 533(3+41)> + 40 J2(3+1)2 - 607 (J41)

o =% {(11 7.2 - 3(3+41)-38)(3,% + 3

+ (3,2 + 3 H1 1,2 - ) - 38))

Let us consider the case Tm2+ (4f13, J =‘%)_1n g cuble
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lattice. From published work we can immediately write down the
matrix elements of the cubic crystal field operators within the
J = Z manifold. We shall for convenience wiite by = 60 B and
bg = 1260 B and we find the eigenvalues and eigenvectors to be

E‘él%=ig>'llJ=:g> me3'¥ % 

2 z
s .
V IJ %> i'a-l‘rz +%> o °
{. 5 2b4"'16b6
3, = =:3>+ 93 Ty =3

"
+
N

rofE e poBin-thy wrg- o

The ground state of Tma in the cubic field of Ca FZ is
r-7 and at room temperature and below this 1is the only level
that is appreciably populated. For a general discussion of the
energy levels of rare earth ions in cubic fields see Lea, Leask

and Wolfy J. Phys. Chem. Solids 23, 1381, 1962.

Li i The

The crystal field theory regards cations and anions ;n
80l11ds as being held together by purely ioniec rorces'and:neglscts
overlap of the wavefunctions of the central and’llgand ions. The
ligand field theory includes this overlap and now the strnctural
unit for the wavefunction is a complex molecule rather than a

single central atom. In order to construct suitable*kavefunctions
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we use the linear combination of atomic orbitals (LCAC) method

but we shall first make a few remarks about bond types.

Let us consider two atoms P and Q .é..-eparated by a distance
d. We define an overlap integral

s=f¢;<kqdr
and S will depend on d. In the "principle of maximum over-
lapping" we assume a relationship between S and the bond
strength. The value of S willl increase with decreasing 4 but
the electronic and nuclear repulsion energies also = increase
giving rise to an equilibrium bond distance. The bond types
which can be formed between s and p orbitals on atoms P and Q

are 1llustrated bellow.We shall call the 1line joiningnuelei Pand Q

the z axis.
4

o+

o= bond between S orbital on P and P, orbital on Q.

o - bond between P, crbital on P and p, orbital on Q.
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7 - bond between Py orbital on P and Py orbital on Q.

We note that o bonds are cylindrically symmetrical about

the bond axis; m bonds are not and have a nodal (xz) plane.

If we assume that the atoms P and Q are identical and we
bring them together to form a homonuclear molecule then  with
identical atomic orbitals ¥pand ',PQ we can form the linear combi
nations : . '

Pp =% *+ ¥
P = ¥p - %q

vhere ¢, 1s a bonding molecular orbital constructed so that Yp
and CPQ have the same sign in the region of overlap and @, is an
antibonding orbital constructed so that %p and Y, have opposite
signs in the region of overlap. The energy of an electron in
the bonding orbital is given by

7

E =
1+8
vhere
r *1£
and )

P
7= Jtppﬂfﬁq av
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and S has already been defined.
The energy of an electron in the antibonding orblital 1is

E' _ . oL—=7
l1-8
and isy by derinition, higher than E. The formation of bonding

and antibonding orbitals is illustrated below.

‘Pa E

In a molecule the most firmly bound electrons occur in

the bonding levels.

Let us next consider a d-orbltal in an octﬁhedral erystal
~ environment with e.g. F~ ions at the apices of the octahedron.
The bonding orbitals on the fluorine ions will be 28 and 2p. The
linear combinatjions of ligand orbitals which oh; can comblne
with the centrai ion oybitals are determined by the symmetry of
the environment and ghe combinations of d-orbitals and 2p
orbitals in a regular oetahedral environment are given  Dbelow.
In our notation the ligands numbered 1, 2, 3 and 4, 5, 6 are
on the positive and negative x, y, z axes. Linear combinations
of the fluorine 2s orbitals similar to thogse of the sz orbitals
will also form o bonds with the d+ doublet.



