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I. INTRODUCTION

In this decade, the advent of powerfull accélerators
and the development of new detection techniques have given rise
to many interesting experimental data, especially in what con-
cerns to the high-energy heavy-ion collisions.

In fact, in proton-induced heavy-ion collisions at
relativistic energies or in heavy-ion induced colliéions both at
intermediate and high energy regions, the available data show
that, as in consequence of the collision, the initial system
breaks-up in many pieces. The analysis of thé distribution of
the remnant fragments, especially those of small-to-medium
size, suggests that this process can not be e;plained by alréady
existing reaction mechanisms such as, e.g., evaporation or
fission. It seems, therefore, that we are in front of a new
phenomenon, to which one uses to refer as nuclear fragmentation
(nuclear multifragmentation also is sometime used)}. The under-
standing of this apparently novel process is one of the main
goals of the investigations in the field of heavy-ion collisions
at intermediate-to-relativistic energies.

On the other hand, it is inescapable to concede that

our present understanding of the nuclear matter equation of

state ¢ = e(n,T) is extremely poor. As a matter of fact, the
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unique point in the diagram Txn, experimentally measured, is
n = n,, T = 0, where n, is the normal nucleus number density

(around 0.15 fm-3

) . The behaviour of the nuclear matter in the
neighborhood of ng, plays a crucial role.in many fields, e.qg.,
supernova and neutron star calculations, ultra-relativistic
heavy~ion collisions, etc. As nuclear fragmentation is a process
which results from a system at high density and high temperature,
it is expected that it provides usefull informations about the
nuclear matter equation of state.

The renewed interest in nuclear fragmentation processes
is due to, undoubtly, the Purdue-Fermilab collaboration (Minich
et al., 1982) which, in the beginning of this decade, reported
results from p+Xe and p+Kr head-on collisiong at 80-350GeV of
incident energy. In particular, they plotteé‘the mass yield of
light-to-medium size fragments and noted that.the mass dis-
tribution is best fitted by a power-law than by an exponential.
This behaviour, as they have appointed out, is similar to one
displayed by the cluster distribution, such as found in the
Fisher's condensation model for a molecular Van der Waals system
and in the percolation theory for infinite systems (see refe-
rences below).

This similarity prompted the Purdue group to interprete
the nuclear fragmentation results as a signature of a liquid-
~gas phase transition of the nuclear system at its critical
temperature. Although all of us are yet very familiar with
changes of state, the interpretation of the nuclear fragment-

ation as a critical phenomenon provoked an extraordinary interest

in this area, both from the experimental and the theoretical
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points-of-view. In these last few years, much more experimental
data have been worked out-and paralelly many theoretical models
yave been proposed in order to reproduce the main features of
the experimental results.

In this course, it is my wish to give an introduction
to nuclear fragmentation, with emphasis in percolation ideas.
The choice of topics and the reference list :eflect only my own
point-of-view. I apologize for references and topics which are
left out. The course is sketched as the following:

In Sect. II, general concepts are introduced and the
relevant experimental results are presented in Sect. III.

Sect. IV discuss the main théoretical models, except the per-
colation models. As an application, we present in Sect. V the
uniform expansion approximation and use the ;Eatistical mul-
tifragmentation model to calculate the fragment energy spectra.

Sect. VI is dedicated to percolation models. Finally, summary

and conclusions are given in Sect. VII.

I1I. GENERAL CONCEPTS

Let me recall that experiments on high energy heavy-
-ion collisions suggest that the results are rafher insensitive
to the combination of projectile and target nuclei, and that
the relevant Quantity in this eneréy range is the total incident
e;ergy per particle, instead of the total incident energy. Also,
an important quantity to be considered is the impact parameter b.

Two extreme cases are of interest, i.e , b = 0 (head-on,colli-

sions) and b = RP+RT (peripheral collisions), where RP and R
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are the radius of the projectile and the target nucleus, res-
pectively.

