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Abstract

The basic principles of topology are introduced.

The Euler formula is discussed. It is applied

to derive some mathematical classi�cation theo-

rems, including the classi�cation of regular poly-

hedra (platonic solids) and of some more gen-

eral geometrical �gures (such as the \fullerens"

or \soccerballs") of interest e.g. for chemistry.

Further pedagogical examples and applications

are derived. Their relevance to physics is men-

tioned.
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The Euler formula

The Euler formula is the �rst example in math-

ematics of a topological invariant. It was �rst

discovered by Descartes as a formula involving

solid angles. However, Descartes did not realize

its topological character, due to Euler, namely

the relation between the number of faces F, ver-

tices V and edges E of any triangularized solid

�gure.

The derivation of the Euler formula is sketched

in �gure 1. It should be noticed that the original

Euler derivation was slightly incorrect.

In the following we use the Euler formula to de-

rive some mathematical classi�cation theorems

and also to rederive some of the most celebrated

results of greek mathematics, i.e. the classi�ca-

tion of platonic solids.
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Di�erent Euler formulas

i) The \planar" formula.

V+ F� E = 1: (1)

ii) The original Euler formula for triangularized

convex solids.

V+ F� E = 2: (2)

iii) The generalized Euler formula for generic

triangularized compact boundaryless (Riemann)

surfaces.

V+ F� E = 2� 2h: (3)

Here h, the number of \handles", is a topolog-

ical invariant, also known as the genus of the

surface. In string theory, e.g., it characterizes

the order of the perturbation expansion.
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Application of the planar Euler formula: the

tessellation of the plane with regular poly-

gons.

Let f polygons of p sides meeting at a single

vertex. Then

E �
V f

2
; (4)

F �
V f

p
: (5)

Remark: For a �xed bounded region inside a

circle of size R, the formula is approximated. It

is recovered in the limit R!1. In such a limit

V !1. We get

V f(
1

f
+
1

p
�
1

2
) = 1; (6)

that is in the V !1 limit

1

f
+
1

p
=

1

2
: (7)
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Solutions of the above equation for integer val-

ues (� 3) of f and p:

a) f = 3 ; p = 6;

b) f = 4 ; p = 4;

c) f = 6 ; p = 3: (8)

Remark: solutions a and c are dual in the f $ p

exchange (solution b is self-dual).

Remark: The formula (7) is usually derived from

the property that the internal sum of the angles

in a triangle is equal to �:

f(1�
2

p
)� = 2�: (9)
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Other application: tessellation of the plane

with 2 polygons of p sides and 1 polygon of

q sides meeting at each vertex.

We look for p � 3 and q � 3 solutions of the

diophantine equation

2

p
+
1

q
=

1

2
: (10)

Setting

p= 4q
q�2

= 4+ 8
q�2

(11)

we get the complete set of solutions

q = 3 ; p = 12;

q = 4 ; p = 8;

q = 6 ; p = 6;

q = 10 ; p = 5: (12)
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The �rst and most famous problem of graph

theory, solved with topological methods by

Euler: the K�onigsberg's bridges problem.

Is it possible to cross all bridges of K�onigsberg

(given by �gure 2) exactly once?

Remark on the existence of a necessary condi-

tion: on each intermediate vertex the number of

incoming lines must coincides with the number

of outgoing lines

nint = nout: (13)
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A physical application of the planar Euler's

formula.

It controls (see �gure 3) the �h order in the per-

turbation expansion of Feynman graphs.

We have indeed

L = I � V + 1; (14)

where L is the number of loops and I the number

of internal lines (propagators).

The formula (14) coincides with the planar for-

mula (7), with

L � F;

I � E: (15)
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A pedagogical problem: let us connect n

generic points in the circumference of a cir-

cle with straight lines (see �gure 4). How

many regions are individuated?

Explicit check:

n= 1 F = 1;

n = 2 F = 2;

n = 3 F = 4;

n = 4 F = 8;

n = 5 F = 16;

n= 6 F = ?;

n = : : : : : : (16)

Hints for a solution: planar Euler's formula and

induction.
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Results of the previous problem.

External vertices Vext � n.

Internal vertices Vint(n), edges E(n), faces F(n).

E(n) = 2Vint(n) +
n(n+ 1)

2
;

F(n) = E(n) + 1� n� Vint(n):

Vint(n) =
1

24
(n4 � 6n3+ 11n2 � 6n):

F(n) =
1

24
(n4 � 6n3+ 23n2 � 18n+24):
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Comment on �gure 4.

