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The Many Body Problem

S1. Generalities
a) The problen

We shall consider:a system of & large number N of identical,
spinless, non relativistic particles. Por convenlence set h = 1 and
2m = 1, where m 1s the mass of the particle. All quantities will be
then expressed in units of (length)p, P being positive or negative;

Sefe ’E[ = “2 |
The Schroedinger'equation_oo be ccnsidered is:
[Z -95) +’v] Y=gy (1.1)
where ’ _
V = Z v (:L'i:I - | (1.2)
1>3 , o - '

and the v (ry,) are taken to be sphéricaliy synmetric for simplicity.
Furtharmore, we apply box normalization with periodic boundary condi-
tions (different boundary conditions could be taken, but the present
choice 1s simplest). Denote by () thg volumo_of_the box.

The following conditions are imposed on v (rij)’
1) Short range; specifically v =0 for r > Tpax

11) It has a repulsive core. Evidence for this exists in
both atomic and nuclear cases: forces in the helium molecule, nuclear

potentials deduced from high energy nucleon-nucleon scattering experi
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ments. Furthermore the absence of a repulsive core would lead to a
collapse situation. This can be Séen as follows: 1if the potential is
of the form shown in fig. 1.1,
vir) 1.e. attractive at short dig.
tances, the particles tend to

come together, since this low

1] - e | ers the energy. If we consider
fj- E . ‘all particles confined to g
_ small region of dimension 4
Flg. 1.1 within the box () (Fig. 1.2),

and take the corresponding wave function as a trial wave function to
compute the ground state energy of the system, we have, for a Boge
sygtems
. ' 2
- - 1
CH> o~ -v ML) Ly (1.3)

as all particles can have the same krv-%-. Then, when N increases,

the rifst term dominates andg

we get E < =~ const. x N2, The
Ea' system collapses, the density
T T increasing indefinitely which
é¥ ————d is clearly an unphysieal sltug
Fige 1.2 tion.

For a Fermi svstem, not all particles can have the same
wave length 4. However let P be the maximum momentum of the Fermi
seda, Choose as a trial wave function one representing independent

particles in the small box of dimensions d; then
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PPadvN . P -";—-ﬁ - (1.4)
We get ﬁow: o : 3 | o
S NINCE
<'H>m-voﬂ%—‘-l)- + K —ZL ' (1.8)
' ' o -4

For large N, the first term is:again'prgdomiﬁat, and the system
‘collapses. | S | |

111) The potenfial_has_a lower bound.

Example:
: v ‘ .
(ev) o
o - Pig. 1.3, Potential
between two helium
atoms.
| . | (London: “Superfluids"
- Vol. II).
' ]_0'3 i
b) o e e for a Bose system or a Boltpmann sys-

tem.

The wave function ror a Bose system is symmetric under ex-
change of any two particles; Dencte it by 9%. The wave function
for a Boltmann system has arbitrary symmetry property. Denote it

Theorem: ¥, (ground state) = Y4 (ground state)
EeSe
Proof: Consgider .warb and interchange in it the coordinates

of two particles; the resultant wave function is still a solution
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of the Schroedinger equation with the same energy Eo’ and so 1s the

sum of the two wave functions., If we construct then the wave func-

tion
_ Z EsSe
w - P P v&r‘b (rl’.oo’ I‘N)
where the sum extends to all possible permutations of two particles;
v satisfies the Schroedinger equation with eigenvalue Eo and 1is
symmetric, As it does not vanish identically, (302;3‘ hag no nodes
and therefore 1s everywhere positive) we conclude that 4’ is the

ground state wave function of the Bose system, Q.e.d.

‘We are interested in the ground state energy for large N. First

consider the case for a fixed N.

E

0 4 _ _
N * el v.is_purely repulsive
~ 1f v also has an attractive part
..-:_g‘- 1
\\\5“-‘___ N7
Blmw—w——m o

Figs 1.4 - Ground state energy per particle vs. (density)'%.
Referring to Fig. 1.4, we can indeed prove that the curve is analytic,
as 1t is a solufion of Laplace's eq. with fixed boundary conditions
and well behaved potentials.' That the curve is ﬁnnotonically decres~
ing is easily proved from the argument that an increase in volume



implies a reduction of constraints. That the energy approaches
+ oo for small (] follows from the existence of the repulsive core.
As % —>+ oy the curve approaches 0 + for a repulsive inter~
action (no attraction, therefore E > 0 always). Since the curve
1s monotonic and is bounded from below, %ﬁim (E/N) always exist;.
It is also easy to demonstrate that a 1owei' bound B for E/N exists
and B is independent of N. To see this we refer to Fig. l.5. In
the optimum arrangement of particles, i.e. corresponding to lowest

Fig. 1.5

energy, any glven particle interacts only with a finite number < «
of neighboring particles, and we bhave E°> -V o N + Therefore

-N-Q > = v, o, independent of N.

Next consider the limit N— 00, taken in such a way that P remains
constant; we obtain the curves in Fig. 1.6. Three types, (i), (1i)

and (iii), are possible. Again the curve is monotonic. It must
1in

concave upwards 4 and N->o00 (E%)= oo at %- = 0. We distin-
S fixed



1im ?'_o_ 4
N

N>

(3 £ixed)

[ (1)

CN(111) -
. .a 1
| A

Fig. 1.6

gulsh three types of curves:
type (1): 1im (EQ(E)3>O always. Example: v )-0, the energy is
always positive, The curve approaches zerc because each individual

curve (see Fig., 4) approaches zero uniformly in N.

type (ii): the potential is partly attractive and allows bound states.

As example, consider the case of nuclear matter. At %%»ru 0 the nu-
clear matter is compressed, the energy being therefore very high. As
the volume increases, the density decreases (and so the energy) until
the natural density of nuclear matter is reached, say at the point A.
Beyond this point, we expect, Physically, the nualeons to form =
cluster which moves around as a single particle within the enlarged
volume. The additional epergy of the nncleus due to 1ts motion is

% e (J'-) » The energy per particle is N S (%—) which tends
to zero as Ny L-»00, that 1s, the displacement of the nucleus as a

whole does not contribute to the energy per nucleon. The curve (ii)



is horizontal from the point A on. (Note: 1in any approximate

theoretical caleulation one usually gets & curve of the shape

shown 'in Fige 1.7. This is because one forces the particle to

spread more than the natural density state, as if a negative preg

sure 1s applied).

negative limit. It

ple, to a system in

which two particles

Fig. 1.7

but not more.

In other words, for a system im which

0 >E(N=2,0=00) = E(N=3,(= 00 ) = 3 E(N=4,{1= 00) = 3 E(N=5, 0= c0)
: ' ete.

type (iil):s the curve

approaches smoothly a

corresponds, for exam-

can be bound together,

The two body clusters repel each other and this repulsion effect

decreases as the volume, and therefore the distance between clusters,

E

increases. That 0 approaches a finite 1limit follows from the

fact that now the emergy is simply proportional to thé number of two

body clusters, 1i.s. Eoru - v, % « Therefore Eo ~ o Vo,

2

¢c) Groun ate energy for a Fermi tem.
The discussion 1s similar to the Bose or Boltzmann case.

the ground state energy of the Ferml system 1s higher than the

Only

ground
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state energy of the Bose or Boltzmann case.

d) Exampleg of a few guestions not solved.

lim By

1) Does 0 e oy oay( Vi) exist 2 (It is believed that
one can prove it exists).

ii) Is this limit indepehdent of the boundary conditions 7
(Tentative answer: yes).

111) Construction of an explicit example giving rise to the
type (111) curve in Fig. 6, section 1-b.

iv) The pressure of the system at zero temperature is by
definition P = -( 1). Consider the three curves in

Fig. 1.6

type (i)

o
=D |

type (41). |
1m0

e el —




Can one prove that P= 0 as %—=(%)-O ?

One can form a non rigorous proof by a variational argument near

the point A.
type (1i1)

lim .E-QJ
N

=t

In this case p represents the pressure of the two body bound sys-

tem.

v) For a hard sphere system, is the face-centered" cubie
. packing the.' densest arrangemenﬁ ? The answer' isl intui-
tively yes, but a mathematical proof is not yet known.
vi) Does the -9 VS. % curve, for fixed N, concave upwards ?

Eqo . ;
Does the lim --- V3. ﬁQ curve 5 for N -0, concave upwards ?

‘de can give an intuitive argument for answering yes to the

' second question. Referring

Cow b a w |l to figure 1.8, construct a
Q| A M| - 258 ’
trial wave function which

represents Ni ‘barticles in

0 .+ O, =0
1 ¢ (), and N, particles in {l,.
Nl + Na = N
Neglecting boundary effects
. at the intersurface of the
Figo 1.8 .
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two boxes, a varlational calculation ylelds:

E (Nl’Iyl) + E(Nasllé) ;} E(H’Il)

or

[0 222

N 2

E B(Nq sy)
AL
Pl N _
left hand side of (1.6)
\\\*f/,' .
N X,

!
I
|
|
I
I
I
|

right hand
side of (1.6) :
. | -
Q4 141 £
= ¥ T
Fig. 1-9

It follows from eq. (1.6) that the point corresponding to the
right hand side lies below the stralght line joining the two points
defined in the left hand side of eq. (1.6). The curve then conca-

ves upwards.

e) Excited states
The definition of the excited states is not well formulated.

In our scheme (box normalization), the excited states are boundary
dependent, the density of states increasing as the volume of the
box grows larger. The exact positionﬁ of the states 1is not of phy
sical interest. Instead certain boundary independent quasi-station
ary states are of physical importance.
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The questions of the definition of the quasi stationary states,

of their collision mean free path, lifetime and of the number of
quantum mumbers needed to characterize them, are not well settled.
The problem is usually tackled in a way similar to the case of
elementary particles: the actual Hamiltonian is divided convenieng
ly into two parts, H = Ho + Hy .» (as the strong and weak inter-
action parts in elementary particles), in such a way that Ho yields
the ground state énd the quﬁsi stationary exclted states of a quan
tum mechanical system, e.g. phonons and elementary particles, and
Hint deseribes the residual (weak) interactions between the parti-
cles, which give the decay of the quasi stationary states.

f) Physical problemsg o
We aim to obtain a qualitative understanding of the follow-
ing questions: | |
i) Behaviour of Hel: A.transition. at 2.2° K, superfluidity,
infinite heat conductivity below 2.2° K, the two fluid problem (phe
nomenon of second sound). | |
11) He’: obeying Fermi instead of Bose statisticé, it does
not show the same phenomena as He4.
111) Nuclear matter: how to obtain the binding energy per
nucleon from the interaction between nucleons.
iv) Superconductivity
We shall not discuss iv) at all.
Authors in this field: Schwinger, Martin, Brueckner,
Bethe, Goldstone, Montroll, Van Hove, Watson, Bloch, de Dominlcls,
Luttinger, Klein, Ward, Galitzki, Beliaiev.
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§z. Pgeudopotentials for hard sphere interaction for two bodies-

(Phys. Rev. 105, 767 (1957))
a) Motivation
i) The hard sphere system comstitutes a definite model
in which we can estimate the accuracy of the approximations made.
It has one obvious parameter, the diameter a of the hard sphere,

in terms of which we obtain a series expansion of the energy.

