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Abstract

These lecture notes provide a comprehensive .introduction
to the field of Supersymmetry and Supergravitation. A chapter
on tetrad formulation and Einstein-Cartan theory cf gravita-

tion has been included to make the exposition self-ccntained.

Key~words: Supersymmetry; Gravitation; Supergravity.



INTRODUCTION TO SUPERSYMMETRY AND SUPERGRAVITATION

PREM P.SRIVASTAVA ,
(NPa - CenTro BrRASILEIRO DE PESouisas FI1SICAS

The Lie algebra of the generators Mm of homogeneous Lorentz Group (HLG), (% = ©,1,2,3) is
given by
(Mpns Mpgd = & (apMap ¥ MagMap™ "M np)

where Mlm - - M

it and Ny = d?ag(-l.l.l,l) is the metric.

A Tealization of this algebra is obtained in terms of ‘the elements 10.11,12,13 of Clifford

algebra over Minskowski space; they satisfy
[YL.YE}, -2 nlm
In fact

Mg =~ 1 %g

where
Oym " 7 [7£'Ym] 71 gy - Yo¥s)

The representation of 11 by 4 x 4 matrices is an irreducible representation of the Clifford
algebra. Thus we obtain & representation of H.L.G. by 4 x 4 complex matrices -5(A)

I S )
F Mgl v Y3

S(A) = e ; det S(A) =1

- - S ; g L ,m
where llm (Azm ) and A*m is Lorentz transformation matrix: nzmnp A Q LR T

Tim pq

The corresponding representation space is 4-dimensional complex space called Dirac Spinor
Space. S(A) acts on 4-Spinors ¥(x) which transform as:

vt sy

g ¥We note also the identity:
¥ el s ¥t S

showing that 7‘ are "invariant™ matrices and index t is a 4-vector index w.r.t H.L.G.
transformations. A convenient representation for 1‘ is the Weyl representation defined by:

= - -
where in terms of Pauli matrices ¢
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Explicitly

and

o 3 :
Yg T 7Y vy - [o _I] " Yg¥1¥gV3

The charge conjugation matrix C is taken to the

o 0
C'-TOYZI[Z --CT
0 -0,

We note

Yoyl = ¥ . TnY;Yo = -vg

In Weyl representation S{A) takes the form:

Sl{ﬂ] 0
S(a) - +=1
0 Sl[h)

+=-1

where Sl. S1 are 2 x 2 matrices:

s, = exp[33.3-33.5]

sl » exp[§3 453 8]

Here a, B are real and parametrize the Lorentz transformation.

Thus the representation is reducible and SI{A) and"SI_I(A) are 2-dimensional inequivalent T&

presentations of SL(2,C) =« SO(3,1), HLG group. They give rise to the representations

D(% , 0) with generators {- % @, - % 9}

and

p(o , %) with generators {- % 3, ¢+ % 3} .

-1T

* -
We note that §; - 5, and S, ~ SI 1 ,{-: eguivalent) since

-1T

$, =925 9

. -1T
S1 = 0, 51 o,

We write in the Weyl representation Y ¢ EDE%.D] & D (0.%}] as

{x,) % a=1,2
' = » . .
(¥ ¥ a=1,2

so that under HLG we have the transformations x' * Slx or x' = 81 Bx if 51 (81 a)
- +-1 IR & o1, .4 5 3 a o @
¥ - (5, ¥ which implies ¥'° = (8 ]i ¥ B,

and
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2 1T ,2

From %' = Slx =g SI x we find {o X )T = (ozx) 811. Th:s leads to the invariant (o x )T
n' = [dzx) n if n' = Syn. It is suggested then to define x®

(x*} = i0,(xy)

oT ) 0 1
xa - :usxa where [-ua] z iuz L .

Similarly
T o =T .+
(qu ) (027) S1
and we define
. a
(ia) - '1ﬂ2(? )

Vo= c5 ¥

or

. 0 -1
where {caa) - -io2 -
We verify that

xlﬂ - SIIBH XB

¥ty = S"B !a

a la
The €ap c are defined as inverses, viz,
oB _ 4B o 9B o gt
€ao E Gc and Ess € 6u
Thus

(ce,g) = (egp) = -io,
and R -
(eus) = (suaj - -l-iuz

Clearly, x“nu . Ea are Lorentz invariant. We write

xn = x'ng = X"

¥E - §8° - 90,

We show easily that €ap" euB, Eafhe cuB and 6: are Lorentz invariant tensors. Now
By
(S;570F 0
S(A) & [=-m-n- jromoos -
o lg-1T.B
ey & }

-1 g T

5 = |---em-- ?--:-a-
] 6 (557)

Lt

I 0 Slu S1
ssT et | ,
=14 -

S; (~9,)8] 0

From 1‘ - Atm S{A)? s {n) in order to match the indices in 2-component notation we must

write:



ot = (ulae) = (- 1,3)

cope %8 - (- 1= B)

Clearly, alué. 2%P are invariant under Lorentz transformation as is obvious from their de-
finitions

(1} (“luéj 0 at
[
y =i . =1
Clina 0 -0, ©
From ¥> = :“BYS. Y =¢ B'B and similar relations for dotted indices we alsec derive

and

- -
“l&B - (alua) * -0,0,0,

The completeness relation is given by

od om“'ﬁ' --2 5:' séé

o®
We may then express any 4-vector vt in-terms of 2-component notation:
¥ - = Vl a, = (Penrose)
an Laa
1 -aa
V“-—!—o Vna
If v* are real, then va& is & Hermitian matrix. Por
Fon = = Fme
a‘ « g™ s F, = ¢ Fez + €22 F
ao 8f “1m af " af Fak “aB
where Fuﬁ' Faé aTe symmetric and if Flm is real, they are complex conjugate of e¢ach other.

For Dirac adjoint we obtain

A TR DI ¢ )

0 1
¥-vy0 - 'y, - (-i)(xa.Y“)[I u] = -1(Y%,%g)
Let
Xa fa
Yy = . and é=1 .
iu ﬁﬂ
then the bilinears are expressed as:
)

¥ = -i (T + x0)



¥ (-iygle = -i(¥e - xn) etc. .

In Weyl representation we note

7 Q- gy - lx“]
0
o o
7 (A + iygly =
%

# - g3y - [io, o] :

and the Majorana spinor takes the fora

Xo T «*
S s H 'H = -f )
X ' X3

%o that

-i0, (x%) X,
2
!ﬁECY;‘T ] lﬁ]'|‘:]-!
"102()(, o iu

The Charge Conjugation matrix C in a representation satisfying (7032 - -I.yoyl‘vo - 1‘
satisfies :
cl gt cu -y
cf =
- s . L S s C =T 0T * .
The charge conjugate spinor Y~ is defined to be ¥ =C¥ =Cy ¥ . If ¥ satisfles Dirac
equation for a particle of charge e then vC satisfies the Dirac equation for a particle

with charge (-e). In Weyl representation € = ~ yoyz.

¥e remark that we may obtain the so0 called Majorana representation for y-matrices by a
unitary transformation of the matrices in Weyl representation:

[ |
TMaj v THeyl u

- ...1_ i Z
u T (1+1 TNeyl)

The representation has the convenient properties:

oro0 2+ _ AT
N*MYM M ™ -

0T

Cy™ -y

so that charge conjugate coincides with complex conjugation.

A Msjorana Spinor ¥, is defined (in any representation) to be a Dirac spinor satisfying
the Majorana condition: !ﬁ - leading to ‘M =-¥ C 1. In Weyl representation it is

essentislly defined by a 2-spinorxaand thus has four real components.

We will assume that the spinor components anticommute, viz, ¥ obs - ¢ LA The Complex Con-
jugation operation i¢ defined such that the order of anti-commuting factors is reversed.Thus

- LI S | AL ) = 0 .+« _0
(F0¢) =g (YO ¥, =y O ¥ 7

where we used (y?)? = -1 and 0 = - 40



For Majorana spinors we may derive the following symmetry relation
Eon-nctoa’e
Thus we obtain:
- - - L d
(¥6) = (8¥) = - (¥¢)
(Fy%e) = - Gy = - (')
- - - *
(7'\'5‘] - (‘75") - {YTs‘]
(rgr*e) = Grgr'n) = - (rgy'e)’
(Fo™®) = - (0™¥) = (¥a™9)"
In 2Z-component notation, for example,
oome - G W ?B A m _a s =nmfo s ®
X0 Y = X L = - ¥ Sup X T - Ya o Xg =~ x
and
- t. - - - * -
(xo"F) = - x&(umﬁu) LA o™ i ¥ -y

i1t follows that for Majorama spimer E, E 1‘ g =E o‘m E « 0, and only axial vector, scalar
and pseundoscalar surviwve.

The parityIagﬁgtime—inversion operations can also be realized on four spiners:
Y (x') = S(A) Y

where we require that S{A) corresponding to these discrete operations satisfies
v = At s s

as well as the relations corresponding to the equations
gl ag ag = ATt A A = Ag .
W e L At

Here Ay, A, are space reflection and time inversion matrices and Ap.Ag correspond to  space
rotations and pure Lorentz tramsformation. For example, for space reflection

v - x0.-%) = in ¥? vx03)

where n is intrinsic parity, n = 21, #i. It follows that !'c(xn.—i}--in‘1°!c(xu.§)q For
Majorana spinor we must have n = % i.

Finally, we mention the Fierz rearrangement theorem. If
- MY}, AN
where M, N are operators and Y,1,x are anticommuting Majorana spinors then we may rewrite
1
L,--7:0 fnmo, Ny,
where

ot - 11, 4t oM, 751’. vg)



A=1 .., 16, is the complete set satisfying Tr (OAOB] - 4 GAB.

2.1 - GLOBAL SYPERSYMMEIRY
Supersymmetry is the symmetry between bosonic and fermionic variables. In the contex of La-
grangian field theory models it is the symmetry between bosonic and fermionic fields. Con-

sider a model with one scalar field A(X) and a Majorana spinor field x described by the
action

s = 7L a% = rax [— FOMNEW -5y -0 x]

The action is invariant under global s.s transformations:

BA=iEyx=(EQ A

x = (BA) ez (eQ x

where £ is a constant Majorana spinor, 7 = yxal and Q@ are (Majorana spinor) generators of
supersymmetry transformations,

We remark that dimension L ®= [L7] = 4. It follows from the form of (kinetic terms) Lagraﬁgisn
that [A7] = 1, [x} = 3/2. Thus there is dimensional gap between hosonic field A and fermiomic
field which is filled in by e with [t] = - % in the bese-fermi transformation 8A. The
transformation &y then must involve a derivative as follows by dimensional arguments.