22

Central atom orbitals Ligand orbitals
1 2,
dr dy2 _ 2 (pz P, * zz p)2 . s
o-bonding d3z_2'..r2 »711'2 (293 +2ap, - pz Py =P, Pg)
’ 11,2 4
dxy 2 (p Px py px Py)
I 2, 5_6_5
< d L (pZ+p2~po-p2)
w-bonding yz 2 'x 'y X Y
P L BT S -
L d,x 3 (rx py Py = Py)
With these sets of orbitals we can form bonding and

antebonding combinations. The bonding combinations 1in weakly
covalent systems are primarily ligand orbitals with a  small
admixture of central ion orbitals; the antibonding orbitals are
primarily central ion @ orbitals with small admixtures of ligand
orbitals. With iron group ions the magnetic a2 electrons occur
in the antibonding dr and d€ levels aud the separation of
these levels is still called 10'Dg. Ip calculate 10 Dg' on a
- molecular orbital model we must know the size of the admixtd%es
of the 1ligand orbitals and we shall show later how these ad-

mixtures may be determined experimentally by magnetic resonance

techniques.

The Hamiltponian for an octahedral molecular systems is a

complex one but nevertheless a value of 10 Dq in good agree-
_ 24

ment with éxperiment has recently been ealculated for Ni in
K Mg F3 using molecular orbital wavefunctions.
The presence of bonding has two main effects. (a) it

changes the d7 - d&€ splitting (10 Dq) and is equivalent to a
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change in the strength of the crystal field. (b) the ' magnetic

(d) electrons are partly delocalised. .

If the bonding is very strong and Dq is very large the dy
levels may not be occupied and Hund's rule will not apply e.g.
(d€ )° with S = % may be lower in energy than de> a»? with S =
= g; this situation occurs with K3 .Fe (CH)6 and in complexes
of the 44 and 5d groups

The effect (b) 1s clearly evident in the resolved hyper-
fine interactions of the magnetic d electrons with the nuclei
" of the ligand ions; this effect will be described in more detafl
later. Effect (b) also leads to a reduction of the coulomb
interactions %;} ?g— betiween the & electrons and heﬁce .to a

i

contraction of theldpacing of the levels of the a® configurations.

Other observable effects of (b) are a reduction of the spin-

orbit coupling constant A and the matrix elements of the orbital

angular momentum.
The C 0 ~facto E S

The Hamiltonian for the Zeeman intersction is
. A A A A
'ﬂ=p51§(11+231)=pa-(L+23)

Here  is the Bohr magneton and the factor 2 appears within the

bracket because of the anpmalous magnetic moment of the e
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lectronic spin. In a cubic crystalline environment the
separation between neighbouring components of a Zeeman multlplet
may be expressed in the form
hy = g3 H B

where g is called the spectroscoplc spiitting factor. For free
ions g becomes the Lande g~factor and may be written
J(J+1) = L{L+1) + S(8+1)

2J(J+1)

wvhen Russel-Saunders coupling holds; The g-value for an‘ipn in
a crystalline environment is generally considerably different
from g3° Let us consider the Niz+ ion in a regular octahedral
environment. We have already shown that the orbital contri-

bution to the ground state, néglecting spihforbit coupling, is

}? >=-1-I:|2>- -z>]

2 % 2> |

We now include the spin S = 1 and writing the ground state in
the form |L£> ISZ> we obtain the threefold degenerate st§t6'

¢o= 1, >0
¥o=15>10>
¥z = 1L,>1-1>

By evaluating L, +2 S, we get
”~ A
<¥,lL,+ 28 |¥ >
Pl A .
9,11, + 25, 19>

Fa A
<‘P3I L+ zszl¢3> = -2,

2

0

The only good quantum number here 1s
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m = L, +8,
and the magnetic dipole transitions which we obsgerve in para-
magnetic resonance have the selection rule Am = #+ 1. Iﬁ.-‘-the
case of N12+ we therefore observe magnetic dipolé transitions
between ¢, «— ¥, anda 4, +— Y, and the g factor 1s 2 in this
approximation. The energy level dlagram is shown below and 1t

is apparent

that the two allowed transitions q’l‘—" ‘PZ and ‘PZ-——'I‘s are

coineident.