11) Physical reasons: a repulsive core exists in fact
in the actual interactions. |

iii) For é dilute system, which 1s the only system sub-~
Ject to relatively easy perturbation caleulation, the important
changes in the system brought about by the potentials 1s the chan
ge of wave function at large distances. This change 13 characte-
rlzed by the phase shift, whieh for small energles, is in turn
speclfied by the scattering length. The hard sphere potential
is one in which the diameter a is precisely the scattering lenmgth.

b) ide
it consists in replacing the interaction by suitable
boundary conditions, and introducing a pseudopotential as an equi~
valent to the boundary conditions (Ref.: Fermi, Breit, Blatt and
Wweisskope( ™)),

* E. Fermi, Ricerca Sci. 7, 13 (1936).
G. Breit, Phys. Rev. 71, 215 (1947).
J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physios, John Wiley,
New York, 1952, p. 74.
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We shall treat first the two body problem.

v(r) rV

f | §

Fig. 2.1 | | Fig. 2.2

For the potential of Fig. 2.1 the Schroadiﬁger equation is,

in relative coordinates:

(V2 +¥%) ¥ =0 r>a |
(2.1)
¥(F) =0 re< a
Let us consider for the moment only s waves. Expanding the

wave function around the point a, we' have

r ¥V C(r-a)
or o |
Y~ cfa r)
We sxtend this wave function up to the origin and look for the

equation it satisfies:

VEY ~-Ccavh (=arcasdr) ¥ ara )V (0) (2.2)

C i1s the value of ‘P for the unperturbed system.

One can not carry this argument to higher order, because one
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obtains divergences due to the & function interaction.

e¢) Formulation

Assume a hard sphere interaction only for s waves. Referr
ing to fig. 2.3 we want to find a solution in the region limited by

3 the sphere of radius a and

any closed surface S.
vanishes_at both boundaries.

' The 8§ wave gatisfies:

Ceo? s 2 e s tanka £,y D
(V2 +x)P= gr 2B ER §7(p) 2 (r])
| (2.3)

where k2 = E. This equation 1is equivalent to (2.2) for small k.
We can prove 1t is an exact expression as follows: in the neigh-
bourhood of the sphere, expandingV , one can write

."P‘: .PS "'.PP"'V’d"' enw 3
then (VZ + kz)l}" = (V% + ¥%) ¥y as the other terms vanish.
But

Wy=adlnkir=2a) . ,slnkr .ok - a8k gy i,

Therefore _
(VE2+1¥2) ¥, =4 ar §3(r) sin ka (2.4)

On the other hand
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3 3
4vt—a§—£§‘- 8 (r)a%;(r"{’) 41,,.12.3_11%_1& ) (r)-‘-;-l; (T ¥s) =

A 4r tan ka cos ka §2 (r).(2.5)

i.¢. we obtain the same result as in (2.4).

d) Let us make a few remarks about this formmlation:

(1) - Equation (2.3) is not in a most convenient form:

you may write it
Wy = [ -PErariaple () 21 )Y .

The operator k% 1s Just the energy of the system: the laplacian
is the kinetic energyy the pseudopotential 1s the potential energy,
but thls expression contains kz by 1tself. One way 1is tp solve

it explicitly, but, if we are interested in an expression of the
problem in terms of a, we may write:

Lm%za[l-b%kzaa]"‘ voe

the first term 1s independent of energy, the second i1s dependent
but we can go back to the above expression of x°. We can substl tu

te the k2 by the laplacian, up to higher order terms in a

M'\Ja[l* -]36 azvz 'l‘...]

One has additional terms in a5. If we restrlct ourselves to the two

first terms there are no more k in the pseudopotential.
(i1) - The operator % r 1s not hermitian. One must be very care
ful about it - the operator has to be taken at the point r = 0.
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If 1% operates on a function which is regular at the origin, then:

Zry| = ¥

r=90 r=0

which means that %% r 1is just unity.

If the function 1s not regular, this is not true: for example, if

'qf“-'% ’ \'P’Ir=0. is infinite, but if you put CP=% in the
- ?

left hand silde, you have 0. So, 5T rqflr =0 #_er = ¢ 1f the

function 1is not regular at the point r = 0.

(1i1i) Higher harmonics. We follow the same procedure as for s.
waves; the details are disgussed in the paper mentioned at the be~

ginning of thls section.

(iv) ILet us mentiAn an electrostatic analogue. This analogy ié
fundamental for the pseudopotential method.

Consider an electrostatic problem with a small conducting
sphere at potential = 0., It 1s well known that we can replace
the charges on the sphere by a single charge and a set of multi-
poles at the center of the sphere. If we sum up the actions of
the multipoles, the potential produced outside the sphere is idep
tical to the original potential. Ordinarily, we solve electrosta
tic problems this way. The analogy can be carried out now: the
first term, the single charge, 1s just the s-wave of the scattering,
the dipole is the p-wave, etc. If we want to see how*ﬁ?iggneralize
the pseudopotential to the many bodf problem, the cone;pt of equi-
valent multipole distribution will become very handy.
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§3. Example of a perturbation calculation

Because of the fact that ;} r 1s a rather unfamiliar operator,
we have to understand how 1t
works, then weshall be able to
applj it to more complicated

probleﬁs. Let us take the very

trivial problem of a wave fung
tion vanishing on the surface
Fig. 3.1 of two concentrie spheres
(figure 3.1).
We can write out the exact normalized solution

1 sin k_(r -a)-
Y, = , “n'F -8 (3.1)
'Véw (R - a) r
where
m™m o o ;
kn = — s h = 1’ 2’ 3 ese . (3'2)
R-a o :
We want to expand this for small values of a:
IP ” o 1 Te 2
= + + *e + L N ] =
For example, from direct expansion we have
2 . 2 2.2 2 .2 2
. EI_n l1_ 7= n- 2a 2. T_n a
B T B2 T2 K0 By 2 3(g) (3.3)

V ° = R T — (3-4)
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We know the exact solutj.on and we can expand in terms of a. If

we want to replace the boundary condition on the small sphere by a
pseudopotential, can we make the perturbation calculation and derive

the wave function and energy correction, and get the identical re-

sult ? Let us treat only up to order a‘a:

By = [ eyl +aras? (® %]@ (3.5)
Let us write:

U=4mrad(r) % r ) (3.6)

In a perturbation e:tpa.nsion, ‘the familiar matrix element is:
U, =< }amo I_UIPA‘_’> o This guantity is trivially calculables: }”HO

is regular at the origin, so U is Jjust a & funection

- 412 m . 2art .
3E ° R ° R R3mn(37)

r=0

- o . 0
Umn'" 4#&3"13_ yfn_

Sc¢ we get the fist order correction to the energys:

2
1 _ Zam 2
W

and this is the correct result obtained in eq. (3.3).

Let us caleulate the second order energy. By a simple per-
turbation method:

U 2.2
Z Z X cst. (3.8)

nE°E° m#En 22

vhich 1s divergent: we get infinities., The reason for this infini

ty 1s an incorrect use of perturbation calculation. When one deri-
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ves this formula one uses the hermiticity of the hamilitonian, which
is not legitimate here. So the correct way 1s to proceed step by

; | o> (3.9;

then we get the second order energy En2 =<3”n° | U | '/’nl >

2 _ e U 0 | '
E ._(y;no ._U | %:1 — mn Yo > (3.10)
n -

step:

o

Em
This formula 1s general. If you switch U with the summation, then
you put out of the matrix element the constants and just have the
expression (3.,8). But you are not allowed to do it° U is acting

on a sum which is not regular at the origin'

S i U : ‘2an ;'_' m mmr?>r
m#Zn o - o l"yho >E - - "2 Fn 2 .2 sin
E "~ -E, ' r RY 27R "= n R

n

This Fourier sum has a kink at the point r = 0; it may be explicit

ly summed:

pan [(- e ) é 1 sinn® ]
- - — cos n - —
r RV 2#R z NI T 2 Tn
where 0 =

T
R

this is the same *?’nl as obtained from direct expansion of the
exact solution (3.1). |
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' 1
Forr =0, 6 =0 but Tl =15 ¥,' behaves then like — .
r

Now if we use En2 =<Vn° | 7| 'Wn1> we get the correct

expression:
2 2 '
2 _za" 7z 2 :
E, -3-—-32 2 n (3.10)

How the caclulation can be extend to higher orders: The
pseudopotential is not exactly U = 47 a &(T) -5-91-; r . With the
ad correction you get the right result in the next order.

We have seen that the existence of infinity come from the

incorrect switching of the summation with U.

We shall do the same for the many body problemj; we shall be

able to eliminate the divergence and obtain the correct result.

§4. Pseudopotential for the many body problem.

(Phys. Rev. 105, 767, (1957)).
For the many body problem, one is immediately led to write -
down the two body pseudopotentials:

= 3 —_
Vpg = ?‘>:;|: 8rTa § (rij) P ryy * higher order

terms. _
The change of the factor 4 to 8 is because of the reduced

. = 2 2 bl - 2 2 2 4
mags: one has {71 + Vz +€7’3 + 400 = J'Z- VR +2Vr +V3 +o00

— e e

where §'= 42— (Fi + ':Fé) and »r = Ty - rz. The kinetic energy
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for the relative coordinate r 1is thus ZVrZ. Hence the change
from 4 to 8.

Inaccuracles of Vpg:
We must go back to the electrostatic¢ picture: the problem

is ZN-dimensional. The system is in a 3N-dimensional box, the
function has to vanish or to be periodic on the surface of this
box. Let us draw a "superline" *?i ='§E (see fig. 4.1); the
boundary condition is | ¥, -7, | & &, so we have to draw a
small "cylinder" around this line: +the dimension of the surface
of this cylinder is 3N -~ 1, the boundary condition on this surface
is U = 0. Unfortunately, there are complications: There must
be some point where the superline Ty = T, intersects with the
superline '?i ='?E 3 in this region, the intersection of the two

cylinders will be a complicated one.

i

We can make more higher order junctions: three cylinders,

four ... The wave funection
of the system has to vanish
on the surface of all these
cylinders.

Baged on the electros-
tatic analogue, we might
think of some charge distribu

tion that gives rise to induced T2
charges on the surface of ths Fig. 4.1
ecylinder. If we use the concept
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of multipole expansion, we replace the charges on the surface by

charge and multipoles at the origin, that is on the axis of the
cylinders. We have a pseudopotential distribution.

If we take the two body pseudopotenfials, we can see that it
does not properly take into account what is happening at the junce
tions. However the total surféce area of the Junction is small
compared with the surface of the cylinders: we can take into
account the junction of cylinders by terms in which products of se
veral § functions appear. For example, the Junetion of 2 cylinders
may be written: §(F, - rz) 6(r = F4)e This term is of the order

of 8.40

In the many body ﬁrobleﬁ,'nobody has taken into account these

Junctions properly. In the calculations below they can be neglected,

Solving the equation 1s easler if one uses the language of se-

cond quantization, because of the summations in the pseudopotential.

With a sum E , 'Vij y with a_symmetrieal expression of vij’

you always get an expression:
Vs = ij“ﬂ’ (T,) .‘r(rl) 8wa 53’_(1'1-:-2 ) ﬁt Ty, ‘fl’(rl) \i}'(rz).