Consider now the commutators:
. o= L - -
Es{ez), 6[:1)] A= 2? €. 7 £,(3,A) = [czq, £,Q] A
The fermionic charges Q anticommute with constant parameters €1+ €, and we easily derive
Q. Qt A=21 (v*) .3, A=-20%) . P
at YgTe ap L aB "t

where P, = -i L is the translation operator. The s.s charges close into space-time  trans-
lations through an anticommutator. In other words if we are to have a closure of the
algebra invelving generators of s.s transformations, translations must alsc be included in
the algebra. When the global s.s5 is lifted to a local s.s e.g. £ = e(x), we will involve
transliations over "distance" [El(x) 1‘ sztx)] vwhich depends on the coordinate x. In a sense
we may expect in the case of local s.s. the appearence of general coordinate transformations,

In the case under consideration we do not obtain the closure for the y commutator

Coe). 8epdT x # 21 (§) vhe,) 2, x
even when we use equations of motion (on-shell).

2.2 - ON-SHELL WESS—ZUMRINQ MODEL

In this model the algebra of generators closes on shell. The model uses two spin zero fields
and one spin 1/2 Majorana field. The Lagrangian

1--30, 0% -30,m-F37x

is invariant under global (rigid) s.s. transformations:

-
™

SA =
8B =
&y =

X
¥g X - .
(A+Byg)e

™l

-



= fact
sLw - (3, ¥
Kl'-EB!'I{A+B1r5)x

Tie equations of motion are
gr=-0Ods=3%x=0

nd

[60e,) 8(ep)] (Field) R 23 (8] ¥% €;) 2, (Field)

zure ® indicates that we have used equations of motion to obtain the equality. Thus the su
ser-multiplet (A,B,x)furnishes a representation on-shell of the s.s. algebra (%)

R
£e,. qﬂj =0

fron the definition of @ as a Dirac spinor we alsc have

-EQu’ Mlmj =i (alm)nﬁ QB

The algebra generated by Q,. P,. My, is supersymmetric extensionm of Poincar& algebra. It has
rodd" elements Q, and "even" elements P,, M, . It is a superalgebra with I, grading such
that

{i) The bracket of two generators is always antisymmetric except for two “odd" elements when
it is symmetric.

§) The "odd" generators form & representation of the ordinary Lie algebra spanned by the
"even" elements.

@) The Jacobi identities are modified due to grading.

2.3 - N-EXTENDED SUPER-POINCARE ALGEBRA: SPy
(Sohnius, Haag and Lepuszanski, Nucl.Phys., B88, 61 (1975))}).

In 4-dimensions the most general supersymmetry algebra, consistent with Poincaré invariance
and certain requirements of the properties of S-matrix coming from a Telativistic quantum
field theory has the following structure:

. 3 - - ] —_
g}, Q) = (vho) g Py 677 4 Cop U ¢ (v0)gg vii

R R R e R B i ki R A R

Lol M0 = i (000 @

(*) N.B.: Under space translations 5x* = }; a field ¢(x) transforms as &§¢(x) = - g"aljtx) etc,
Writing P, = - is, as the generator of space translations 8x* = i(e-P) x‘.
84(x) = -i(E- P)Q(x). If then follows, for example, [&(e),8(E)JA{x)=-i[£ P, QA(x) = 0
leading to [P ‘Qa] =0,



[Q:- Plj' 0
Dy Mgl = 1 (Mg = wee * oo = oo )
[Hzm'Pn:l' i (g Py = Mgy Pyl

[p,. P =0

Uij and Vij where i,j ~ 1 ... N are internal symmetry indices are present only for N > 1.
Also Uij - - UJi.V13 = - Vji are P, invariant operators. U, V belong to the centre of SPE
and called “Central Charges". They have important consequences on the structure of the
representations acting on one particle states. Central Charges have dim = + 1 they occur
only in field theories where there js a dimensional parameter, say,

(a) 8 mass parameter in L.

(b} the energy scale introduced via ipontaneous breakdown of internal symmetry.

N

In the absence of central charges the 5P, algebra has a U(N) symmetry. This symmetry is
relativistic: [U(N),P, ] = 0.
The N-charges Qi are Majorana SpinoTs
%
ot - |,
a
0
¥We note that : -
{Q,. Qp} - (y‘c}us Py = (P
jmplies
Q. Qg = = (g Py = - Mgy
where
g-qty° and  Q-clq end ((q. @) = - E¥* m) P,

Thus Qa in 8 sense are “'square roots™ of Dirac (operator) equation. On tracing with 10 fiows
the important relation:

4
1 -
H=-Py= 7ok QG * Qg Q?
This holds even in the presence of central charges.

The global or rigid s.s is the square of translation operator and ‘one expects that local s.s
should be the square root of general relativity. This result is essentially the cuterme of
different dimensions of boson and fermion fields. For local s.s case one expects

[oe,(x), Bcz(x)] B~ [Ez(x) stz(x)] 2, B+ ...
One would thus be led to translations over distance Eztx) 1‘ :l(x) which differ from point

to peint. This is the ides of general coordinate transformations. Thus local s.s should lead
to graviry. This is, however, only a heuristic argument.



2,4 - QEE-SHELL WESS-ZUMIND MODEL:(SPy ') Auxiliary Fields

We would like to have off-shell closure of s.s algebra. It was slowly realized that in a
s.5 field theory we should have equal numbers of hosonic and fermionic¢ components. In  on-
shell model discussed in Z,2 we have

A, B 2 bosonic

iuo xuo a = 132 4 fermionic

We need to add 2 hosonic fields F, G. Consider

TS S N T E T

2
Lysm =~ 7 (348

2

which is invariant under rigid s.s transformations
A = igy
6B = iEycx
Sx = {F+y6+7FA+Byle
6F = iEﬂx.
86 = iEYsﬁx

We may add also invariant Lmass and Lint terms !

Lyaes = ® (FA + GB - Z X0

, . .
Lint-g[F(Az-B)-l-ZGAB-lx[A-BTS) X

The "auxiliary fields" F and G allow us to close the algebra without using equations of mo-
tion (off-shell):

Cé,. 8,0 x = 2i(E,vtey) 3, x

The Fx term is now cancelled due to the contributions from F, G fields. The super-multiplet
{A, B,x. F, G) called scalar or chiral multiplet realizes the s.s (global) algebra off-shell.

-

The fields A, B, x give rise to a representation on single particle states of 5.5 algebra
(see latter) - the lowest spin representation of s.s with N = 1.

The auxiliary fields F, G satisfy purely algebraic equations of motion. They are important
to kXeep the s.s transformation laws linear and allow off-shell closure of the algebra. This
in tura allows us to build a tensor calculus. Quantum rules and super-Feynman rules can
be build (using superfield formulation).

Rigid (or global) s.s invariance implies conserved noether current:

Jy =~ F(A-Byg) vy x- (F+Gvyg)y, x

] . o a3
a,J" & 0 H Qu Ja© x Ja

1a
The field equations for auxiliary fields are

P+mA*s(Az—Bz)'°

G+ mB+ 2g AB=0



- 11 =

Eliminating F, G we obtain the Lagrangian

2 2

L= - % (a‘A)z - % (Blﬂ)z - % 0l (A2 + BY)

dioemx-ena’eBh

z -
~E e B -1 X (A- By x
which is supersymmetric extension of ¢3, 1‘ or Yukawa theory.

The reulting s.s of the Lagrangian not only implies the equality of masses for A, B and x
but also a precise relationship between the interaction terms and is responsible for high
degree of renormalizability.

We note in passing that the multiplet {A,x) initislly considered has nothing to do with s.s
jt is not a representation of s.5 on or off-shell. In fact, not even the on-shell states
have the equsl number of bose and fermi degrees of freedom required to form an irreducible
representation of supersymmetry.

Another example of a s.s multiplet is given by
. o 1 - ) 2 _1 1 2

is invariant under glcbal s.s transformations

le = - E Y, b |

im

&r = Flm a

e +1 Yg De
8D = i E g 7
Then

- 3 .
(6.8, 02 =28, v e, 2 %

But if we eliminate D first by using field equations for it and insert in 1 (eq. D= 0) one
finds

- 1 1 ,= } 3 - tm
[61. 62] ~2e, Y £y 3 A3 N y‘ £,) vy N G €,) o, #x

For boson fields, even in absence of auxiliary fields the algebra cleses due to dimensional
considerations.

3 - REALJZATION OF S.S ALGEBRA ON COORDINATE SUPERSPACE

3,1 - METHOD OF INDUCED REPRESENTATION

Consider first tﬂ; reatization of Pincaré Group P on Minskowski space. P is defined by
P - {(a, M) [(a" A (a.8) = (8% + A'a, A'AD)

where
a3, : four-vector of translations

A= (A‘m) : Lorentz rotations, AY nd=mn

and 8y, A'n ere real. P has subgroups



Ty " {(a.D)]|(a*,1)(a, 1) = (a* + a,l)}

L= {(0,A)](0,A")(0,A) = (0,A°A))

T, < P . LCP

Since (a,A) = (a,I}{0,A) the coset decomposition w.r.t L C P (L is closed) is P/L={(a,I)L).
The coset space P/L may be used for a realization of the group P as a transformation group.

Consider an element of P/L, say._(xz. IJL. Let (a,A) P be any arbitrary element, then,

(e, M) (x.,I) L = (a + Ax.A) L
« (a + Ax.1)(0,A) L
= (a + Ay,IJ L

Thus

(x. DL {248 . e LE DL

c.g., any {a,A} e P induces a transformation on the coset space P/L parametrized by (x.I)

xteatspta,®
Thus we have a realization of P on the coset space parameters. We loosely write P/L = [xll.
The whole Poincareé group is realized on the space of 4 coordinates Xy + Even though P itself
is characterized by 10 essential parameters (a,, At m}.

N=1

Consider now the Super-Poincaré group SP . A general element of 5P, may be written as

~1(EQeE.P+ 3 A.M)
]

where

El : translations

e : Supersymmetry transformations
¢ Lorentz rotations.

xln

Also L © SP4 is a closa subgroup. The coset space SP4/L consists of the elements of the form

-1 (BQX-P)y

a£ is clear from

1
AR+ S[A B)+...
PP ae - z

and the commutation relations of Q,P,M. Considering left multiplication on a fixed
elemént of coset space we obtain a realization of s.s transformation on (x‘,on] coordinates
OT parameters.