In quite general bases, what do we expect to find
when two heavy-ions collide at the energy range we are interested
in ? In other words, what happens when a projectile nueléus
incides on a target nucleus, with a bombarding energy Eincfh ?
The picture may be the following: The projectile and the target
nuclei merge to form a composite system. This system, after
compressed and heated-up, expands and cocols down until the system
becomes unstable against the formation of heavy fragments (the
fragment size A is typically less than 1/3 AT).

In the collision process, the total incident energy
is partly used to remove nucleons from the target (prompt nucleons},
or is directly converted into mesonic degree;iof freedom. The
remaining energy may be stored as compressional energy or trans-
formed into excitation energy of the system. |

Unfortunately, there is no straightforward way to
r?late Einc/n with E*/n or with the number of fast particies
ejected out. Possible approaches would be the intranuclear cascade
techniques or hydrodynamical codes.

We can understand in terms of the total excitation
energy per particle E*/n why the system splits in many clusters
as soon as the threshold is reached. If E*/n is sufficiently
small, the system undergoes collective oscillations or forms
a compound nucleus, but it dissolves completely into free
nucleons, if E*/n is greater than the nucleon binding energy,

which is around 8 MeV. Between these two limiting cases, the

system becomes unstable against formation of complex fragments
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(nuclear fragmentation), which seems to happen at E*/n = 3-4MeV.

We can also discuss the collisions in terms of the
bombarding energy Einc/n. In this case, the Coulomb barrier Vooul
(some MeV's in the case of heavy-ions) is the relevant quantity.
For low bombarding energies, i.e., Einc/n < VCoul' we have the
ccmplete fusion and for Einc/n >, VCoul' the incomplete fusion.
Finally, if Einc/n > 25 MeV, nuclear fragmentation may occur. In
the case of proton-induced reactions, the fragmentation threshold
is much higher (around 1 GeV) due to the smaller compression
the proton provokes in the target nucleus. '

The heavy-ion collisions we are interest in may be
regarded as a two-step process, 1l.e.:

1) Partition of the total incident energy inﬁ? the several de-
grees of freedom of the composite system (collisional stage) ;

2) The unstable system gives arise to the production of heavy
fragments (disassembly stage).

The first stage involves a very complex rearrangement
of the available energy, but it is with the second stage that the
most part of fragmentation models are concerﬁed. Therefore, in
this course, we will restrict ourselves to the static models
which requires ho treatment of the collisicnal stage at  all.

One basic question in nuclear fragmentation is: Could
be the nuclear disassembling regarded as a multi-step process
in which each step is considered a binary process, such as we
find, e.g., in the so-called sequential evaporation ? So far,
it seems that the answer is no, and in fact a non-conventional

explanation is underlying the most part of the theoretical models:

a one-step process involving multi-particles (nuclear multifrag-
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mentation). The difference in these two approaches is concerned
painly with the timescale of the fragmentation process. In the
last point-of-view, this timescale is assumed very short in
comparison with the duration of the collisional stage, so that
the approximation of a simultaneous break-up (explosive pfocess)
can be made. On the contrary, in the first point-of-view, the
approximation of very short timescale is not assumed, and the
nuclear fragmentation is described as a non-simultaneous process.
As mentioned in the Introduétion, nuclear fragmenﬁation
is a phenomenon observed in intermediate and high energy colli-
sions. Let's put this in a more precise manner. The intermediate
energy domain usually is taken as beginning from the threshold
of the cluster formation (v 25 MeV) and extending to the onset
of the high-energy or relativistic regime, m{ﬁoo MeV/n, corres-
ponding to the energy for which the relativistic parameter
X = p/moc = 1. As much as the intermediate energy regime is
concerned, the theoretical approach is expected to be particularly
difficult. The reason is that, in this energy regime, it is not
possible to resort to approximations neither of the low énergy
heavy-ion collisions (long mean free path, one-body dissipation,
mean field), neither of the high energy case (short mean free

path, two-body dissipation).