. a7 dr, | - (4.2)
vhere P(¥) satisfies the commitation rules:

.
(¥, §FDT, =0, [P@E, §F], =3 @GP, (4.3)
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The number of particles 1s

o= [¥@ §@ aF

§5. First order enmergy for a many ho te
Thls is easy because there are no divergences. Let us take
periodic. boundary conditions, and let us discuss energy correction
only for the ground state of the system. Let us stay in the first
quantization formulation for a Bose system. The wave function i;s
1

O = . !
M ey

-
[N

and the first order ground state energy is

_ . o~ o
Bp, =<Y° 1 Vg |l{r> (5.2)
Sg—i ri;l operating on 1_]3° - which is regular - gives onej; we
get 5(TF) for each pair. The result is
oo 2D e o % (8-1) - (5.3)
= x — = Ay — -l)e T .
Zr > a o) 'n'a. a | | 3

If N is very large, the ground state energy 1s just 4wap ’

where p= N/ 1s the density.

We shall now do the energy calculation in the second quanti;a-
tion formalism. The pseudopotential is defined by eq. (4.2). This
has the complication of the operator % r. We stated before that
for a function regular at the origin we can replace it by u_nity. We
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shall then define the pseudopotential

v, = ama [ P 81D ) K oF o (5.4)

We shall work with this operator until we get into difficulties,
and then look back at the right axpression. The advantage of v;s is
that 11; has a much simpler form.

Iet us consider a periodic box. The simplest way to work in
the second quantizatlon formalism is to expand into plane waves:
%G)=Zj¢;»053 * ; (5.5)
k VQ E
k is a simple cublc lattice of polnts: k = af X integer; the ar
are amplitudes which are quantized quantities. The commutation ru-

les for them can be obtained from those for Y, eq. (4.3):

[a‘ﬁ’a&.']t.= O
(5.6)
S

[ogreg®], = dgg -

If we substitute the development for ‘H’ into Vlgs, we have:

' ik x * 1( -{‘; -3* ; "'?0? +?¢? ) e — o, —.
Vps =9z T ag ay ag ay e 1 2 2 1 6(1'1-1-2)&;-1&1-2

The double 1ntegral is a trivial onej it vanishes unless _:‘:+3'-E-_f=_= O,

in which case its value 1s () + The result is then

' 4 ' ‘
Vo= aza*aka. §(1+ 3 -k -8) (8.7)
ps 1 13kt J 4 | . _
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where the § is now a discrete one. We have suppressed the arrows
in the momenta for simplicity; this convention will be used from

now On.

The meaning of expression (5.7) is clear: 1t represents the
scattering of two particles from —i;? momentum state to 'i' T, with
conservation of momentum, summed over all possibilities of value

and direction of momentum.

Energy for a Bose gvstem
We label an arbitrary state by [n)> , where n represents the

occupation numbers of the various momentum states: n = N, Ny D, ees

Let us calculate the diagonal matrix element <nlv;)sln> . Congider

' -4
ps? .
and J we get zero. Then we are left with two cases:

any term of V unless ¥ and ¥ are respectively identical to 1

— =

a) =% =1=F.

The operator a, when applied on the state |n> gilves a factor
Jn—kl . - .

: x % | .
2 <nl g oy ag oy | n> =20 m (my - D)

p) 1 #£73

The scattering 1s 1j — k £ or 1j — k. One term is of the
* *
form a ap 8y 8‘25 the other has a, &y but gives the same contri-
bution Dy By .

The total contribution is
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{n IV;SI n)-—;%ﬂ; [ZK nk_(nk-l) +. .2 g B, I'lk'] (5.3)
K # Xt

We can write it

41ra

{n IV;SI ny=— _[%’nﬁ-n+z(§'nk)2-2 %‘nﬁ]

or finally

4ra [

<n'lv;sl h);-ﬁ- 2R -FN - X nﬁ] (5.9)

K

In the case of the ground state oy, =0, kA0 .ng n, =N. We

get from eq. (5.9):

_ 411'# :
B s = w-m (5.10)

which is the expression (5.3) we got by the first quantization cal
culation. '

When N is large, Eg.s. ~ 5 Nz, l.e. the energy is propor-
tional to Np. |

Discussion: The expression (5.10) was in essence obtained by lenz and
Heitler in 1929 for-the particular case of the ground state. They
considered a blg box in which particles are scattdring on each other.
Let us suppose that all the particles ﬁre fixed scatterers and one

is going in: .it has a scattered s wave on each scatterer, the waves
superpose to give a wave travelling through the medium: the change

in the wave number gives us a sort of index of refraction. The

change in energy of the particle is known to be proportional to the
density, for a medium of low density. We obtain the above dspend-
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ence on the density. A defec¢t in such an argument 1s that the scatter
ing centers are considered as fixed: it cannot be easlly refined.

The third term of the expression (5.9) is a pure gquantum méhhan;
cal term, due to Bose statistics. If we want to go to low energy
states, we want to make the sum 3_ nk2 as large as possible; the
best is to put all the particles in the same momentum state; that
is Bose - Einstein condensation: the particles tend to condensb

into one momentum state.

We can ask the guestion: which is the energy of the first |
excited state above the ground state ?

Ara 2 5 4Ara o
AT 0> = - = [(w-124) - ] = - (an2)
48 .
which, for very large N is -?{-X 2N = Bwrap.

The exclited state has a finite energj difference from the ground .
state. The difference is independent of the size of the box when  —
density is fixed. This is completely different from the excitation
of a free particle: the kinetic energy'differencen (%)2 goes to gero
as the box gets larger.

In the many particle cése, we get an energy gap between the
ground state and the first excited state, which is not the case in
the free particle problem. However a more elaborated calculation

does not yield an energy gap, as we shall see later on.

e for a Ferml tem

The procedure is exactly the same as in the Bose case.
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Iet us be a 1little more general and include the spin. Every

particle will be labelled by its momentum and a parameter S; which
may take 2J + 1 values: - Jy =J +1 .00 Jo If there are two
of these S, spln and isotopic spin, we can combine the two together.
Thus S gives J = ¥ for protons alone, J = 3/2 for neutrons and pro=

tons. S gives the total degree of internal freedom.

It is well known that, when the potential is independent of
spin, we get exactly the same expressién as in the spinless case,

the spins are not switched.

' dra * * ' 3
v = e ' (k +k ~k_ -k }§ &
ps Q. klk " aklsl akasa ﬂ'k333 31:454 5 172 73 74 818, 3233
31329354 '
i Yot 3k, 4K,k ok, )
O EEEE, ®y8y Mps, Pgs, Pkgsy 87 FLTRTHZR
S182
i * Bk k) (5.11)
Sq # S5

the terms 81 = 8, vanish because ak3sl ak4sl + ak431 ak331 = 0.
In other words only for idemtical spins there can be no s-state
interaction between Fermions.

The'diagonal element of V;S is easy to compute:

' 4mTa
v = —
CoyglVpglmgg > = = % Pyys1 Piosz (5.12)
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this expression is equal to:

411-9.
[ ;’ Yy8y Ky, T Zg %131 251 ]

s152
The first term 1s the product of two sums '5;2 Dy s = K. In the
second term there are two independent summations: § (‘Zk nks)2

Thus
' 4ra 2 ' '
<n|Vps]n > = - [ N- - 5; (total number of particles

with spin S)'?']

In the ground state, all possible states S are equally occupied.
There are 'ZT:T particles ror a fixed spin S,

Then R
= (23+1)
gl' %}2 k81 n“a"‘a | sl (a:u) (23-:-1) |

For the ground state:'

<gr.8.l- V'ps l gr.s.) = Bﬂap N (5013)

- 2J+1

Comparing with the Bose expression, we must exclude the pair of par-
ticles having the same spin state. There are N particles in the
ground state and 2J + 1 possible spin states. We must have (N = 2J+l)
particles that may interact with one particle: |

1
1 _
E~- = 4map N{.1 - _ (5.14)
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§6. Higher order energies (Phys. Rev. 105, 767 (1957))

One can calculate the higher order terms. When we meet diver-
gences the method to get rid of them 1s exactly the same as the two
body problem. The procedure is very simple: we use straightforward
perturbation untll divergences are met. Let us write down the re-~

sultsg:

Fermi system
If PF 1s the maximum Fermi momentum:

b3 6nZp K
T e PE—
Fo 2J+1 9}

B, 3 2
£ = PF + 8rap
2 5 '

[l +6 (11 - .=_‘-E*.In?_’)‘-Pigi + 0 (P2 a%) ]
2741 LT - 351 r
The calculation of the terms is in princ¢iple very simple but a

- little bit involved. We have to be careful about the question of the
switching of the pseudopotential with the sums.

Let us pay attemtlon to the fact that each term gives a finite
expression in the case of fixed p and a, as (L and N go to in-
_ finity.

Bose system

i el e S (G lemt e e v ]

2337 1s the Madeluhg constant related to a lattice of positive point
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charges with a negative constant charge distribution, L3 =1 and

5. S= S
T hEyns-00 (L o4miAn)e
2. ,n.# 0

This sum can be shown to be convergent. In the Fermi case, the para
meter {1 is: all absorbed in p or Pp. It is not the same for
Bose system. One is very interested in systems where p 1is fixed,
and Ly N go to infinity. We expect the calculated energy to be
finite: '

%E ’ (%%)2 approach zeroj; but N goes to infinity like L and the
term N_({%)a is infinite like L. For a'fixed-p', we cannot get

a larger box witheut a smﬁller{g, _otharﬁise'we getjdivergences
immediately. For a fixed N and a-fixed.fl,;g. has a very small re-
gion of validity. o o '

It can only be appligd'to cases in which we are considering a
finite number of particles, but a very large box; e.ge in the virial
expansion, one is expanding in power of p , that means that we are
always dealing with systems at P = 0, and getting derivation of
various physical quantities.at zero density. Virlal calculation
has been succesafully made for the hard sphere problem.

§7. Energy for a Boge E eln system at finite .. e
(Phys. Rev. 106, 1136 (1957)) | | |
We have met two kind of divergentes: one is the infinite po-
tential of the hard sphere problem; we must be careful about thé
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expansion and the incorrect use of the pseudopotential. The other
is that the number of pairs of interacting particles increases like
NZ and we need only an increase of the order of N; for example,

™ the term (%&) the trouble is that the coefficient is (2N = 1).

How can we get rid of these difficulties ?

We are going to rearrange the sum in the energy and get finite
results. There is no rigorous Justification of it, since, if a series
is divergent, there is always a way to reéfranga it to get any fi- |
nite result; but the rearrangement is a quite natural one and can be

obtalned by several different ways.
We have a hamiltonlan

H = T + 'Vps | .(7-1)

where the kinetic energy T is given by

T =5 1% ey oa (7.2)
k .
.~ and the pseudopotential Vps is given by eg. (4.2).
We shall deal first with
r '

H = T + vps (703)

until we meet some infinity.