When we include the sp.in-orbit eoupling in our caleculations
we find that the first excited orbital triplet r is  mixed
into the ground state I_Z To calculate this admisturo we
require tha matrix elements of the operator 1L S = A L
+ J‘ (L _+ L 8 )] between the two states. When we .1.nclude this
admixture we find that the g-value now becomes

g2 —

10Dq
where 10 Dg is the separation of rs and [ 5+ From the para-
magnetic resonance spectrum of N.'L (H 0)6 we get g = 2.256., 1If

we take the value of A= 324 om 1 obtainea from the free ion
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spectrum of N1t and the value 10 Dgq = 8500 em™L meagured
optically for Ni (H20)2+ we calenlate g = 2,29, This discrepap
cy may be surmounted for if we remember that the magnetic
electrons are not completely localised in 4 orbitals but spend
part of the time in ligand orbitals. The-}da R12+ electrons are
spread over the crystal-field states in the form d€6 d?z and in
magnetle resonance experiments we observe the two unpaired 4~
~ electrons. If we write the antibonding dr molecular orbitals
in the form
ady - afi - U»E (1igand combinations)
we can show that the expression for the g value of H12+ becones

approximately 2
Sa™A

R 2 = w——

‘ 10Dg

and we get agreement with our measured g~value by making «20.9.

Our measured g-value therefore indicates that the antibonding

do orbltals are composed mainly of metal iop 34 wavefunctions. .

The g factors of other iron.groﬁp jons may differ consi-
derably from two. The ground state of F02+(d6, 5p) in a regu-
lar octahedral environment is a degenerate triplet: and the

A
vavefunctions in terms of |L,, S, are, to zero order in 10Dq *

JJE :lz,1>.+ I'-a,1> + 2I1,2>:|+ \/'E |-1,0>
VB (101> « 11,35] + yF [1-2,05 + 12,05 ]
1/236 ]-g,-l} + [24=1) + 2I-1,42>-_.|+\/1Io 11,0

Operating within this triplet, as in the case of N12+,
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A A
with the.operator'Lz+ zsz we find

g = SL'*-gs'-'% + 3 =3.5

The measured g-value.of FeZ' in the octahedral =~ cublc
environment of MgO 1s 3.428 and in NaF is 3.420. To get exact
agreement between the measured and calculated g-values we must
include admixtures of exclted states into the ground | state
through the spin-orbit coupling, as in the case of N12+, - and
make allowance for the fact that the orbital angular momentum
does not make its full contribution to the g-value. This latter
effect agaln arises from the delocalisation of the 3d magnetlc

electrons and we define an orbital reduction factor k by the

relationship - :
LILl?> =k <LalLla)

where the wavefunctions ¢ are antibonding molecular orbitals
constructed from the 4 wavefunctions and ligand orbitals. We

find that k>~0.9 for iron group ions in crystals. The value of

k decreases with increasing covalency.

As a further example of a considerable deviation of a
g-value from 2 we consider the case of 002+(d7, “F) in a regular
octahedral environment. The ground state wavefunctions in terms

of ILz’ S, > are, to zero order in Ta;é

]/El -1, %)"“E I3s %)"“Jj? _lls - %) ""\/4'5_5 |'3s'32'>"\/§,0a12'>
J‘]_Tg|+1’-‘g>"'\/§ ‘3:'3>+\/_|‘1a 2)"‘ |3a 'é> \F |0r

The calculated g-value is




g = gL+g,."l+L 4.3%

The measured g-value of Co2 in the cubic octahedral
environment of Mg0 ig 4.278 and in KaF 1s 4.391. Again, the
differences between the measured and calculated g-values is due

to neglect of orbital reductlion and spin orbit coupling.

