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CHAPTER 1

REPRESENTATION OF THE THREE DIMENSIONAL ROTATION GROUP

1. SPINOR_SPACE. -

Consider the two-dimensional complex vector space 8, and
the set {A } of all 2 x 2, non-gsingular niatrices. A which
transform 82 into itself:

Y= s where ¥, P € 85 _(1-1)-
or |
lp;_ = a-‘_k (,Uk, (1, k = 1, 2)
1th |
" 811 %2\ - < f3
A= oo . = . N .
851 85, > &

We further impose the' condition

det A = 1.

The set of these _A's formg a group which.by virtue of the
last condition 15. called the u__gimodulgg;_ group. The two-coﬁponent
vectors ¥ , transforming according to the unimodular group are
known as (first rank) gpinors.

Second-rank spinors are defined by the transformation:

Ve = g tgy Yan (0 dsmn = 1, 2) .
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Higher rank spinors are defined in a similar way.

Consider two spinors ¥ and n

Then

from which it follows that
! ' t '
Hence, when det A = 1:

Yy '22 -1 ¥ = invariant. {1.2)

Let us define a new spinor i,

t= 0,y = - g,

then |
vl 7 I s ¥ 72 = invariant.
Introduce: |
0 1 _ 1
el = _ eij_E ,Gij e;lk = + .
-1 0 0

We see that:



Hence:

Therefore:

Similarly we can prove for all odd-rank spinors:

13k ... = o,

Y Vi ...

By convention we call spinors with lower indices covariant spinors,

and spinors with upper indices gontravariant spinors.

One can easily verify by diféct substitution that the follow

ing relation holds for any non-singular A:

eae’l = (et 4) (A™HT ;5 AT = transpose of A.

Therefore,

YT oe¥ = @lTe ap) = vakeaele¥ = (qet 1) P Y.

We will use this relation later.
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2. REPRESENTATION OF 3-D ROTATION GROUP.

We define

¥ = 1yleFo, | (1.8

wheret o . _ -
76 1 0 o 1l 0
o, = o= - W, = .}

0 1\/0 1\ . .
«l G/ \1 0/’

A N A | (1.6)

F "

g =« b (P 2 WA
L.
We now impose the furthér restristion

st a =1, a1 = Hermitian conj. of 4,

l.e. we only consider the unltary unimodular group. This implies
the following form for A:

A= (lj** é;) , kxla +"[ﬁ42'=.1.
-3 o :

Then we have

ezVE + ﬁg& ’

' (1.7)
Ya= -Fh ra' Y,




It follows that

-

(AR T 2

..4']'-*=..p 'tpz-l-d (- q'l

L
% .
Hence (_‘E transforms like gl . If we now set

(Pl' =¢; ’.(PZ = -VJ; we have

n= ¥ (W% + YY) - real,
< xa = 12- (¢1 tpa - ?{)I (pa) =‘ realj (1.8)
#3 = ;ZL ((.P - '(0? y);) = real.

L

Consider ._now
x> =k + x5+ 2= %@1"2'9”2“’1)2 =§(¢1¢;‘_+¢%u§)2.

We see from (1.2) that x° 1s_ai1 invariant. Under the unitary
unimodular group the vector X therefore transforms like a real
three~dimensional vector under three-dimensional rotations:

‘i 1
.Ié = R (¢ )[3) ' f!z | .
x5 x5

From (1.6), (1.7) we find the explicit form for R (&, B)



(2. %+ &2 42), 1 (oB- p2+ o2+ §2), 2(ap-a"p

eep) = 4| 166 p- a2 @), (B pPe o4 p7), 21 - °f~rs)
2(«p +dB) ; 21 (-ap’+dB), 2(aa’-pp")

It 1s easily seen that the 3~dimensional rotation' group {R} is
homomorphic to the unimodular, unitary group {A} « Thus {&}
1s a Z-di_mensional (spinor) representation of the rotation group.
However, since the elements of RB) depend on the squares of ot
and 3, a change of sign of o and 3 does not change R so _
that to R(@,}) there correspond two elements, A and =& of {A} .
Hence {A} 18 not a faithful representation of {R} .

In general, we see that a vector of v + 1 dimensions
wz(V’(O), w(l)’ ao.aooooa W(VJ)

whigh transforms like

(V:{ 7 AR VI wa")

undergoes a linear transformation when ¥ tramsforms under A, In
other words 1f we form a veator with components proportional te

¢I ’vv.—l QIIZ seser. eta., which we label ?P(O)QUJ(I) verees BEB,
then yhen the ¥, and ¥, transform according to (1=1), the veetor
(;p(o) U’(l), Sererery ?ﬂ(ﬂ) undergops a linear transformation.
The set of matrices whieh act in this spege of v +1 =27+ 1
dimensions congtitutes a representation DJ of the unimodular

unitary group, The group {A} itself in this new notation is
p¥, '
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We now wish to show that the fransformation matrices of
I:’;1 are unitarvy.

If A is unitary
Yy - Yty
then
@Y= @7
or . -
T I 1%* 1y V P * v
(Wn + % ¥) = (¥ + Y2%2) o
1 - e v - -
3 z,vl“"'rw Ty, 'T = s (DPTTT YT T YT,
r=0 r=0
50 we must have
I (YN ) o s (Tt
r=0 ' rs
If we define
(r) (r)
o)z (vyf ¥ ¢
: (vl Vr!(v-r)!

then the matrices of D j leave the following form invariant:

é gp'*(r) q_-,'(r) : ¢ *(r) \p(r)
r=0

and thus the matrices of Dy are unitary.

We put
J=%v. M= r =17
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and hence the components of ?(.m) transform like:

2 ' J-M o, J+M
o) =gy ¢ ___ T ¥1 %

D —— ,H=-J_,--..:"J._

V( J+M) 1 ( J-K).' WHH)! (T-M)!

For the varioﬁs values of J we have:

=0 : the identity,
J =% : the unitary group,
J =1 : the rotation group (the representation of the

group by itself, or principal representation).
And so én. In general J = integral are sknownas 1:9_@53;
repregentations, whereas J = half-integral are known as gpinor
representationg. However, one :can speak of both as spinor

representations.

3. INFINTTESIMAL ROTATIONS.

Consider the rotation

(€ =infinitesimal) .
From the condition
(x)2 = 1n§'aria.nt ’

st follows that:

_'*E 13 5 ---65:l iy (3 independent parameters)



Consider now the spinor space. We have:

?ﬁ' = D(¢) U,
where
D(e) D(e!) = D(e + t) (1.11)
and:
- D(0) = ],
then:

g!' mD(e)¥ = ¢+i-(d#4)¢t;u)ﬁ.°x"-'“ (1.12)

(the faotor ¥ s needed because we sum over all i, J but only 3 .'s
ares independent),

o¢
% =
Define I-‘ld & (ﬂi—d) ¢ =g}
then
e ¥ :_H&gi_a
and1

B(*) EI** :ia g;ae

New, from (1.11) is follews that

d _ N .
; B (5¢) =B ($%) t iig b?zﬂ !

integrating and setting £ = 1 we obtain
| B(e) = !* iu *’;a
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If we set

then ' .
pe) = of 1Ly;€yy . (1.13)

The Ii;]'s have to satisfy the foll'owing commutation relations which
are required for the integrability of the differential equations

which determine the representation:

[IP‘%, 13"3'] = 1% o * IE)"S’g' - Imﬂ‘sgg' _ I’éé'sw, N
These reduce to the usual conditions, (1.14)
s3] = 13,
V(2] = 11y  qas
L) = in,
~1f we set

Ig = I =11,
131 = 12 =i LZ
.I.]_2 -=“'I3 =1 I.3 .

Consider a rotation W= € 21 about the x5 axig. The equations

of transformation for ¥ written in the infinitesimel form are:

X = x - WXy
¢ x.' = X5 + _kpxl (3..16)
X = x

5 3 3
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The R matrix then has the form:

1 =¥ o©
RP) =Y 1 of. (1.17)
o o 0 1

Alternatively R can be wrlitten as:

R(¥) = I =~ iLS‘P

where _
0 -4 ©

Ly =(-1 0 0 (1.18)
o 0 0

For finite values of ¥ one has from (1.13):
1L, P
R3 @ = e 2

Expanding in series and keeping in mind the fact that:

o -3 0 1 0 0
L; = {1 o o}, Z = [0 1 0} etc.,
o o0 0 o o o/
we have:
~{LyP l-.-’ﬁ 0 0 =1 0
33(%= e L’ =0 1 o «+¥Y [1 0 © *"22-
__ >
o 0 1 o Yo o

Collecting the terms one gets

cosY - sinP ©
Ra(‘PJ = | sin® cos¥ O - (1.19)
| 0 0 1 |



12
 which is of course the expected result. Similarly for finite
rotations R, (¥) and Ry (8) about the x, and x, axes, respectively,

we have!
| | TR "cos¥ O sinVY o
R, () = e < = o 1 o - (1.20)
~sin¥ 0 cos¥
and
~1L@ ' 0 0 -
By (8) = e = ‘0 cog ® =gin el . (1.21)

sin € cos ©

L, and .LZ' have the following form:

o o oy - fo o 4 |
Ll = 0 0 -1 ’ LZ = 0 ¢ Of « (1.22)
\0 1 o) -2 0 0 |

The A matrices corresponding to the various rotations Ry, R,
and R3 can be found by comparing (1.19), (1.20) and (1.21) with
(1.9) and by #aking account of the unimodularity condition. Straight

forward calculations yleld:

cos -g— - 1 sin -%— |
Ay = N - ' . (rotation about xl);
-% sin > o cos = '
cos -g— - sin -g'- _
A, = v P (rotation about xa);
sin 5 cos 3 '
e.‘i?/z o |
A3 = | ' o (roMation about x3)_.
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The form of the A's for infinitesimal rotations is:

AJ = I-lSj‘*PJ

where P, =8, ¥, ¥ for j=1,2, 3 respectively, and the
Sj's turn out to be Paull's spin matrlces:

.

¥
5

@
o
e

(1.23)

Nm
i
lar O\
y
o L oy
N
ﬂ.-
NQ

o

-3

[¥)]
M
]
N
]
o
\Nq

L

We must note that the co'rraspondence between D‘L‘ (A-1 8) 4nd D

(R' 8) 1ig not one-to-cne. The identity in nl leaves y X3
unchanged. To thmt there correspond in Dﬁ’., x% _,)Z Thus
to gvery rotation there correspond two elements o_f 4 5 A and -A.
D* is a two valued representation of the rotation group.

The representations with half integer index (spinoﬁ_s repre
sentations) are two-valued. The representations with J = integer.

(tensor representations) are one-valued or faithful.

We saw that the problem of fimij.m all the representations
of the rotation group is reduced to the probiem of finding ail
possible infinitesimal operators Ly» Lys Ly which satisfy the
commutation relations (1.15). For the principal representation the
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L's are given by (1.18) and (1.22). For the imitary group the
L's are nothing but the Pauli spin matrices.