' 4ra

Ey
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The diagonal matrix elements of this operator are, as given by

Ara
@V lad> = o (@ -r-2afH (7.8
For the ground state:
4ma :
Eg.s. = (N'Z-N) (7.5}

The essential of the physical idea we are going to use is the
following: let us consider a state which is near thg ground stafe;
the occupation distribution in such a state is such that most of the
particles are still in the ground state. If we start from the ground
state, by an off-diagonal matrix element, we can only diminish the
mumber of particies in tha:ground state by 2, énd then again by 2;
no matter how many times we excite through an off-diagon&l matrix
element of the intefactipn, we still have essentially the same
occupation number of the ground state, since N is very large. Thus
we are going to deal only with states sﬁch that the occupation numbery
of the ground state is n_~ N and the occupation pumber of the other

) T
states is n, ~ a finite number. We summarize this by
n 1
2o
N ' N
(7.63
&" 1 o
N X

This is not a mathematical statement, but it is clear what it
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means physically.

Let us see vhat is the diagonal matrix element for these states:
' ' 4ma 4rra, 2 2
<n vy, Ind « = (¥-m-= T (I m + ¥
| (7.7)
4ra '
2 e (w 2 _ .2 2
_ fl_'( i: ny - ng + N°)

where the prime in the summation indicates that the term k = 0
is to be excluded, L, 18 slightly different from N; for the

squares we have to be careful

N -(§-z' n)=an I nk'?j(;z' n, 2

4ira _ 4ra .
A s A ST ICEEND
(7.8)

Thege are drastically different orders of mﬁgnituda: 2y ¢ Dy is
the dominating term. %The others are neglegible. Thus

(nlv;wln> T 4rap (N~1)+8rap Zn (7.9)

Let us look at the off-dlagonal ma elements of the potential

! ima * * 3
Vs = & 122 3% &* aza; §(1+2-3-4)

Iet us remember that each term in the sum give us a contribution

to a process which can be described as the scattering from momentum
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'R:L. Each &, operator gives ms & factor \/"k’

e

states 'Ei'fé to k3
We are dealing with states which have the characteristics summarized
in (7.6); their matrix elements are going to have drastically differ
ent order of magnitude.

What are the largest off-diagonal matrix elements, as far as
the order of N is concerned ? There are several classes of ele--

ments:

(1) the four momenta involved are zero: this gives only diagonal
matrix elements.

(11) the gstate kl = k2 = k3 = O and k4 # 0 is not possible, be~
cause of momentum conservation. This is a very important state~-
ment: with a boundary condition that ‘P vanishes on the wall, we
get exactly the same procedure; the fact that the walls can reflect
is equivalent to non conservation of momentum; at this last point
we get into trouble, the calculations become much more complicated.
This may be understood easily: the distribution of the density in
the box with perfectly reflecting walls is rather unphysical, since
it has a maximum at the center of the box. A periodié box glves ~

us a constant density all over the box; the physical situation is

a constant density inside the box, with a rapidly decreasing
density on the walls. The difficulties in the case of reflecting
walls mean that we are taking a wrong way to calculate the fea-
tures of the system. For an easy calculation the unperturbed system
must be very close to the real system. .with a perlodic box, we have
a greater chance of success.

(1i1) Two momenta are zero: it must be the pair 'EB”E; or'ii_ié
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otherwise it gives only diagonal matrix elements. There are two
kinds of largest off-diagonal matrix elements:

kl =k kZ = =k k3-= k4 =0
and
klzka.:’q i k3=+k k4=..k

" "As far as N 1s concerged, the magnitude of these elements

is easily calculated:

4ra 4Ara ‘ -
TCRNTIT N v 4amay

these elements are finite when N, (L go to infinity.

(iv) There are gmaller off-diagonal matrix elements:

it is obvious that they are smaller by a factor ii? .

1
(v) no momentum is zeroc. They are smaller by the factor 0§=¢
The elements of classes (lv) and (v) are infinitely smaller than
the largest ones {(class ({i1)) but there are infinitely more of
them e.g. there are manv more elements of the fourth kind than

of the third.

We shall proceed to do a calculation by first neglecting
elements of classes (iv) and (v) and then show that they can be
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included perturbationwise to give corrections of the orderVPaB.

We remark that in recent years in the theory of superconduc-
tivity pecple have, in a very similér manner, neglscted certain
off-diagonal elements and kept some others. However, there has
been no justification whatsoewer of this procedure since no one
has successfully estimated the error committed in making the
approximation. Worse stiil,jthe magnifuda of the off-diagonal
elements kept is the same as those neglected, while there are

infinitely more neglected ones than kept ones.

Let us now calculate the enerzy of a Bose systen.
The off-diagonal matrix elements of V;s'can be replaced by

thoge of V. 4 defined by

p
' PN
(vps) off.d. (vps) off. d.
" 4ra | . amra }':, '
Vps = _5- E. ap a_ﬁ- N + —h—- . " a_y N .(70_10)

‘The factors a,a, or ar a5 give noﬁ: N. fThis hamiltonian
clearly gives us the off-diagonal matrix elements of the kind (1ii).
When we have accepted the approximation, we have a very simple

calculation. The dlagonal matrix elements are 8 1 ap ﬁ’ak* By, »

We must not forget the kinetic energy and the ground state energy:

H":Z'kzak*ak*‘arrap La* a, +4map(N-1) +4 7 apx

x Z'(ag* a* + ap 'a_E) (7.11)
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k summation ranges over all k # O. This hamiltonian is quadratic

in the operator aj; it is obvious that by a correct transformation,
we can completely dlagonalize 1it:

Let us replace 11{: by 2 22 where k ranges over the half

space. : ' tx

H" = 4map(N-1) | + Z’(aﬁ- dk"---aj‘k a,) (k2+81r§.p) + 25 Brap(ay a%+ 3 ay)

o b
Let us define the opérators:
b = aa +. ﬁ?':k_' by = aa g + ﬁ.aﬁ (7.12)
the commutation rules are |
[bys bl = o [bys ¥ = 0 (g, v%] =0

(7.13)
[ o) = Plays af) - 6Plazy, ey ] = o2 - 2.

We choose *, P such that this is 1. ‘Then the b operators

follow the same rules as the a: they are'cfaation and annihila-~

tlion operators.

Let us substitute a in terms of b into H. Let us write the
transformation inverse to (7.12).

aby - PbL* = &
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Xb_, -fbf =a_ (7.14)
The undesirable {(non diagonal) terms are:
(12+ Brap) [-2opb_b - 2apblybl] + Grap(xBes?)(byb_ +bibly)
map) {=2XPD ey~ ZXBD by apa™ 467y b +oyeb oy

If we put
(k24 8rap) 2B = BTrap(OtZ"'pz) (7.14)

Then the crossed terms vanish identically. This may be accomplished

choosing
| o 8ma p |
f = sinh-Q, %= cosh &4 tank'2'@ = =—g=——— (7.14)
k™+8rae~
It is seen that there is always a solution for « and ff .
Denoting : -
2 - .
kg = 8map. (7.15)

the diagonal terms of the hamiltonian then give

H = 4map(N-1) + > ' (kP kﬁ)["‘ab;bk'* ﬁzbkb;] +

all k £ 0 :

DI BN

all k # 0



40
Using the commutation rules for the b's and expressing o and
B as functions of © (eq. (7.14)),

H = 4rap(N-1) + Z'[(k2+ kg) cosh 2 6 - k§ sinh 2 a] b; by, +
- . k
2, 12y wivn? e 2 |
E' % k5) stnb®e - k3 F stnh 2 6]
Using (7.14) and (7.15) we get fiﬁally

H' = grap(Ni-) + z\fk4+ 21:2 k2 byby - + I[P xd - Yt
(7-16)

The second term, because of the factor bk'bk’ represents the

excltation enargies. The other two give the ground state energy.

This expression diverges. To see this, we can write for

large k:
z | |
2xC ¥ ¥°
k% k2 - s 2%E = 1P ka kz 1- —Z=1Ps k22 (14 B~ 2+.)
x2 k¢ 2
4
o o
o
Then
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As in the two body case treated earlier, this divergence arises

from using H", vhere f% r has been replaced by unity, instead

of the actnal hamiltonian H; i.e., that %% r 1is not interchangea

ble with ths summation. The correct caleculation with the correct

pseudopotential gives, 1nstead of the expression

Z'[k2+k§.1- \/k4+2k§k2] ,
the following:

;oA | . Kk
[ = 2T F e 2 Eadd)] - il e fibad - o)

128 3

T

which converges to give a contribution 4mrap N

ground state energy.

Therefore

pas ] + E‘/k4+ 22 x% b, b, (7u17)

The excitation energy is

= 4 S 2 "

wk = 'Jk + lGTT‘sz = k d K=+ 1611'8_P‘

“EA - free particle case We see that for small k
I’ | W ot X2 - o ¥ K T

i.2, linear function of
k charactheristic of pho
non excltations: sbund

waves with velocity
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v = \/16rap in a medium of density p.

Compression waveg in the ground state
The velocity of the compression waves can be obtained from the

following. For a medium in the ground state, the pressure is given

v -
- 2B . _ 2 N = - 2
P = 55 = " A [4'n'anH] 4Fa_n2 4 7ap

Upon compression, waves are produced, the velocity of which is

glven by

2P
bpn

tp. Therefore

Py ¢ mass density. In this case, as 2m = 1y Py

v = —bL = mp’

3(¥p)

as obtained before from W = \l;tq‘-r l_6wapk2 in the limit of
small k.

Dependence on N of the energy
Again,the ground state energy is given by:

4
. X
Bga™ 4map(¥-1) - Z [k2+ x5 - .’\jk4+ 28 x° - v ] (7.18)

where ko = \’Bwa . We can expand in power series in terns of a
and compare with the perturbation expansion,section 6, for the

Bose sgystem:
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B 6

4
+  k const. k

—Ed _ 4rap = Z'[kz-i-kz- Vit 2 k- °]=. o2+,
T R T

3.3 ' 1
= » u‘ z [ N W ] L J
const - . m @- + (7.19)

This term 1s clearly recognizable in the expansion of Section 6.
If we consider the additional terms in (7.19) we obtain

E

1 aN.3 aN. 4 .
%80 _4rae = const. k*?" -h._)+.”]
- T P cons E L cons. (L-

Sucessive terms differ by order of QLE as in the perturbation
expansion. Let x = QI'E and write
B

' 1
28 _ 4ra = gonst. £ (x)
N : ® ;L—Z '

If we assume f£(x)~ x%in the 1limit x — o0, let us deter-

mine what value of « will make the above expression finite, i.e.

——— — te
NL ( L )

then
1, ek 2u+l 2x+l = 6
—_—\ = g +)
(7)o = s
and
1 5/2 s/2  3/2 3
2 (T) =0 et ar e '
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This 1s precisely the first order correction in eq. (7.17).

If we consider the contribution of the terms of the type
(o,kl)—*(kz,k3) which were neglected in the computation of (7.17)
we can show that thils contribution is of the form

1 [ 33 4.3 1
&N 4 const., N 4 . ]= g (x)
e L o3 12 N2l

The requirement for convergence as x—~ ® 1s g(x)~ xP with
B=4. The result is proportional now to ap (‘\‘p'a3)2 and differs
from the first order correction by the factor ‘Vpa3.

These arguments illustrate that the perturbation expansion
can be rearranged to yield a finlte result if the expansion para-
meter 1g taken to be 'ff;_psﬁ ingtead of_a,- and that precisely we

have found an express:t;pri for-the energy ¢eq. (7.17)) in which the
successive terms differ by order of pas- .