It should be pointed out that if the Co’' ion is placed at
the centre of s ‘regular tetrahéd-ron of charges or a regular cube .
of eight charges the order of the ‘8plitting of the F state is
opposite to that found with an octahedron. We now have a
situation analogous to that of NiZ* in an octahedron with  the
l_'2 orbital singlet lowest. To zero order in 10Dq the orbital
angular momentum will not contribute to the g-value and  we
expect a g-~value of 2. Inclusion of the Spi'n orbit coupling
will change the g-value to g = 2 - -gg— ~ 2.3,

When dealing with rare earth ions we are operating within
|L,8,3,J g> States.’ When calculating the g~values of rare

earth ions we again require the matrix elements of L + ZS . Now
A

J'z L + S

so that

Pl A N N,

I'z"' 28, = Iy % 8,
NOwW _ :

A
(L,S,J,leleL,S,J,Jz) =7,

and

A "
<L,S.J,leszln,s,.s,:rz>

J(J_ ]) ’ : v z)



29

Tz

= - ‘4 {7(741) - L(L+1) + 8(5+1)
J(I+1) & [ ' ]

so that
LA A .
<L’S’J’JzI_Jz+ SzlL,S ’J’Jz>‘

gy Jp o

where g, 1s the Lande g-factor.
We have already mentioned that the ground state of 2 in
CaF, in terms of |J, ) is

Al:g

-1l
The g; value for e 1s % and the g-value is therefore
3x8 = 3.42. The measured g-value for ImZ* in CaF, is 3.45. The
small discrepancy is due fo admixture of an excited sfate into
the ground state by the crystal field and a small orbital
reduction factor (k = 0.99). The 4f orbit is screened by the
filled 68 and 5p shells and the 4f electrons do not bond

strongly so that k is very close to unity.

n We can Observe paraﬁagnetic resonance only in the crystal
field ground state or in states within at most a few hundred
wavenumbers of the ground state. To give a detalled inter-
prétation of ESR specira in these states it is usually necessary
to know the positions of more excited crystal field states. We

have seen, for example, in the case of N1t that the g=value is
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affected by the position of the excited r;striplet which occurs
at 8500 cm™t above the ground state. It 1s possible to observe
these excited crystal field statés by cdrrying out absorption

measurements in the infra red and visible spectral reglons.

An electric dipole transition occurs between the states
a- and b i the integral-f@f r Y, 4% is not zero. If QE and Y
are both even or both odd then- J'tla* T %, 4T is odd since T 1s
odd and the integral must vanish., Electrie dipole transitions
can only occur between even and odd states. An atomic WEVEe~
“function is even or 0dd as Z'ﬂ is even or odd and all states
_which arlse from the same cgnfiguration have the sams parity.
The selection rule for a one electron transition_is

| At =
and for a two electron transition 13
A!,l 1, AQZ = 0, + 2.

To the extent that we neglect spin in the Hamiltonian
operator the spin and co-~ordinate wavefunctions are separable
and the dipole integral will vanish because of the orthogonality
of the spin functiohs unless the 8pin is the same in the initial
and final states; we therefore have the selection rule

| A8 =
Electric dipole transitions within the levels of a configuration

d? are forbidden by parity and there may be spin restrictions.

Allowed electric dipole transitions have an oSciilatbr

strenght (f-value) of the order of unity. The transition observes

between the erystal field states of 3d ions are "forbidden"
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electric dipole transitions with f-values: of- the ordar of 1074,
These transitions-occur by the mixing in of orbitals of op~
posite parity into the levels of the 3 4R configurations by

(a) absence of a centre of symmetry in the crystal field
and | |

(b) destruction of a centre of symmetry by vibrations.

A régﬁiar tetrahedron of charges does not have ﬁ centre of
symmetrj an@ a term with the angular dependence x y z occurs in
the expansion of the crystél fieid;‘this can admix states with
the angular dependence xy (e,.g. d€ orbitals) and z (e.g. P,
orbitals) and the perturbed d wavefunctions become

%' (@) = ¥°a) +.Z “Pm”vl?o(ﬂ)@?

_ T Eg - Eg
where ¥°(r) are excited p states on the central lon having odd

(r)

parity.