In general the space of the representation of an arbitrary |
number of dimensions can be built up in the following manner:
let

then:

'[rg., L] = -1,

[I._,-I3] = + L_

(L, L) = 21,

- To find I, L and I.3 we take as the basis the eigenvectoré. Of Ly:
Ly Vy= v,

The operators L, and L_ have the property that:

LYy = Xy Vuny

LYy = %Xyg Yy

Xy, = VJ(J+1} -M (M-1)

with
M| € T .
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The vectors ¥y ....... %) ; transform among themselves under ﬁ+, |
L, L3 80 that the R2J+1, space transforms inte ltself under all
transformations of the representation. Furthermore, R2J+1 is
1rreducible,that is to say, it .containg no subspace other than

itself and zero,which is invariant under Dj.
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CHAPTER 2

I

HE LORENTZ GROUP AND ITS SPINOR REPRESENTATIONS

1. REPRESENTATIONS OF THE LORENTZ GROUP.

Consider the space of 4-vectors x = (x =t, x N x 0 13)

with the metriec
gh”

The group of real transformations which transforms

this
gspace into itself while leaving the length of the 4~-vector invariant,
2 _. - 4l - (Y2 =
= g, x# x¥ = t*~ « (x)° = invariant,
is called the (homogeneous) Lorentz group.
Thus
XV = E’:, x>, or xt =1Lx,
(2.1)
g}ny le x¥ = ng x,‘.a xy ,
or
L a - : _
I S S gy o - (2.2)
This is a condition on the transformation matrix L = (Eﬁ) It follows

from (2.2) that

detls.g‘;l =%
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For A=T7T = 0, (2.2) gives:

8}1»1% 2 =1,
or '
(19)2- = (12)2 =1.

i=1

Since all % are real,
(%)% = ()7 > 1.

We distinguish between the following four parts of the Jhomogeneous

Lorentz group:

”~

oo = 1o (I)
det |85 = 1, ¢ o
g "l < -1 (I1)
1o > 1 (II1)
det [A%] = -1, 4 ’
Yoo & ~1. (IV)

Only the first part (I) 1s a subgroup of the Lorentz group, because
only it contains the identity. It 1s called the proper orthochronous
Lot@atz group or continuoug Lorentz group; it transforms a positive
time-like vector ((Jco)2 - Z}. (xi)2>0, X, > 0) into another positive
time~like vector. The cont;‘:iuous Lorentz group together with any one
of the other three parts again form a group, which then includes

spage and time reflections (diwcontinmwul operations).

Just as the three-dimensional rotation group has a two-valued
representation by the two~dimensional unitary unimodular group, so
the continuous Lorentz group has a two-valued representation by the

two-dimensional unimodular group (not unitary !_).
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At
1181:'; cone positive time-like vector
,/
o
S
y
negative \
time-like vector

Consider the group of unimodular, 2 X 2 matrices

811 %12 o £

85 855 r 6.

det A =d-6-¢)'p=1.
A has 6 parameters corresponding to the 6 parameters specifying a
general Lorentz transformation.

1
The ccmatravariant spinor ¥ E(za) transforms like

t

Vv = AY or 'P'P = ghr 3

We also define a dotted contravariant spinor ‘{.’E(::la) by the

. transformation:
- .‘ . - * 'i n
¥ =uhTe op @R = a Mot

We see that a dotted spinor transforms like the complex conjugate of
an undotted spinor. Tensors with dotted and undotted indices transform

like the corresponding products of dotted and undotted spinors.
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In particular,

?la"‘i = ala" a*PP. TKP (2.3)
a.;i'
Regarding 1}' as & 2 X 2 matrix, this can be written
*
' = aPat (at = (aH)Ty.

It 1s obvious that, since det A = 1, det ‘I"' = det ’P sy OF

tl,1'1 12
det ‘F = 2 23 = 1muimt.

Now we have seen that the dotted indices transform "like the

complex conjugates" of the correponding undotted indices. Therefore
we choose l]_Jli, l{;Zé real, and '{'12. = (quj')*. We can then
intrﬂatl}e the real vector

x = (x%,3X) = (ty, xy ¥y 2)
by:
F ’
'Yll - z + t’
¥ =z e t, (2.4)
4 . '
':['12 = x + 1y,
*21 = x - iy.
Bhen )
"}.'ll '-Plé z+t x+ 1y
det A ) = det ’ =
21 22 :
11' 'I' X - iy -zd%
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= tz - xZ - ya - z2 = JInvariant.

- Under the unimodalar group, the vector x defined by (2.4}
therefore undergoee a linear transformation L such that 'l;a -"22 =
= inv:

x =Lx, t°-%= inv.

By usging (2.3) and (2,4), we find the explicit expression for L
in terms of the parameters o, f#,9,8% of the unimodular group:

Re(B + 8o )| -In('8+ ¥'B) |Re o - P8) |-Re(xt®’+ p8*)

oo* ~ BA* -loe* * .
Re@ = 869)|-In(@a’~ 69) |q0* + 88 % | off . EE*

-Re@a + 8%)| Inm@ol+ 8F) | .ot _ g0 *

where Re = real part,

Im

imaginary part.

We alsc wee that

Eoo =¥ (aoa* +pp* +¢)")="c + 86*) >0

and

det L =+1,
so we have indeed found a representation of the proper orthochronous
(confiinuous) Lorentz group.

As in the case of the three-dimens.:tonal rotation group, it
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can be shown that to every general continuous Lorentz transformation
there correspond just iwo matrices of the wunimodular group, A and
-4; thus the unimodular group is a two-valued representation of
the continuous Lorentz group. This is also obvious: from  the
explicit expression for L (2.5), which 1is unchanged if A 1s
replaced by -A. If we speclalize +to the case A = unitary, then

rl:-ﬁ* s 6=Ct.* y «wd == 1,
and
1 0 0 O
0 / r
L=1 o /// i
0 s

these are the three~dimensional rotations which leave ia invariant.

It is clear that the set of
)T 2)TH (LTI o2y T 1M

;/IMM' = —/-—_—-__—== . = (2.6)
. I (T-M) ! NI M) LT =M1 )

form a space R(J,J') of (2J + 1) (27'+ 1) dimensions which

transforms into ltself under continuous transformations. A linear

combination of the ¢MM" 1s expressed by

A K ¥ Pl 4
Af'._?" véé....,e.v’g'-n.y"{’ ? &to‘i, ?

where C 1s separately symmetric in the dotted and undotted .indices.
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2, CERTAIN INVARTANT QUANTITIES AND THE COVARIANT DIRAC EQUATION.

Earlier we introduced the invarlant spinor quantities

0
-1

e AR _
-€ap = € =

which serve to raise and lower undotted spinor indices.

In the same spirit we now introduce the invariant dotted

spinor quantities

3 1 0 1
= EAP' = s
-1 O

-_Gjiﬁ
to raise and lower dotted spinor indices.
The metric i 0

g =gh¥ = -1 1s an example

c -1

»n>

of an invariant tensor quantity in the four-dimensional vector
space. It serves to railse and lower the four=valued space-time

Indices.

We further introduce the invariant mixed spinor-tensor

quantities . .
' (Uk)” (k =0y1y 23 35A, L =1, 2):
[ Al (1 0) Py, -
(%Y = 1o 1) = (Ohi
Y A .
| @™ = (1 o) = (WM
' : ' (207)
ah = [0 1 .
(% = (4 o) = (P |
an (1 .
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The last equations follow from the first equations by lowering Q,l-i

&nd raf¥ing k, e, g.:

(oz)h}.‘ = ng €, EF'}"( )AP

- €A (@M (et

IR OIEHY

Using (2.7) explicitly, we prove

@M K = 28X (2.8
Also _
P gy + o™ (Frpge = 2 8.5 5,0,
t
or after contraction with g ek :
G (@), 5 + (GDPY (K, 5= 2 K g7 (2.9)
Simjilarly,.
Ap . A - = Skl . A
(o®) @y + (b Ro(oFyp =2 g TR

With the help of (0, )*" we see that (2.8 can also be
written as .
AR i Z+t x+iy\
b AR R I B .
xwly -z +t/
Multiply this by (OQ) ML and contract over 7\}.1. Then

(2.8) gives
x1 =3 (02)70-1 ‘{J“‘.,
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which is the exact generalization of (1.5) to the four-dimensional
space.

An invariant connection between an undotted spinor W" and
a dotted spinor LP}i is clearly given by

pr= P 05 = E @M g .

Hultiply this by x? (crn)x;, and contract over A.

Then (2.9) gives

\P); = -xlé xﬂ (01)70.’ ‘P’L sy where xz = x! i}. .

An invariant connection of thls type ls given by the set
of Dirac equations:

-

Kooy o xHP_

" . 2.10
¥ o5 @A = b e
Jl p k - m x °

With the help of (2.9) we obtain
Y2
(pkpk— 2){7-(} = 0.

We write the Dirac equations in a more familiar notation:
—
p* = (%P

)5 =1,

1
(T (9‘,1 ;)‘( = (x,)—'(t?are the familiar Pauli
4 %2

matrices).



Then (2.10) can be written
(p° & =P N%= m¥Y ,

YT (p°F -7 .edeT) = axT,

or since . .
_~ L]
[ Lo i = - H

m Y
_(2.11)

(p° + pP.o) ¥ mX .

By summing and mubtracting the equations (2.11) we find

also )
° Y - BDY, = oYy
) (2.12)
Lpo q’o = (‘K-?’) Zjﬁ = ~m ¥y
where
zP! = ').('-1- 'y)
Y= %~-9 .

Both (2.11) and (2.12) can be written in the form

{C}° pP° - 3’-?}‘[‘

or
ate, ¥ = n Y,
where the &'s satisfy the familiar commutation relations

ot o raolqt = 2gh .
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In (2.13) we first choose the representation

(G TS e ()

and obtain (2.11).

Then we use the representation

()=t (@)

0 «I
in (2.13) and obtain (2.12).

Both representations are of course. related by a similaridy
transfornation.

or = sop g,

where:

3. IRFINITESIMAL LORENTZ TRANSFORMATIONS« §PINOR REPRESENTATIONS.

Under infinitesimal Lorentz transformations;

I'P =. (6}:,+€’;,) x)’ .’_epy = -_G-y)_l’

any representation space is transformed into itself according tos
zP:: D (6) ?F’

where

4 | |
D) =I- — €p» M5 (ut¥ = PP,

2
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The M! ¥ are the infinitesimal transformation operators ~f

the representation of the Lorentz group.

It can be shown by

requiring that the differential equations which determine the
representation be integrable, that the 'Lakd must satlisfy the

commutation rules

[H“ﬁ, M""P'] =4 {H‘"P' g 4 p BX! P | o gPP - pr'gu’“’}.

Introeduce

(2.14)

Hij = Hk (CYCliQ); Moia Hi (1’ hES k‘ = 1y 2y 3)'

Furthermore define

K = ¥ od - 1wl

K;-Exltﬂz;

Ly= : 3 (HJ + 1Y) ;

Léax.li.u.a.