§8.  Higher Order Calculations
~ (Physical Rev. 112, 1419; 115, 1390; 116, 489, 1344;

Soviet Ph}’s. JETP Z’ 299)0

The ground state energy has been caleulated to higher orders.
The result is

E 128 4
-;r- = 4rap [ 1+ 15ﬁ 98.3 + § ‘;‘ - ﬁ) 913 ln (P83)

+ Kpa3 + higher order terms ] .
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The excitation energy of a phonon has also been calculated

to higher orders.

The phonons were found to be unstable because of possible
disintegrations into phonons of longer wave lengths. This was
discussed in Phys. Rev. 112, 1419 and in Soviet Phys. JETP Zy 299.

§9. Denge Hard Spheres

Up to now we have congidered the behaviour of a gas of very
low density. Now we like to study the behaviour for high density.
We are interested only in the expression for the energy for 1ow% .
It is to be noted that here the physical situation is comple tely
different from that for low densities because here we are in the
region of very close packing, the particles are very crowded and

the collisions among them are very frequent.

For N particles enclosed in a box we are faced with a AN=-di-
mensional problem. For each configuration of this N particles
'mphere correspondes a point in this space. To each permutation of
“the particles there correspond also a point and thus, for a fixed
relative position of the particles there are NI different points
in the configuration space. An interesting problem to consider is
to determine what 1s the region in the configuration spaces whose
points give an allowed configuration of the system in question.

Consider first the case in which the box has such dimensions

that the particles are in the situation of closest packing, e.g.y
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the particles are arranged in a closest packed face centred cuble
lattice. The possible configurations of this arrangement are given
by N ! points in the 3N~dimensional econfiguration space. Increag
ing the size of the box the particles acquire some freedom and the
gllowed region for the points of the aystem in the 3N-dimensional
configu;ation space® become small pockets around the N L points that
' represent the closest packing situa-
tion as shown in fig. 9.1. Enlarging

(:) (:> still the box, all these pocketis
@ . ) become connected by very narrow
R channels., For ailmost closest packing
(:) o the channels are extremely narrow and

their effect may be neglected. One

Fig. 9.1 can give a semiquantitative argument
to gre vnder what condltions it 1s possible to neglect the effoct of
e channels* gsince the mean distance between the particles is of
the order of !==p.ii, where P is the density of the system, in order
~ to interchange two ﬁarticles it is necessary to move ~ —p= S par-
ticles, a being the diameter of the hard spheres and ﬂo the value of
1 far closes. rasxing. If this number is much larger than one,
1.3., if 8~ ! it 1s justified to neglect the influence of the chan-

nels becaise thay are very'ﬁarrow and long.

The Polyhedron Meth.d

For the present discussion, we consider that the particles are
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arranged in a simple cubic lattice.

The equations defining the allowed region in the configura-
tion space ars of the form I‘fl -?2 | a2, where T, and '"1"'2
represent the coordinates of the center of the spheres 1 and 2
respectively. Writing in full detail this condition we get

)8 )2 )]i )
[(xl - XZ) + (yl - yZ) + (zl - ZZ },8 (9.1

We can change somewhat this condition by considering small de-
partures from the simple cubic array, (see fig. 9.2). Since in
this case yy ~y, and 2z - 2,
are very small compared with
ettt s e - ﬁl ~ Xy We may replace the above
| condition by [x; - le > a, which
is equivalent to replacing the

spherical surface by its tangent

plane at the point of contact of
Fig., 9.2 the two particles. If we do not
permit interchange between the particles, the condition imposed
for the X coordinates of the particles that are in the bottom row

are

28 0%, = X) 8 Xz - Xpdas ey Xy =Xy da X I- 4

(9.2)
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For the other rows we have similar systems of equations. We must
add also the system of equations corresponding to the y and z com
ponents., We obtain then a system of 3 mZ equations which define
a polyhedron in the 3N-dimensional space.

This polyhedron 1s further simplied by the follwoing displace

ment transformation:

N

- Ja (903)

Then
043(; <x.é coe éx; QL-ma (904)

The wave function is a product of'3 na wave functiong for the
various rows and columns. The wave function for the first row,
¥ (% eoe X ), satisfies the condition that ¥ = 0 on the boundary
of the region defined by eqs. (9.4).

Now consider an antisymmetrical wave function ¥ of m free
particles x; (] = 1423 s0oo m) 1in one dimension in a section of
length L - ma. Clearly ‘¥ satisfies the same equations, and satisfy
the same boundary conditions on the polyhedron defined by egs. (9.4)
One thus obtains the following theorem:

Theorem: The energy levels of the m> spheres near a simple cuble
arrangement are approximately those of a collection of

3 ma independent system each of which is a Fermi system of free one-

dimensional particles confined in a length L-ma.
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For the calculation of the ground state energy, we first take
one of the 3m° systems. For this system of Fermions, the momentum
goes from - P to + F. This momentam is related to the length of

the box and to the number of particles in the row by

2P(L - ma)
=m
am
and so
m T
P = = L ’ . (9-5)
L - ma n - a8 .
The enérgy for a row is thus given by
+P
[ 2 2.3 |
P~ &P = P m
NEE SR L (9.6)
2P 3 .
J-P dP

The total energy 1s equal to the energy of a row multiplied by 3m2.
Total energy for the ground state of the system.
2

' 2 _ o :
By = Z0° W - yp? =y - (9.7)
Since the total number of particles is equal to m.

| We like now to compare this result with that obtained by the
cell theory. In the cell theory each particle is confined to be in
a cube of side length L/m and is not allowed to be out of this
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cubs. The center of the sphere 1s then confined to a smaller cube
of side length % - a. For the x coordinate the wave function
for the particle inside the cube is given by

T

The energy for one particle, taking into account the three degrees
of freedom is then

7o

> & a)2
m

The total energy for the system of N particles is

Egr = N m (9.8)

It 13 to be noted that this energy is larger by a factor 3 than that
obtained by the polyhedral method; eqe (9.7). The reason for this
difference is that in the latter method we have more freedom to move
the particles, since the only constraint imposed is that one is not
allowed to interchange the particles in a row.

Excited Stateg: The theorem quoted above shows that the excited
states near the ground state have the structure of that of a system

of Fermions. This is gyalitatively different from the case for a
dilute system discussed previously.

Face gentred cubic arrangement.

This situation is that of a closest packing. The simple cubic
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arrangement will decay through the channels into the face centred

cubic lattice (see fig. 9.3).

One can use in this case also the polyhedron method although
it is not easy to write down the equations as in the previous case.

For the x coordinate of the

simple cub
P cuble particles in the bottom row there

exists the same kind of relations

fage centered
oubie “that were settled for the simple

cubic lattice. One of the restrig

"tions imposed upon the coordinates

of particles 1 and m (see fig. 9.4)
Plg. 9.3 is given by

%(xm-xl)+%3(ym-yl)$a '

The application of the polyhedral method to the simple cublc
lattice was succesful because the method of images could be applied
to obtain the wave function of the
system. This is very useful 1f the
hyper-planes defining the poly-
hedrons form angles that are intege:r
divisors of Zw.
For example, in the case of the simpk

™ cublc lattice, let us find the

angles between two planes of the

Fig. 9.4 polyhedron where the x5 are defined
in terms of xy by eq. (9.3).
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Equation of the Components of the normal to the plane
]

plane in normal 1 '
coordinates L. Xz oS NPT
%‘2- (xB' - xé) = o 0 0 ]ﬁ -1/4_2‘ 0 0 [
' by _ oA | 1 -1
#g (x;, = x,) =0 0 o° 0 AR e O e

The angle 8 formed by the two planns is such that cos & = - 1/2,
1.e.y 6 = 60° which 1s the sixth part of 2r. Then one can apply
the image method in a straightforward way, as we did.

In the present case we have

Equation of the ﬁ Compononts o{ the normal
plane g * I‘ * xz x]- xm ym yr. ()
v-..L_‘(xé -xi) =0 v ele see 142‘ -142 0 0 0 eeo
2

v-l_g (xn!l-- x;‘)-l-‘%_z\ (y;-yl) 20| e O -]7@" 145‘% -\’3/‘80 oee

The angle formed by these two surfaces is such that cos © = 1/4.
This angle is not submultiple of 27. Here one can perhaps use the
method of multiple images but the problem turns out to be extremely
difficult to solve. %}Fhough there 1s not yet an answer to this

problem, one may expect that the expression for the energy of the

system has the form

ol
R S (9.9)
(P3P 73y
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vhere € 1is the actual density of the system, @, 1s the density
of the closest packing and ot 1is an unknown constant.

Soft spheres

The potential in this case is of the form given in fig. 9.5 al)
and b).

- ; —

r ' ' : r
Fig. 9.5 a) Fig. 9.5 b)

The problem may be tackled using a variational method. It

can be shown that if the potential raises faster than l/rz, the
energy per particle is asymptotically of the form

6v(R)

where £ is the distance between the atoms in a face centred cubic

lattice.

§10. Incomplete Macrogcopic Occupation of Single-particle Ground

State.

In the computations we made, we started from the single~-
particle wave functions, and by repeated applications of the off~-
-diagonal elements we got the true ground-state. Also, we replaced
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x X

for ingtance the term aoaoaiaJ by

For our present purpose, we

ﬂns a8, (or Dya84s simply).
want to apply the approximation

method used before to the states for which there is macroscopie

but incomplete occupation of the single-particle ground state.

Thus, we set the single-particle

_no = NE

ground state occupation number

where % denotes a finite fraction.

It 1s also assumed that

(10.1)

there are pgumerous other states occupied, yet none of them alone

is occupled by a finite fraction of N.

That 1s to say, we

assume here n, (i # 0) are all small but there are numerous 1i's,

so that only the sum 3> ny gives a finlte fraction of N.

1#£0

Let us take a particular state of this kind:

where the prime over the summation sign means that 1 = O is

(20.2)

excluded and where the supersecripts "0" denotes our particular

state. Next, we write down a small deviation of the occupations

as

(10.3)

where the superscripts "1" denotes the deviation from the state
"O". It 1s assumed here that both

actual state of interest is thus given by:

n =

o D

B0 S0

ny i

+

+

1.
ny

1

nb

1
oy

are small.

The

(10.4)
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1) The dlagonal elements; they are (see eq. (5.9)):

f:i [ZHZ

QO -N-Znil

4re |, _
e _ZNZ-N-z;:'ni-ng]

-

4ra ) 0 1.2
o ZN_'Z-H-Z;.(gi-l-l]ii)-(no"'no) ]

!

4ra | Lo 2 i o 1 12
" ZNE-N-iZni -2% nini-i: ni‘

the terms =N -Zi ' 312 are numerical constants much smaller than gz

1 1
They will be neglected. The terms =~ ZZ nj_ 1]'i1_ - Z' niz -(2‘ ni)
are also negligible,

Thus we have

.~ Ama 0 o .
|diagonal elements |= ~=— [ZNZ -n 24 2n, Z’,' IJii ]

1
4

- — T |2 - (P . z(Nk)El (n, ~ 8 ]
4ra 4ra

=8 [2- % -250-%)] + 5 2N§z n,

4rapN [1 + (1 -3)2] + 8rapsy f' ny
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obviously, if we put ¥ = 1 we shall get exactly the same result
as we got for the case of complete occupation of the ground state
(see €. (7.9)),

1i) The off-diagonal elementg; as before they are divided into
*
classes according to the power of a, and a, o The largest off-

~-dlagonal elements are those of

Kk
808 o MeBoi
and
* %
2 1 %%

The off-dlagonal elamenfs, thus, will take the form

are. [s_: o Né s

— 2 + 5 N a,]
fol r %k » Mtk
*® X
a

where we have replaced a a,

and a,a, by N¢ .
iii} The total Hamlltonian, will take the form

H* = 4rapN [l + (1 -‘5)2] + E' (k% + 8rap¥) a;ak +
' * *
+ 4mapk {E: (a8, + &pa,) (10.5)

again, it is obvious, if we set ¥ =1 the Hamiltonian will be
reduced to_the same ong used_.before for the case of complete occu-

pation, eq. (7.11).

