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ABSTRACT

Direct PPP-type calculations of self-consistent (SC) den-
sity matrices for excited states are described and the corre-
sponding ''thawn" molecular orbitals (MO) are discussed. Special
attention is addressed to particular solutions arising in con-
jugated systems of a certain symmetry, and to their chemical im
plications. The U(2) and U(3) algebras are applied respective-
ly to iuc +-electron and 6-electron cases; a natural separation
of excited staes in different cases follows. A simple approach
to the convergence problem for excited states is given. The com
plementarity relations, an alternative formulation of the pairing
theorem valid for heteromolecules and non-alternant systems,
allow some fruitful experimental applications. Together with
the extended pairing relations shown here, they may help to ra

tionalize general trends.



1. INTRODUCTION

SCF methods confront substantial difficulties when dealing
rigorously with excited states | 1,2,37], and much interesting
work was done with the simpler methods [ 4, p. 106 |. Methods
involving different degrees of sophistication have been pro-
posed in order to overcome the problem that the excited state
functions are usually not orthogonal to the ground state func

tions [5,6,7_

Years ago, Hall studied the problem of direct determina-
tion of SC bond orders for even AH [ 8,97], having not received
then the due attention; his reference standard state [10] has
pointed at a way which recently was rediscow.;ered. In the 1last
years considerable effort has been devoted to approaches that
do not favour the ground state regarding the excited states,
McWeeny [[11] minimizes the average of the states associated
with ‘a given orbital configurati.on, using this term in a wider
sense than usual, He remembers that a single effective Hamil-
tonian, whose eigenvectors determine the corresponding optimm
orbitals for both the closed and open shells, is not wunique
and its eigenvalues have no physical meaning, for any member
of a three-parameter family of Hamiltonians will possess the
same eigenvectors | 127}.

Indeed, the physical meaning of individual energy levels
becomes obscured on exciting a molecule, as soon as the "frozen"
scheme is loosened [[13,147|, for they are functions of the spe

cific state. On the other hand, Mehrotra and Hoffmann [157] have



set forth an éttractive way of recove;ing the primitive sig-
nificance of the Mulliken-Walsh diagrams. They proposean "aver
age state" (resembling Hall's reference state) as a compromise
between all the electronic states of a molecule taken " in a
democratic fashion", their tempered orbital emergies being quite
appealing.

McLachlan firsf pointed out a pairing property for w elec
tronic states in alternant hydrocarbons (AH) within the PPP
approximation [16]. Shortly after McLachlan, L¥wdin (17 in
dicated a pairing theorem in the different orbitals for dif-
ferent spins (DODS) approximation. A formal theory of effective
n-electron Hamiltonians was recently proposed [[187]. The PPP
theory has been reformulated by Koutecky [197], offering a
well-defined model Hamiltonian and transcribing it into second
quantized formalism; the Mclachlan péiring theorem may be seen
under this form [[4].

It has‘ been shown that the pairing theorem may be extended
to non-orthogonal basis and is valid for any alternant and
non-alternant conjugated systems. This, stated as the comple-
mentarity relations |20 |, is further extended to anions and
cations |_21]].

A PPP density matrix formulation for excited states is ex
pounded, with emphasis on pairing relations between particular

solutions arising in w systems of a certain symmetry.
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2., SC BOND ORDERS AND THE RELATED MO'S

Hall proposed a method for calculating the SC P bond or-
der matrix between atoms of different sets in even AH [8]. In
the case of N electrons, this amounts to determining an N/2 ma
tyix N. Let us define n, as a diagonal matrix with half the oc
cupation numbers n; of the lowest energy levels and n;, a diag
onal matrix with half the occupation numbers of the associated
highest energy levels [227]]. The whole discussion is restricted
to the cases where ny+n,= I (I, unit matrix), thus ruling
out some of the states considered by Nesbet [[23|. Hall cir-
cumscribes to the states where ni==2 or 0, involving detll = 0,
This is easily extended so as to include ni;=1, and to odd AH