Then we f£ind from (2.14) that all K's commute with all L's and:

e ] =

o e] -

L.

ke

2%

r

(50 1]

+

h

Lt

[L.1] = 2 5

oy

We see that the K's and IL's operate in two independent spaces and

satlisfy separately the commutation rules of the three-dimensional

angular momenta. For these 1t 1s known how the vector spaces for

K and L are to be constructed. As a result we obtain a finite-

-dimensional vector space {V‘M ,} formed of eigenvectors of

K_"-, Ks» 15, Lys with
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K, Vi V(J'—H)(J"‘H""l) VM+1,M| 3

. _ (M=-J’ s 9 J)
K_ VMM' = V(J'-I-M)(J"M"‘l) vM_l’H! H
K3 vm' = M V}M| ;
Ly Vi = V(IP-MOTHM04L) vy 0 s

(M'=-J"---)U‘)

Lo vipge = WIH4M0)(Tr-Mr41) M Mi-] b
L3 VMH, = My VMMe: ¢

This determines a (2J+1)(2J7'+1) dimensional representakion of
the Lorentz group which can be easlly shown to be irreducible.
The corresponding space is actually identical with the
representation space of D(J, Jt), given by the vectors ?&M, of

(2.6).

For different values J, J' we have:

J Jt dimension representation spéce
of space
0 0 . 1 ¥ (scalar)
1/2 0 : 2 ¥*(spinor)
0 1/2 2  ¥*(dotted spinor)
/2 1/2 4 .ywi(vector; principal
representation)
1 0o 3 _Wa"(gelf-dual second rank

skew tensor)

L ] LI N ] L | AL L R I R R O I R

If Jy J' are integers, the representation is faithful.



29
Otherwise 1t 1is two-valued.

These are all the finite-dimensional representations of
the Lorentz group. In contrast to the finite-dimensional
representations of the three-dimensional rotation group, these are
pot unitary. In fact, it can be shown that only infinite-dimen-
slonal representations of the Lorentz group can be unitary. We
indicate the proof in the following section.

4. FINITE - AND INFINITE-DIMENSIONAL REPRESENTATIONS OF THE
LORENTZ GROUP.

The consideration of the operators K and L 1led us only to

the finite-dimensional representations of the Lorentz group. For

the general discussion we consider instead the operators:

M, = ML, 1M, [nt;ml;( 18,

t +
and -
g | %
They satisfy the commutation rules:

+

f .
off
b
=
14
H

¢?+' H_. 2 M3 H [N+, N;] = -2 M3 H
s 1M, M, [M_, N_] = [M3, N3] =0 ; (2.158)

B3 ”t‘["?:’“t]”“*-’

F2N;.

M, [NB,N‘!_]= i M

=
"

=
= .

l+l
1l
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A representation of the proper orthochronous Lorentz group
is also a representation of the three-dimensional rotation subgroup.
The Mts are infinitesimal operators of this subgroup representation.
The representation space generated by these operators is determined
in the same way as in the three-dimensional case. The treatment
of the N's 1is different, since they do not obey the same
commutation rules as the M's, With the help of the commutation
rules (2.15) the following theorem can be proven:

The irreducible representations of the proper orthochronous
Lorentz group are determined by a pair of numbers (#os ©) where
ko is an integral or half-odd integral non-negative number and C
is a'complex number. The irreducible representation corresponding
to a given (ko, €). is given bj the following relatidns for g
suitable basis fj}:

Y, ok
u_
My f= B IL

-y

Vi +p+ 10 - p) 58,

i

Yy

Vix +PNE~p+ 1) r"f_l

These are the familiar relations for the three-dimensional

angular momenta.

N, £h = Vle=p)(eep-1) €y 07 = Oemp)(orwrl) sy £

+ V(e+peL)(k#pe2) €y f;g 5



3

N2k = - (e pGepl) ¢ r}f:{ - fer P epeD) r”,‘_l

- Ve=pDGep2) Gy Toe 3

Ny rﬁ V(= e+p) € rﬁ'l = pby £ - V(o)) o

SRR il (2.16)
he .
ers 1k, C 1 (k" - k) (k% - cB)
Ak = ......_L_ 3 Ck = e 2 -
k(k+1) x 4 k41

a) If ¢t = (k,+ n_)2 for some integral n, the representation 1s
finite-dimensional and then

P=~ky =k+1, oo k-1,k; k =k, Egtlyesey ktny

b) If C° # (k;+n)? for any integral n, then the representation is
infinite-dimensional and

P S - k’ sse) ks k=ko’ k°+l’ sas

In case a) the coefficlents Cy are all zero for k) k,+n. We
see from (2.16) that the operators N generate a representation
space of n dimensions in the index K. This space is equivalent to
the previously mentioned spinor representation space of D(J, J .
In case b) the Cy's will not become zero for any possible value

k > k,y so that the operators N generate an infinite~dimensional
space in the index K.
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5. UNITARY REPRESENTATIONS OF THE LORENTZ GROUP.

We saw that (for € infinitesimal):

1
D(E) =T - — MMM ¢ .
> AP

If we now require that the representation D(€) be unitary,
p* = p1, ve fing

M"\PT = MAF y or Mi.f = Mi, Nif = Nic

Hencg
(15_31‘:3) = (f,N3g)-

Apply this first to the basis vectors:

(5 %0%) = (5% %)

Using the orthonormality of the fﬁ and (2.16), we £ind

Now
1 ko C

k(k+1)

s hence

Ak =

either 1) € is imaginary

or 2) K, = 0.

Now consider

(v o 7)) = (f, w1
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This leads %o

¥
Ck=-ck.

Since \ |

1 (k% - 12) (k2 - ¢2) - >

Ck=— > ,k)ko,ék-1>0
k 4 kK™=~ 1

we have k2-02> Oy 1.2,y C is either real or imaginary, and

1) C imaginary, we always have ka-C‘>0 : 2
E . >
2) C real, thenk_ = 0, and G, = 1\ E=5C=,
0 k 2
4k~ =1
the Conditionkz-ca)o forkzlgaoo..._........---.......-......-
leads to the condition CZG 1.

If now

Hence we have the theorem:

If the representation of the proper Lorents group is unitary, then
'(ko, 'C) satisfies one of the following conditions:

1) C is pure imaginary, k, is an arbitrary non-negative
integer or half-odd integer.

2) cf g1,k = o

Since in neither case the condition CZ = (k, + n)2 can be
fulfilled, we see that upitary repregentations can og;i be infinite-
=dimengional. Later we shall see that the states describing the
elementary particles as vectors of a Hilbert space must form the

basls of an infinite-dimensional unitary representation of the
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proper Lorentz group. On the other hand, the representations of
this group whose elements act on the tensor or spinor indices of

the field variables are finite and non-unitary.

6. IMPROPER LORENTZ TRANSFORMATIONS AND THEIR REPRESENTAEIONS
IN SPINOR SPACE.

We shall call the improper lLorentz group the group which
consists of the proper Lorentz group plus those Lorentz transforma
tions which have determinant (=-1) (improper Lorentz transformation)’
and -Qg > 1. The space reflection % = -x3 x ° = x° 1s such an
improper Lorentz transformation. Any improper Lorentz transforma-
tion can be regarded as a space reflection followed by a proper

Lofentz trmsformation.

The transformation matrix .)S for space reflection,

VAU
A= ("1_1> |
0 -1

does not commute with the general Lorentz transformation

"
]

L/&I

Therefore, 1f L 1is represented by a 2 x 2 matrix A = (g g) s
i.e. by the unimodular group, and A by a 2 x 2 matrix S, we
must also have ' |

AS # SA (2.17)
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But in the special case of the unitary unimodular group U, which:

represents space rotations R, we have

Us = SU

because 1 © o

AR = B8 R g EZZ? .

Since U is irreducible, S. must be a multiple of the unit matrix.
This contradicts (2.17). |

Thug the improper Lorentz group cannot be represented by
a two~-dimensional representafiion. We now show how the improper
Lorentz group can be represented by a four-dimensional representa

tion.

Earlier we introduced the contravariant two component

spinor z:"‘;l, which transforms according to

VAT 7))

We also defined the dotted contravariant spinor q};l by the transfor

mation

wil': ai)i * q)i],.

The spinor indices can be lowered with the help of the € matrix.
Thus

¥

n
m
po
=
£
A
H
fia]
e
"
1
[
-
qQ
€
Q

/_\\
) S
NS~
S’
1
Pl
- O
'

O
S’
< R
%* *
% %
R
/"\
1 O
'...l ..-._.
o M
S’
N
n 5
S’
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or

', 8* _o* .
1 ¥3 ,
(wé) = (_ p* d* (?Pz) ’ 1‘0}1 o= (A+)-1’1§L y’i .

In the special case of three-dimenéion_al rotations At A= 1, and
it follows that &F transforms like ¥} under three-dimensional

rotations.

We therefore define a "four-component” spinor VY as

follows:

e
"
A%

rn

and the matrix

A 0
f= :

o (aht
The set of these /e is manifestly reducible under the proper
Lorentz group. But now we include space reflectlions such as to
extend the group to the improper Lorentz group, and. take as the
four-dimensional representation for space reflection the matrix:

° o 1

s=1 . y 8 = -1.(2.19)
0

The operation with S on (}_’ takes an upper undotted index into a
lower dotted index and viceversa. The set of ,J's together with
8 is now an irreducible representation of the Iimproper Lorentz _

group. S does not commute with the j&’s. Only in the special
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A 0
case of three-dimensional rotations, where A= (0 ) y doeg S
A
commute with the 4%, as was to be expected.

We still have to show that S indeed corresponds to a

space reflection. Consider

lllg :Q’ll = z+ ¢ "tP; =IP12=x...j_y
2 23 2 _ 2i (2.20)
{2 = = -z +t o= =x+1y.
Now
11 _ qobl = _th2 = 42422
8P = sy = -¥Y = +y
SQEZ = _Slka. = -I-'(:k'% = +‘T21
) (2.21)
Sq,la = _stk% = -l-zk% - -l,l!al
21 _ 2 - _2 - _yl2
sY=t = sPs=-Y5 = g
In operating with 8 on Y, , we not only ralse or lower the two

indices, but also introduce a minus sign on account of the factor

i in (2.19).

Under the

operation S therefore

Hence, according to

= ‘L‘]’i

e

ll,;21.__,__,4,12 S

(2.20),

t—t 3 x_, ¥y Z —==Xy =¥y =2y | Q.E.D..
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7. SPACE REFLECTIONS IN SPINOR SPACE

We saw in the first chapter that for any 2 X 2 matrix
A the following relation holds:

T

ATe = pe al.

The transformation ¥”= AY in spinor space then induces the
following transformation for the '3-vectof X, as defined in the

first chapter:

—e #

x

Yle o= T ale g avw  (2.22)

pyTer? T aw.
The explicit expressions for the matrices A for general 3-D

rotations were given in chapter 1.

In this case we have D = 1, and

Xy

e alay. ¥

on the other hand:

o= ey xg syl a0y

Hence:

oy & = a;y 0y . (2.23)
We now define the reflection with respect to the x-~y

plane by:

t

¥ = cr3§U, i.e. Ap =03, Dp= -l
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Substituting this in (2.22), we indeed obtain:

as requlred.