By means of the same Canonical transformation we used before

(eq. (7.12)) we can write the Hamiltonian in terms of operators
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H* = 4mapN |1 + (1 =9)° + (128/15V7) Apa” ¥ |

(10,6}

L
+ %‘ (x* + 161ra.p§k2) b Py
where the last term gives the excitations.
The number of exclitation is approximately given by
* : .
i:’ b, = N (1-%) (20.7)

and we may sepparate the total energy of the system into two parts,

namely

E (5, m) = By (8) + Eponon (5ym) (208
where the ground state energy is glven by

E, (§) = 4wapN [ 1+ (1 -%8)2 + (128/15V7) _Pa3 ES/Z]
(10.9)

and the total energy of the excited phonons 1s given by

Enonon &7 B) = 5wy (F + 16raps?)? (10.10)

and 6rapt 1s the phonon velocity (ef. the discussion after
eq. (7.17)). Attention should be pald to the fact that the m,'s
are subject always to the condition

(1/¥) i:' m = 1-% (10.11)
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It 1s easy to verify that the total momentum of the system
in the state specified by &, B is given by

— * — -
P (%, "’k) =2k ady, =2k m (10.12)
where m,, 1s the number of excited phonons with momentmmﬁf.

Related Digcusgiong:

Concerning the previous caleulation we would like to make

the following remarks:

a) e Te o between degenerate occupation of & sinsle-
~particle ground state and the number of phonon excitations.

Equation (10.11) says that the mumber of excited phonons
1s equal to the degeneracy of the occupation of the single-particle
ground state, which is an important result sincé it establishes a
relationship between the degeneracy of the occupation of the single~
-particle ground state, a concept already discussed by London, and

the number of phonon excitations, a concept discussed by Landau.

b) Order of Accuracy of the Calculation

For the ground state,

E, (§) = 4mrapR [1 + (1 =92 + (128/15\F) Pa3g5/2]'+

+0 (pa’¥)  (10.13)

For the phonon state,

B ponon (¥ ) = E' m (k* + 16rapt k5 4+ 0 (a3  (10.14)
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Notice, however that the energy w, = (k4 + 1lémaps kz)i of each
phonon 1is accurate to the order of N° and not Nl.

¢) Computational Separation of the Hamiltonlan into Different Re-
glons.

One interesting aspéct is the separation of the Hamiltonian
into different regions for computational purpose. Such & separa-
tion is certainly not well-defined, therefore we might ask our-
selves what 1s the criterion. The situation is like that shown
below:

only "rough™" edges

this bottom line is
well defined (ground state)

The different Hamiltoniars specified by different B's represent
approximations to the true Hamiltonian in different regions of enep
gy. This is quite similar to the discussion of §9 where we saw that
the approximate energy levels in different pockets (face centred
cubic, simple cubic ete.) collectively give the energy levels of
the system.
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§11. Thermodynamic Properties of a Dilute Hard-sphere Bose system.
Ref. Phys. Rev. 112, 1419

According to statistical mechanics, all the thermodynamic
functions can be obtained once we get the partition function of

the system. This partition function Q is defined by

Q = 5= o PE(m®) (11.1)
m,§

where P = 1/KT and K is the Boltzmann constant and T the absolute
temperature. Here "m" denotes the set By Moy eoe for different
combinations of occupations.. The values of the mk's are subject
always to the condition

(VK &' my, = 1-% - (11.2)

Now introduce the tial partition function, Q (%) defined by
Q (8) =& o PEmS) (11.3)

where the sum over m is subjected to condition (11.2)}. We have

nowy in partial partition sum

Q= ié Q (%) (11.4)

Substitution of the energy eigenvalue into the partial
partition function leads to

Q(5) =L o BEL(8) -PEmw),

= o PE) ZPERS:  (u.s)
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where EO(E) 1s given by eq. (10.9), the m, 's are subject to con~
dition (11.2) and ¢ 1is defined by

- . 2\ ¥
wy = (K + 16wa p§k°) (11.6)
Next, let us introduce the function
R (M) = Ee"ﬁimkwk (11.7)
where o, is subject to the condition
)é.’mk = M (11.8)

We may introduce another function Q,the generating funetion
for Q, defined by

X M
Q=Y ¢ R (M (11.9)
M=0 :

wvhere { 1s a complex number. Now we can write
Q=X o PTmy ;2 (11.10)
m

without condition on the m's, or

-1
Q = Ta-y o~ P “%) (11.11)

Now we shall be interested only in £nQ and especially in
the 1limit N—oo. In this case only one term in the sum (11.9)
predominates the logarithm of the sum. Thus, we have the
‘asymptotic approximation of (11.9):
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in Q =l + DInRA). (11.12)

where M denotes the value of M of the dominating term.

Differentiation of (11.12) with respect to M yields immedi-
ately | 'I o
Iy o+ — QeR(W =0 O (11.13)
On the other hand, with (11.11) into ,thé left side _Of (11.12),
we get D . B ' B

- % (1 -2eP%) =1 inZ +fn R(R) (11.14)

Differentiating the last equation with respect to Rn{ we
obtain |

Ze=P¥y ' A | . dM
= = B + [Qn{ 4+ == In R(H)] -_—
k l_ze"ﬂ“’k _ _ dM ' d!nz
which is simplified, by means of (12.13), to
R -5 £k -
=R T (11.15)
Now we may 1ist all the formulae |
1)  Free energy F = - xTin Q © (11.16)
11) Logarithm of the
partition i‘unctiop:_ - inQ = [fn Q(g)'max.w.r.t.g
111) The partial partition | - (11.17)
function: o QUE) = e~ PEL(E) R[N(1-8)]

| (11.18)
v) ~  fnR(M) =- ‘\_;" th (1-¢e P9 i tng (11.19)
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(here we dropped the bar over M for simplycity of notation)

ge-ﬁwk
v) M= & = - (11.20)
k 1-leP%
where
“ =k (k2 + lévapé)* (11.21)

and M (i.e. ®) is obviously the most probablﬁ total number of
excitationg in the systen.

The above equations (11,16) - (11.21) allow for a computation
of F. We are not going into the exposition of the detalled calcula

tions; instead let us discuss some of the results of the calculation:

by

i) The T-p Dplot

We find the <transition curve as

;\3pc/k:|: = 1.342 + 2(2.612)% (a/A) + 9[(3/")3/21

Ao, = 2.612 + 0 (a/A)

where the subscript ¢ denotes the transition point, and A the thermal

De Broglie wavelength (4F/kT)§.
DA

Dilute Bose gas with
hard-sphere interaction
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11) The p -~ V diagram

= - Brap

S O -", isotherm for the free Bose gas

dilute Bose gas with hard sphere
interaction

— .
(Q/N) L - Q/8
§12. Two-Fluid Motion Ref.. Phys. Rev. ;;3, 1406

a) Galilean Transformgtion |
Taking the system of a dilute Bose hard spheres and using
a Galilean transformation to such & system we can get a new eigen-

state in which there is & macroscopic occupation of & single~-parti-
cle state with ¥ # 0. |

Let the transformation be defined by a relative velocity
V'y and the primed stand for the system in which condensation oceurs
at ¥ = 0 while the unprimed notation stand for the system in

which condensation ocecurs at -E'=-§; (# 0).

Thus, in the laboratory system (unprimed system) of
coordinates E; A O » the total momentum of the system is

—r

= (mass). v + PV (12.1)

and the energy is
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E=% (mass) vo + ¥ 2V. P +

+ energy in the moving system. (12.2)

By previous convention: (particle mass) = ¥; thus
F = tww+ = m, T (12.3)
q

where q 1s the momentum of the phonons with re spect to the moving

system, and the primed summatlon denotes the exclusion of “c'{ =0

as before.
Now, the energy from (12.2) can be written as

= IV 2.3 5
E=*% (Z)V +v._§. mq3+
2 t 4 2 ¥
+ 4rapN [1+(1 -E)]+ }.‘-.'.mq (q+ lémaekq”) .
d (12.4)

By setting (remember that the particle mass is taken to be

):
¥, = 47 (12.5)
we can rewrite the expressions as
P =0k, + 2o ¢ (12.6)
q q

E=Nk:+ ,;_" m (Z,.q+w) + rapN [1+ -87) (2.7

() = m, = 1-% (12.8)
q

wy = (a* + 16ra ptq®) (12.9)
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We ocan also write (12.6) as

Fe mp% +8Q-0F, + zq:' n, T

= NUE, + E.' n, (T+E) | (12.10)

b) Ine Quantun Mumbers ®. Pg . X

These parameters % , m , k, are not absolute quantum

numbers due to the fact that, fo: instance, phonons may decay or
scatter among themselves. They are good quantum numbers only if
these effects are small enough to be treated as small perturba-
tions. Among these three quantum numbers, however, i; is most
stable and in this sense we might consider it as a quasi-quantum
number (though it is evidently physically not absolute). By is
the most unstable one since it is affected easily by decays or
~collisions. § is rather stable, being subject to alterations
only i1f a finite fraction of phonons suffer decays or recombi-

nations.

c) i eguilibrium Distributio

Thls calculations is based on the assumption that condep
gsation occurs at ﬂ'# 0. The previous results are summarized in
(12.7) to (12.10). Now we are interested to know that if N, (1,
-

K,s Py T are fist given then what will be the values of @, & and
F after a long time.

First, we have
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Q= [ fQ (%, % ®loar, wort g (12:11)

where
Q (%, T:'s,_ls) =4 e BE(S Ky ) (12.12)

subject to the conditions:

L m = N(1-%)

q q
< (12.13)
- _ > :
T mq gs P~-N ks :
Next, we define
- -B3In W, .
R (M,;8) E I RERg“q (12.14)
where M and S are defined by
P2 = M (12015)
q d .
and |
q q
Introduce the function Q defined by
 § 1 ¥ l ]
Q = Z e-pz‘.m Q)q Im E Lm qx ququ Ezmqqz
&8 q4a/ q s q !Ey 3
(12.17)
or
Q J -P ((l) - ﬁta )
=TT (1L -2 e Q- ) (12.18)
q

vwhere u, is defined by
J Bu
e =5,  (12.19)
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Taking the logarithm of (12.17) and neglecting small contri-

butions except for the term maximized with respect to M and S (this
will be denoted by M) one obtains

in®R= [lmR M8 +u 2n§+f3_s’.'3]){ (12.20)
which, under maximization, results in the following conditions
tng + 2= tnROM,Z = 0 (12.21)
oM
and : _
gu + L fnR(ME) = 0 (12.22)
28
By taking the logaritim of (12.18) and equating it to (12.20)
we got
-
"'p(wq - U.q

- ?c:l'.!.n [1.- L e )] =[ !n. R(M,;8) + Ml ¥ - p_S'.;;]

M
(12.23)

Partial differentiation of (12.23) with respect to In ¢
leads to | | .B(w. = B
- - .q)

{ e P 4

1-Z%e

b2
q

e S M T A9
d (12.24)

which gives the most probable number of total phonons off the

condensation.