-1 (EQ+E.P+ % A.m)  -i(8Q+x.P)
g (x’.0") e e L

Set A = 0 for convenience, A > -i{eQ+£.P), B = -i{BQ+x,P) we find

[AB]= (€Y &) P, . [CA.BLE] = © ;

SAfE B Qe (g 0PI EY 0Py
g (', 0°) = e L

Thus, the induced reptesentation on superspace coordinates is given by



- 13 =

i =
HER TS AR 8)
(Salam and Strathedee)

' =8+ ¢
a a

a
We note:
L = L =
GR xl E! v GP Bu V]
L i= L - L - =
6Q X, =4 €Yy ] . GQ By = €4 . GQ En £q

¥

- -‘ - -
¥e remind [i € v, 8] =ice€ Y, ® is real though nilpotent, (€ Y a)s = 0., We loosely ‘write

-5113 = {x".ea]. Next set
E=E=10 . N H
Using

A B - BLABr... A

we derive
G.B) = (xP) *+ 3 Ay (F PR - x™ PP

, 1 i
L4 '-Ea -7 m Ol Yo

so that for infinitesimal transformations

Lt
GM x

1
M

L
GM en

é eu

- oal,®

= 4

1
Z
1
2

A (©

X

wm ©

o!.m)

a

m e)u

¥e may have as well used right multiplication on the right cosets

gp(x".0") = Le

We get

0, =9, * ¢

x -
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coordinates (xl.ea); the 8 coordinates spanning a superspace (Salam and Strathdee)
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transforpations (rigid) may be realized as transformation group over the superspace

Cxpoxg) = [xg08,1= 0 . {8 .0, = 0
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e.g. {81) = 0. 8, are called Grassmann coordinates.

The s.s group of Wess and Zumino may be thought of as arising from an extended space-time.

0; we remind are Majoranma spinors and transform like Dirac spinor under Lorentz transforma-
tions.

3,2 - GENERATORS IN COORDINATE REPRESENTATION
We may now obtain a representaticn of generators acting on superspace coordinates. We have
skx‘-sgx‘-:"-z"‘-a—-x’*si(;.p")x‘ =3 . PN xt
so that
L- R-—.
Pl Pl i az
Also
ske) o = 3(e.P) B = 6R() o =0
P a " a P o
For Lorent: transformations:
L L P I I |
5"(1) (x .Ba) ( Ap ] (l-oﬂ)n)
From commutation relations (M,P} and these variations we find:

im L.m mpts o Rm a
M P P”) i(o e}a 55

= (x - X

if

sboate) = 3 e xhie)

For the case of s.5 transformations

Ly eicyto-iz (M) 2t

EY = €
Q z Z e LI
L - - L) - % 3 . - -T
6Q eu EG CB -5-6; Bu SOCUB -b—o—s B“ . :T- ;::T
= -8C

sglx"0) = Eg [-cﬂ.8 r?rﬂ + 3 G, "{EEJ (x*.6,) = i(E.Qx" .8
where
| 8 1 .m 2 alic.2 + 1 Ry 2
Q? iGCe TFE vy (Y8, ax® [ Cyg * 3 (¥'0) ax‘] -
¥We may check EQa.Hl-]_- 1(0,,) Qs From 63(x:.oa)= GSI—IL.Bu) it follows:

R x L) 3 3
Qa .[10-3—9- - 'f ("r“a) ;- .

¥e may derive a commutation relation between QL and QR as fellows:

skm o) x* = sgn) - 3Evt e - -3 GE W)

L

63(:] 63(11} x* = 63(:) (%ﬁ e - % né €= - % GEvtw

L R R L
GQ[n) éq(e] o, = GQ(s} SQ(n) en =0



Thus we may write
s5n) 8(e) = 65(c) &5(n)
or

G.ME. M -c. 5 G .dh

€g O Qg = F5 Q4 7, Q = F, £, Qf O

We obtein

(e}, Qg
We verify directly

(QC.Q5) = - i (r*C), 3, = (Y'Y P,
and it followslby inspection

Q.qf} - - ¢'o) B,
3,3 - sCALAR SUPEREIELD ¢(x,8)
Over superspace may be defined by

¢' (x7.,8') = ¢(x.8)

Then for infinitesimal transformations

B00x.0) = 0" (x.0) - 0(x,0) = - [6x* 2y v o0, - a0 ¢ o
X a -

Note that we always use left or ordinary derivative and $6, must be kept on the left of 5%—.

Also ax‘ = ath 68 = aLeu. etc. e

8p(E) #(x,8) = - € 8, ¢ = ~i(£.P) ¢(x.0)

sy(0) #0x.8) = - 3 (M) #(x,8)

GQle) #(x,8) = - 3 7" 0) 3, ¢ - 3t 9
Using

€a =~ EB Caa

Ea 5%: = Eé Cha i%;

we may rewrite the last expression as
-z ? i [ F) - _ ifz
t() ¢ = & [Cap g - F ey, Zp Je - i @
Thus
s6(x.0)= =i [(6P) + § ) + € Q] #xa®)
corresponding to

5(x".8n) =4 [C.P + % A.M o+ EQ]'(X."'“}

——t



Here Qa E Qt . th = Hkm.

Since 8, 8T¢ anticommuting parameters we may expand ¢(X,€) in terms of 8, obtaining a finite
series expansion:

$(x,8) = A(x) + Bp(x) + %-[58 F(x) + @ Yy 6 G+ ] YoY5® Al(x) + §0§x(x)] . fi (58)2 D{x}

Here A(x}, ¢(x), F(x). Al(x). x{x), 6(x), D(x) are the component fields of the scalar super-
field ¢(x,8). We remind & 7‘ ® « 0 and § Oym & = 0. Superfields are very useful ip writing
Lagrangians and introducing interactions just as we do in ordinary field theory,

The transformations of component fields may be worked out straightforwardly by comparing the
coefficients of 6's on ‘the two sides. Superfields are a necessity to work out superfield pro-

pagators and a systematic quantization of the theory,

It is easy to pass over to 2-component formulation:

J Qa - - -
Q=(Qq) = R o =131 2 =1, 2
} o g

1,2,3.4 .
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O
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1] -UZJ (Ezﬂa) o
"us 0
iC =
° 5
we easily derive
[ i 8 9
G -cprp, t 7l 8)
8 ax
& ag 2 i =taf 3
= ——+ w0 0,)
¢ g 2 Bt
1)
Here a,8 = 1,2 , a,8 = 1,2 is clear from the context. Care has to be taken in raising and
lowering indices:
B 2 F]
x“ - SGB X but ;ﬂ- - - tﬂﬂ ‘5-0_5_ ete,
Thus
3 i ¢ -8
- .QF" + v Quéo 31'.



3.4.- COVARIANT DERIVATIVES (SALAM AND STRATHDEE)

v
Spinor covariant derivative-nu must be defined since 3/38u is not covariant under s.s trans-
formations. It is by definition such that ¢(x,6) and (nD}¢{x,8) transform under s.s tTEnS -

formations in like fashiom, viz,

GQO = - i (eQ) ¢ i €,n <onstants.

GQ Cp)é(x.8)] = -~ i (cQ) (nD)¢(mp)
But
§q L(nD)#| = nDp’ (x.8) - (AD)$Gx.@) = (7D)84(x,8) = -i (WD) (EQ)4Gx.0)
Thus | |
[eq.nD]| = ©
or
(Q.Dg), = 0
We may thus identify D, with @\ above, (Q, = Q1.
For the covariant derivative corresponding to 3/3x% we note:
Bpt = -3 (5. P) ¢
we require
e.?.e*p =0 or [e*. pl= 0

Clearly, D‘ = Pl since {Pl' P.) = 0. The spinof covariant derivative

e d-sed oot g
x

differs by a sign in the second term compared to Qu' In 2-component notation

Covariant derivatives are necessary to impose covariant constraints on super-fields. Thus
Wess-Zumino model is obtained by imposing on the scalar superfield the constraints
Da‘ = Da‘ = 0,

It is clear that

| A
{n,, By} = + (1‘)uB P,
(p,. D, 1= 0

We may pass to Z-component notation:



—iulou o
{QC-QB]' - o:é Pz

to,.q50 = &% ¥ - o
It follows
Q. Q) = o3 Py * of, P,
In the presence of central charges we have

{Qi' Q%l - o5 Py st

i . - Y ‘s
Q. Q%] = €4 {-v 4 qutdy . €ap s
Q. ) = ey v+ 0t

For the covariant derivatives

iopiy - - gt ij
{Du' Dé} Oug Py 8

i ody oo ¢fi i
{n,. Da} 0 {Da. Dé]

Covariant derivatives do not anti-commute like Grassmann variables:

{e “.

iy = iy .
ui'_aBj]* aéJ (o, §E} 0

Cxge xg] = 0 , Cxpe g3 = Cx,0 835720
We remark that

=D - (v*e)
Q a Y Blg xt

Sqle) #x.0) = =i [ED - (@ +* o) 2 Jeeo
Also -

€D = - i(eD + By ,

L
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in 2-component notation. Thus for ¢ = ¢(x,0,8)

8qle)e = - [cD ff;p + i(00% - c o' ®) 3;] ¢(x.0.8)

Because of anti-commutation relations of Du any product of P can be reduced to & linesr com-
bination of 16 independent operators:

2
1, D,. bn, O Y5 D, b \ARE boD_ . (bD)
Since Qa's are linear differential operators we may show that
(i) linear combination of superfields is again a superfield.

(i} product of superfields is again a superfield.

Superfields form a highly reducible representation of 5.s algebra. We may reduce it by im
posing covariant constraints which do not restrict their x-dependence through differential
equations in x-space,

Since D and Q commute (srti)} it is very convenient to define component fields of ¢ix ,8) by
applying to ¢(x.6) the D, D's and then setting 6 = O. The order of D's is important but  the
difference involves extra terms which are just ordinary x-derivatives of lower dimension
component fields. 6Q(e) on component fields thus defined is readily obtained.

3,5 - GENERAL REMARKS

Wess-Zuminoe supersymmetry group introduced to incorporate boson-fermion symmetry thus can be
v15ua11zed as arising from a supergauge transformation on a superspace with coordinates

(x 8.) - (Salam and Strathdee) - in the same uay as Poincaré group symmetry corresponds to
Poincare transformation group on coordinates x*. The supergauge transformations.

xtaxtegtesivte
plus Lorentz rotations
L
00 = 8 * 5
is a subgroup of general coordinate transformations of (x!.ea). Ignoring Lerent:z rotations

we have
dx'* = ax* + 3 € vt ge

do; = daa
(ax'* - 38 vt dor) = (ax* - 35 v* a0)
Thus line element invariant under Poincaré group and supergange group is

as? - (ax* - 38 v* d0)? + 4B (x4 Ly de
For K = L = 0 we obtain a singular metric. Writing

A_ L

7 = (x7,8,)

2 A B

ds” = 427 g,4(2) 42
we obtain, T = (K - L v,),

Bem = Bt "~ Mam

i
30 " " By T T (& *z)a z



Bap = "~ %ga = - B Yh, Gy, DT+ (T v,
where we use Majorana representation for y matrices: C = yg ==Y and Nyw = diag(,-1.-1,-1).
The inverse metric g,. gCB = Gi is
g"m-gm"-nm-(%)zfﬁ-y"ry" o
g -t e avte)

g = - g - (T,

when
L ST
(X* + L%)

The geometry, though flat in space-time, is curved in other sectors,

The first attempts to unify gravity with other fields were made along these lines by Arnowit,
Nath and Zumino. Tney formulated a Super-Riemannian geometry over superspace with coordinates
ZA = (xl.eu). The hope was that RAB(X.B) considered as a superfield may lead to a unified
dynamical theory of gravity with other fields.