If an electric dipole transition between dn crystal field
states is allowed by vibrations the 1nﬁensity will fall with
- temperature until a temperature is reachéd at which only the
ground vibrational states are populated. In the case of
K Cr(80,),. 12 H,0 the f value was found to vary as

£ =¢(1-exp 7)

where € = 277 cmf;.- Varlations of 504 in £ may be observed in
some systems 1n-g01ng from_300°wK bo;BOo K. Values of 10 Dgq

have been directly measured for iron.group ions in a large

number of crystalline environments.
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Magnetic dipole transitions may occur between crystal
field states and these depend on non vanishing matrix elements
of the form |

<‘I’a|§ xpl ¢b)
Since ;atﬁ is on even operator, @agnetic dipole transitions may
occur within the levels of a given d™ configuration. However,
for magnetic dipole tr&nsitions't::'lo'g and transitions of
this type are only of interest.in rare earth complexes whgre

the interaction of the 4f electrons with the lattice is small.

We have a paramagnetic jon Iin a cudbic environment thq
hyperfine interaction of the unpaired electron with the nucleus
may be written

#=2a715
where ? is the nuclear spin and 3 the electronic spin. To caley

late A we require the matrix elements of the operator

AA N~ A A A A B
bi'T o spT (ry-8§)ry- I g A A
H=2¢ pp 3 - +3 — + — 8(r, )5, I)
' 1 3 3 _ 5 3
1 T3 Ty
where the summation covers the magnetic electrons. It we

neglect the Fermi contact term in ‘H,we may write

P

RE 28,8 B, <r™>D 121 + §{L(:L+1) 81



33

X A A A A R LAA A A
-3 @-HAD-3 &-hHd-H]
where
- o (2)+41). - a8
s(a2f-1)(24+3)(2L-1)

and %= 2 for a d electron and L= 3 for an ¢ electron.

The Fermi contact term is due %o the finite amplitude of
unpaired S electrons at the nucleus and is a potent source of
h.f.s.3 if we are dealing with a:pure a® configuration this
term does not occur. However, the unpalred electrons of a 3dn
configuration polarize the filled 1s, 23 and 33 shells and we
have a resultant unpaired spin density at the nucleus from
these shells which ma%es a large contribution to the hyperfine
structure of iron group ions. This effect is accounted for

by adding‘to % a term
4e x §-1
5 8nPPn
The introduction of the term in x 15 essential to describe
the h.f.s. of Mn" in solids. The ground state of Mn2* 1sa® €s
and it should have no hyperfine structure if we neglect core
polarization. However exchange pelarization of the 132, zs®
and 332.shells by the 4 electrons produces a resultant field He
at the nucleus opposite in direction to the field applied in
an ESR experiment. An analvsis. of the measured values of
the h.f.s. of iron group ions in solids gives
3% mi*3e®)  co?*(3d”)  cuP*(3a”)
X = -2.8 3.1 -2.5  -2.9
H(K.G.)= -354 -650 -315 122



It should be remembered that X 1s a measure of the ef-
fective magnetic field (He) at the nucleus per unpaired spin
and it 1s remarkably constant through the iron group. Attempts
have been made by Freeman and Watson to calculate x and He for -
iron group ions and we give their results below for M. e
see that the resultant field is a sum of large partlj cancelling
contributions. We expect that x and He will be sensitive

direction of 4 electrons

Ht+ B} K.G.
is ¢ 2,502,480 K.G. | o
1s | -2,602,870 n.w >
2s { 226,670 nm 1400
~14
2s |} -228,080 ¢ n
38 | 31;210' "o o
| . +
s 1 ~30 4470 "o 74

H°=- 640 KoG‘o
to environment because of the distortions of the %d orbitals by
bonding effects. The effects of bonding'on the h.f.s. of Mn2+

may be seen from the following measurements:

: ' 2= 2= 2=
1ligand BO  FT co2" 0 8 Te
H,(K.G.) ~695  -695  -666  -600 =490 ~420

1t 1is apparent that increasing covalency reduces H,. It 1s also
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interesting to note that the free manganese 'atom--(3d5482) - has
a value of H, ( + 170 K.G.) of opposite sign to that of  the
ion and this 1s due to the contribution to. H, of ths polarized
4S5 shell,

There is no orbital contribution to the hyperfine struc-
ture in the case if MnZ" but the effect of orbital conmtribution

may be observed in the case of Co>'. In a cubie = octahedral

environment the orbital angular momentum contributes a value
of ~1 to the g-value and the |A| value 1s ~100 x 10™¢ em™1.In
an environment of elght charges (cubic) the orbital contribution

to the g-value 1s ~0.3 and the [A] value is ~ 20 x 10"4_cm'1.