]
B S |
xé = %
¥z T X3

For the reflections with respect to the other two planes

we obtaln similar results, which are summarized in the following

tabls:

Reflection w.r.t.

Representation AR _

yz - plane o5
ZX - plane oy
Xy = plane 03

origin (the product of the
three preceding reflections)

Plane with normal <

Since for all reflections Dp = =1, we have that the

expression

vie ¥

mentioned in the first chapter, 1s a pseudoscalar:

tpT'e o=yt sl AR?,U= pp ¥Te ¥= —yle ¥-

We further define
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Under 3%-D rotations T behaves like a veetor (A = A

e

Y=yt a*Tay= valzaday

or, according to (2.23):

T -1 _ _
Ri ""ZP-'.A ciAy’-aiJ ZP.'-O'JIP" 31‘1 E‘-"

However, under reflections, 21 transforms in the opposite way to

X;5 e.g.y for reflection w.r. to the xy-plane (Ap = 63) we have

ll'=¢’*03cla3"l’= ~f5 0, = --!.2,2-; = Iy -

—
Thus { 1is a pseudovector.

7inally, it is easily seen that

Yty

is a gecalar.

The ¥'s we have been dealing with are undotted
contravariant spinors ¥=¥?. We saw earlier that the dotted
covariant spinor X = X} transforms like ¥? under 3-D rotations.
However, under any one of the reflections listed in the previous
table, X 3 transforms oppositely to \g{f » We have, in an obvious
notation: | = Ay

r

Y= Aﬂw,where <

= TR
l—l

1]
i
el

»

Now



P o= gy
Hence

- * e T ..
x' —e..AR‘tp=€..AR¢.

According to (1.4):

.R-
)

Dy A7 € .. Y =Dy ap %,

Thus

g4 = —AR K. Q.E.D.

X 15 called a gpipor of the gecond kind by D'Espagnat
and Prentki (Ref. 21). It was already introduced by Cartan (Ref.

22). There is no linear connection between ¥ and x .

It is nov clear that we can build up the following table
of covariants with the help of the spinors % and Xx:

Scalars AR at x Xe Y
Psaudoscglars Z/;T" €E ¥ xT e x x' 4
Vectors an €E TP e Fx A @
Pseudovectors :-;61‘ T ¥y ] T x ‘e T 2




CHAPTER 3%

INHOMOGENEQUS LORENTZ GROUP

The inhomogeneous Lorentz group is defined by:
'l = gt 4of x”.

The product of two inhomogeneous Lorentz transformations is again

an inhomogeneous Lorentz transformation:

ir,
x# = a* sal x¥
Y . ¥ LA
X = bY +pJ x]
then:
xt = en +9f x?
where
et = abt + «xb p¥ |
(3.1)
")”; = 0(’; ‘31), . .
Symbolically:
(a,x) (b,ﬁ): (cyF) « | (3.2)

For the case of an infinitesimal transformation we have:

=" = ak +(6};,'+€’:,)x"

where aM and ef, are infinitesimals of first order. A representation

of the inhomogeneous Lorentz group D(a, ) is written:
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D(a,«) = T(a) D{a) (translation follows rotation).

It follows from (3.1) and (3.2) that

T(a) T(b) = T(a+b) yl(a,b)
D(xt) D(B) = D(x @) yloup)
D(x¢) T(a) = T(cxa) D() y(ota),

where the y's are factors of modulus one. The representation
expressed 1n terms of infinitesimal displecements and rotations

now 1is:

D{a, «) = (I - ia PP)(I-i"'}wMFv)

,l

where pM} are the operators corresponding to displacements and
are defined by:
pF‘P=(;-—% a0 0 Y Epae ¥
€=0
In order that the differential equations determining the represen-
tation be integrable the p* and the MM” have to satisfy the

following commutation relations:

}P :Pv] = 0
u*, pA| = 1 pt - g? p¥)
:M”E! M”’g‘] = 1(M”€ g8”'+ M‘P"g”s‘.‘_ ! Rl gEE'-MEfg””') .

With the p's and the M's we can form the following operators:

Pg, = % pk MY e’gv:\a.



We have:
r-l - po M23+p3 MOE_ pZ M03

M, = =p* M85 o p2 Wt o p? 12

We gee that for ? = 0 (rest syatem) we have ["'9 = 0, I'i!pg nt
a0 that l—ifpo ia the intrinale apin ef e phvgieal svEs
Nete that!

Also:

o, 7
Y

i@ﬂﬂ' F‘F' s}lﬂ‘ rRV)

oy (Mo Mg] # 0.

w

It ia easy to aee that the inhomogenescus Leorents greup has twe
invariant operatora:

P=1p" 3B,
and
W= [Ng %= 4 ykA Mua By p¥ = NP My Py pY

which ocommute with all the matrieeg ef the representatien.

Indead
[pF ' p"p,] 50 begause [p*‘ ' p"] = 0}
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[M"'"', p* p,.] = [M"" , p”] B, +p” [M"'!' ; p,]

= 1(p% p* - p” p¥) + 1(p¥ p*' - p* p¥) = 0

|'p’“l ; ‘n'] =0  because [p" ) I""] = 03
M*, w] =0 because [p’l s ro] = 03
M*, W] = [MP’ 3 Po] o+ f"a M* F“]

1[|-.Fn l'"'] + 1[['“', I""] =0.

Therefore P and W commute with the infinitesimal operators of the
inhomogeneous Lorentz group, then they commute with all the represep
tation matrices of this group. Now, if the representation 1is
irreducible, W and Py by Schur'ts Lemma, have to be multiples of

the unit operator. The cl fication of all irreducible

sentations is reduced therefore to the determination of the Spectra
of the two invariants P and W. Indeed, if % is an element of the

representation space we have:

D(a,a) W¢ = WD(a,a)y’.

But
W = wli

where w is a numbe_r
W¥= wp
so: WD (ay@)¥% = wD(a,x)¥

which means that D{(a,a) ¥ spans all the eigenfunctions of W
belonging to w. So, D(a, @)}¥ are the eigenfunctions of W with
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eigenvalue w. In thigs way D 1s characterized by the spectra of

W and P, Dw’p

or. D{a, &) = Dsm(a, o)

where we have set:
21

n

m
=mfs (s + 1) I .

=
i
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CHAPTER

WAVE EQUATIONS OF FREE ELEMENTARY PARTICLES

1. INTRODUCTION.

From the study of the Lorentz group representations given
in the preweding chapter, it is possible to obtain the relativistic
wave eqﬁations of free particles. We shall, however, follow closely
in this chapters, sections 1 and 2, the elegant discussion as given

by Bargmann and Wigner.

The wave functions which describe physlical states of
relativistic particles form a linear vector space. Call q’g and IPE-:
the wave functions of the same state of a free particle in two
Lorentz frames 1 and % . Then there is a linear connection

' between 3}’2 and tPlc :
%: = D(ﬂ', 2) ZPQ

The requirement that the frames £ and L' are physically equivalent
implies that the D(L) = D( g s 1) form a represéntation of the

inhomogeneous Lorentz group.

Since all Lorentz frames are equivalent for the description
of the particle, it follows that together with ¥, D(L)¥ is also
& possible state viewed from the original frame £. With ¥, the
vector space contains all transforms D(L)Y. This means that the
representation D(L) may replace the wave equations of the systenm.
To every relativistically invariant system of equations there

corresponds a representation of the inhomogeneous Lorentz group.
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S0 a classification of all possible relativistic wave

equations 1s given by a classification of the irreducible
representations of the inhomogeneous Lorentz group, i.e. by a

study of the eigenvalue spectra of the two lnvariant operators,

W

- o = p¥
e 7 anda P=p”p .

Since the translation operators p,, commute among
themselves and with all the r'o. s we can choose the wave functions
to be eiéenfunc':tions of the p, . In addition, they can be chosen
to be eigenfunctions of one of the components r',. s say |—'3 (with
eigenvalues §). So the wave functions will depend on the four.
numbers p, , which vary over the manifold p¥ p, = P # const,

and the parameter g s which may assume a finite number of values:

tp =. ZP(P’ E)-
The inhomogeneous Lorentz transformation
=t = 4 14 x”

Induces the transformation
LY = eIy PT qop, th) Pt b, §)

in representation space. The operator Q may depend on p, , but

affects only the variables ¥ (the "spin® variables).

The infinitesimal operators of the homogeneous Lorentz
group MpY 3 divide into a part LY which affects only the p, ,
and a part sP?” which affects only the & :
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MPy = _L)W + SPV.
We fina LV Y by studying the effect of MY on a wave

function with § = 0 (no "spin effects"). In this case a_, =0,
Q = 1, therefore

DLIP(p) = (L™ p) = Ppr-eltyp”)

q"(p)- BZGPvat
2p!

On the other hand:
i y
D(L) ¥ (p) = (I - < Epv M7y ¥ (p) .

Hence

1 Y \ vy ?
2 }1)’ g ,.w p bpa

Since this 1s an identity in € py 2 we have

?
P = c21pY g =,
vph

of which only the antisymmetric part ;3 (M’w - Hwl } 1s of interest.
We therefore have for the part LM or MM

L)l)'zj_(p,’l' g’h_pv g,“'z') —-b--
' ap?

We have

(4.1)

because
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[ e
pf pht g — ppyo = O
— ap™ ——

symmetric antisymmetric

3. e T
p? p” gf 5 €puvo = 0 .
%p

Also :
[ S}ly ’ pa] =0 o

because the S”” act only on the E.

Owing to (4.1),; we can write

l"'c, = % pb g¥? Euvac . (4.2)
Call
-
5 = (23, §7%, %) 5 B'= (891, 592, §93)
=0, P, ).
Then
ro = -?.—S_'
T = p° s - P X _S"] . (polarization) (4.3)
Also

— A
= -, % = % st Sua 9 p, - sAt 5,, P! P”

We see from (4.3) that the spin of a massive particle.
—
- is given by -S*= r‘/po in the rest system. For a particle with

zero mass there is no rest system, but 1t 1s possibia to find a
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convenient special system. We therefore give the general definition
of spin by means of the so-called little group.

The subgroup of the homogeneous Lorentz transformation
which keep é'certain chosen momentum wvector pg unchanged is called
the "little group®. It is the group of transformations within the
_fhree-dimensional "plane" perpendicular to the fixed four-vector
pf . In the special case of the rest system (P, = 0), the little

group 1s the ;Q;ee-dimengioﬁgl rotation group. This group is
obviously generated by the operators S¥”. If the wave functions

belonging to the irreducible representations of this.groug have

+ omponents y, the corre ondi spin 1 .

More explicity, the situation 1s as follows. In ordér
to define the spin of a particle with rest mass, we study it in the
rest system (otherwise we measure the total angular momentum and
there is no invariant way to separate the proper from the orbital
angular momentum). In this system some of the components of the
wave function may vanish. The remaining ones must transform among
themselves under a Lorentz transformation which conserves E'= C.

