I. DAMIÃO SOARES - M. NOVELLO

1. Some Useful Formulae (**)

The basic 1-forms $\theta^{\rm A}$ are constructed by means of the tetrads $e_{({\rm a})}^{\rm A}$ (***)

$$(1.1) \qquad \theta^A = e^A_{(4)} dx^4$$

It corresponds to a decomposition of the line element

which defines in each point of the manifold a Cartan moving frame of reference.

Cartan's first structure equation gives

$$(1.2) \qquad \mathcal{L}\theta^A + \omega^A {}_{\mathcal{E}} \wedge \theta^A = 0$$

in which the symbol \wedge means Grassman product and d is the exterior differentiation. The Ricci coefficients γ^A_{ac} relate the 1-forms ω^A_a to the fundamental θ' s through the relation

$$(1.3) \qquad \omega^2 = \chi^2_{ac} \theta^c$$

The ω -forms are set anti-symmetric by imposing

$$(1.4) dg_{AB} = \omega_{AB} + \omega_{2A} = 0$$

^(*) Extracted from a forthcoming review paper on the gravitational interaction of neutrinos.

^(**) This section is included here only for completeness.

^(***) Capital Latin indices run 0 to 3; they are raised and Lowered with Minkowski metric 7 = diag(+1,-1,-1,-1)

The second Cartan structure equation relates the exterior derivative of $\,\omega^A_{\,\,s}$ with the 2-form curvature $\,\Omega^{\,\,a}_{\,\,\,s}$:

(1.5)
$$\Omega^{A}_{a} = d\omega^{A}_{a} + \omega^{A}_{c} \wedge \omega^{c}_{a}$$

į

Its relationship with Riemann curvature tensor in tetrad basis is given by

The covariant derivative for a spinor $m{\psi}$ (thus minimally compled with gravitation) is given by

in which the internal connection $\mathcal{T}_{\mu\nu}$ has the form

$$(1.8) T_A = -\frac{1}{4} \delta_{MNA} \delta^M \gamma^N$$

in Cartan moving frame, where χ^m is a (constant) Dirac matrices.

2. Dirac's Equation in Kasner-Type Universes

In a Kasner-type Universe the fundamental length is given by

$$(2.1) ds^2 = dt^2 = a^2(t) dx^4 = b^2(t) dy^2 = c^2(t) dy^2$$

The fundamental 1-forms are given by

$$\theta^* = d\Gamma$$

$$\theta^1 = a(t) dx$$

$$\theta^2 = b(t) dy$$

The Ricci coefficients can be calculated by using definitions (1.2), (1.3), and the non-vanishing ones are

$$Y_{ext} = \frac{\dot{c}}{\alpha} \qquad , \quad Y_{ext} = \frac{\dot{c}}{\alpha}$$

$$Y_{ext} = \frac{\dot{c}}{\alpha}$$

Using (1.8) we can evaluate the internal connections:

(2.4)
$$T_{\bullet} = 0$$

$$T_{\phi} = -\frac{1}{2} \frac{\dot{a}}{a} \chi^{\bullet} \chi^{\dagger} \qquad T_{\phi} = -\frac{1}{2} \frac{\dot{c}}{c} \chi^{\bullet} \chi^{\dagger}$$

$$T_{\phi} = -\frac{1}{2} \frac{\dot{b}}{b} \chi^{\bullet} \chi^{\dagger}$$

These Dirac's equation

takes the form

$$(2.6) \qquad \gamma + \frac{1}{2} \stackrel{\vee}{\searrow} \gamma = 0$$

in which we have assumed $T_a T(t)$ and defined V=abc as the volume of the Universe.

By varying the metric on the Lagrangian of the spinor field, we can obtain (see, for instante Brill et al., 1957), the energy-momentum tensor of the field

A straight forward calculation gives:

All other components are mull. Now from Dirac's we can easily show that

identically.

Some special cases.

(a) Friedmann-type:

Set a + b + c = R(t). Then by (2.8) the energy-momentum tensor vanishes identically.

such class of neutrino, satisfying Dirac's equation

does not create curvature, but it reacts to the gravitational field. Such type of behaviour will be called passon-like (from Novello's paper "A new model of gravitational interaction"). It is also known as ghost-neutrino, by Ray and Davies who first obtained a solution of this type.

(b) General Kasner-type

Let us set a_in

$$(2.11) \quad \mathcal{F} = f(t) \quad \mathcal{Z}^{(t)}$$

where $\mathcal{K}^{(\bullet)}$ is an arbitrary constant spinor. Dirac's equation

gives

 $(2.12) \dot{f} + \frac{3}{1} \frac{\dot{x}}{x} f = 0$

Now, let us impose a χ^{rel} of the form

Now, let us impose a
$$\lambda$$
 of the form
$$\chi^{(e)} = \begin{pmatrix} \varphi^{(e)} \\ e^{-1} \varphi^{(e)} \end{pmatrix}$$

in which f^i is the Pauli 2x2 matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\varphi^{(i)}$ is an arbitrary constant 2-spinor. Then, we find Troxix24 - - 2: 60 to 2010)

If we impose further 4"+ 63 4" a (2.15)

then, for any function a,b and c we have

ex 2/f/2 φ"+ φ")

It seems worthwhile to remark that in both cases (a) and (b) neutrino current $j^\mu \circ \overline{\psi} j^\mu \psi$ is not well . Indeed, for the latter, the density $f = j^*$ is given by

and pro unless 4 so.