On the other hand, a partial differentiation of (12.23)
with respect to T leads to |
y -p(mq-ﬁfci)
e
_ —- i -
. oD i STF-NE
1-Le (12.25)
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which gives fthe most probable total momentum of the phonon clouds.
Obviously, now we are able to compute ¢ and W by means of (12.24)

and (12.25) once €, P, k, are given.

d) P al Picture o e distributio
From (12.24) we can define the average value of excita-

tions asg . _p{w - 'fi'-'ﬁ'fi‘

e 8

= e (12.26) .
Q 1 ~JePlwy = W -

where ¢ and @ are determined by means of (12.24) and (12.25)
while € 1s in turn determined through a maximization of (12.20).

”,

The dependence of ﬁq on -1?'-:'&'4-_1?5 gives the number of

excitations with momentum ¥ in the laboratory sjrstem. This distri
bution is spherically symmetrical around k =k_ if u = 0.

8
kz A |
- — asymmetrical due
e to the U.q part
f_,) K
point of condensation ('k'=-1§:'3)
e
ky
kx ¥ - space in laboratory system

Let us now look into a simple situation in which uy and

n, are zeroj thus we can plot the following curves:
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Ugrer O -,

_ / véry large uy

o

9x

The minimum of these curves gives the point at which iq reaches
a maximum, which should be at q = O. The curve for very large
u, is thus unphysical. The following restriction is necessary

2] < (16ra pl;)ir (12.27)

e) Two-Fluid Motion

We have seen that for a quasi-stationary state there
are two degrees of freedom described by ¥ and ¥, which are a-
nalogous to a two-fluid motion. For instance, 7= 0, corre-
sponds to a liquid with no total momentum but for such a system
Ys may not be equal to zero. The relationship with two fluld

motion 1s as follows:

Superfluid: Py = (/1) NE (12.28

Normal fluid: p, = (/L) N (1-%) (12.29)

and
“f’?,('). = Ps—l?s + Pn-fn
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Therefore the transport phenomena may also be studied through this
defined system.

t) Superfluidity
Now, without a detalled description, two physical concepts
ean be derived from the two-fluid model. For instance, let us im-
agine that a particle is being dragged through the system originally

at T =0 with no phonon excitations. The liquid after excltation
has a momentum and energy given by

F= Znk excited state
k
E = X w
k " “q
Now, this external particle - ground state
sufferg a loss of momentum and en : Excitatlion due to

dragging of a particle
ergy glven by

5P = - Z:mk'f

We have

B2l > Zm (16map)” K] (16rap)? |87
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or : . |6E| : i‘
— (16mraep)
62| d
thus

Vext > (16#&9)*

For excitation to become possible. .Obviously, the situation is
analogous to Zerenkov radlation which is possible only when the
external particle has a veloclty larger than a critical velocity.
In our case, the fluid_becomes frictionless to the particle below
the.critical velocit? (16vap)i. This argument was originally due
to Lapdau. |

g) Infinite Heat Conductivity

| The concept of infinite heat cdnﬁuctivity means that heat
transfer 1s possible even in the absence of a temperature differ-
ence. Experiﬁentally_this obtains for ligquid He below the A-point.
In the quasi—equilibrium state we are considering, if we set P = 0
and E; # 0, then we have a relative ﬁotion of the super and normal
fluids. |

Evidently all the entropy is contained in the phonon
cloud (normal-flﬁid)-thqs giving rise to the possibility of a
motionless (F = 0) isothermal entropy flux which offers a natural

explanation of such a phenomenon.

h} Second Sound |
The addition of one more degree of freedom gives rise

to the fact of two sound velocities: the first sound and the sec-
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ond sound. Mathematically, it is a consequence of the existence
of two different roots of the quadratic equation determining the
sound velocity. | |

§13. General treatment of interae _system with Bose sta-
tistics. Ref.: Phys. Rev. 113, 1165
116, 25
117, 12
117, 22
117, 897

a) Motivation
He* and He? exhibit slightiy_dirferent_thermodynamical

bshaviours. Fig. 13.1 represents schematically the phase diagram
for 594, showing the exist-
ence of twoe ligquid phases.
At the saturated vapour preg
sure, the transition from lig-
uid helium I to 1fiquid helium IT
occurs at approximately 2.17°K.
Another feature is that at 0°K,
Heo* exists as a liquid.

o> does not exhibit a
A transition though it has

Fig. 13.1

been investigated down to
0.1°&. Other characteristics are similar to those of He4. Now,
slnce the interatomic forces are almost the same for He? as for
Ha4, the potential ensrgy is practically the same for identical
configurations. We would expect the difference in mass to intro-~
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duce only quantitative but not qualitative differences in the bg
haviours of He> and He%. The absence of A trensition in He’ and

the presence of it in He® must then arise from the statistics.

It is our aim to show this by dealing first with the problem
of the-thermodynamical'behaViour of a system of interacting parti-
cles with Boltzmann statistics, i.e. arbitrary statistics, and
trace afterwards the effect ofeiﬁposing-a.definite statistiecs. In
other words, the actual problem 1s to be split in a part independent
of statistics and a part which depends on statistics.

b) Details of the treatment

Boltzmann statistics

We shall follow the Ursell - Kahn ~ Uhlenbeck development.
Introduce the density matrix: |

<1',2',..;Nﬂwﬂhqzz.”-mEE<1’}2f,;;-NHe‘kah 2 veu WD

(13.1)

where

1

I

—i E(xl, yl’ zl)’ ete.

‘We define a sequence of funetions Uh » the arguments of
which involve the coordinates.of_‘l ‘particles and which have the
property that they vanish repidiy when any interparticle distance
in the group of £ particles approaches infinity, by the follow-
ing relations: S
- 1 - '
<1 |w111>_—__ <t'logiD>

' — ¢ ' ' [ ’
<12 Wyl1 2= <ty 1> <2'fuyl2d +<a'2 oyl 2>

(1'2'3'|w3|1 2 3>E<1'|Ui|1> &'uyiz) <3
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. L) 1.1
1Moy (23,02 3y« K2'lmyl2) (A'3'Iu,l 1 3)
1 | O r_ .t

+<3 003 Az2iv,liad + (123105 1235
and so on. ¢ 1']‘#1[1) is clearly the free particle distribution
function. Consider nOW"(l'Z'lwall 2» : if the two particles
are very far apart, we are left with the product of free particle

distribution functions, hence U?. approaches zero. The U functions
exhibit explicitly the effect of the interactions.

The general expression can be seen to be

WN - %ﬂ% [(&. .r.. Ul? ‘(UZ PN UZ)‘ e (UN) ]-
m m o my

Xy L= n

% relates to all possible ways of assigning particle coordinates
to the arguments of the U functions. |
The partition function 1s by definitibn:

Q= S, Wy o - (13.9)

Introducing the grand partition function

Q= ;ﬁ-o (wx)) 2N g (13.5)
it is well known that
pA/kT = dn Q (13.6)
2inQ X
R = ol —— (13.7)
dinz

One can eliminate the parameter Z Dbetween these two equations

and obtain the pressure as a function of the density.
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In terms of the U functions:

-z 2 n
W };ﬁt =1 (21)™my) [Sp(Ue)] t

(13.8)

The coefficient NI/({1)™ myl gives the statistical weight of

any particeular arrangement of the N part_;icles in my clusters of

f particles each. We have thent

Qe My B m
~ N=0 By = (5P Up) /(L8 mp |
or o0 - |
m:d iy %‘j (sp U))™ /(2™ my]
1 - oo
Zm ® rq¢ |
W0 =L (2t s gp/at]™ vmyD)

and switching su.-._.r, and product:

Q= 'El exp [__z.-Sp U!/_.“]
: ' o o, |
- 1
exp El 2% sp U/t |
it follows from this, (13.6) and (13.7)

o .
— Z2* 8 /ll
. Fl R

P=Nm = (VA % eztsp Uy /11

(13.9)

(13.10)
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The above mathematical development i1s not entirely rigor
ous, mainlyin the interchange of sum and product. However, we can
agsert that these egquations are correct for small positive values
of Zy which represent the case of low density, i.e. the gaseous
state. In a more rigorous treatment, we have to confine the sys-
tem in a box of volume {), carry out the calculations and then
pass to limit Q—oo. Note that, as Uy is a function of the rela
tive coordinates of { particies, when we perform all but one of

the integrals in

all variables in the integrand =are éxhausted, and the last inte-
gral ylelds only the volume Il y Lee. |

1 -Q.H (x ...2) o ¥ o) o d

| o | (13.12)
Substituting in eqs. (13. 10) and (13 ll) above, D and p are seen
to be 1ndependent of 0. and finite in the limit £L+co if 2 is small.

¢) Boge gtatigticg _
The development is the same as in the Boltzmann

case, except that the partition function is defined now as:

Qg = ¥ 3= o FE (13.13)
8.8

The factor Nl is introduced for convenience, and S.S. means that

the sum is performed over the symmetrical states only. Then
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(1'y 2"y oo NUWEl 1, 2, ou0 BDE

= NI =% (1'y 2. 8 o PE ¥ (1,2, oo W)
(13.14)
Taking the diagonal element and integrating over all coordinates,
we get: | _ | . _ .
Sp wN- Qy o - (13.15)

The grand'pértit;on_fnnction is:

®  x s - N
%—-’_6. 2 QN,(N!I - (13.16)
Also . o
pS/xr = o Q° (13.17)
N 1 3@
—— = —— n (1 018)
Q@ & Imz ’
Again we can define some functions US by:
%5 lwlsl 1) =<1 ltrlsl 1>
<1'2'|w23|1 2y = 1" IUlsll) ' lu,%12) + (1 2! IUasll 2>
(13.19)

etec. and proceed to obtain results anaIOgous to the Boltzmann

case.
Schematically our procedure has been the following:

' 'W!44¥.Utf—¥fpff_'”' Bdlthann statistics

- W S-.—%Uz- S—_-’ps : Bogse statistics

A

Fermiistatistics
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The problems that arise now are how to compute the U, fung

tions from the interactions and how to rela'ce to each other the
different W's. We shall consider the second question.

d) Relatio between Bose statistiecs and Boltzmann
ggatigt;ca.
We have |
: r ot oy ' o a1 U - *
<1 ,2 | ] .ooN IHNSI].,Z oo.:oN> =, N!gé y’l(loloN ) e ?E "’1(10.-“)
and : ' -

1'y2', .--N'Iwgll,z-"--ﬂ)"—' % 1"1(1'.“._.N')e‘f’E Y(Lo..N)

In the second equation, permute the primed coordinates and sum

over all permutations:

g p'(l',a'_...N'lel 1,2 ...I“N>_"=

pE
% |5 Py ) e PR ... W

From the sum, separate out the symmetrical states_. Clearly we
have ¢ | |

for symmetrical states '. %:'.' 'P"¥'=...!ﬁlj id

for the other states = P"y-#}O'.

o

and we get:

2 P'CLl’y woul Wl 1 oea B> =<1 0N B 108D
| (13.20)

The program to follow is then:

S 8 .8
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The Fermi case can be related to the Boltzmann case in the
same way, with a convenient definition of the W[A and UEA, and

the program would be

A

U—W—> W A

L4 L 2

The Uy contain all dynamical features without iavolving
statistics. For the computation of the UR. we refer to the first
papers quoted at the begining of this section:

Examples: . .
U =W, =05 = wls from the definitions.