If the number of these 1s 2s + 1, the spin is s.

Hdwever, to find the irreducible representations and
the spin of the particle we could have chosen any arbitraiy 1little
group corresponding to some arbitrary fixed momentum p: . “This is
important for the case of zero mass particles, where it 1s not

possible to find a rest system for pl.

The infinjtesimal generators of the 1little group

corresponding to an arbitrary fixed momentum p"l are the f" 's
c »
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(which of course commute with all the components pé‘l ). Only

three r 's are lindependent on account of

]
o

pF I",.

a -
(_Pc I‘,, =¥ p? pH M~ e)lvad- = 0 because we contract the symmetric
tensor po. pf" with the antisymmetric tensor € PvAa)-

2. CLASSIFICATION OF RELATIVISTIC WAVE EQUATIONS.

We set

P = p"py =nZI,

and obtain four different classes of representations:

I. Q_lg_ss ,.l {or ‘p-'g_)_. mz > 03 pl . 1s timelike.

II. Class k, gogbsl. m =.0; pP lies on the momentum light

cone.

III. CBass ® . pf =0 for M= O, 1,.2, 3.

IV. C(Class P1r. m2< 03 pl' is spacelike.

Only Classes I and II have a known physical meaning .

I. (Class Pg (or I_’g_): Particles of finite mass and spin s.

Since p, 4is time-like (p p = m~>0), the sign of p,

I
i1s invariant under the orthochronous group. So the irreduclble

representations will fall into two groups accoriing to the sign
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of the energy sgn p, = po/lpo[ (or of the mass m = (sgn po)(p"p”)&).

We go to the rest system and find
|“°=0, ri=msi.
From the commitation relations for the [ 's,
[Fas Ty = tmeyy Mo
we find
[Si ’SJ] = 1 Sk S

in agreement with the fact that Si is the spin vector. Still in the

rest system, we have

W= mZ'*Z

5 = m2 s (s +1)I;s8 =0, 9 1y eun

The possible representations are listed in the table:

lll.>0 O’ *, l’ 3/2’ 2’ LN ]

m(O 0’ i-’ 1’ 3/2, 2, LN )

We now turn. to the determination of the wave equations of

the class Pm‘

Spin s = O. ¥ depends only on p, because % = 0. The wave

equations is

P p ) =a"Y(p); WY = 0.
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It is the familiar Klein-Gordon equation for scalar or pseudoscalar

particles. In coordinate space the wave equation is

(O+p%) ¥(@x)=0; D=—ba—2-—ﬁa.
Ax

Spin s =* R(N=1,2,3, o..). For N =1 we have the

case of the Dirac equation for spin ¥ particles, which we discussed
in Chapter 2. There we introduced the 4 X 4 matrices ‘YF and the

four~row spinor

¥=Y(py€), where §=1, 2, 3, 4. The Dirac

equation corresponds to a representation of the orthochronous

Lorentz group with space reflections, with m % O and s = %,

The derivation of the wave equations for a genmeral s = + N

follows the same pattern as in the case of the Dirac equation.

Ag wave functions we choose

Y=y (pi§1s- EZ: '”’-EN)’

which we require to be gymmetric in the § -variables. FEach &,
can take on four values: ’51 = 1y 2y 39 4 (1 =132y e0ey NJu

We further introduce the 4 X 4 matrices 9-( 1) such that:

p v » oy
Yy Yy * T o"’}(11) 2 gF

oy Y vy '
q’(‘i) ()'(J) = V(5 9'}(11) for 1 #3.

‘7{'1) acts on the variable &, of Y,
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The wave equations then are

q,P _
(1) p,_.q’_.-"-mq’(i=l,2, cees N =25, (4.4)
which give rise to the invariant
» b ¥
7h1) pp Y1) p, ¥ =% (o) Vo + Yy ) P, P Y=
= s}lvp},lp,,v’=p" p}lq’ =n V.

We proceed to find the infinitesimal operators M"Y of the
homogeneous Lorentz group from the invariance requirement on the

wave equations. From

(q')l(i) p;l-m)q" (p',‘%) =0 3; P;l

Q; Py
¥ (p'yE) = D (L) ¥(p,E)
we find
: b4
RUB by’ p,-m) D (1) ¥(p, §).
Multiply by D™ on the left:

b4
(p-1 "'}ti) Q)lrap,,- m) ¥(p,E)=0.

Hence we recover the wave equation in the unprimed sysltem, if
V b
ot @ ) Lraw= T (4.5)
or

ol

v 4
p(L) Y1) pry= Tt .

For an infinitesimal Lorentz €ransformation
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1l tueey ]
= )
D (L) = I- ZJ.‘ %Eryum .

Substituting this into (4.5) and regarding the resulting
equation as an identity in GULy, we find

. oY 4 .}‘ »A
! %[M (J)’c"(i)] =Ygy - Yy e

We split this relation up into

py A P A | YA
i [M (1)? ()’(i)] = Yy el -9y e

[’"'),fr(i)] O for 1#3.

Now we set

2
Sul =P 3 s with L' -1("--—--;?’-—

y .
Since L,‘ commates with the ﬁfs, we have

. VYA
1 [Spci)""u)] (1) gl - oy e

o

This 1s satisfied by
p o Loron v oo oY »
sy = — (Yo T - ol Xy )-
The total spin is -

b4
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- .
| With the special choice ‘)’( 1) = antihermitian, cro( 4y © hermitian,

we find that

(it = it

Q 1’R=132,33
(e°ht = _ g°

a result which is of course independent of the special representation

of the ¥'s.

Now we show that the representation of the little group
given by ¥(p;54,... ,528) is D, correspending to the spin s.

Since m # 0, we choose the rest system

to define our little group (here the 3-D rotation group). We saw
earlier that

[Qo(j)s 311(3)] =0 i,l =1y 2y 3.

We therefore choose ‘}o(j) diagonal. Since it must be different
from the ldentity matrix, with eigenvalues ha 1 and zero trace, we

I 0
Q° = ( ) .
(1) 0 I

Then in the rest system:

set

"}?(i) polP= m¥.

For P = + m, we have

‘)’O(i) Y=Y;

i.e.y all components of ¥ which correspond to the third and
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fourth rows of the ‘Y(i)'s are zero. For Py = -my ‘}°(i) Y=Y,
and the components of ¥ corresponding to the first and second

rows of the ')’(i)'s are zero.
We shall consider only the case P, = + m. Then we write
5152 !)3 .-+ Sy

Y(p;1 1 1... 1)
Y(p;s2 1 1... 1)

0.
0

Y= YP(p;1 1 1 ...1)
Yp;l 2 1...1)

Of the 4N components therefore only ZN are # 0. Furthermore, we

require that ¥ be symmetric in the %i's. Hence the components
of ¥ in which the same number k of the N indices correspond to the
first row of the ¥'s(i.e., k indices have the value 1), the N = k
other indices corresponding to the second row of the 9's (L.e.,y
having the value 2), are identical. Since k gdes from O to N,
there are N + 1 indepemdent components of ¥. Example N = 3:



&9

-

Y (p;111)
Y(p;211l) = ¥(pj121) = ¥(p;3112)
Y(p3221) = Y(p;212) = ¥(p3122)
Y(p3222) .

L

We now study transformation properties of these N + 1
components under the little group, i.e., the three-dimensional
rotation group. The corresponding infinitesimal operators are the
Mﬂ = S"th s where 'ﬁ'; =1, 2y 3. (The Lip“ give zero if applied
to a ¥ with B, = 0). In particular, $'%,)= 39 (9%,
can be chosen diagonal. Since it is hermifian, has the trace zero,

and satisfiles [Sla(j)]a = 14' y we can set it equal to

Now for a & with k of the &, corresponding to the first

row of the ‘)"s and N=k to the second row, we have

st y= ZJ 312(3) Y= [1}1: - % (H-k)] Y= (x-5) Y.

For a given s, m = k-s takes on the 2s+1 values =8; ...; *+8.
Therefore the 2s+1 independent components of ¥ (p; S5 eves EZS)
belong to the representation Ds of the little group. Ti“na particle
feggribed by this set of components has spin s.

We have used 2s variables £i to describe particles with
spin s. This 1s a consequence of the symmetry of the wave functions
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in the 51 . Any other type of symmetry of the wave functions

would require a larger number of variables and the description

would be more complicated.

II. Clags Po {or 0§2= Particies of Zero Regt Mass and Spin s.

This class is defined by
P p, = © ' 0.

- The wave functions agaln depend on pP_ and the spin

variables §1, We now have
= _ O - _uA ¥
W Fe T MF My, P P -

W will not be very useful in the classification of the wave
equations for zero rest mass, however, for we shall find that

WY =0 for any spin. Instead we consider the [y directly.

The 1little group now cannot be defined by a pf 1ih the
rest system, for now By pé‘ Py = 0, so that at least two
components of p, must be # 0 (we exclude the case where all

pl =0). So let us choose

pl' = (1, 0y 0, 1).

Since under this yspecial little group the vector

p' =(1, 0, 0, 1) 1s left invariant, we may set p° = p3 =1,

pl =.p2 =0 in (4.2) and obtain
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- 12
Mg ==8
= s34+ g%
F.
r-z._._ g5l _ 401
= al2
5= s
\
As wave equations we use
q'}l(i) pP zp'_‘o’ i =1’ 2, oo.,N = 2s . (406)

We define

5 _ Y A o _ 23

Then » s
5 p R _ 5 - =
P Vit WPy =0 0%y =1 Oy

2 — + — E
PGy @Y% = 115 @92 = 15 @) = <F; (99)1= %O

It is clear that if ¥ is a solution of the wave equation
(4.6), then ‘}5(3)'4’ is also a solution (This is of course not
true for the case m # 0, see formula (4.4). It is therefore
convenient to choose Q’s( 3) to be diagonal. In our speclal system
pl = p2 = 0, p3 = p° =1 we have then from (4.6):

Py +P )Y = o

or

()5(1)('}0(1) w = "w 3 1 =192y eoey N
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We .choose the representation
0 I = 0 a -I &0
[*] - = S5 =
A4S (I o)’ 7w _(-a" o)’ Ty " (0 I>’
1y = Py Yy = ( o _.)-

Then we have _ -1 OV

¥ =Y it oy = N

This means that & has only components corrasponding to the
second and third rows of the ¥'s. |

Now, since the wave equation (4.6) is invariant under
any one of the operators <}5E ij)* We can decompose the manifold
of wave equations into two invariant manifolds by imposing
restrictions on ?5( 1) Y . In particular, we choose

9'5(1)1/’ = -y, (2.7)

Then only the components of (4 corresponding to the second row

of the s are # 0. There is only one such component:

Y(ps 222 ... 2) .

This one I1ndependent component describes a left circular polarized
particle. If instead of (4.7) we impose

P =¥,

we obtain a ¥ whose only non~-zero independent component (corre-

sponding to the third row of the O's) describes a right circular
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olarized particle.

We see that for a given p, there are only two independent
components of the wave function deseribing a massless particle,

regardless of the number N ='2s of the variables 5,(1.e. the
spins).