(2.16)

the form

(c) Massive fermions in a general Kasner-type Universe

For a massive fermion Ψ , Dirac's equation assumes

A direct calculation gives, for the non-null components of the energy-momentum tensor:

$$\frac{\overline{I_{i,z}} = \psi_{re} \overline{\psi} \psi}{\left(2.18\right)} \overline{I_{i,z}} = i\left(\frac{\dot{b}}{b} - \frac{\dot{a}}{a}\right) \psi \begin{pmatrix} -i\delta^{3} & 0 \\ 0 & -i\delta^{3} \end{pmatrix} \psi$$

$$\overline{I_{i,z}} = i\left(\frac{\dot{c}}{c} - \frac{\dot{a}}{a}\right) \psi \begin{pmatrix} -i\delta^{2} & 0 \\ 0 & -i\delta^{2} \end{pmatrix} \psi, \quad \overline{I_{i,z}} = i\left(\frac{\dot{c}}{c} - \frac{\dot{b}}{b}\right) \psi \begin{pmatrix} -i\delta^{3} & 0 \\ 0 & -i\delta^{3} \end{pmatrix} \psi$$

The non-null components of the contracted Riemann tensor are

$$\frac{1}{\lambda}R_{ab} = \frac{\ddot{a}}{a} + \frac{\ddot{b}}{b} + \frac{\ddot{c}}{c}$$

$$(2.19) - \frac{i}{\lambda}R_{ff} = \frac{\ddot{a}}{a} + \frac{\dot{a}}{a}\left(\frac{\ddot{b}}{b} + \frac{\dot{c}}{c}\right)$$

$$-\frac{i}{\lambda}R_{2\lambda} = \frac{\ddot{b}}{b} + \frac{\dot{b}}{b}\left(\frac{\ddot{a}}{a} + \frac{\dot{c}}{c}\right)$$

$$-\frac{1}{\lambda}R_{SS} = \frac{\ddot{c}}{c} + \frac{\dot{c}}{c}\left(\frac{\ddot{a}}{a} + \frac{\ddot{b}}{b}\right)$$
By imposing Einstein's equation

we must have

(2.21)
$$R_{11} = R_{22} = R_{11} = 0$$

$$2m \overrightarrow{+} 4 = \frac{\ddot{a}}{a} + \frac{\ddot{b}}{b} + \frac{\ddot{c}}{c}$$

$$4 + \frac{1}{2} \frac{\dot{v}}{v} + im v^* + 0$$
either $a = b = c$

$$v \qquad \psi^{\dagger} \sigma^{\kappa} \varphi + \eta^{\dagger} \sigma^{\kappa} \eta = 0 \quad \text{for } A = \begin{pmatrix} \varphi \\ \eta \end{pmatrix}$$

From these results we can make the following table:

We used the following conventions

$$\lambda_{\nu+} = \lambda_{\nu} \lambda_{\nu} \lambda_{\nu} \qquad \lambda_{\nu} = \begin{pmatrix} -\iota_{\nu} & 0 \\ 0 & 0 \end{pmatrix} \qquad \lambda_{\nu} = \begin{pmatrix} -\iota_{\nu} & 0 \\ 0 & 0 \end{pmatrix} \qquad \lambda_{\nu} = \begin{pmatrix} -\iota_{\nu} & 0 \\ 0 & 0 \end{pmatrix}$$

Finally it is important to remark that we have a strong suggestion of a symmetry of passon-like fermions solutions in Bianchi type I (including the flat-space case) models. That is, there should be a group acting on [7] which preserves the condition

or, equivalently, given a passon-like fermion solution \mathcal{V} , there exists a transformation

which generates other PL fermion solutions.

	T_{ij} , T_{ij} , T_{ij}	74, 744 744		7	4-(4) 7-4 4-(4)	arbitrary
	To, Ta, To		$\frac{\tau_a, \tau_a}{\tau_a}$	70	4,4-4,4 (4)-4	asés c
1.1	7., 7., 7.	74, 71	7.,	0	7-(0,0)	dac y a
7.,	T., T., T.	Tu, 74	<i>T</i> ,,	0	4-(41)	A=C + 6
<i>ī</i> .	To, Ta, To	7, 74	7,,	0	4-(4)	4.2640
unt ion	due to Dirac's equation	due to I due to II	due to I	*	Spinor 7	Coefficients
,		T. [4] = 0	7	44	11	Metric

bs.: 'Incompatible with Dirac's equation if m of o

4 - (0,0,0) = 4 4 - 4 + 4 - 3