In momentum ‘repre senta.ﬁion:

o ' _ﬁkZ'
<k |e"* |k >
-pk>

Kk -
A % (13.21)

Siicr ©

and in coordinate. r'epresenta_tionz

: : 2 T 2
(KlImylsy = (UmePE o EED

_ = I 1
g A" &~ Jﬁz‘p‘l—- (13.22)

Qoo
where A= (411'[3)%. " This is a Gaussian distribution. For P= 0,
the width of the distribution 1s zero, and as P increases it
spreads out. One can think of it as: a diffugion probleml(keep in
mind that =0 rncans T = ).

§14. Diagram representation of the grand partition function

a) Numbered Prim Diagrams

We want to express the U° in terms of the U.



Recall that:

a'lyl 1> = gl )
| , (14.1)

{1'2 Iwzll 2b= (1’ lUlll) <z |ullz> + <1 2 |0211 2>

(1'z... Q'|w13|1 2 ...n)é {;’-,-P_’ '('1'2'...'1'lw!"11 2 eea 19(14.2)

and _W

"

<1yl <1_'.|u1-311>

} : _ 1 " . . (1403)
28l 2> = C1'imyBay (2l 2y + 1'2'101 2) |

Using (14.2) we can write:
P21 2) = <1'lmyie) (2'iml2)y + {1'2'|v,lr 2)

+<2' o> (a'imley + <2'1'ln,l 1 2)
Comparing with (14.3), we conclude, as (1'|U1|l> = ¢ 1'|Ulsll> ’
etc. that:s

<1'2'1v,811 2) = C2'lgyl1) <1’y l2) +<1’__a"|u?_|1 2>+

+{2'1"u,l1 2>
In the same way the other U® are found in terms of the Uts. The
computation is simplified by introducing a diagram representation

Cee? 1
{1 IUlll) -——

(1'a'| 0,12 e— X
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and so on.

Then every wl is a sum of groups of such diagrams. For instance

1'2'3' 1' 2 . "4
XX e X
123 123__ 123 123

WBS contains all terms in Wy plus the ones obtained by permuta-
tions of the primed numbers.

Comparing the 'W3S thus obtained with the corresponding
expression as given by eq. (14.3), we obtain the graphical ex-
pression of U;°. The rule is to st;*ike. out from Ws° all terms
in which, when we mak_e l_'= l-,_‘ | 2"= 2y etec.y the @e'pendence on
some of fha coo.i;d'ih.ate“s-is completely factored out. For simplici

ty we omit the arye rows from now on.
[

1'2'3t 31t s
:e ;};1 str.ike ogt t i L but not Ha {3 3 i X but not
i 2)(3 , etc. Then: | | -
rzr - 23 2'3' 1' 2'1' 3' | 3'1'2 32' 1
o = e HE - D s DG X -
123 123 123 123 12 3 12 3
X + 5 other terms o‘ptained by permutations

Let us iﬁtroduce

'zl Il 2..00> = ):- p' (1 a ...n |U£|l 2esed>  (14.4)

N -

]
e.g. 1 23" circle
+ 5 others =(1'2'3'|T |1 2 3>= ;gﬁzad o
123

123



Hith these new graphs, we have:
1 31 2

A
01T

2 3 12

X

123

\..9
\.n
—

As we are interested in the.case.l' = 1, 2' = 29 seey we indicate

thls by connecting lines with séme indices:

e ) 00 - (&
2 O @@ %ﬂ

These are the numbered

b) Unnumbered dlagr
As we are going to integrate over all coordinates,
it is clear that several graphs give the same contributions,
such as ZQB and 32 . Since in the expression for f{n Q.s,

we are summing over all dlagrams, the total contribution of such
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similar dlagrams can be represented by a dlagram without indices
with an appropriate factor. These will be called the unnumbered

primary diagrams. It can be proved that:

Theorem

S .
ln.Gl = Z (ell unnumbered primary diagrams) (14.5)

In the computations, an unnumbered primary diagram is

def ined to contain

1) & factor z for each line; £ 1lines =$zn,
ii) a factor‘r for each junction,
S 111) & factor l/S where S 1s the symmetry number
" _knowﬁ from,the tﬁaory_of graphs).
S is thé number of identical graphs withiﬁ the totality
cbtained by all possiﬁle pérmutations of the.indices in the origin

al one.

To acqua¢nt ourselves with the above statements, we write

the iirst few mlaf“nm eﬁplicit

l{La? ) o
L OO O v O (14.6)
" ;1~ . . .;ﬂ; .
()

() = (DU 1> @



(0)— (2%/2) [ C2ITy11) Calryl2> a1 a2

(e)— (2%/3) [ <2iry 1) 3irylad <1myl3> a1 az 63
(@— (2Z2)[ <12 IT,l1 2> 4142

(8)— (271) [ <2iTi3> 1 3I_‘I‘é|é 3> dldz2d3
(L) (z3/6)_[' {12 3|T|1 23> drdzd3

¢) Contracted diagramg _
Since (cf. eq. (13.21)).

v ' ..pka
<k _lTI k> = 8., 870" (14.7)
it is simpler to carry out the domputations in momentum space,

and we shall do so. Consider (14,6): the contribution of the

first row diagrams is:

_ A | 2

DzePE 4 (2%/2) o”HK 4 2(23 ) e~ BE | =

k R |
= - ln(l-Ze'ﬁk)

To represent more schematically the following rows of
diagrams, we defina. _

n(k) = + = + + f + Foeies ®
I ' : s

2 2 |
=2 + 22 o~PK 4 23 o72BKT = (14.8)

"

_ 2
Z/(1 - z o PE)
The motivation of this is that, for any given row, successive

diagramé are obtained from the first just by interpolating
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junctions T, in any of the lines. The set of diagrams of the

second row is represented now by

PGPS
(R s
the set of the third by
4 and so on.

These are the gontra dia . To each of these 1is
attached a gymmetry factor, to be compoted in the same way as
before, now with respéct to the dotted lines. It can de checked
that the symmotry factor takes into account correctly tho individu

al symmetry factors attached to ‘the previous diagrams.

The . introduction of the contracted diagrams is equivalent
to having summed all Tl terms, 80 that only the 'I}z’ TE’ ess TE-
main. '

§15. FOrgg;gtion';g:toggs oﬁ.avef&gé oceupation numbers
The motivation of this is an extension of the previous de=-

velopment. Further sums can be performed. For instance, consider

the following_graph-with_the.cut_indioated:
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On the right of the cut, because of momentum conservation one has

the same momentum on the two lines that cross the cut. This right

slde can be thought as a sort of a propagator.

We can sum over all such portions, i.e. portions which
yleld an outgoing momentum equal'to_the'ingoing,

To indicate this,
wve define:

e | éfx . 4}\
M(k) = = 4 - & .0 + .U"" “one
- - ~ ~
| R 4 i
| ! (16.1)
with the corresponding symme try factor (same definition) Some

example of contributions are (for the definition of m(k) see eq.
'(14 8)) | |

- _Aﬁ(k-) |

H
}
bt " N
¥k — Z,( 1 kkt o
L fE o) Kk I'I‘al > R
kf»ﬁ?ks —+i %, 2(k)<k1k3[‘I’Zlkk2> <kk2|T2|klk3>
KTHo™ 1753
It can be proved that M(k).has a direct physical meaning:

Theorem:

If <n.> is the average occupation number in momentum

state k in the grand canonical ensemble, then -

= I S

k fixsd

(15.2)
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Summing over k, both sides yield the total number of particles.

One can further prove the

Theorem:

<m> = Mk)2 -1 (16.3)
where 2z = e~ ! 3 p: chemical potential.

Steps to express InQ° in terms of M(k)

(1)

]
+

where _ _ o | __ o o |
K= >O SO0 s
Explicitly: | T | B
P:) — Z.<kk |‘I’2|kk > M(k)

qt(} —_ 1} * k {x klkal‘I’ | kl k2> 1-10!:1)34(1;:‘2
which 1s only the summation oi‘ the proper part of the diagram.

Then: _ |
| M=m 4+ mKM L (18.8)
which glves the expansion .

M =n + oKm + mKmKm +

-+ all irreducible diagréms with % lines
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N
| A
| A

Irreducible diagrams: diagrams which, when two different lines

ares cut, do not split themselves into disconnected fragments.

{:}(:¢:3(:} - ¢ this figure shows a reducible diagram.

(11) Define _
P = X (all irreducible diagrams with'% lines without
external lines) =

(b)

. + ....(15.7)‘

(a) — iz<k k'I‘I’Zlk k') M(k) M(k )
(b)-—-ﬁ-(UB)Z.’(k IT lkl 2> <k1 k2|T2|k3 4>
X H(kl) M(kz) H(k y M(k )

(e)— (1/6) >:. < 1 a 3|‘I‘3|1 2 3> H(l) M(Z) M(3)

It can be proved the

Lemma 8T
8M(k)
Theorem

Q= X[ tn [Mx)/z2] - Mae/m(k) + 2] + P
(16.9)



90

where ﬁk ' ' . '
m(k) = Z/(1 -Ze ) (15.10)

and TP 1s given by (15.7).

Main point for the proof of'this theorem: if we differen-
tiate both sides of the eqnation with respect to In2, we obtain

E<n> = E [u(k)/z - 1]
which 1s cleariy cbrreét. R
Use 1s made of eq.-(ls 6)

This theOrem ‘can be generalized 1nto a variational princi-
ple: :
Theorem (Variational Principle)

Consider

Z{!n[M(k)/Z] - H(k)/Z + M(k)e f’k2+ 1} "'y

as a functional of M (for fixed Z). We seek the maximum of 4
with respect to variations of M.

25 M- vze Pk’ 4 ¢ © (16.11)
&M .. - .
where use is made of eq. (15.8).
Equating to zero, we get M=n + m K M. Therefore the
grand partition function 1s a stationnary value of 9 . It can
be proved that it is ;n fact a'maximﬁm by taking the second varila
tion.

In this way the thermodynamical problem is formulated in
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terms of a variational prineciple.

§16. Comparison with the p cal situation

The grand partition function is expressed in terms of M, Z
and P (eq. (15.9)). P, as _.give_n' -by._e_q_. (15.7), involves the
T  functions which contain no statistics: 1t depends only on
the dynamics of the systam. | | |

For certain T and z, H(k) has singularities in its de-
pendence on k, i.e. at k=0 M—»00. Bose--Einstein transition
obtains when the variational principle 1eads to a M(k) that becomes
| singular at k = 0.

For Ithe__real 394 éystem the phasé .diagram 3_.3_ as 1llustrated.
o . " The results above lead to the expecta~
. | | _tion that | |
‘Along AB M(k) = finite on both sides
Along AC M(0) = infinite on both sides
o = infinite on 1iquid side

Along 04 H(O){ _ -
- . = finite on gas side