[227]. The basic equations are:

F'I

symmetric
and . 1)
m'n

]
=

where B' is the adjoint of a suitable effective Hamiltonian in
cluding electron interaction. 1f H® is the Hamiltonian without

jnteraction, the electronic m energy is known to be [24]
E = Tr (F'I) + Tr (H°T) (2)

Hall [ 97| represents 1 as a rotation matrix, which isnot.

the most general representation for a unitary matrix, for it



does not include inversion, FOI" the states with all symmetric-
(antisymmetric) levels doubly occupied in butadiene, he writes
two matrices which are not solutions of the problem [9]. It
has been shown | 25| that these states have particular solu-

tions of the form

S N (3)

the Ps being now NxN matrices, and the elements outside thedi

agonals being zero.

These peculiar solutions are jnternally self-consistent
in the sense of Mehrot:sa and Hoffmann [15] ,‘ who overlooked
them. Together with Hall's reference state, they arise when-
ever a m system has a twofold symmetry axis not passing through
any of the N m-electron centeré’.. '_In the corresponding states,

any molecule shall have unitary charges, regardless of the na

ture of its atoms. It is as if in these states the electroneg
ativity differences cancelled out.

It has been remarked the increasing difficulty in  ob-
taining new simple but generally valid rules for conjugated
systerﬁs [26]. For systems where a twofold symmetry axis
crosses two m centers, it may be easily shown (277} that the
particular solutions do not lead to states of the neutral mo}l
ecule, but of the corresponding double ions, having electronic
% charges of 2 (0) for the atoms on the axis, and unitary charges

for the other atoms.



Equations (1), when applied to butadiene, give the bond or-
ders of Table I, numbered according to the 1increasing total

energy; a, and bg correspond to the MO's

lau = a (4’1 + ¢4] + b (.¢2+ ¢3)

lbg = b (¢'1 - ¢4) + a (¢2 = ¢3)

(4)
Zau =b (¢1 + ¢4) - a (d’z + 1’3)
Zbg = 4a (¢‘1 = ¢4) -b (¢2 - 4’3)

Now, one may wonder which are the wave function coeffici
ents reproducing these bond orders. They appear in Table II,
together with the increasing order in the energy 1levels ob-
tained in the PPP calculation [13]

The table makes clear the effect.of "thawing', that is of
performing self-consistency for each state. Parr and Mulliken
[28] firstly raised the question of the validity of calcula-

ting excited states from "frozen" ground state MO's, in their
| classical treatment of trans-butadiene. Calculations of states
3) and 5) with their method confirm the behaviour described in
Table II, whilst state 8) does not converge whatever the starting
coefficients may be [13|. In thawing, the order of nodal planes
usually does not coincide with the order of the orbital ener-
gies. In Table II it is seen that, as the energy levels change
with occupation numbers, they may cross one another. But they
may not cross as in state 8), which infringes the non-crossing

rule between levels of the ‘same symmetry. This would explain



the lack of convergence of the Parr_-Mulliken calculation for
this state, and therefore indicates that at least the most eX

cited states must be handled otherwise.
3. APPLICATIONS OF THE U(2) AND U(3) SYMMETRIC MATRICES ALGEBRA

The equations which led to the particular solutions sug-
gest a way of treating conjugated systems with a twofold sym-
metry axis not passing through any of the N 7 centers. The sec
ular equations split in two sets according to the basis func-
tions, which are either symmetric (+}or antisymmetric (-) with
respect to the symmetry axis. The problem may be set up in terms of
two N/2-dimensional matrices 1" and 1° '[Zgj. The separation
of the basis set in two sets facilitates speculating about the
eigenvalue stability (minimum, maximum or saddle point) [30].
Mestechkin [31,327] has éthied restricted Hartree-Fock insta
bility under a form closely related with this one.