H : S : e Rare Ea 1o

If we neglect the contact term our hyperfine operator may

be written in the form

R=2 8, P P (r-3> ﬁ?

where A A A
; A i R 3 ri(rilsi) |
N = z i"' Si + 2
i r1

The prodblem of finding the matrix elements of N has been
considered by Elliott wiu wtevens who show that

A ~
CIINId = (akw il 3)<al3fad
and they give tabl'es‘ of the multiplicative factors <J’II'N a>
(Proc. Roy. Soc. AZL8, 583, 1953).

Their theory assumes Russel-Saunders coupling but  they
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show that departures from R-S coupling in the rare earths do
not affect the theory appreciabdly.

If we write the hyperfine interaction within a ground
doublet in the form |
A A,
AIS
with a fietitious spin s' = % we then define the spectroscopie
splitting factor by the relationship -
Fe) A Ay
L+25 =

Consider the jinteraction
P

uppn(r"3>n I=PN.T

Now

CIRITY = QIR >INy

and _
CIL+281D= g, 171> = g<IStI>

LcIS)y = g SR

gy
and N I> US>

NIy =¢
€y
_ P el >
&y

This relationship holds accurately if the spin  orbit
interaction is bigger than the crystall fi®ld-splittings  so
that admixture of other.J levels by the crggtal field can
be neglected. The relationship could be used .to « determine

nuclear g_ valugs from memsured A-values if' the value qﬁﬂ(r =3y

were known. However, valuesg of <{r 3) can only be—calculated
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with an accuracy of 10-20%. Values of g, are now Heing
directly measured by atomic beam and ENDOR methods and from

known values of g we may calculate values of <_r-3> .

Let us consider an ilon in the free state. We may write

the hyperfine interaction in the form

AN

AA
PNI =aJ-I

where
P = Zgnﬁpn<r"3>
Row A A
PN = PR > 1T
a = PN >
and hence _
A.a
g gy
Our discussion has so far neglected core polarization

but this effect has been observed in the case of fu?* n CaF,.

Both the €u”" 1on and the atom have a half filleda f  shell
with an 8;2 ground state. There are two stable isotopes, 151
and 153, efich with I = 5/2. Measurements on the &u atom have
been made by atomic beam methods and the contact interactions

of the atom and ion are compared below:

1513 2+ = _
tu Acore 83 Mces
151¢ o -
$u Acore = w 2 Mes
it is apparent that the core polarization in the atom is

negligible. For 151Cu2+ we find Acore/gn = =61 Mes and for

other divalent rare sarth ions we may write

Aore - 61(33--1)3n Mcs
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Af we assume that the core polarizatlon for spin is the - same
for all rare earth lons. The factor (g;~-1) gives the projec-
tion of 8 on J since wé are interested only in- the spin.. It
should be remembered that the hyperfine 1n£eractipn‘for rare
earth ions will vary with covalenby (up to 10%) although the

effect i3 not as pronounced as in the iron group.

We may apply the relationship

A - a
g _gJ

‘to the In°* fon in a solid and the free Im atom since they aif
fer only'by the filled 68 shell and they have the same ground
state (ZFZ). The measured valus of a for the Im atom 1s
-374.14 MBs. For the ImZ* ion in CaF, we find g = 3.464 and
A = T1101.4 Mcs and making allowance for orbital reduction and
core polerization we find avalue of a for the ™= lon of =382.4 Mos.
yhis difference in a values may be assigned to a 2% increase in
{e™3S1n going from the atom to the ion and this small change
is due to the fact that removal of the £8° elsctrons does not
eyjrect the inner 4f orbitals appreciably.

Hxnﬂ:21nn_InInznn11gna_x;$h_niahani_ﬂnglni

The interactions of masgnetic electrons with the "nuclei
of distant ions is due. to the presence of covalent bonding. In
our discussion of this problem we shall first consider a two

atom three electron system. Let us assume we are dealing only
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with a 3d332_r2 orbital and a po ligand orbital.