With the definitions of super-trace and super-determinant developed by these authors it is
possible to formulate a Superconformal group of 2%, The algebra of the infinite-dimensional

general covariance group ¢ver superspace can be shown to be the closure of the algebras of
its three finite parameter subgroups: the special linear group, the superconformal group,
and a four parameter supergauge group to desentangle the ordinary special conformal trans-

formations. The closure of the algebras is under the modified commutators, presently called
graded commutater
MM,

M, M} = MM, - (-1) MM,
o MMz s N
where Ml(Mz) appearing in {(-1) indicates total number of Fermi indices appearing in the
OpPerators MI(HZ). The algebra defined here satisfies modified Jacobi identities and <can be
shown to be Lie-admissible &s well as Jorden admissible. This property allows to classify su-

persymmetry algebras and extend to the supersymmetry algebra the techniques of Lie algebra,

Grassmann anticommuting variables and supersymmetry have also found their utility in for-
- mulating a new pseudo-classical description of particles with spin. Casalluoni, Berezin and
Marinov gave such a description for S = 1/2 particle., The generalization for any spin was

subsequently given (N.C.,19,239 (*77); Phip.Rev.D15, 3858 (77)c/Nivaldo}.

3,6 - INTEGRATION OVER GRASSMANN VARIABLES

In order to write action in terms of superfields we need to define Jge Berezin's book already
had it. For a single Grassmann variable @ we have

7 (const) = 0
sy ® -1

Io £(8) = 75 £(8)
A SORN

So £00) % 8(60) = = Sy 3% 5(0)
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where (+) sign is to be used if f is "odd".
We also note that

(i) !B is linear {fermionic) "odd™ operator
) s(o- 0') = (0-0*)

@D Sy fg2 £ 7 - gy foy £

We also collect the expressions for super-trace and superdeterminant of supermatrix of the

form:
A T
M=
.} B
where
A= My ' F o= Myg
B = Mff . 4 - be
- Then

Sup tr M= Tr A - Tr B~

S - Tr (M) = 5 - T (MM))

S - det (M) 5 17 1IN M

S - det (MM,) = (S - det (M,)) (5 - det (M,))
S - det (M) = det [ge; ;n'la) . det A__

det (B - BA"" T)

also for M B-(I + X), X infinitesimal,
5(S-det M) = (S-det(M)}(S-Tr(M"} &M))
] - MASSLESS REPRESENTATION OF EXTENDED SUPERSYMMETRY
‘To construct a supergravity theory we need to know with which fermionic fields (and other
fields) we must combine the spin 2 field to obtain a bose-fermi symmetry. We will thus look
at the spin content of the representation one particle states of the supersymmetry algebra.WNe
will only consider massless case, A general discussion has recently given by Ferrara et al,
Since central charges have dimension one, in the massless case.they will be absent.
L i
{Qi' Qg} = - (y )ua Plsj
i i
Eulm‘qa] - ilogp)ep
i
Lo P 1= 0 .

The symmetric form of the first relaticon implies that spinor charges transform under an  in-
ternal symmetTy €.g. '

[t Q1= - a®Y ¢
Cr2. qlg= -y 9



where T%, a Lorentz scalar, and TS. a pscudo-scalar are internal symmetry generstors Majorana
cond:t:on requires that (taJIJ be pure imaginary while (53)‘3 pure real, Both t® and S* are
Hermitian N x N matrices.

In 2-component notation
Q. Q) = oy 7, &

For massless case we choose the basis of l-particle states with standard momentum Pl-(w.o.o.w)
e.g.{]P...>). On these states

{Q:. Qi} = (~oup ¢ °:ﬁ) w il
= (T g+ oly) w o'
.2 [5 ij
Hence
(0}, ¥ 2w st

and
Ql.e) ~ow gl v ad -0

Since L.H.S. is positive definite we get Q2 =0 = Qi Q2 creates zero norm States and should
be ignored in counting physical states. Ql span a Clifford algebra of N-complex elements.

The "little algebra" corresponding to this basis with standard momentum P is the sub-algebra
of SP? which leaves [?1...> {or P} invariant. It is generated by Q- Qu T8, T;. JS‘ HOI-JZ.
M2 . Jy- The last three are the generators of E, = 50(2)@ T, subgroup (in fact Pauli

Lubanski vector w (p) ¥ pf, w.p = 0 .,Teduces to ¥y = - vy -W M? . wlg, W o~
(Mzo M 3) ¥, W, -(-H * ¥ ) w) To have discrete helicity states we must set translaton

operators of T,, viz w,,W, to zero. The phystally acceptable "little algebra™ is given by the
P 2 %2 4

supersymmetrxc extension of E,, viz, Ql’ i, T2 Ty +J3. From the commutation relation of Iy

with Q1 and Qi it follows that Q1 and Qi are ladder operators, one rtaising the helicity by
1/2 while the other lowers the helicity by 1/2.

The helicity content may be easily obtained as below:
Let ) be maximum helicity. The possible helicity states are
Lowering chain:
1+u-%)-» R R > e > - P
. . N
Nult1p11c1ty:,{x)....1
Raising chain:
(- a2+ 3 -2+ 5 e .-
- z’ . ) }'o"- T A
foes s N
Hu1t1p11c1ty;.{x} crma
Total multiplicity = Total number of helicity

N
states = 2 g (g] = 2.2N

However, when



the two chains coincide and
. . N

Total Multiplicity = 2

We give some illustrations:

N=1

H

(a) “‘maxl =2
=
Particle content: (5 = 2) + (S = 3), Multiplicity = 4

Field theoretic representation:

e: one gravitaten

!u one gravitino
Here u is.world or curved space index.
(b} “max.I - %
777 -3+ 3
particle content: (S = %) + (S = %). Multiplicity = 4
Fields: ¥, . A,
(€) Prgaxl = 1
143 -3+
Particle content: (S5 = 1) + (5 = %)

Fields: Au. X

AL A pax | = %

oo
Particle content: Z(S = 0) + (5 = %ﬁ

Fields: A, B,

Ne=4, lxmaxl = 1z
1-3.0 1 1 Lowering chai
o b Ul Sy owering chain
ledepas-1 1 Raising chai
7 - -3 - - aising chain
Multiplicity:
1 4 6 4 1

particle content: (5 = 1) + 4 (5 = 1) + 6 (5 = 0)

Total multiplicity = 2N=6.



N=238, |3

maxl -

Particle content: (S = 2) + 8{S = %_) + 2B(S = 1) + 56

Multiplicity: 2N = 256

N=7, 02

Particle content: (S = 2) + (7 ¢ 1)(S = 3) + (21 + 7) (S = 1) + (35 + 21)(S = J)+(35+35) (5~0)

maxl T

Multiplicity: 2 . 2N = 256

1f we require one gravitation we must stop at N = 8, Since particle content of N = 7, &

(S =3+ 170 (5= 0)

coincide we have 7 different super-gravity theories. For N = 9 we get

N = 9: (5 = 33+(9+1)(5 = 2)+(36+9)(S - %}*[84.-&36)5(1)"(126 + 84)S(3)+(124+126) (S = 0)

$=2 | 3/2 1 1/2 ¢ |MULTIPLICITY OBSERVATIONS
1 k| 4 Simple Super-gravity
1 1 4 Spin 3/2 multiplet
Nl 1 1 4 Vector multiplet
1 2 4 Wess-Zumino Scalar nultiplet
1 2 1 ] 0(2) Supergravitry
1 2 1 8
N=2
1 2 2 8 0(2) Super-Yang-Mills
| 2 4
1 3 3 1 16 0(3) S.G.
N=3 1 3 3 | 1 16 '
1 5+1 | 343 16 0(3) S-Y.M.
1 4 6 4 1+1 32 0(4) S.G.
N=2# 1 4 6+1 | 4+4 32
1 4 6 16 0({4) S-Y.M,
1 5 10 |10+1 § S5+5 64
N=s . 1 5+1 10435 {10+10 64
1 6 [15+1 |20+6 |15+15 128
N=¢ 1 6 15 20 64
Ne7 1 7+1 |21+7 |35+21{35+35 Z56 0(7) 5.G.
.N=8 1 3 28 56 70 256 0(8) 5.G.

EXTENDED SUPERSYMMETRY MASSLESS REPRESENTATIONS




5.1 - LOCAL SYMMETRY, COMPENSATING GAUGE FIELDS, NOETHER COUPLING TECHNIOUE

in Sec. 2 we constructed lagrangians invariant under rigid or global supersymmetry tTans-
formations and where the fields carried a representation of rigid supersymmetry. We would
now like to promote the symmetry to a local one so that the fields carry the representationd
local sypersymmetry, We will illustrate the procedure by considering well known simple
examples.

Consider the Lﬁgrangisn of a complex scalar field:

Ly = (2,4%) (2%¢) - o ¢%

which is invariant under $(x) + ¢'(x) = e-i"Il #(x), o = const. The corresponding Noether
current is

ik=se[o%Y) e - ' '3, a0,

For local symmetry, o« = a¢(x)}, the kinetic term in Ly is not invariamt, since,
2,07 (x) = e 220 [a 4 - i(2,0) 0]

We must introduce a compensating gange field A, (x) and the covariant derivative

DQ(A) H (al - ieAl] such that (Dlo)' = e-iu(x](nl¢]. The transformation property of the gauge
field then follows to be

hd - - i
Aj(x) = (A, (x) - 5 B,a)
and the Lagrangian invariant under local U(1) transformation may be written as
[ t ' .
L= (0,6 0" ) - m2e% - Fo,A,-3.807 = Ly + 5Ea el 0TI (AT - 70 A~ A2

The additional terms needed sre & coupling of the gauge field with the Noether current, a
contact interaction term and the kinetic term correspondng to the (massless) gauge field.