Vint(n+ 1) = Vint(n) +
1

2

nX
j=1

(n� j)(n� j+ 1):

Since

nX
j=1

j =
n(n+ 1)

2
;

nX
j=1

j2 =
n

6
(2n2+ 3n+ 1);

then

Vint(n+ 1) = Vint(n) +
1

6
n3 �

1

2
n2+

n

3
:

Due to induction

Vint(n) = An4+ Bn3+ Cn2+Dn+ E;

with

A= 1
24
, B = �1

4
, C = 11

24
, D = �1

4
, E = 0.

11



CBPF-MO-004/02

Higher-dimensional generalization of Euler

formula (e.g. for Kaluza-Klein motivated

theories).

The alternate sum alt for hypercubes in d di-

mensions (i.e. (x1; x2; : : : ; xd) with 0 � xi � 1

for i= 1; : : : ; d).

number of k-faces: 2k
 
d

k

!
:

alt=
dX

k=1

(�1)k+12k
 
d

k

!
: (17)

Due to the binomial formula

1 = (2� 1)d =
dX

j=0

(�1)d�j2j
 
d

j

!
;

the result of alt is 2 in d odd-dimensional spaces

and 0 in even-dimensional spaces.
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Application of the Euler formula to the clas-

si�cation of the regular polyhedra (platonic

solids).

(Regular polyhedra: f polygons of p sides meet

at each vertex.)

(
1

f
+
1

p
�
1

2
) =

1

E
: (18)

Full table of integral solutions with p � 3, f � 3.

f p E V F

a 3 3 6 4 4

b 3 4 12 8 6

c 3 5 30 20 12

d 4 3 12 6 8

e 5 3 30 12 20

with a tetrahedron, b cube, c dodecahedron, d

octahedron, e icosahedron.

Due to the f $ p duality, we have 5 platonic

solids but only 3 groups of symmetry.

13



CBPF-MO-004/02

Comment:

In the previous table the values F, E, V can

be used to determine how many ingredients are

necessary to construct a speci�c polyhedrum.

For instance F determines the number of p-sides

paper polygons that have to be glued together

to produce the corresponding regular polyhe-

drum.

Alternatively, V and E determine the number

of magnetized spheres and magnetized bars re-

spectively, necessary to construct the given poly-

hedrum with, let's say, Geomag (see �gure 5).
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Further classi�cation. Necessary conditions

for the existence of polyhedra with more

polygonal faces (with application to fullerens

and soccerballs.)

Polyhedra made with two kind of polygons of pa
and pb sides. fa and respectively fb such poly-

gons meet at each vertex.

The edges are given by

E =
V

2
(fa+ fb);

the faces are respectively given by

Fa = V
fa

pa
; Fb = V

fb

pb
:

Let x � fa
fa+fb

, f � fa+ fb, p � pa, q � pb.

Then the Euler formula reads as follows

1

f
+

x

p
+
(1� x)

q
=

1

2
+

1

E
:
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Classi�cation of the following case. 2 poly-

gons of p sides and a single polygon of q

sides meet at each vertex.

Besides respecting the Euler formula, the values

V , E, Fp, Fq, p and q must all be integrals. More-

over p; q � 3, V � 4 and E � 6. The following

constraint must be satis�ed

V =
2

3
E; Fp =

2V

p
; Fq =

V

q
; (19)

as well as

V > p; q: (20)

The Euler formula reads now as follows:

E =
6pq

4q+ (2� q)p
: (21)

Remark: for p = 3, no other solution respecting

the constraint, besides q = 3 (the already known

case of the tetrahedron) is found.

E.g. for p = 3, q = 6 the constraint (20) is

violated.
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Comment. For p = 4 the Euler formula is

degenerate (E = 3q) and admits solution for

any value of q = 3;4; : : :. The corresponding

polyhedra are illustrated in �gure 6.

The non-trivial solution to the classi�cation prob-

lem are therefore found for p � 5.

It is convenient to organize the classi�cation in

terms of increasing values of q = 3;4; : : : . It

is easily checked that no solution is found for

q � 10.

The complete set of solutions is given by the

table below.
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Table with the solution of the problem.

q p E V Fp Fq

a 3 6 18 12 4 4
b 3 9 54 36 8 12
c 3 10 90 60 12 20
d 3 11 198 132 24 44

e 4 6 36 24 8 6
f 4 7 84 56 16 14
g 5 6 90 60 20 12

h 6 5 45 30 12 5
i 8 5 120 80 32 10
j 9 5 270 180 72 20

The cases a and e are explicitly constructed in

�gure 7 and �gure 8 respectively. The case

g is concretely realized by the C60 molecule

of carbonium (the fulleren), or by the soccer

balls. Remark:the Euler formula provides a nec-

essary condition for the existence of the corre-

sponding polyhedra. The explicit construction

of a given polyhedrum requires specifying how

to glue the polygons together, whenever is pos-

sible. This information however is not furnished

by the Euler formula.
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