For excited states, a Hamiltonian is proposed which in-

volves a compromise between the fundamental and excited states

[29]:

= o - ’ ’
Hw Huv + Puv Cuv‘ (5)

By introducing the matrices

Q" = 21" -1 (6)



two sets of equations equivalent to (1) are obtained:

A (C+Q+) + (CTQ]] Q¥ = sym ;: [K'+ (c"Q") + (C+Q-)3Q' = syn
(7}

(CQ) are not products of C and Q, but must be understood as

(CQ]IJ\J = Cquu\J‘ We have

.

]

J'=2J + (CT1) + (CT1) ; K'=2K+(CI)+(Cc'T) (8)

L4
[}

0 0 . . = 10 - o
Y Huv * Hu,N-i- 1-v ’ Kuv Huv Hu,N-!- l-v (9

i .
Cuv = C].N * Cu,N+ lev (10)

and the Cu\) are proportional to the Coulomb integrals between
atomic orbitals or atoms p and v.

Now, the 4-electron and 6-electron cases may be calcu-
lated applying more general algebras in a different approach
for the direct calculation of the SC P matrix. In the 4-elec-

tron case, both Q+ and Q— (referred to as Q for shortness) may

be written as sums of a scalar part and a vectorial part

Q=49 *q.0 (11)

where o designates the Pauli matrices.

Similary, for the 6-electron case



Q=4q * q.F (12)

Any 3x3 real symmetric matrix can be expressed through the bas
ic matrices of the U(3) group, which are the unit matrix and

the five F matrices [33,34].

Three cases follow [29,33]:

I. Three trivial solutions, q; =0, qo'=0, +1 (Q=0,=I), -
corresponding to the two particular solutions and Hall's ref-
erence state. |

11. q, =0, g’ =1.

I1I. q, 0, q; #0.

The coupiing of Q and Q~ (and accordingly of 0" and N")
in eqs. (7) is limited within the same case. We have found no
modulo 4 type [35] relations, establishing some qualitative
difference between U(2) and U(3).

In the 4-electron case [ 29|, systems of transcendental
equations are obtained, which may be solved by a generalization

of the regula falsi [[36_|. The 6-electron case must be solved

jteratively, and a further condition is introduced, in order

to preserve the non-crossing rule [[33]].

N/2

There are 3 solutions obeying np+n, = I+, that is the

9 states for N=4 become 27 for N=6, A two 7 electron system

+0bvious1y, np+ o, = I is intended for AH, but we keep it for
heteromolecules where the M0's follow with reasonable closeness

t+2 association scheme, ' -



has thus as unique solutions the ‘three pdrticular -ones, and the
U(4) development (a bit cumbersome but feasible} yields 81 so
lutions. The ground state appears in ccse II for the U(2) cal
culation, and in a sub-case III' of III in U(3). Diazoethane is

used as an example in U(2) and pyridazine in U(3).
4. SIMPLIFIED APPROACH TO THE CONVERGENCE PROBLEM

The convergence problem for excited states is overcomed
by inserting a single convergence parameter £ for each state

in the compromise Hamiltonian [ 30,33,

= [ ' '
H, = HY, *+ €P,Coy | | (13)

The energy is calculated from
* 4+ + LY -
Tr (J U )+Tr (J0') + Tr (KT ) +Tr (KI ) (14)
where
I =g+t + (C1T) ;K =K+(CTH)+(CT) (15)

and the due correction for the spurious repulsion of the half-
electron approximation [37,14,30_] is taken into account. As
long as the excited states obey the aufbau principle, a conver
gence parameter is not needed. There is certainly trouble when

the order of the occupation numbers is completely inverted, and

difficulties are .<pected even for partial inversion [ 30] (see

Fig. (2)).
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When the inversion is cor-nplete, changing £ frdm 1 to -1
restores a situation where the variation method may be applied,
the highest I° eigenvalue corresponding thus to the highest J"r
eigenvalue [[34|. This is as if we built these states with the
aufbau principle occupying the energy levels "downwards" from
the "top", instead of "upwards" from ‘the "bottom'. We have called

it the anti-aufbau construction, and is associated with the in

trinsic divergence problem faced in [[38|. Taking a single con-
vergence parameter for each state involves a maximum simplicity
criterion. All factors not taken explicity into account are
ascribed to £, which physically may be thought as playing a
role similar to the additional potential introduced in the Fock
‘operator by Beebe [[39] in order to modify the virtual or-
bitals. |