III - EXPERIMENTAL DATA

The experimental data concerning nuclear fragmentation
are mostly of inclusive character. This means that in the

experiment only some of the observables are measured. As an
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example, a typical inclusive data is the mass yield, where the
fragments are counted irrespectively of its impact parameter.

Of course, inclusive data imply loss of information., Exclusive
data are related to experiments in which the observables are
measured simultanecusly. Unfortunately, these kinds of'experiment
are very hard to perform and in consequence the exclusive data
are scarce.

Generally, the inclusive data are presented as the
quadrupole differential cross section, d04/dAdededﬂ. When in-
tegrated over all charges, energies and angles, we have %%— which
is the cross section for production of fragments with massf
number Af.

The experimental data come from: a
a) proton—indﬁced reactions at high-energy, ‘

p + (2,A)

b) heavy-ion-induced reactions at intermediate and high-energy

(z',A') + (2,3a)
and the main observed quantities are:

a) Mass yields
b) Isotopic yields
c) Energy spectra

Let's first present the results from the above-mentioned
Purdue-Fermilab experiment (Fiﬂn et al., 1982), which concerns
with the p+Kr and p+Xe reactions at bombarding energy in the range

80-350GeV. In Fig. 1, it is shown the mass yield of the fragments

with A, < 30, for both reactions. The fitting of the experimental

f

points by a power law, i.e.,

vield(Ao) = A" et
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FIG. 1 -~ Taken from Finn et al. (1982).

gives T = 2.64.for p+Xe, and T = 2.65 for p+Kr.

Furthermore, the mass yield is obsérved not vary signi-
ficantly for different target nucleus and different -incident
energy within the above-mentioned range. : |

Recently, the same group reported (Mahi et al., 1988}
that the same experimental data, after reanalysed with a somewhat
different procedure, may give an exponent as low as 2.3.

The same behaviour of the mass distribution can be
seen also in heavy-ion-induced reactions. Fig. 2 displays the

166,1973u (Berthier et al., 1987},

results froﬁ the reaction ~ 0
for 60 GeV/n and 200GeV/n. In the first case, the power law

with T = 2.64 fits very well the data, although in the second
case the exponential fits better. Figs. 3 and 4 show the masé
yield data from Panagiotou et al. (1985) and from Gutbrod et al.
{1982) respectively. Again, the data seems to display a power-law

behaviour.
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FIG. 2 - Taken from Berthier et al. (1987).
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The dependence of T on the in-

cident energy for p+Xe reactions at
1-19 GeV of bombarding energy (Fig. 5)

as well as the excitation curves (Fig.

were reported by Mahi et al. {1988).

It is seen that T estabilizes around

2.1 for higher incident energies, and

FIG. 4 = Taken from that the excitation curves increases

Gutbrod . (1982).

very steeply until incident energy

around 10 MeV, after that maintains almost constant.’
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FIG. 5 —'&aken from Mahi et
al. (1988).

With relation to
isotopic yields, Fig. 7 gi
ves the results obtained
by Hirsch et al. (1984) .
The dashed and solid lines

are drawn to guide the eye.
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FIG. 6 = Taken from Mahi et al.(1988).
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and isotopes (Fig. 8), taken from Hirsch et al. (1984), are pre
sented. All the curves refer to the p+Kr reaction at bombarding
energy of 80-350 GeV and present almost the same shape, with an
rapid increasing, followed by a maximum value (around 18MeV for
C and isotopes, and 22 MeV for O and isotopes) and finally, an

exponential decay. Fig. 9 shows energy spectra from Warwick
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et al. (1982), with similar behaviour},n