The necessity of such interaction terms in general may also be seen as follows. Consider
L=L{e, 3,0

where ¢ is a field multiplet. Then

8L = 80 35+ 60,) Fricyy - -84 [- % 2 scdimr ] ‘z[“’ﬂg'i*n]

where
¢ = 4'(x) - ¢(x)

Global invariance implies
sL = 3,(c Al(x]) ' £ = const.

so0 that the conserved Neoether current is
N L | A
€ jyu = [60 - E A ]
N 38,6 R

Y 5
e 3, iy 0

When ¢ = e(x) clearly



BL = 3, (c(x) Ab(x)) + (3,¢) stx)

3,0e(x) 3p) ¥ (3,c) s

or
N )
Iy * s!.
Thus
5L = 3, (c(x) AY) + (3,0) 3t
z 257 N
and te compensate for (st) jN term we must add to the theory a gauge field A, and an in~
teraction term of the form JN g Add1t10nal contact type of interaction terms may be Te-

quired to make the complete Lagrangian locally invariant.

Consider next the case of SU(2) Yang-Mills theory described in terms of the fields Ai (i =
= 1,2,3, the isospin index). The linearized (free) Lagrangian

Lo'"i}i . fm . Fm = Oy & -3, 3

is invariant under global SU(2} transformations 61 =a x 1 and local abelian gauge trans-
formations GI = auI We will reconstruct by Noether procedure the non-linear anteractlng
theory. Hhen SU(Z] becomes local e.g. o = a(x) we have 61 - u(x) x I BLO - (3 u) - 31
where Jl = - Im x B s the Noether current. The Lagranglan L' = Lﬂ % J . 11 is
locally invariant to order g if we combine the initially independent local and rigid trans-
formations of the linearized theory together and identify X = % a(x) so that

6%, = 3(x) x A, (x) » -:, (2,%)

We continue this step by step process of amending Lagrangian and transformations order by
order in g untill we have a locally invariant lagrangian. In the present case

st = - gk, x X)) - (B xtd) .
We find

=L+ f R xR - A" xR - - 38 B0

where
F!.m = (3;1\, " % Ir.) ek x )

is inv ariant to order g. In fact L" is invariant under the zbove local transformation to all
orders in g and we recober the usval Y - M theory. We find for the commutator

i + 1 - - = 1 -+ =+ - - -

[8;. 81K, =8, x 3,8 + 3, xX) -1 =2 g 22X @xadx Ry = &), Ky

Thus we have a set of local transformations which have a closing algebra, and which have the
Lagrangian L invariant.

5.2 - LINEARIZED $-G LAGRANGIAN (ON_SHELL)

From the s.s. algebra we find that if we promote the global symmetry to local symmetry we will
end up with general coordinate transformations, To preserve the local s.s. invariance in &
field theory already invariant under rigid s.s. we will be obliged to add compensating gauge
field ¥,(x) just like in q.e.d. to assure local U(1) invariance we must add gauge field
A, (x). Thus a massless spin 3/2 Majorana field !l(x) must enter the theory if we require
local s.s. invariance. Moreover, this field couples to the Noether current of global s.s. But
¥, will itself require a massless companion of spin 1 or spin 2 te preserve the supersymmetry



Since pravity (s = 2) is necessarily coupled to the stress tensor of all matter,it is natural
to take (2, 3/2) as N = 1 supergravity multiplet. A (3/2, 1) supermultiplet as the gauge
field not only forfeits connection to gravity but does not give a consistent nonlinear gauge
theory since neither the real 3/2 field nor any other real matter fields can couple minimally
to photon (s = 1). The natural place of this multiplet is as a “matter" multiplet coupled teo
(2. 3/2) where it leads to 0(2) extended supergravity. In view of the discussion in Sec. 5.1
we may write the linearized supergravity Lagrangian L0 85 the sum of Fierz-Pauli spin 2 {1i-
néarized gravity} and Rarita-Schwinger spin 3/2 Lagrangians:

0 im
LY = LFP‘{h ) + LRS(!‘)

tm, _ _1 im0 _ L L 1
RS 1 LI ot + 2hth,, - by net]

where -
- - o E !'
Byp = Bpy » By =3, by, h=dT,
and a comma indicates ordinary derivative.

L" is invariant under two separate Abelian gayge transformations

Shy o = 3, £+ 3 E,(x)

6!1 = 31 a(x)

and under rigid (global) supersymmetry transformations (non-Abelian):

ah" = jic Yy "2t ie Ya !1

- m -
6!£ (an ham) o [ 4 € : constant.
If we now require local s.s. invariance ¢ +¢(x) we must add an interaction term of the form

K ilaJ: when J: is Noether current corresponding te glebal $.s. invariant and K the gra-
!.ll

v:tational coupling constant. However, with this term added we also require a term K h N

since J under s.s. transforms into the stress tensor of the system, to ensure the local S.5.
of the 1nteract1ng Lagrangian, The final 5-G Lagrangian is invariant under a single - non-
Abelian 5.s. gauge transformation,

The linearized supergravity dJdiffers from the Wess-Zumino model. One has to take into con-
sideration the gauge transformations in addition to rigid s.s. transformations in order to
‘obtain a closed glgebra. The commutator

[o(el), 6{:2)3 (field)

(field) gives rise to, on using equations of motion {on shell), space-time traznslation. The
commutator of a gauge transformation and a supersymmetry transformation on the field should
vanish or give rise to a gauge transformation on the (same) field. One may show that the most
general rigid s.s. transformation consistent with these requirements is as given above.

The requirement of local super symmetry invariance for the Lagrangian of the simple super-
gravty multiplet leads necessarily to interacting field theory and unifies gravitational
field with a spin 3/2 field. The difficulties of such a unification are the highly non-linear
nature of general relativity and the difficulty of coupling higher spin fields in a ton-
sistent way. It was shown by Freedman, Van Nienwenhuizen and Ferrara and Deser and Zumino
that the sum of the Einstein action and that for a massless (most) minimally coupled, Rarita-
Schwinger.Majorana field fudfils the consistency criteria. This is due to the requirement of
local s.s. invariance.



We make some remarks on the off-shell formulation. On shell b, and ¥, each have two he-
licities. However, off-shell h = h .  has 10 degrees of fredom minus 4 gauge deprees of
freedom giving 6 bosonic degrees of frcedom. The field Y: off shell has 16 minus 4 gauge
degrees of freedom, piving 12 fermionic degrees of freedom. Assuming the existence of a

minimal formulation we need 6 bosonic degrees to balance the bosonic and {fermionic degrees of
freedom. We alsc require that the auxiliary fields do not propagate e.g. there is no kinetic
term in the Lagrangian corresponding to them and carry dimension 2 so that they appear as
squares Jike in Wess-Zumino model.

5.3 - SPIN 3/2 RARITA-SCHMINGER LAGRANGIAN

wvpo 3
[3 !uys Y., 8 _ ¥

N |
LRS Z v "ply

Spinorial gauge invariances (local)

-

6!0 = 30 e(x)

Equations of motion:

é L
ES - 0 > R¥ = HVPP Ts Y, ap L 0
3 Yu

under gauge transformation sR¥ = 0.

Gauge fixing: choose the gange y ¥ = 0 (under gauge transformations §(y - ¥) = Fe. This can
be solved to obtain the gauge ¥y » ¥ = 0). Now we have identities

1
-3 (y-¥ =R -37, (r+R

oy oM - em =20y - 1v-r

Thus in the gauge chosen the equations of motion RY = 0 lead to:

{3 - 9} VV - 0
} = Yu =0

This is the usual way of writing R.S. equations. We remark that 1.1/2 may eslsc be written
in an analogous form:

- o Bvad ' = _1

Lyjz = ¢ T ovg v, Yy Yg %2 =-71 23

The mass term takes the form
eMveb 3 g A

m YSYuTvTa 8
Thus we must check that there is no helicity 1/2, but only 3/2 (massless cases) in LRS'
Coupling to E.M. field complex R.5. field:

S Yg ¥, [Bp -ie Ap) ,a = 0
Then

5 . Hveo _ - '
(3‘_l -ie Au] € Yg Yy, (ao ie Ap} 'c [}

Using

(o, -den, 3, -ie A~ F



we find
uw -
F Yy L g

Extre constraint requires that either ¥, = 0 or that photon be a gauge excitation. This
inconsistency is & rule in s11 higher spin field couplings. '

6_- TETRAD FORMULATION OF ORDINARY GRAVITY
6.1 -~ IETRAD FORMULATION

Since we must work with spinors we must use tetrad formulation. Spinors can only be ntroduced
locally in the tangent space.

We specify a local frame by giving tetrad fields eg(x) and e:(x). The Greek index indicates
the curved space {world)} vector index while the Roman index indicates a vector index in
local tangent space. Given a vector AY(x) jits component reffered to the local frame are

Aty = el

The components A‘(x) are worid scalars but they transform as a four-vector with respect to
local transformat1ons which rotate the local tetrad frame. We assume that ei are linearly
independent and el v -6“ It follows then e: e: = 5’

Clearly, A¥ B Az ez Bm » At Bi' The vierbein or tetrads themselves have mixed indices
transforming as a world vector and a local vector. To be definite we will assume the local
tangent space group to be Lorentz group L. There are two invariances involved: the invariance
w.r.t. general coordinate transformations and the invariance w.r.t. local lorentz gauge
transformations. Thus we require, in order to define covariant derivatives two sets of
affinities or connections.

Consider local vector field A‘(x). Under local Lorentf rotatioms Al(x):
m
At = At )
| SO 12 - ak m t n
(auA ) 3, A'T(x) = A -(auA ) + (au AT) A

and {Bu kl) does not transform as A due to the presence of the second term. We define co-
variant derivative

L | .
D = {2 + AT =D
u A { u Tv)

such that

@, A = At o, A

or
L vhy gl n = at m m n
(3 2, * Tia) B (ﬁ) A'(x) = A (g) (8, 3, * T“n} A
or
‘e..m _ Lt & _ .t m
Tom A n A Tun o 2w A
or

Y A LT Y L -1.n
oo = 4a Ty A AT (3, ATAT)



Writing
L - (al
T, =T 4= (A7)

. -1 _ -1
TL=AT, A (3,14

is the transformation law of r:m. We will adopt the usnal notation I"_l + W, so that

LI -1 - -1
w) A uy, A (Buﬁ) A
and

b 2
um

p_ At - 3, At ¢t A

¥
Requiring that
£y . L

D, (A, B) = 2 (A, B7)

‘it follows

m
D, Ay =3, Ay - el Ay

Consider néxt the Dirac field ¥(x)}. It is defined to transform under local Lorent:z

formations as follows:

Y'(x) = 5(A(x)) Y(x)

when S(A) constitutes a representation of the Lorentz group. The covariant derivative