352w p2 Po
The Hejitler-London state will be obtained by placing two

electrons in the p-~orbital, one in p, and the other in Pg and
the third electron in 4, or dp. This represents & ligand
with a partly filled 3d shell. The wave function is

Yp = S (-1)P P 4 (1) p (2) pa(2)
P .

The only other state_we_can form from this system is

Y =_-N_ZP (-1)P P (1) dP(Z) p (3)

where the subscript T indicates transfer of one electron from

the’ ligand to the d-orbital. The ground state will be a linear
combination

s E[_-:- zB(de) + BZJ-'&E’xfB.q'T]-

We get on alternative description of the system by

constrvcting bonding and antibonding orbitals. The bonding

orbital 1is ‘ |
| ¥, = M(p+Ba)

where B is a small quantity'ﬁhich is in fact identical with the

B in ¥, and 1s therefore a measure of charge transfer or cova-

lency and

. E_+ 2B¢play + Ba:l -+



40

The antibonding orbital is

‘Pa = N(d - Ap)
where A is a samll quantity and

W= [1- 2a<plad> + 42]"*

The condition that Pa and 2% be orthogonal gives the

relationship
Py Py = NM[(pld>+ B-A-AB(pld)] =0
B +{pla)
1+ B<plad

2 B +<{plad>=B+8

In situations which concern us the ﬁnpéired ealectrons are
in antibonding orbitals and the unpaired spin density in the
ligand orbital is

£ = N%(B+s)2

The quantity S takes care of the ligand orbital ﬁolariza-
tion due to overlap and describes a purely ionic situation. The
quantity B takes care of transfer of charge from the ligand to
the 4 orbital leaving an unpaired spin density on the ligand.

The antibonding single electron d-orbitals for a regular

octahedral environment may be written

o~

- _ A l
o=bonding
e =nla 2
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- — 1 .
¢  =N'1{q "‘E"E!"”"? - _.,ri]
xy - Lxy T I3 F ¥ mmy -
de
1 7"'?-,-‘ y ‘]
1¥yz = ¥ [dyz = 7 (ma¥ w5 -mg - mg))
w-bonding - Ax -~
- ¥la vl teirwew ]
Py = X _:lz-x- 2 (r3+rr1 L ”62_
h

In the case. of the dr eﬁbitals_the ligand functions _
'Pl...ﬂ% are composed of S and po functions (e.g. 28 and 2po in
the case of F~ ligands) and may-be written ¥= aS+ P po; it
follows if we write A¥= A s+ A  po that A= As/w = Ac/p.

If we are dealing with a regular octahedron of F~ ions the
point symmetry at the ligand site is tetragonal and the hyper-
fine interaction with the ligand nucleus may be written

Arl;sz'_-kn(f;sx-rr;sy)

where the z direction is the bond axis and, in general,
Ag*2(hp + &y - )
A, - (AD AL - A,-r)

Here Ag 1s the hyperfine interaction through the fluorine
__28 o_rl;_ita_]_., Ap = g p gn Pn/RB' i1s the dipole-dipole 1interaction
betwe_en the magnetic electrons and the ligand nucleus and Ao.

and A,,- are the interactions .through -fluorine 2po and 2pr
orbitals.

A
B

~When-the two d7 orbitals are singly occupied as in the
case of -}'fn.z.'-"(clt-‘:3 d7*) ang Nia?!'(-‘de&' d'ya)' the unpaires spin
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densities in the fluorine 28 and 2po orbitals are
- NZ],ZS
s 3
Nzlzo-,._
T 3
where S 1s the true spin of the magnetic ion (5/2 in the case
of M and 1 in the case of Ni2') ang

2 Ay S/A,,

f

2 AG‘S/AZp

8r . 2
426 = —3" ef'e, pnl¥loll 28

_ 2 &3
Aap"g BPEy Py <T 7D 5
are the hyperfine interactions of a single unpaired 25 and 2p

electron on an F~ ion.