IV. THEORETICAL MODELS

Nuclear fragmentation seems to be a very complex phe-
nomenon. Its reaction mechanism is not well understood yét. In
what follows, we will restrict ourselves to the discussion.of
the disassembly stage only, leaving out the collisional stage.
This means we will not be concerned with how the colliding -
system evolves in time until it breaks~up in many pieces (ih
this respect, see Ng& et al., 1987; Aichelin et al., 1988;
Vicentini et al., 1985). We simply assume a hot portion of
nuclear matter, which in general is in non-equilibrium state.
Therefore, the models we will discuss consid%t solely the final
stage of the break-up. :

Basically, some models regard the break-up as the
result of thermal instabilities (e;g., statistical multiffag-
mentation model), mechanical instabilities (e.g., cold fragmen-
tation), liquid-gas phase transition, or purely geometrical
aspects (percolation approach). Beside this,bthers assume an
usual evaporation/fission mechanism (e.g., sequential evapora-
tion) or simple phase space considerations {statistical models).

So many models, based on so different hypothesis, is
likely to reflect a situation of almost Complete ignorance.

In the following, we will discuss the most important
models of nuclear fragmentation, leaving however the percolation
models for the next Section. Let us consider first the most
spetacular model, the liquid-gas phase transition model proposed

by the Purdue group. In this point, it seems to worthwhile to
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review the Fisher's droplet condensation model, on which the

liguid-gas phase transition approach is based.

4.1 - Ligquid-Gas Phase Transition Model

Basically, Fisher's droplet model {(Fisher, 1967) is
a generalization of the gas condensation model, first proposed
independently by Frenkel, Band and Bijl, a half century ago.

More specifically, they have considered a gas with
constituents interacting through short range repulsive forces
(hard core) and short range attractive forces. These consti-
tuents may consist of isolated molecules or clusters of two or
more molecules, which are assumed to be in a%atistical equi-
librium. Experimentally, at low densities and temperatures, this
system may undergo an abrupt change from a gaéeous to a liquid
state (condensation).

The condensation model assumes:

a) the interactions between clusters can be neglected;

b) the cluster binding energy U{A) and the cluster entropy S(A),

where A is the cluster size, may be splitted into two contri-

butions, i.e.,

(2)

U(A) UOA+ Ul s

SqA+ 5 s (3)

S(A) 0

where each expression above contains a bulk term (the first one)
and a surface term (second-one), and s is the surface area of
the cluster, U0 (Ul) and S0 (51) are the binding energy per

particle (perarea unit) and the entropy per particle (per area
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unit), respectively.

It should noted that the clusters are considered
approximately spherical qu that A+~ =, Under these conditions,
fhe probability for the formation of a droplet of size A at

temperature T is given by:

_ 2/3 -
p(a) « a~T x* Ve (4)

where:

X = exp[-(U1 - T Sl)/kT]

Y = exp{-[(U0 - T 8) - ul/k?}

and U and 1T are, respectively, the chemical potential and the
critical exponent. It should noted that Eq.f}d) has much to do
with the scaling function in the percolation theory, as it will
be discussed in Sect. VI, )

In Fig. 10, taken from Fisher (1967), it is plotted
P(A) against A, for 3 different values of Y. It is seen that
A p(a) the larger value of P{A) for
very large clusters indicates
that the condensation has taken

place. So, Y = 1 is identified

<l N\ =1 as corresponding to the con-

=

densation point.
A

FIG. 10 - Taken from Fisher (1967).
that, at T = Tc' the surface coeficient vanishes, i.e.,

Furthermore, assuming

v 1

i

then only the power-law factor survives,
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P(A) < A" ¢ -, S (6)

It will be shown, in connection with peréolation ideas,

~that the critical exponent 1 is in the range

2 <1 < 3 ) ' R ¥4

For temperatures away from the c¢ritical peoint, the po-
tential factor is modulated by an exponential. In fact, Eq. (4)
is rewritten as

T

P{A) « A exp[-(FAéuA)B] (8)

where

Fy = U(A) - T S(&) ; (9)

is the Helmholtz free energy and B 1/kT.

In order to apply the Fisher's original single-component
model to the nuclear case, the Purdue group (Minich et al.,1982)
extended it to the two-component case, i.e., to a system with
neutrons and protons.