Du - (au * ru] is required to satisfy
(Dll ¥{x))’ = S({A(x)) (Dp ¥(x))
or
(au * P;) ¥ {x) = {Bu + r;) S(A{x)} *(x) = S(A(x)) (3u + Tu) ¥ (x)
or
r,SyYy=5r1 7- (3u S)ry
Ol"
ry = SUGN 1, STHAED) - (3, SG)) ST ()
Consider infinitesimal transformation:
S(A)) = 1+ 33¥(x) op

ryo=r, v 3 A Loy, 1,00 - § o, G A0

where
) L ] . - -
A B, Aim = 7 g
Also
N r n _ .0 _ t
wu n mun * A n wum mun A m au A n

or

tran:
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bw, = [x. wu:| - 8,2
We derive for

u["“‘] a1 tm oy

W 7

(] (], [ood L] tm
T Uy Aa 7R

and

1 "m“Ev.'j [“u'“s'm']

1 .im El‘n.j
" {Npg Tpmt = Mg’ Omm ~ Mpmt Ogpt * Myt Omped

!,_al.‘m' * oy o

AT T ]

We may thus write

1 (=] tm me, 1 )
ru =7 Oy Wy = I ulm("u - mu ) - T Sym ”uu

ru sees only the antisymmetric part of u:m; we do not have to impose, a priori, any symmetry

pTOperty on W g

We Temind that the matrices 7‘ are invariant under local transformations:
vt - 1t si) ¥R ST
S y® 8 -1 Tepresents the transformation of operators acting on ¥ which transforms as ¥ + S!

and Al(=] is due to vector [local) nature of the index “&". If we define y( ] " e“(x) Y fihen
under local Lorentz transformations:

¥ - @t el AT AL sy s e ek sy sTh e sy ST AGD)

Under general coordinate transformations:
v(x} + Y(x}
v[x}-'( )Y(x)

Y 4y

]u(x)

[ I
o

e

e.g. the index yp in w or Pu is tensorial. However, the indices &, m here are non-tensorial

w.T.t. L3 v, is a connection.

For world vectors AY (which is scalar w.r.t. local transformation) we have to introduce co-
variant derivative through space-time connections r;p

o, " TN
A ma, A e TN

Requiring

- )]
(AY nu);x 3, (A au)

e



leads to

o -
AIJ:V - 3\’ Au - rpv Au

The affinities rtp transform as

ax ¥ ax‘ axs

ax®  ax'Y axP

[ ] -
Pap(x }

The complete covariant derivative (indicated by ;) of tetrad field is thus written as

o L _ .a L £ m
Cuix T % T Tua fa t U 8y
T B, M 8 W
i "0 %t T e T ouy,y ey

These definitions are consistent with AY = et At etc. For the metric tensor Mom in the

tangent space

n
H] - n - o®

Meoix T %A Mam T “as Mmm T Oam M T 7 (ypg 94 7 7 2 944

Thus the symmetric part of m:m

space.
Covariant derivative of 7‘ requires a bit of care. We write

is seen by the covariant derivative of the metric in tangent

v x) = 500)° 8¥Bx)
a,B are spinor indices. Then ¥, carrying the contragradient representation transforms as

. . (c-1T U | 8
v ) = 57N e'e - slant, v,

and (?GE“J is invariant under L. We may also write explicitly,
e (hD

PILTY R a -1 § _mo

(r7)g = A75 S(AY°, S T(A)g v,

e.g. *lus is an invariant tensor. Now
+
Dp! - (au I'u} 4
or
a _ a o B
Yiu " %Y * T ¥
From
a - a
(¥ QG);u Bu(? ¢“)
we obtein

. . B
Yu:u Bu!"a ruu !"a



Thus for complete covariant derivative of 1‘:

115 a La

o £ o a -
B*¥nY g* MY g " Tag?

- Lo
Tt Y

| . £ £  om i-
Yy reg Y+ natl

We show easily

oL TR VY W
Yy m vt e v [t

From the relation

[olm’ Ynj - Yl - nnt .

we derive
E"ln olm' Yn:l' ”Ln ?z - “nn .
Thus
n- 1 n n ' m
Erp. Y- i (Wum - Num) ¥

and we obtain a useful identity:
| 3 ;] L 1 ] t m
wy Yo ¥ [Py ¥ = 7 Gy v ey
It follows

2

yz;a =h Y+ % {“i' + o}ty vy - z {m)

mt -
P ) Ta " %
since yl are constant matrices. From

ety

L nlm
We rederive

A

- {tm)
T 2y

.The covariant derivative of yl thus sees the symmetric part of u;m. Except for the facilirvy
in using traces of y matrices all the relevant information is already contained in e‘;’.n,'m and
their covariant derivatives.

The space time metric tensor guv(x) may be defined as
- ak
guv[x) e €

g"Vix) = e

m=T

Also

3
nzn - guv e e:

These relations are consistent as regards covariant differentiations. One also checks the
consistency of



(Wx). ¥ - 2 g¥x)
and check

| ] v = 2 uy e .
{v".y );1 £ . tc

6.2 - CURYATYRE TENSORS

Corresponding to the (lLorentzi) gauge connection wy = [wim) we may intreduce a field strength
or curvature which is ganuge covariant. This is similar to the case of Yang-Mills theory or
ordinary electrodynamics. We find that

Pxp(”) =2y e, - B, W ¢ Eml'”pj

transforms as

-1
Pag 1 A Py, A
We will write
s - ]
R pap(#) 2 [Pkp(u)j ot
The space-time connections r:p give rise to space-time curvature tensor

Y, (1) = 3, T8+ 1k, rgp )

The two are connected by thé following equations:

et

. a _ o0 ] = po L _ ot m
Do (Tew) - eb. o (Tw) + (T35, = Tgy) e (Fuw) = RS\ (T e = ROy, (@) e

If we impose the condition e:,l(r.m] = 0 we obtain

o = nt B _a
R vlp(r] R mlp(”] e, e,
We note also
1 3 ) ]
[DA,Dp] e, " R mxp(“) L
when

bs] el - D‘ el

= L L.
p M pm (ap°u+"’°)'

P U

Note that the indices on curvature tensors are all tensorial unlike those on connections.

Tetrad condition e:.l(r.w) = 0 establishes a relation between T and w. Jt should be possible

to rewrite Einstein action in terms of e: and wlum. Note that
A m
gpv;l(r) " “Lm;l eu €
1f
'l =
eu;x 0
we get
L _m 1 m
guv;l(r) = "Lm;k eu v z “X(Lm) e“ &y
In Einstein-Cartan theory, guv'l(r) = 0 implies that m;m = - w. ™ This may also be verified
from explicit expression of u;‘ in this case. If mltl =)", 0 the E.C. geometry is

| 3

i - 0.

obtained only if e



We may consider more generaly the 1tetrad condition:

R R |
eu;fr‘”) Kim ®u

Substituting this in the equation .bove relating R:lp{r) and lelp(”) we easily establish
that if K, satisfies (independent of T!!) '

Pyp(X) ¢ [ay X, - Lo Kyl = 0
the following relation is satisfied:

R(l

= ] m _a
uxp(r) R mlp(w].e“ L

But the relation just preceeding this is equivalent to lekp(”+XJ = Rzmlp(m). The expression
of T is easily shown to be

e =% 4+ L2

a .
Ui Hi HA . Ui Am T )

Thus the sets of connections (F, © 2 w + X) and (T,w)give rise to the same curvature tensors
and correspond to curvature tensor copies. See more details in “Curvature Tensor Copies in
Affine Geometry", P.P.Srivastava, C.B.P,F.preprint N.F.-04%/81.

6,3 - KIBBLE - SCIAMA FORMULATION OF EINSTEIN-CARTAN THEORY. (SKETCH)

Assume tetrad condition e:_l(r.m) = 0, then,

- &9 oVogH - gVP
R(g.T) = &5 g"PRI(N), o = VPR, (T)

3
mpa

{w)

JERY. B T- T TR
Gu AR R
= oBY VR =
et” e Ry, (@) R (e.0)
. and

Rie ,w) = o epl anpx(“)

- 3 w0 (e) Kit(w) = HAR(e) . [0}, v w}* Wf ]

where
Ap - N - B - T |
l(e) [e. e, en el)
Now
. ! m -
suv eu nlm ev

- det (guv) = det (e:] - det (“lm) . det (e:)

From

L
m

| S T
eu en [
det (e*) . det (e¥) = det (81 =1

i m n
Also

det (g"P) det (g,,) = det (53) =1

Call



. z .

n = det (n,.} ioon 1

Then
2
g~ n+e . e ~ J/ng
TN | by o 1

det {gF") = g det (el) 3
We temind g(x) is scalar density of weight + 2 while % is scalar density of weight - 2 so
that

Ap 1 uvip
c = Jng € e . — £
RVAD wvip Jng-

are tensors, (d4x) is a scalar density of weight (-1).
From

e =emenepeq
H v

cuupu

we derive

p ¢ _ m_n
€ €voc p' %q° e, Sy “anp'q"
and hence
B 1 wvpo P o0 _ P 0y 0o
e, & tmnpq € 2 e[ep eq q ep) 2 Hpq(e)

Thus for scalar density {weight +1)+/ng R{g,I') we get

= 1 _uvpo b _n .pq
vhg R(g.T) = g ¢ funpq %p Sv R g (w)
- Ap $d ] nt m
e Hpgle) [o)® o+ 03" wppl ]
=z e Rle,w)
Here Equa‘ tmnpq are permutation symbols; the first is a tensor density of weight + 1, the

other has weight zero. For the variations we note

} 3
Ggu“ Z[Geu) LI _
| S I "
Geu eu ep(a em)

- - m _t Py o o m [
sguv 2 v %u % (& em) 2 Byp &) (& e.)

+ - (gup €, . e: + Eup € & e:)
The action is
4 4
5 = SG + Sy = flLg d'x + f l..M d'x M = matter

For integral spin fields 1"Y (= v¥¥) is defined by

LW eg) a%x

= .1 v 4
&g Sy 3 S u(s guv) d’x = f Byp &



Define:
L 2 L _pv
Ty "By & T
then
e . ok Xk _ _op X _L
T R ey £ e, Ty

km

For spinor fields, LM contains e: and Wy We define Spin-density :im by

D TP km L4
6” SM 7 I ‘tn ﬁmu d'x

or

6& Ly = % Cim 6”:m

In the usval formulation of integral spin case in ordinary gravity only covariant curls, e.g.
(auav-avnv). appear. The space time connections rtvdo not appear in Lﬁ. The matter couples to
gravity through most minimal interaction. For spinor fields wt® crops up in the covarisnt
derivative Du - (au + % w:m czﬁ). Again for spin 3/2 Yu field appearing in supergravity
theory it is the covariant curl (Du!v-Dv?u) that appears in the corresponding Ly rather than
’v;u - Yu;“ vwhich will involve space-time connections T;v. This most minimal coupling
does give rise to a consistent theory. In the Ly the w:m term appears in the form

2L 3 L
_—N rY -3 =L wi® o, ¥
3(8p73 a(auv)
50 that
a . -
1, 4 Ly T
6§ 5, = Jd'x|——— ¢ Y| sw
M2 [a(ar) "‘_1 v -
]
and
d
‘:m - ___EH_ Opn ¥ spin-density
8(3“7)
Thus zzm is generalization of the spin demnsity of ¥ that appears in special relativity in

association with the density of orbital angular momentum.