We now show that the spin 1s S = % N. First of all we
have rltp= r‘z Y= 0.

Multiply
o _
‘)’3(1) 2 4 (i)?P = -y

on the left by 9°,.y9% .y, and find:
(1) 7 (1)

2 _ o 2
v (1)‘73(1) ¥ = - HTH?
or

- 0 - | -
= %(523(.” * 8 2(1)) V-3 Zi (Pey Py + 9% Fea)¥-

=0,

The proof for [, ¥ is similar. For ES ACEN A 2 st2Y) we
find the following.

Multiply
O -
Py Yy ¥ =-v

on the left by qvl(i) 9'3(1), and find

1 .2 .3 ol 2
V) YWY WP Y = v Y-
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Hence 5 4 > 12 |
195y ¥= & oMoty ¥ = sy ¥ s
N(=2s)

2P 3 S o5, .

i=1 -

So for

9'5(1) Y= - U (lert) : s Y =- Y,

and for

WSy ¥ =Y (rtgnt) : 2 Y = oY

Thus the spin of the two states of the particle is indeed s.

We also see that
W¥=- (Mo MosTy M)¥= 0.

S0 we see that W cannot serve to characterize the spin of the
particle. Instead we define the two manifolds corresponding to

pl p’.l = 0 and spin S Dby:

M = wop tor Py ¥ =¥,
| (4.8)
r"“ = - N p},x for 9’511]@ =-¢.

These equations are not in#ariant under space reflections.
Note that these equations are an illustration of the theorem: two
four-vectors r}'l ’ 1:)’_l of zero length (I-'F I_F': 0, p}_l p}‘ = 0) and
orthogonal to each other (p’_l M= O), are parallel to each other:
r = const. Pu o
Ia I
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3. WAVE EQUATIONS FOR PARTICLES WITH SPIN 1. PROCA'S EQUATIONS.

3a. CONNECTION WITH THE DUFFIN-KEMMER THEORY.

The particles with physical interest up to now #r# %hose
with spin 0, %, and 1. For spin O we have the Klein-Gordon

equation, for spin 'b, the Dirac equation. We now discuss in more

detall the case of spin 1.

For the wave function we use the notation:

Y=Y (p35, »8,) ='~P§1 Sy tPij .
q’ is symmetric In the indices i, J(i, J =1, 2, 3, 4) so it has
10 independent components.

The wave equations are:

Q’Pij 611:]1 PP lPle = m q’j_il
4 " ' : (4.9)
qiljl 61.1 gr '{’33. : 8 q’ii' ’

{

or -

@Fx 1Y) p"_.}lq’= th

(I x M) p)‘q’:mq_’ .

.

Thereforey, with
gt = i—{q-}'lx 1’ +1x‘>‘}l} >
we have

g’ Py Y=y . (4.10)
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From the commutation rules of the P ‘and " we find that
e Bl = pt e s pAPF L aan

Equation (4.10), together with (4.11), are the basic Duffin-Kemmer
equations. They- lead again to the Klein-Gordon equation:

Multiply (4.10) on the left by P, 's" N

= A :
pAPAP:pr Y= m op pp Y.
Hence
A WV s A -
i'papr (F Pvp,l ¥ p}lp P ¥ _mpApAqu,,
or
p” p}lp"q’ =mp, " 8" Y.
The left hand side gives mp” P, so we have
pvq,= paplpvq).
Multiply by p, » and get:
p,p”% = p gt p pYY =n” Y.

The ['s of the Duffin-Kemmer theory togsther with the
symmetric wave function ¥ 1lead to a description of particles
with spin 1 (Proca's equations). We indicate here how this works

out, leaving the more exact treatment for the next subsection.
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We study the behaviour of the second order spinor P = wj j'
under space reflections. We choose a representation in which the

reflection operator 1s

_ _ I o©
Sij - Silj' - 1 0 _ L]

Operating on tlr” with 8, we find:

-

¥n—-%y '
_‘Pza—*“l’zz "1’13""4‘}13
. 1'1"33""""'_(1’33 4 zP:l.é-“""qglii
Yo —Yaa o5 —¥ o5
‘I'M“’”‘L'la 4’24""‘1}'24 .
L‘I'm“’“l’% '

We can, therefore, separate the ‘l’ conponents into a group
forming a four-vector, and a group forming the six components of

an antisymmetric tensor:

ﬂr — ﬁn- — - 'ﬂ! 3 components
) .
L p° — 2° 1 component
P FO! — F°! 3 components
4 :
Fﬂ — Fﬂ % components .
L

80 we choose

lk = (g°, ﬁl, 92: 93: FOI’ FOZ, Fo3s F233 FBlls ) ’
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and find that (4.10) leads to the Proea equations:

P, rl'” = in gt

im rP” ph ﬂv-p’ gb .

The corresponding (3 matrices are 10 x 10 matrices with the explicit

form:
a 6 L
0 o o |o ol 4| o ciJ
L R ) 3 5oL
5 <1l 010 lo 6 $° 0| o0
= |0 0 ¢ =
° 4-1 ) ’ 1 ol
ta ] &, 6 o olool oo
¢ 0 £
o] 0] 0 [0 004 01 O {0
004 0 L0010
o| ® -4 o | o|ooof1
o 0-1 0/0
0 010 :
bo| ol o o o] o (o
Pa=il g r 3% gt
o {40 | o |o ooilo | o Jo
lo 0-
010 0] o o 0 | ol o [o

3b. RIGOROUS DERIVATION OF PROCA'S EQUATIONS.

Since 4—’1; = 4’;}1’ the two equations (4.9) are actually
identical, and can be written simply



€9

ot Pp Y= n¥, (4.12)

where 9P acts either on the first or on the, second index of
(4 = tl].t;] . 4’11, regarded as a 4 x 4 matrix, can be written as
a linear combinatlion of the 16 independent matrix QA’ where

‘)’A =1, ‘)’F 3 i' ((}P‘}V_q,?fﬂl)’ 95‘7," 05 .

Thus
Y= 2 9. (4.13)

We want ‘l’ to be symmetric, so we investigate the
symmetry properties of the ‘)’A. Since (9"’_ )T satisfles the same
commtation rules as M, the two are connected by a simllarity

transformation:

@t = pofpl |,
Then
o¥= (31T (@MT 8T = (3 1)F s of 51 BT =
= (371 %)~ lo¥(z™1 8T) .
Hence BT BT commites with all the o » and therefore with all

the 91, which form an irreducible set of matrices. Therefore,

according to Schur's lemma,

g7t pT = x 1 .

Then
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i+

B= kBT = x®B ; hence k

Now

LT o oy ol
(P hHT = xotpl

@5 P "B )T =g 9B ot P51,
(998 g~1)T = _x oles 71,

@8 31T = ko1,

If we set k = + 1, then there are 10 antisymmetric matrices _
795 "1 ana 9% ot 9” B"l, which have to be linearly independent,
since 995 and 9% 9" 9” are linearly independent. But this is &
contradiction, since there can be only six linearly independent
antisymmetriq 4 X 4 matrices.

Therefore

k=-1-

Then we can write for the general symmetric wave function t\} :

h
Y (p) =ﬂ’,‘r"95 B7l + < F , ot ool g7l |
Now we obtain from (4.1_2):

. A h | ' AP A i
P' o 4 — P c}. r - Y 4+ —F ‘)-PQ SB-].:O

or

-2— (ppoF 2,9%+ p %0y ¥ - am 7y, N 9N =
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Now, since

ol ogr s rol - 2 gk,

. }1 ?t=

Pa ﬂ}‘ ) (4.14)

=g'p, B, +m B, -p, F o AT

s !

We take the trace and obtain:
(tr ot = tr {"ﬂ‘ FA ‘)'v}= 0; tr{‘}"‘ ‘)’"} = 4 g’“)
3 = 0 . 4.15)
P ﬂ,. (

Now multiply (4.14) by &> and take the trace, considering that
ALY O

we find

or
p FPY = - 1mp¥ . (4.16)

Finally, multiply (4.14) by 9%*9Pand take the trace. The result
is (using (4.15)):

p)" ﬂy - py ‘0)1 = in F)]y * (4.17)
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Equations (4.168), (4.17) are Proca's equations.

4, THE SPINOR FIELD (s = $).

We now study in more detail the Dirac equation:

(ot Py - m) ¥ (p) =0. (4.18)

The C}P's satisfy
ol oY + ¥l = 2 gPY.
A representation is:
o _ ( I o) = . 0o .7
¥ 0o-1) T o/’

A solution of (4.18) is also a golution of the KleinpGordon

equation:

(9% p, +m) (o' Py -m)YP

= (p}lp’l -n°) Y = 0.

(o” ol P, pr - ¥ =

Introduce

and find from (4.18):

HY(p) = p° % (p),

where

-+ -
BE=od.p+ fm.

(2.19)



In coordinate spmice we find, from

Y(p) =

Z?r .

that

(19"5-9-,-, -m)tpcx) =0 .
' x

For the hermitian conjugate, gb"', or rather, the Dirac
ad joint, Y=yt 9°, we find the equations

P(p) (of Py -m) =0

s

z-j"(x) (19”'-—2; +m) = 0.

ox

The Dirac operator (19}' D_EF - ) is invariant under
b'd

translations, so the field P (x) must be a scalar under translations,

in order to keep the Dirac equation invariant.

For homogeneous ‘Lopentz transformations we have seen that

Y'(p') =0 (L)Y (p) . (4.20)

For the infinitesimal transformation operator we obtain

1
'’ = 2 (el ¥ . 9¥ely .
4

For the special case of a rotation by the angle ¢ in the i, -plane
we have

1,8
D(iQ) (‘P) = Bi’q v \P-_- cO08 "P/Z -I-Q'i?Q sin '.9/2 )
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and for rotations in the o,{ -plane:

Ont
D¢ o) (¥) = e"h} A cosh ¥/2 - 9'0‘79 sinh P72

We see again that the spinor representation is not one-valued,

because a rotation about the angle 2 7 takes ¥ into - ¥,

We now derive the transformation law for the Dirac

adjoint. Prom (4.20) we find

' (") = PTpHae® = PRt = P, o pT e,

Now D 1is a function of ¥V 9 (p#»),

D = D (9! o¥),

hence

¥°p*9° = 9°p (@Tort) q° = (9291 9° 9%kt 9°)

D(F”9M) = D (-9re”) = p71,

Therefore

P (pt) = a(—;)-n'-l .

It follows that quadratic forms in ¥ and ¥ transform

according to the temsor representations of the Lorentz group:

P oy P = Py DT 9y D Py

where ¢, are the 16 independent <  matrices mentioned earlier.

We saw previously that under Lorentz transformations:

plofp = gf o7,
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Hence we find:

for Y, =1, $% Y is a scalar,
QA =gl w14 a vector
Y, =¥ @9""-9"9) *  is an antisymmetric second

rank tensor
Q'A = 9}“)’5 " 43 a pseudovector

fl

Q’A 9’5 ® 13 a pseudoscalar.