Firstly, uBA has to be replaced by

Ne

(uNNf + pzzf)B + (Nf 1n K; + Zf In K—) ’

where the last term is due to the entropy of neutron and proton
mixing, and the subscripts N,Z and f denote, respectively,
neutron, proton and fragment.

The Helmholtz free energy is assumed, just as before,

having bulk and surface contributions, given by

o 2/3 -
F, = a,(T) A + ag(T) A (10)
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and a

It is noted that a are functions of the tem-

\'i S
perature T and each one includes both binding energy and
entropy of the cluster. Having in mind that Fp = EA—TSA, they
assume that the entropy has the same functional dependence on
the variables than the binding energy. So, they argue-that the
free energy may have the same analytic form than the binding
energy.

Using the parametrization of the Bethe-Weizsacker

semi-empirical formula, then

2 ‘ 2
Z (A_-2Z)
_ L .2/3 £ £m2%g)
F(Ag,2g) = ayhe-aghe 8 7173 ~ %sym T A ¢
£
(L)

where ayr 8g+ 2 and a represent, respeqtively, the volume,

sym .
surface, Coulomb and symmetry contributions to the free energy,

and *
§ = apAE3/4 (odd-odd nuclei)
5§ =0 (odd-even) (12)
5§ = -apA'3/4 (even-even)

Eg.(11) justifies why this aproximation is refered as Thermal
Liquid-Drop Model. | |

Using the ideas and equations expressed above, the
behaviour of the experimental isotopic yields can be understood.
As a matter of fact, from the Fisher's formula, Eg. (4), the
charge yield follows:

-1

Y(Ag,Zg) = C Ag exp{[-F(Af,Zf) + UgNp + U 218

f f '
+ Ng 1n K} + 2. 1n — } - {13}
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where C is a normalization constant.

| Then, it is expected that near the critical point,
the isotopic yield would be damped with relation to the yield
calculated at T. In particular, if we calculate the argument

of the exponential, say, for the case of 18

N, we find .a factor
of v 1/100. The experimental data from Hirsch et al., 1984,
(Pig. 7), seems to confirm this behavior. In these data, we

can see a large decrease in the yield with relation tec the most
populated isotope.

By fitting the isotopic yield data, they have found a
critical temperature for finite nuclei Tc # 3 MeV. |

This value is far different from the predicted for
infinite nuclear matter (= 16 MeV, see Ravenpall et al., 1983),
and even the one for finite nuclear'systems,&which was calculated
as v 11-12 MeV via finite temperature Hartree-Fock calculations
with Skyrme effective interaction (Jagaman, Mekjian and Zamick,
1984).

The Purdue group claims that the isotopic yields are
completely compatible with the TLDM. They used this to support
their interpretation that the power-law behaviour of the
isobaric distribution is a manifestation of a iiquid-gas'phase
transition. Therefore, if this picture is correct, the proton-
~-induced heavy-ion collision creates a hot nuclear system,
expands until the critical point is reached, where then undergoes
an abrupt transformation from the ligquid state (expanded nucleus)
to a gaseous state (gas of fragments). This is in essence the
liquid-gas phase transition model. .

This interpretation for nuclear fragmentation received
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séveral supports from the theory (e.g., Jagaman, Mekjian and
Zamick, 1983; Panagiotouw, Curtin and Scott, 1985) and is
strongly based on the power-law. However, the analogies men-
tioned above can not be pushed too far, simply because the same
law may not imply the same physics. In effect, Hlifner .and
Mukhopadhyay (1986) ;eported the mass distribution of the.frag-
ments resulting from the collisions between two basalt stones

m—1.68

as and, in the case of asteroids in our planetary system

m-1'7. Of course, it is hard to believe that these phenomena

as
and the nuclear fragmentation share the same physics. So, the
liquid~gas phase transition model provoked much controversy
and received criticisms.