6.4 - PALATANI FORMULATION IM TETRAD FORMULATION

The gravitaticnal Lagrangian is

S | uvpo m m q
LG ;Ez € € mnpq LT Rpu(”]
We.vary e: and wzl independently to obtain equations of motion: 6es-n gives

n 1_n n
e (R; - 7 €5 Rl=K° 1]

when




- 38 =

Now
= pk mi A - pim A = pt
Rup(r) R opu(rJ ~ R é?) “n®or R Ap € m eul_ Rp euz
where
t ok
Rp = g th
¥We obtain
2
1. . K
(Rog = 7B, B = L

It resembles the usual theory except that Ruv and T,y 4are not necessarily symmetric.

Next connder 6u5 = {} we note that

8, B () = [p, su}* - D, & “‘7

correspending to the Palatini identity in ordinary tensorial formulation of gravity. It is
only D rather than full covariant derivative which appears. Note also that it follows from
the transformat:on properties of connections that (the difference) émlm is tensorial on all
its indices. Thus

D, (83"} = 2 o (80 4y 4 w) M I L (™)
Equations of motion ate derived to be

uvip 4 P i Y
£ e, EDpeu D] | Sl

12
7 “pqmt me

This looks like a dymamical equation. However, if we impose the tetrad condition (it does not
follow in Palatini formulation) the eguation reduces to an algebraic equation. Tetrad con-
dition gives

L a [ X
e =
DP H er €

Defining torsion,

a o a
ZSHD - (run I'l:'l.J]
we obtain

wdp q p & _ 2
€oqne € e, ©y Su K ml

which lead to the algebrajc relation:

2
v v v = K Y
pr + Gp Sx 61 Sp - Sp;\
where .
o o .
va - _%l = _gé is Spin-tensor
n /18
and
v . 0T W a
‘Ap'el €a %an * so'spn

Torsion tensor is essentially the spin tensor of fields other than gravitation.

1l ;v 1

2
A K v v
s [591 3 Gp Sl 7 6 8 )

ox T T
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7 -_LAGRANGIAN FOR SIMPLE SUPERGRAVITY
7.1 - NOETHER COUPLING METHOD

Noether coupllng method mentioned in section 5.1 was used in the Iinearised supergravity
theory of Section 5.2 to build step by step the first non- -lipear Simple Supergravity La-
grangian in the second order formulation by Freedman, van Nieuwenherizen and Ferrara. The
local supersymmetry transformation and the gauge transformations become knitted together  as
in the case of Yang-Mills theory. A first order formulation was given by Desar and Zumino.
In the first order formulation the action is simply the generally covariant and locally
Lorentz covariant form of the linearized action (X = 1}.

Sg6 = Sg * Sps

1 = 1 _wvpa m _n ppq
lg=zeRlew) =gec anpg %u v ¥ po ()
Lo = - 2 20V § v, D ¥
RS 7 2 Ys Yy Su Yy
where
- L ¥ Vv ptm - 1 Ekm
e det e'_l . RE(e,w) = e, e R uv(u) . Du au * 3 w LI

Note that only the curl enters LRS' This allows us to use D, Y instead of using the complete
covariant derivative !p,u which involves an additional term dependent on space~time
connection Ptv. This is analogous to the coupling of Maxwell field in ordinary gravity where
Fuv = (au A, -3, A)

which is a covariant curl and gauge invariant is used in place of Av-u Au " This last ex-
pression differs from covariant curl by a mon-gauge invariant term vv - “ ) A, - The
curl (D !p - Dp ! ) respects the gauge invariance of LRS in a covariant fashion as discussed
below.

Now e:, w:' and ! are varied independently. Auxiliary fields must be introduced if we couple
the theery to matter. ¥e will conszider them latter.The equations of motion are:

. M _  uvap L _1 - =
&T,: R"=e Yg Yyley Pu 7 %) e 0
to | S L L _ig .t
qu : Cml = D\l e, I)‘l L . 'v ¥ Vu
sel: ¢ =™ - F et Ry - TH
1]
where
tu i, 1 viaB § L
L S Y, Y5 ¥ Dy ¥g
= Wi
nul = R"m]_“J ]

The non-vanishing of C:u jndicates that we have torsion, since,

D el = rB el

v a av B if € =0

For Cla = 0, the eguation implies vanishing torsion




B _
May " Tya

) -0
We may solve the 2nd. equation. ¥Write

m m L@
= e) + K
wu w, (e) "

when u:“(e) is defined from
ave“’ - {;;}g et 4 ut&e] PLNE
orT

m 1T 2 my _ .m Ly u t _om B _oty |
u, (e} 7 [ev av e e, CC {“}s(eu e -e, e )J

Here {;;}s is to be expressed in terms of tetrad fields using g"’ = et eVt

that

etc. We may show

- - % (Fyov, T+ ¥ v, v, - ¥

Kul.m uom ¥ m v Tn )= - Kom1

If in addition we impose

; x
eu(m,r);l 1]

we define & space-time ceonnection Tiv.

We observe that the manifest local gange invariance of R.5.field is Iost. Also the lst. equa-
tion ygs a free index, so that the question of consistency arises. Does D“R‘l =0 by virtue
of the other equations of motion? Precisely this was the difficulty encountered in all
previous attempts to éauple higher spin fields to gaunge theories such as clectromagnetism or
gravity.

¥What makes the consistency at all possible is that in DuR“ the commutation of two  covariant
derivatives reduce to the Einstein, rather than the full Riemann tensor, through the in-
terplay of Ditac algebra and Ricci identities. We have

oo _ 1 qku 1l uvag At
DHR = -2- G "'1 'v + T € CIJV "fs *ft Dﬂ 'B

But there is another identity derivable from Fierz rearrangements for anticommuting spinors

Joy e o d e

! =
L u w Y 'v Y5 Yy D 'B 0

Using this and the equations of motion one verifies the consistency

e
DHR n L]

The total variation of Sgg vanishes under the local s.s. gauge transformation:
1 R
e =i Y

[ . oY

éy =~ 2D
v w

pER wim - 7 ym Bvln €ut Pymn



- 4] -

The equivalent Znd. eorder form is chtained by substituting w = w(e) + K in the Lagrangian.
The variation then is taken with e:‘vuas independent fields. A contacts Seagull term arises

-t m _n. .= -
L " Ev Yy ¥ (!‘ Y. ¥+ 2 ¥ ¥

- 2
con m'n m e L N AL 4

The three invariances, coordinate, Lorentz and supersymmetry are not, however, independent.
The commutator of twe independent s.s. transformations characterized by (£{x),n(x))yields =&

general coordinate transformation corresponding to the real displacement i{Evy"n). together
with field dependent Lorentz and s.s. transformations:

L a r a [ 1l _a ]
[ogley). sxlegdbey = 86(e%) e+ &) (ETw, e + 85(- 7 & v )e
where

€ = 2i &y ¥* £y(x)

and

- ] - 1
[65{51].65(:2)J Y, masone * ¢ Yu‘Z(I Y, Byt % €hapr Y5 1) R*

p 1 [ T
* L T €2 (7 upa gHT * gup Bor ¥ 7 ootk ?5) R2+0+0

(on-shell closure).
7.2 - SUPERGRAVITY AS THE GAUGE THEORY OF GRADED POINCARE ALGEBRA
Generators of SP4 are

X, = (P70 MR, )

mm

and we indicate the corresponding parameters by {a®, 1'%, ?n} = nA. When these parameters, in

a globally s.s. theory, become x-dependent the Lagrangiam is no more invariant and we need
to introduce compensating gatge (vector) fields

tet(x), wP(x), ¥y(x)) = h‘:(x)

to define a gauge covariant derivative Du' In the present case, L,a are local tangent space
indices while is the world vector index. We also define

j A -
nx) = nP(x) X, =g PP 3o, WP LT Q
which is Poincaré superalgebra valued scalar field, while
m 1
h, e AR A L R A
is super-algebra valued vector field for S5P,.
Let us remind the case of Yang-Mills theory in flat space-time:
| T | 8 = a - i
A Ah T R w ua(x] T R (Ta.Tb) i fabcTC'
For the gauge variation we have
s(gauge) AY = - 2 DY W = - 3 (DY)
gavg a g ab b £ a
or

s(gauge) AY = - % ta¥ + ig [w,A"]



Here
vo_ ¥
a = {& ab ? [] f A Y.
In the present case analogously we write
s(gange) h =3 n+ i [n.hu:| .
s (gauge) h: = (Dun)A
A A B C
(b n)" = 3 n + h) fCB
where
- c AB
[XpXpd = £4p Xo = X Xg€D™xgX,
and
A=1, (tm), o
are tangent space indices. The summation in IJ‘_| is over all gauge connections, not only over
the Lorentz connection. There is double counting, e.g., translations appenr in the

base manifold and in the tangent group.

We note

[

@,m*%, = 0" x, ¢ i n? € [xc.xg0

B C
u

[ ]
[

(2,0™) X, + (XX -1)PCxx0)
<3, n i hD Xy - (-1 )

=3, n+1 En.huj

Thus

s(gauge) h = (nun)"‘ Xy = (e b, + 1 (Gu™ M, + (69) Q
From

Cnudd=[ap+ 1w sQ.ejp, « 1 o) My, + Q] .

(se)) By = (2,8 Py + FLa.Pro, M)+ 3 [aMe, . P]+ 3 (iQ, $.01 .

- PR (R 5 ] P
[a.P,o, M« - 18" w "(n, Pp-n  PJ = -3 u"'(a;}‘m-—a'l’l)

tm n i
[x.M, e Pyd=323%e (ny Po-n P = {eu‘P;-e P
- = - 2
[=q, !“Q] = - g Y !upl
it follows

] - 1 L, me im
[ - -+ *
aeu iey !" aua {x el.| ©, a_)

where & =zé&(gauge). Note that e: transforms as a gayge connection due to the presence of the

tere a_ a’.
¥

13

Consider the case of only local $.s. gauge transformations e.g. at = 0, x = 0, then
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- - 5 a . -
Geu e x !u real
Bu". = D
and
- - a = ir- tm . - i=  m
Gt'uQ) L Q* 3 Lea Yy MlmJ 2,0+ 7 ¢4 9, l(olm}uﬁ Q
ar

or

Here Du is the usual covariant derivative instead of the derivative Du'

Field strengths or curvatures which transform gauge covariantly may be defined by
[D”(h).D“(h)j -1 Ruv(h]

where
Du(h) = (a‘_I - lhu)'

L obtain

R (h) =2 h -3 h -1i Ch . b}

v v v 1] ] v
Explicitly
R::(M) - R::[u) = n“uv(n) \
R:v(Q) =D, 1: - D L
RE(P) = Do) - D, et . % Poat

We may obtain the second order formulation of N = 1 Supergravity if we impose the constraint
RE,(P) = 0. This leads to

m!.ll - ml.m(e) . l("m R
» u v

A gauge covariant Lagrangian may be written as

= _ 1
5G Z

rm w v _ 1 wwpeo g - - 1 Lm w.v _ 1 wvpog
e Ruv(M] e, © 7 !‘u Yg T, RUD(Q) -2-eR uv(”)emet 7¢ 'u‘S‘erp'c

L %

We may verify
s{gauge) Lgo = - 3. [¢ y“o”“Dpvo'ig 0

Thus supersymmetry is not an internal symmetry but a space-time symmetry, like in the case of
general coordinate transformations &L = au(LE“}.