The Justificatiori of the last two lines will become clearer after

discussion of the parity operation for spinors (See J. Leite Lopes,

Inversion Operations in Quantum Field Theory, Notas de F{sica, vol.
Vi, N2 2, 1960).

5. THE NEUTRINO FIELD,

The neutrino is a spin # partlicle with zero mass. It
satisfies the Dirac equation with m = 0. However, let us first

mgke some remarks on the Dirac equation with m # O.

We have
d= 9°F, p= 9°,95 = 1 9%l g2 3
and
ot =1 9—29} (eyeclie)
Therefore
L= 955,
Now define

¥=t@a-o5v ,
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¥ =t @+ 05y,

Then we find from the Dirac equation (4.19):
p° & = (PP . T+ Y,

P°Y= (. T-npP)Y,

so that
PPy = =T . P P tupYPy
We define the helicity ¥ as:
— —»
_ oD
|5}

Then

[]

Posz - l?l%sz""mp tpR

'POQ’R I;I"CQJR"'IJIPZPL .

. Now we get m = O:
qu’L = =- li’l ‘ﬂ' wL
p° ¥y 119 ¥y

For a positive energy neutrino (p° = |p|), we therefore find:

-

Xy, = - £4

Ko = Yx.
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This justifies the name left~handed neutrino fong, and right-
~=handed neutrino for YR, 2 particle with m # 0 is in general a

superposition of right and left-handed states, which are coupled
through the mass term in the equation of motion. For very high
energy, |;| » m, the mass term becomes less important, and one

has & situation of near polari’z_ation.

In the case of m =0, it is convenient to change our

usual representation for the ¥'s to the following one:
° '(0 I - (o a") :'(-p o) (-x 0
Y= lro) Y= \30) %=\, gho'

In this new representation

0
_ ‘91.) _ ) _[o
0 ? ZPR - ?PB e \P ]
A

where we have introduced the two-component spinors P, and Pr.
Y satisfies the equatiors for the left handed neutrino:

?PPF Y= 05 9% = - .

The equations for the right-handed neutrino, ¢R, are

_'r}"b’,q’R = 03 ¥ = Y.
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CHAPT

LAGRANGIAN FORMALISM

‘The wave functions and the wave equations which we
have obtained can be regarded as fields and field equations
respectively to be derived from a Lagranglan function. The
basic requirement on this function 1s, therefore, invariance

with respect to the inhomogeneous Lorentz group.

The Lagrangian is defined as a real function of the
field functions and their first derivatives. Second and higher
order derivatives are excluded because we want the field equations

to be of at most second order:

_ _ /- 20 co
oe(z)=.ce Ty (x), 5}) ’

where U,(x) is the Fourier transform of ¥y (p) and 2T /0t

the fa#rst derivative of 'Ui(x). of (x) is required not to depend
explicitls -on the coordinates ' x = (xo,axl, xz, %2) as 1t has

to be invariant under the inhomogeneous Lorentz group. |

The getion is defined as:
IEJag (x) atx , ak = a® & af o’

The variational principle, which we assume to hold here, states |
that the action must be stationary: ' |

81 =0,
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for variations 6(&(x) of the field variables. In addition it is
assumed that the 81&?5 vanish at the boundary of the integration
domain. One then obtalns the Lagrange-Buler equations:

81 L 2 28
- = : - Ti O = 0
éhf(x) BU'l (x) ox 2 (B.AQP)
X

which are the field equations.

1. NOETHER'S THEOREM:

For every continuous coordinate transfofmation which
makes O I = O and for which we know the law of transformation of
the fields, we can construect a combination of the Ui and their

first derivatives, which is covariant and ipndevendent of time.

In order to prove the theorem let us consider the group

of infinitesimal inhomogeneous Lorentz transformations:
xP'= xr+ q§x”+all

where al and cit are infiniteésimals of the first order - these

tranéformatiqns are of the general type:

P = x} + 8xt
where for example for the case of translatlons we have:

6x" = : X’;b(n.)v:

x: 6}; ;6(0)’: av ’
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and
= PO
& xh 2;5 qu Scw
Xip = o 8g, X7 - 8} 8y, x5 b0 PP,

for the case of Lorentz rotations.

In the general case we can then write
M = xP + 5x? 5 6xP = ZXthf
The transformed field functions are written:

Uj'_ (x*) = U, (x) + 601(1)

SU_.,_(:'.) i1s the variation of the field function due to both the change
of its form and the change of its argument. |

The variation of the form only is:

"

80, (x) = U,(x) » Uy(x)

0 (x0) - 7,2 - (TyCx) - 0y00))

S0, (x) 8wd (o, (x+8x) -1, (x)) -
j 4 4 ( 1 R )

| O
5 (“13 -5 xK 8 o
h] K ax.K

1]
Za (x)bcuj - GIK
g Y
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the action is:

I ‘='J.6 (x) a%

Its variation GJ.C. (x) d% 1s made up of the variation of the
integrand and the variation of the domain of integration. The
veriation of the limits §(b-a) = &b~ 6a of the one-dimensional
integral J: 4(dt) can be written symbolically:

b b D(6t)
] 8 (dt) = [ dt .
la a ot

Similarly the variation of the 4-dimensional volume of integration

can be written: _

. 5x”
& (a%k) = d4be( x)
Y Ox
Now '
z J,c (x) a% = Ja-c (x) a% +J.£(x) 8(a%k) -
But:
§L= £'xn) - L) = L) - L) Lz L)
= 6.8 +E — 6x .
» bx
where

2 7 ' i WA 0.L _/ou
8.L = o£"'(xt) = L(x!) = ):S-E; 501 + @“b(ﬂ-

However, from the fleld equations we have:

o, Zrm
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Now d dL
8L =" — —w-)- 5y :_TI -—-‘ cf»qe
i,» ox b(—i iy
. ax)’ _ ax
2L . '
= 5u,) .
1, ox °E _.tﬁ)
dx%
Sos
g ' 2(8 ")
=J_6-C+Z (24 v]d4x -I-J.C(X) d&Z x
Y
=. d4x }5;;—; Z——ﬁ—) 5U1+o£61
X ¥
=- d4x E @g an ’
. ] 0x
where

| 2L 1}
J %a(b_iuvj@:ax” 3~y |- L%
Ox _ . _

the postulate &8I = 0 therefore gives rise to:

5 2@
—.:-[-—:: -E —®1= 0.
8.0 ¥y 0x”

This theorem permits us to obtain from this equation the

conservation laws of the corresponding surface intégrals.
_ _ Integrating over a region bounded
$ time ' B .
' in time by space like surfaces

%%: o, and 0, and extending to

1_nr'inity° in space like directions
and assuming that the field
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vanishes at infinity we get:

=l 1 de.® ~ | deo ') =0
([oose] eos)ne
‘-\-'°2 101

where da’ 13 the projecftion of the surface element do into the
hyperplane perpendicular to the x* axis.
Thus:

* I
M
4

o 40, €f=s,o)

are independent of the surface 0. For ¢ taken as hyperplane, »x =
= constant:
f

5.(x%) = Jd3x @g

J

are independent of the time. This proves Noether's theorem, the
covariants independent of time being the SJ.

The quantities @5’ are not unique. Since they enter the
integral in the form

§I = - [a"fx ):'3915(.,3

»3i dx”

it is clear that we can add to @3" an expression like

A
af
) I N
A oax?
where
T AV - MA
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one can use this property to -symmetrize the ®’J’ .

Energy-momentum tengor and energy-momentum vector.
Consider translations alone:

=t = xP + 6x|‘

§xP = xF sw”

>
and as:
Uy (xt) = Tulx)
then:
Q’ij = 0
80
2L au
Y. 2 y = —1 - y-- =
®; = 1, }:1;(@1—) — .563 $ (¥, =0, 1, 2y 3)
dx”
or
"= I g —p - ALg
1 b(b_; dx
x”
this-is the energy-momentum tengor. The surface integral SJ is
here:
T”* 4 gv = p?
thus A
| % ¢3x = p?

is the energy-momeptum vector, which is conserved in time.



Angular-momentum tengsor and spin tensor.

Now conslder infinitesimal 4-rotations:

' = xP+ 8zl
5xt = ZXF Sw™”
ALY
| - . Av_ AV
2SN _(6;\3»&"6‘; Aoz) x% 5 dw= o

We shall write

v’ (x0) = U (x) + ij: My, Uy(x) 8t
ALY

where we have put:

Qij = Mij  A> Uj(x)

so that:
51U, (x) =ZM1 ' Ay J(x) ™ .

For a scalar fie_ld: _

Hi;av =0
For a vector fleld:

-Mi;m = 63 g4, - ﬁi iy *
For a spinor field:

Mi;;w = + @9,
Because the parameters are 5w ” Instead of 8 we see that the
index 3} in ®; is reptaced by a pair fIm:

b.e 20 A _ v
G = E: v(dU;/2x ) %aﬁé *im -Qij tm| [x“m

85
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Replacing Xm and Q'iQ o by thelr appropriate expression we get:

v A A
Yom = 1 a ) AZ’:ﬂbx ®¢fnet ~%n gQ"‘) Zu’ﬁm e
- L8] g - 01 8 =
= ¥ x Y X - 3% 2L Ml UL (xd
=R T H (ﬂ 130m Uytxd
- \dx”,

which iz the angular momentum dens:itx tensor. For a scalar fleld =
. : J . =
we- already saw that Mi;lm'

hence for this field
M%;Qm %-L?;Qm' = Ty'li = . xik‘

which is the orbital angular momentum density of the wave field.

This is conserved:

»;im
DMO

ax”

For a fleld which is not scalar, the term

y | 2L p .
Slm =z - % b—.(b'E) Mi s0m Ui_(x )
2x”

defines the spin tensor of the field.
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The 3-digensjonal dengities of L and S ave:

podfm _ ym nol _ 4% nom

_ 2L
ojlm _ ge* mm! 5 hi
\OX/

the tensor of orbital and spin angular momenta are the integrals
of these densitles:
tin = IIP‘"”‘ a3x

Charge and current vector

Assume that the wave fields are complex. The Lagranglan
must be real (hermitian in the quantized version of the theory) so
it can only depend on expression like U* U and wlill be invariant
if the field is multiplied by an arbitrary phase factor (gauge
transformations of the first kind):

L iﬂ 1% - ~iet %

£ () 2 ()

For oo infinitesimal we write:

then

L]
ok * ' *

Clearly:

¥ x
H
o
on

£
1.
H
R
P

= iU
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the: corresponding ®” (omitting the irrelevant index j) are:

v_ oy L * dL .
® = 7 1 Z: 321 qf w) - ;__§F§_ Ui (m) y
dx” 2x”

J"is the current four=vector and

J .io(ﬂ) d3.n = const.

is the charge of the field (electric charge, nucleon (mesic) charge,

etc. oo'-)o .

Summarizing, we have:

Invariance under | Conservation of

Space~time displacements ——— energy-momentum vector
Homogeneous-Loren - angular momentum tensor

transformations

v’

Gauge transformation o
of the first kind current 4-vector

2. EXAMPLES OF FIELDS

We next give a table of some of the most important fields

encountered, togéther,with the corresponding "conserved® quantities.