When the three de¢ orbitals are singly occupled as In the
case of Cr3+(de ) the spin density in the fluorine 2pr orbitals

iS N'Z xZ
£ = ——;—-—ﬂ =2 An, S(AZ-p

In our analysis of bonding interactions we can estimateAD
assuming point dipoles and known lattice parameters and from

our measurements we can determine A, and (Ao_- Av).

The relative sizes of Aa, and A*a- for iron group ions may
be estimated from a comparison of measurements on Cr3+ where w;
have three w-bonding electrons, Mn' where there are 3 7 ~bonding
and two o-bonding electrons and in the case of NiZ'where there
‘are two O=bonding magnetic electrons. It should be 'emphasised

that in ESR measurements we measurs only the bonding of umpaired
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spins. The measurements given below on impurities in K Mg F3

show that ro. ad fTr for iron group ions

, § to-t %
oot - 0.03 - 4.76
MnZ* 0.55 0.3
. { L 0.49 4.51

We expect overlap-(é) to make the more 1mportan£ contri-
bution to fs because the 28 électrons are firmly bound leading
to 1ittle charge transfer. Howsver in the case of the less
firmly bound 2p electrons we expect charge transfer (B) to be

the dominant contributor to foxf .

The theory out lined above neglects all orbi_tal | contri-
bution to the hypérfine structure and this is a good approxima=-
tio;i in the c'ase of Cr3+, Mna+ and N12+. However, we have seen
fhat the oi'bital angular momentum of Fe2+ and 002+ 1s not
quen:ched in a cuble octahedral environment and more extensive

calculations are required for these systems.

Yery Weak Hype 1 io

-The hyperfine interaction of iron group ions with fluorine
ligands 1is easily resolved in ESR measurements but the inter-
actions of the weakly bonding 4f electrons of rare earth lons
are not. Hyperfine structure which is unresolved in the ESR

_spectrum may be resolved by the ENDOR method.



The ERDOR technique has two advantages over the ESR
method:
(1) nuclear moments may be measured directly
(2) elsctron-nuclear interactions are measured to higher pre-

cision because of narrower line widths.

If we have paramagnatic ions in a crystal the ESR  lines
are in homogeneously broadened by ramdomly oriented  fluorine
nuclear magnets, other magnetic ions and random distortions of
the crystal field. The randoﬁ atat1§ fields contribute to the
ENDOR 1line width by (1) direct interaction with the nuclear
moment and by (II) interaction through the electronic spin.
Howsver, becanse these 1n£eractlons are with a nuclear rather
than an electronic mﬁgnet'wo got lines about 10> narrower and
therefore we can get precise hyporfino measurements and résolve
hyperfine structure unrosblved in the ESR spectrum. In ufreot
we combine the precision and resolution of an N.M.R. experiment
with the sensitivity of an ESR oxpoiiment.

Let us consider the simplest possible system, that of an
electron coupled to a nucleus with I ='% .

I, S
The energy levels are given
by the spin Hamiltonian a ' 'i
A A A A AN
. 8 - : b -
H=gpH8+4T8 gy Pp H'I
If we assume g fH YA, gy By H we |
find that the energy levels are
given to a’good approximation by | .i
-1 1,71 > .l
a’b“a.spﬂ-"-'-ti.A'"a‘nPnH TZ
1 al — ¥

b'sa'=-%gﬁﬁ;:éA:Z g, Py H
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The electron spin transition a e—at is now partly

saturated with microwave power by maintalning the condition
hv, = gBH + A/2.

A varying nuclear frequency of order hvh = A/2 1is now

applied and when
vy = M2 - g py B

nuclear transitions a «—— b oceur and when

]
hvn-A/Z"'gnPnH

nuclear transitions a'«—b! occur and change the intensity of
the EPR gignal. From the above relationships we find

1
+ =
Yo * Vp A/h

Yn = ¥n T 28, By Wh .

When we apply this technique to %t in CaF2 we obtain

lagh = 2.36 Mes, A -A | = 2.2 Mes
for the fluorine bonding parameters and these values are about
an order of magnitude smaller than the bonding parameters of
iron group ions in fluoride crystals. The small orbital reduce-

tion observed in the case of Tm2+ i1s consistent with these mesg

urements.