7.3 - AUXILIARY FIELDS IN K = 1 SUPERGRAVITY

A minimal set of auxiliary fields was found by Ferrara and van Nicuwephuizen and Still and
West, and a term calculus developed. The coupling to cther matter supermultiplets is rather
straightfound with the tensor calculus (see P.van Nieuwenhirizen, Cargése Lactures,1978).

The zppearence in the gange algebra of terms proportiomal to the field equations suggests
that the addition of auxiliary fields is the transfermation rules might restore off-shell
closure. Another motivation for including auxiliary fields is to maintain equal number of
degrees of freedom of fermionic and bosonic fields:

e: 16 - 4 (general coord. transf. invariance)

- 6 (Local Lerent:z gauge invariance)
= & degrees of freedom

v, 16 ~ 4 {Local s.s. gauge invariance)
= 12 degrees of freedom.

There is a mismatch of 6 degrees of freedom. The auxiliary fields found are

Ay . ] . P

(axial) . {scalar) {pseudo~scalar)

Ay, is not a gauge field rather like ¥, a local vector field. The Lagrangian takes the form

L= L(Z)(e.w) + L(Slz)(e.!.u) - § (s? + p? - Aﬁ)

is invariant under s.s. gange transformation.

ik 1 -
(@, + T"p"S}"I*p“‘

55 = % Ty - R

&P = - % e Yo ¥ ¢ Rcov
: 3i - cov 1 cov
A" T ey g7 — 31y R
where

n= -3 (5-1ygP-iy™ Ay

¥ cov _ _pvpr _i 1
R € Y5 ?v(np L Zz Au ¥5 'p T VY )

I

Now .

Cogle;) 65(e) Tl ¢ = L80E%) + 85(-£%7) + & Le%ii™ + & T,0"(5-3vgP) ey D 4
where

o = -1 € AT

“yem -~ Ypem T T Susmn ’

» = = u

tx) TTc2% ©

The structure "constants" now also depend on the auxiliary fields. The algebra closes off-

shell. We have teally field dependent “structure functions™. This feature is not present in
Yang-Mills theory or ordinary gravity.



i1f one assumes the differential geometry of superspace to the super-Riemannian the connection
with the space-time formulation of supergravity requires a rather delicate limiting procedurse
in superspace. The reason is that the field equations in Riemannian superspace do not  admit
as solution the flat superspace of ordinary global supersymmetry.

Wess and Zumino and Arulov, Volkov and Soroka introduced a (non-Riemannian) different
differential geometry in superspace. The superspace of global s.s. comes out as a specia case.
We follow Wess-Zumino approach,

A general affine sSuperspace is parametrized by coordinates M £(x™,8") where X™are ccnmuting
space-time coordinates while e! are anticommuting var:ab]es. The supervielbein matrix E (Zy .
where A = (a,c) are tangent space indices and its inverse EA{Z) can be used to transform
world (super} tensors into tangent space tensors and vice versa. The submatrices E and E:
are bosonic, "even" elements, while E° and Ea consist of fermionic elements., We a]so in-
troduce super-connections QMAB(Z) wW.r. t. (X, e] dependent local tangent space transformations.
We may define one-forms

EA - dZM EMA

B_ ..M, B
‘s dZ LY

INDICES TANGENT SPACE CURVED SPACE
Vector |a, b, ... . W, A, «o=

spinor |a, B, .. ABoeaelys vy one . M,N,...

2.!... ’
- Internalli, j. .-- ' Ha¥asee

Here we take dX® to be odd and ds" to be even, the opposite of X® and ¢¥; one is still working
with Grassmann algebra. Similarly, E® anticommute with each other and with E*, while e
commute with each other. Coordinate transformations in superspace mix X and & but in such a
way that the new X's are still even and the new 6's odd. Under an infinitesimal coordinate
transformation specified by parameter ;M(Z) we have for scalar V(Z)

S s Ve - M2y M
F]

. N .
while for tensor T, (2):

N_ .S M N, y(m*m*) {2+1]} R N
G(C) Tw E as TLM + UL TL'M + UM Tml ( 1) - Tl.M UN.
vwhere
N N
Uy Iyt
and the small indices in exponent are 0 or 1 according as the corresponding capital index

is bosonic or fermionic. We may also define densities D{Z) which transform as
5 € .
&8 = as(g ) (-1} : scalar density.

The contractions are defined without extra sign if upper index is on the left. The extra
factor (-1)% is due to contraction of type AgB™. Since a density changes by a sum of terms
each of which is a derivative, the integral of a density over all of superspace is invariant
under 6(;“]. Thus densities cap be used as Lagrangians.
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Ke note that

d = ax® _iﬁ + de¥ 2
aX ae¥

Satisfies

More details are given in 1980 Eric Lectures by B.Zumino.
Covariant derivative of tangent space vector uy is written as

D, u

M Ua T Y

A" tMA U
Imposing
Dy (\.l"A uA) = Ay (vA uA]
and using graded Leibnitz rule for derivative
By (VP u) =y vh u, e ()™ VA,
we derive

DM uA - 3y uA . (_l]ma uB ’MBA

For super-vielbeins

M

M
D, E B

M B
N EA" " 3N Ex - a E

Dy By = oyt e ('1)n(b+n)5un ‘Np

since M index is “super—scalar" w.r.t. local tangent space rotations. However, the bosonic
or fermionic nature of the index can not be ignored. We may define

D

M
A EA D

M
then

[De.Dplu, = - Repy u

B
B~ Tep Dp va
They define super-curvature and supertorsion tensors. Here [ ,} indicates the graded cammutator,
Applying graded Jacobi identities to this relation we cbtain Bianchi identities. (A 2-component
notation is coanvenient to derive them).

r D, F. D_ D, _
(aBc) (Oa Tae * Tap Tec -~ Rapc ) = 0

F G Fy _
(Aﬁc) Dy Rpep * Tap Rgep ) = 0

where is cyclic sum:

(aBk)

X ¢+ 0SE® e 12y

b = X
(ABC) ABC AB

e.g. a permutation of two bosonic or one bosonic and one fermionic index gives rise to a
change in sign, while for two fermionic indices there is no change of sign.
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" The geometiric formulation, in an affine superspace requires general super-coordinate trans-
formation invariance. We restrict these transformation so that even nature of X™ and odd
nature of 68" is not changed. We restrict further the tanpent space group, which is generally
a general graded linear group, to be a local (X,8) dependent Lorentz Group L. The super-
connections then satisfy the restrictions:

¢Hab - - ¢Mbs

1 ab . ab 1 b
tMag ~ 2 ’Habto ]ns R § [7a'7 1
¢MaB = ¢Mas -0

Thus ‘MAB takes values in the algebra of the tangent space group L. No connections of type
r:P are introduced and ne expressions of type DT, appesr. Rather, only curls of type
(By Ty ~ Dy TM) appear in the formulation; they are already tensorial,

Consider a linear transformation in the tangent space
svh - vP XBa
then
B
su, = ~ XA up
For example,

Ay . C A _ C,_A_ A _ -
5(53) EBXC xB §c xB XB 0

Also

A A

A o tauh A . B . B, .
s(v ujp (sv™) Uy v v (6uA) v XB g - v X, u 0

For Lorentz group L in tangent space:

Note that XuB describes the same Lorent:z transformation as Lab when applied to spinors and
1 &
o, = g Lvg. v' 1
Considered as a matrix in the last two indices, the curvature belongs to the slgebra of the
tangent space group. Thus like QMAB we have
Rap.ab = = Rap,ba

1 ab
gAB.aB =7 RAB,ab {o )us

-
RAB.au " RAB,ua 0
The final restriction on the geometry consists in impesing constraints on the supertorsion,
Tangent group restriction along with these restrict the number of component fields in the
theory.
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They cannot be too stringent so as to allow only rigid superspace. Wess and Zumino impose

c = [
TGB = 2i (v )nB

Y
¢ c .
st Tap ch 0

“having T, Y and T,p' undetermined. The last one is related to R.S. field strength
(DaY; -3y !:). The first one is suggested from rigid supersymmetry {*).

(*) We found for the covariant derivatives

Da LI Pa =3

Dy = (3g5.3,) = (;Eﬁ =)
and
Dy = Bl Dy« B\ oy ¢ B} 3,

so that

Now for any vector field A, we have

M n m
A= By Ay mESA G EN A -ES A

Making use of
AAE™ + ASE" = A"
a o4

or
n
a

A‘sa‘+A“E = A _

we find A° Eu"‘ = 0 . Hence

ty"e), 3, = (o), BN o, = (o), 3,
or
o 1 ,.m
E --3 {re},
m
" s 0
E {rigid) =
A 1, m s ]
- ?(1' a)u ICIIB‘B
Calculating [DA'DB} in the present case leads to vanishing curvature and only a non-vanishing

: c
supertorsion Tus.
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Working out the Bianchi identities and using the constraints, all componcats of the super-
curvature and superitorsion can be expressed in terms of 3 superfields G ; , HGBY . R and
their conjugates [(2-compenent formalism used).Gué is hermitian and W_ totally symmetric.

8y
We also find differential relations:

o - E - E L] o = - *
p° W DGz * DF 6 D" G, = Dy R

a p.

DE. W = D:: Re= 0 . where DBE = "

afy
Gua[x.e) in its expansion contains at 88 level a tensor which contains the Einstein tensor,
at 866 level we-find a spinor which is the Rarita-Schwinger operator {left hand side of the
R.5. equation). R(X,e) contains the scalar curvature tensor at 66 level. WuB? contains the
R.5. field strength at & = 0 level and Weyl conformal spinor at © level.

The asuxiliary fields are also contained in the superspace formalism. They may be obtained by
solving constraints on torsion. More details are given in Zumino's lectures at Cargése (1978)
and Erice (1980). '
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