Za, REAL SCALAR FIELD

Thls describes neutral spinless particles.

Lagrangigg:

L= -4 (meaz- 22 L) .
oxp
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Field eguation:

(O +o~) 9
Epergy momentum tensop:
P
Tr"‘:gn.___ _ﬁ_[gpa
?x, Ox
H
also 28 2
o '
T - e - 50
v
Epergy density:
o0 4 [r(22) a2 g
e P‘(b_xF) i -

Momentum density vector:

o1, _ 28 2

ol =
i
bxo ox

y 1i=1, 2, 3.

ular moment density:

v_ v 0B 02
o= M = 2 (!m ot 1 axm L(x) Sty )

=dimensional densi of the anpgular-~moment tensor:

. [ o
“in® Hn = &:("“{I”‘ﬂaxm L0y - "’!)

-]

1]
o

b 4
St
Current 4-vector:
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Momentum representation of real scalar field:

— -
-1Kx 5 (x); Kx = 2° K° - K.x.

_ 1 _

g (x) = Ja‘* K e
(2r )2

The reality condition ﬁ*(x) = @ (x) leads to: ﬂ*(K) = £ (X).

The eguation of motlon is:

(K},x'l - wd) B =0.

Clearly the solution i1s of the form:

g (K) = 8(K% - ml) P(K),
S03% . .
1
= 4 2y _=-1Kx
g(x) = WE J 4 .-K(S(KZ— m-) e. P(x) .

Now write the above equation in the form:

a(x>=(—;l)-% Jd4 K (K%~ n°) {e-ﬂx ¢ (x) +.ein‘{’(—)(K)}
where _
) (x) = 4 (1 + sgn K°) P(K)
P-)(k) = % (1 + sgn K°)P(K) -
Note that:

(eMm)* = vi-Xx .

So: :
2x) = 88 « 6070,

(+),.y - 1 3k 1Kz (+)
P (x)-WJke ',
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1

(*)x) = 2K SR pi=)p
T (x) -(z_w? J# ] ¥ ’

vhere the integration over K, t( .+ sz + uz)) has been carried
out,.

Set

) K
a(E) = tp("'"-ﬁ - LE-—’ '
| \Ve'x,
— “)(x
.‘(;) -W"&S » !-(—L-’- '
Vi K,
then ? y
(+) A7 Jvikx (¥
£ (x) = o alk) ,
(an) V¢ ]VR;
#7)x) = ——ml L gt
(2m)¥F | \BRY
Nows

- [ 2 aa-+}[>’;(:)‘+.ﬂ ¢ o

: (+4)  pgl=) |
» d’:{;a—:;r :L:r #ngl“, "-’}o

In ﬂu momentun repregsntations
F
s | Bk KB o '

.
e | dx k¥ () oD
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Zb. COMPLEX SCALAR FIELD.

This describes charged spinless particles.

*
: og 08
L= gy = 2 wp's.
bxr. 'Oxy

Field eguations: |
(O +®p=0, O+ad) 2 =0.

Energy-momentum tensop:

g 0P W P .
FA = + - eﬁgl‘x
Dx}, BxA 'Ox;\ ax],
*
o 2P *
oo _ - 2
s « x> axd‘ A
*
on > Bxu axo
Current: *

Momentum repregentation:
p= g0 4 gl=) g 2 J3) L M)

1

(+) [ 4 2. FiKx o) o
pr=’(x) _(WEJ d° K G(KZ- n<) e P (K)
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Let

—n

e®E = a®, D =@ ,

¢IE® = w®, *HIV® = %,

P!' = J a’ k xt {a"'(?('s a(X) + b('I_i's bﬂﬁ}
ﬂ=0’1’2’3, K°'=+VK2+EZ’

Q = J a’ K {a"(i’) a(K) -~ BK) b"(fc’)}.

2¢. SPINOR FIELD

Lagranglan: —
L - é(i(xmrﬂ 2% w(x)) - m P Wx) .
ox! axh _

Epergy-momentum tensor:
L W Yy ?L
+ —

~..a(352) ox)  ox b'(.g.ze

ax” 2x”Y

A = i

- Lg”?

“(@(xn’-—? -;—Q' Wix ))

because af = 0 for the solutions of the Diract!s equation.

Current vector:

HMx) =% 9P Y.
Spin tensor: _
0 . wop, 2L
- - 13755
( 'Oxv)

The transformation 1aws for spinorsis:
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Px) = Px) + (%98 - 9PIIHx)beo

(3,
$0 that
MEP Y= 2(o OB - aPo)Y,
ipMdfs = - 34-;;(‘?‘"9@ q‘}'@‘)'u).
Hence: -
| 790 = 1 F {00+ 0% 1)
where
1
c¥f =z — (9'“9’@'- 9P 92 .
21
Momentum repregentation
Y(x) = : Y(p) e~IP* g
Set
Wp) = Pp) §(p° -nP) ,
S50
Yix) = P + Y,
1 s -
1 o
tp(*)(—;) * ;— -]é- (1 + sgn p,) P(¢p),
po
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+ 1 1R >0
SEn py =
-1 p,<0-
(x),—»t
The P*7/(p) s are solutions of the equation:

(F% e Tn) D =0 .

In the rest system (p = 0) these have the form:

Cy /0
$M@ = | C2] ; o@D = ©
0 Cq

I ¢
where we have used the representation O° =( !) .
0 -

(e v (2
T\ (o) (=)

where now ‘P("')', KP('), ?I)(*) ,'ZP(") are two component spinors.

So:

In general one can write:

+ -
e = I WP e

Y& 1y2
@ = I PO
Y= 1,2 |

Call
——

0,7 @ = v @ MG = v, B

OB B VOG- U

then the momentum representation of ¥ (&) is:
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3
-1 a-p —_ —
PY( = ——srs --— ()U() 1p‘“-i-b‘”( W (plelPX| -
x) (2m)¥/ 2 \[2?‘ -—12{ap pre Vs PUgtRle }

One then has for the ensrgy-momentum

pF = J aSx7o! = J d3p p":( H+ )(p)a (- )(p) -a,, - )(p)a(’)(p))

y=1,2
but
a.,,(-) * = a:(+) =g (_;)
thus

pl = J a3 p P 2 (-0,(p) b3, (2) + a3(®) a (V).

This expression (in the classical spinor field theory) is not
positive definite.

For the 3-dimensional spin tensor we get:

K =3 1 ¥ MKYx) Pk, 1,x= 1,2, 3,

or

S= % q’ (x) &(x) ¢3x

» =
Since T/ is not symmetric, S is not conserved in time. If
however 3.0,.@ are independent of some coordinate like Xpsy X

-then there is conservation of S In facte

2539

3.

= 1 52?; {0700 + 028 fux) +
s S X
[+X¢/

» 1F{r e oser) 28
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- 1 _?Ev{qvo,} . 039.9} tp(x)+%i[-¢{‘)’vo3 + 039’} i‘?;’ ’

4 Dx
. Y 2Y
hut 1f - = N =0 then
ox ax
2g”il2 7 _ 2¥
= % -?%?v03¢(x)+%¢03‘7y*—;
ax” dX ox

H-wYPl Y+ mPSyt= o,

53 = I d3x 50512 1s conserved in tinme.

For the charge Q we find:

Q= Iq'*(x) Y(x) a7z
= I & p §(aj‘+’<?)a§"<35+a*;f"G:")a(,"‘??))
= [ 255 (L) I + ()G -

The charge is positive definite.

' 2d. YECTOR FIELD

This type of field represents the electromagnetic

field (m = 0) or the vector meson field (m # 0).

2, INTERACTIONS

_ So far we have studlied classical free fields. Inter-
action 1s taken into account by adding a new term to the Lagrangian
build with the interacting field variables, such that the total
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Lagrangian be invariant with respect to the proper inhomogeneous
' Lorentz group. In addition, some terms mayx be invariant under the
improper group, where as others (example: 3 -decay) we know not to

be invariant.

One can obtain local interaction Lagrangian by sinply
multiplying a scalar formed with the first fleld funetions by a
scalar formed with the second field funetion, both at the same
space~time point. |

We write:

L~ Ly v Ly,

o o? "é)int both invariant under the proper inhomogeneousg Lorentz
group. From the total £ the invariant corresponding to translations

and rotations, namely, energy-momentum and angular momentum are given

by Noether's theorem.

As an example we give the interaction of the spinor
~ field & with the real scalar field, the real pseudoscalar field
and the real vector field

Real Scalar P{x) | Real Pseudoscalar W(x) | Real Vector A}(x)

TR . POS Y YOrY,
Spinor g1 ? 81 €1 M

(7 Tory 2P 3 oSofy 2F e e o
+ gazpc} q)_axp + 82?}’ 9'. QF?#'DXF ¥ esz" I'F}“'

Another example 1s given by the possible interaction
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form between four fermions P, N, ey V.,
- 7] 1.5
éint = & O(S)wN)(% O(S)[C;qu]?l’y) *

+ (l_[;e O;V)a’m) (179 ol M |%+ c{pﬁ|tpy)+

+ (@ o(T;ﬂz}’N)( @, olTpA [C'r* Cp 9° ]?.Py)q-
+ (& oA Y )(ZP ol2p [c +C 9-5]2& )+

e PN e A A ¥
+ (¥, O(P)ZIJN)(?PG olP) [CP+ Cp c}s]?ﬁy)-r

+ hermitian conjugate. (See page 75 where the
operators O are given as %).

This corresponds to the decay prdcess:

N—P +e + ¥

Recent experiments seem to indlcate that only Cy» C‘i, Cp? C ; # 0.

¥ ¥ ¥ ¥
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INTROCDUCTION

Elementary particles are described by relativistic wave éqﬁa—
tions. The fields which represent them are assumed to possess cer
tain properties which follow from an invariance of the wave equa -
tions under certain groups of transformations. These are suggested
by experiment. Examples of such transformations are the displace-
ments and rotations, and invariance of - the laws under these groups
(suggested by the homogenelty and isotropy of space) leads to the
important principles of conservation of momentum and angular momen

tim.

The most important invariance principle in field theory 1s the
principle of relativity. It states that the laws of nature must be
independent of the position and the (constant) velocity of the ob-
server. Mathematically the principle imposes that the equations of
motion be invariant with respect to the transformations of the in-
homogeneous proper Lorentz group. The basie character of this
principle 15 then seen in the fact that the wave fields must fom
a representation space of the Lorentz group. Thelr geometrical ng
ture is thus defined and the fields can only be scalars, spinors,

vectors, and spinors or tensors of higher rank.

We shall give the representations of the three-dimensional ro
tation group and of the Lorentz group. The equations of motion of
free elementary particles are obtained from the study of the inva-
riants of the latter group. The mass - as an arbltrary real number

which characterlizes one of the two invariants of the group - and



the spin are Iintroduced in the theory and thus seen to be a econse-

gquence of relativity.