When solving Hartree-Fock density matrix .equations Cacl,
jterations usually do not preserve the symmetry of the densi-
ty matrix, although it is idempotent and normalized. Symmetry
must be forced at each iteration; this in turn generally de-
stroys the idempotency, which is recovered through the McWeeny
purification process [40]. In a thorough Hartree-Fock densi-
ty matrix treatment of localized electronit interactions in
molecules and solids, the orbitals of the local subspace are
deman’ded' to factor into two distinct orthonormal sets, one com
pletely occupied and the other completely unoccupied [41 7}, In
general this requirement is imposible to fulfill. Again, one
must either give up the idempotency or the localization of the

density.matrix. The present PPP calculation does not seem 1o
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encounter thé mentioned dx{awhacks, maybe due to oversimplifi-
cation.

As a starting matrix P in eq. (13) for the desired state
we can use one built with the eigenfunctions (i.e. some virtuy
al orbitals alse) of another state. It is expected [307] that
the solution may depend of the starting matrix, asuses to hap
pen in more sophisticated treatments [41:|; being or not near
the solution could not only accelerate convergence but be de-
cisive. Nevertheless, it is found [42_] that given £, whatever
the wavefunctions used to build the initial P, it converges to

the same solution.

5. PAIRING RELATIONS

Michl [437] has called attention to compounds with het=
eroatoms at least approximately paired in the PPP ‘'sense, a con
cept that is best grasped with an example: "benzene ﬁith one
heteroatom whose effective electronegativity deviates from that
of carbon, and benzene with another heteroatom whose effec-
tive electronegativity deviates from that of carbon by the same
amount in the opposite direction are paired if electron repul-
sion integrals satisfy certain conditions'. He, together with
other authors, has published a long series of papers where these
jdeas are applied to magnetic circular dichroism.(MCD) of cy-
clic ® systems. However, mirror .images from the viewpoint of
the complementarity relation admit a broader inference than

the one sought, The monocyclic azines offer an instance of these
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pairs of images, clearly revedled by their "complementary
charges [44| : pyridine-pentazine, pyridazine-v-tetrazine,
pyrimidine~as-tetrazine, pyrazine-s-tetrazine and the self-comple
mentary s-triazine.

The choice of parameters must be such as not to cause too
large deviations from perfect pairing [45], so as to relate
the HOMO's and LIM's of a pair to those of the parent hydrocar

bon [46]

. It should be stressed that two species only approx
imately paired have opposite sign MCD spectra [47] and this
experimental result emphasizes the importance of pairing prop
erties. It is also predicted that two such moleaules should have
opposite 7 magnetic anisotropy, one being diamagnetic and the
other paramagnetic [487].

From the complementarity relation [20:|,‘provided two com
plementary states (Fig.l) are calculated with the same Hamil-

tonian, we have
p(1) 4 pUII) _ 5y (16)

If the Hamiltonians are different, let us say bv a perturbation

aH [42]
. g1 = gD, ay (17)
it will be

p(D 4 pUD _ 514 can) | (18)
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where et must be A functional of AH.

Other pairing relations involving the particular solu-
tions may be found, deriving for example from the U(3) alge-
bra application, for the 12 states where N* £ N (number of e
lectrons respectively in symmetric and antisymmetric levels)
and singly occupied levels are allowed [33,42 (Fig. 2).The
three particular solutions are the P1 matrices from (3) and
the reference state one P°=1, If these 12 states are calcu-
lated with the same Hamiltonian, they may be paired off, sat

isfying either

P(i) + plii) _ p* 4 po

or - (19)
. p(i) + p(il) = P"’ + Pp°

Again, if the Hamiltonian is not the same, we shall have

P(i) + P(ll) - P+ + PO + B(ﬁH)
or (20)
P(i) + P(ii) = P- * PD + E(AH) |

Eq. (16) may also be written under the form

pl) , pUID) _p* o -

or else (21)
P(I) + P(II) = ZPO
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which discloses the analogy between relations (16) and (19),
and the self-complementarity of the reference state.

Amos and Hall [497] have found that the siﬂgle determi-
nant wavefunction written under the DODS assumption may be
forced to be an eigenfunction of 52 under certain conditions.
They mention that this may occur if there are sufficient MO's
of one spin and one irreducible representation to span com-
pletely the space of all functions of that symmetry; the mole
cular orbitals of the opposite spin and the same symmetry can
then be expressed in terms of them.

This is just the case of the 12 states which pair fol-
lowing (19). Let us ascribe to these states the maximum mul-
tiplicity and suppose that the a orbitals are those which span
for example the three-dimensional space of symmetrical or-
bitals. The one (two) electron of symmetrical orbitals may be
transformed so as to give one doubly occupied énd two singly
occupied (two doubly occupied and one singly occupied) sym-
metrical orbitals, The determinant becomes thus an eigenfunc-
tion of Sz, which in the mentioned example represents either
a quintuplet or a triplet,. For this case, hence, the adapted
DODS method and the half-electron method are two possible al
ternatives that reduce the unrestricted calculation to a re-
stricted pne.

It has recently been demonstrated [50| the complex M)'s
- (CMO) in the natural orbital (NO) representation may be brought
into the pairing form in which each CMO has only two NO com-

ponents, These NO appear in pairs with complementary occupa-
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tion .numbers, a condition tantamount to n£¥ n, = I.

It may be claimed that we are too unrealistic in contem
plating states probably not comparable with experiment. Nev-
ertheless, even if some states have purely academic character,
their pairing properties with lower lying states deserve both
speculative and applied consideraticn. Despite its inherent
simplicity, this PPP approach may provide useful hints to mch
more accurate and sophisticated methods based on pairing schemes,
such as alternant molecular orbitals [51_| or antisymmetrized

geminal power functions [[527].
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Table I. Trans-butadiene bond orders from eqs. {(1).

. 3)

1) (1au)2(1bg)2 0.9771  0.2127 -0.2127
2 1 1
2) aspiabytea)’t 0468 0.6758 0.3241
2 2
(1au)_(23u) 0 1 1
. 1 2 1 _
) aaptaby?e)t  0.493 - -0.439 -0.5604
2 2
b 0 -1 -1
5) (1bg) (2 g)
6) (1a.)l(za)?(eb )t -0.4457  0.2734 0.7266
u u g :
7) (lbg)l(zau)l(Zbg)Z -0.4930  -0.5834 -0,4166
8) (zﬁlu)z(mg)2 0.9230  -0.3826 0.3826
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Table II., MO coefficients for trans-butadiene.

State a b Increasing order of
energy levels

1} 0.4437 0.5506 la lbg, 2a,,, Zbg

2) 0.4026 0.5813 la,, 1bg’ Zau, Zbg

3) | 0.3530 0.6127 la,, 23y, 1lbg, 2b,
4) | 0.468_8- 0.5293 lbg', la, Zbg, 2a,
5) 0.5011" 0,4989 1b,, la,, b, 23y
6) | 0.3698 0.6027 la,, 23y, b, 2b,
) 0.4564 0.5401 1b_, la_, 2b_, 2a

gl u’ g' u

8} 0.3936 0.5875 2a.» la,,» lbg
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FIGURE CAPTIONS
Fig. 1- Two complementary states.

Fig. 2- The 12 states obeying the pairing relations (19) in

the U(3) development,
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FIG. 1
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