However, before discussing briefly;these criticisms,
let me recall some simple ideas about phasé‘transition and
phase equilibrium in a van der Waals-type system (Landau and
Lifshitz, 1964).

It was mentioned that in the Hartree-Fock approxima-

tion the nuclear matter has a similar behaviour than a van der

Waals gas. In the phase diagram pressure x number density
2

(Fig. 11), the critical point is defined by (2%), = (=2}, = 0
on’ T an2 T

Lof— / — such that, for T > T,
- | and P > P_, the system
E ‘ gas p <
3 | o<T<Te is always homogeneous.
= ! s - Y
— - V4 .
uJQSE / i For T < T and n < n_,
o i SRR 7 cC c
= ; ; . e
a ! Pratme * homogeneous states are
Wi H ‘-—-"".'. - .
T TN .
e f-*‘gf N unstable against the

0

DENSITY n- - phase separation.

FIG, 11 - Taken from Bondorf.et al, {1985a).
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The phase equilibfium requires equality of the
pressure and the chemical potentials of the two phases, and
this is usually accomplished through a Maxwell construction of
equal areas. The locus of the transition points is the Maxwell
curve {coexistence curve). Under this curve, the gas state and
the liquid state can be found in phase equilibrium.

It is displayed in Fig. 12 the isothermal spinodal,
defined as the locus of points satisfying (32), = 0, and simi-
larly the isentropic spinodal, given by (%%}S = 0. The area
between the Maxwell curve and the isothermal spinodal defines
the region in which a superheated liquid or a supercooled vapour
may exist. It is the region of metastability for single phase.
Under the isothermal spinodal, the system iﬁ;unstable as a
homogeneous body in any state, i.e., neither*uniform liquid nor
uniform gas is stable. .

Next consider a

20 — J v T T g T hot nuclear system which
expands and cools.If the

system reaches the coexis

tence curve on the higher
density side (n > n,.

T < Tc)' then bubbles will

SR be found in the liquid. If

FIG, 12 -~ Taken from Glendenning (1985). it hits on the low density

side (n < n,, T < Tc), then droplets begin to form in the gas.
Let me come back to the criticisms concerning the

liquid-gas phase transition model. The main criticisms are the

following:
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Schlagel and Pandharipande (1987), using classical
molecular dynamics, have shown that in a 108+108 reaction
{solid lines in Fig. 13) and 65+65 reaction (dashed lines),the
instabilities develop far from the critical point. Boal (1984)

complains that the nuclear region involved in proton-ihduced

reactions is both too AR s -}t--}|...:,;,..
small and too short-lived
to support a shayp trans-
ition. Furthermore, Aiche
lin et al. (1988) have si

mulated Ne (1.05 GeV/n) +

.lll!l'l-J’llll'llll

+ Au reaction, via mecros

[ o]0 E SRR R AT NN Y A AR O Y. | NP | T Y

. [»] 0.2 04 Q.6 ca 1o
copic quantum molecular dy ‘“p

.
. FIG.13 - Taken from-kchlagel and Pandha-
namics and found that the ripande (1987). .

-
[ ]

mass yield is given by a power-law,but that the power-law shape
is caused by simply averaging over different impact parameters.
They conclude that this fact rules out inclusive mass distri-
bution as a signature of a liquid-gas phase transition.

Last, but not least, a simple guestion may be made:
Why is one so lucky in obtaining through a heavy-ion coliision
with so many different initial states, a trajectory in the phase

diagram that hits exactly on the critical point ?

4.2 - Statistical Multifragmentation Model

This model is proposed by Bondorf et al. (1985a, 1985hb).
They consider a portion of expanding hot nuclear matter, just in.

the verge to disassembly. The model assumes the following picture



CBPF-M0-002/89

=22 _
of the fragmentation process: a) production of a hot matter and

appearance of cracks; b) explosive formation of primary frag-
ments; and c) evapcration of particles from primary fragments.
Aiso; it is assumed that at the break-up stage, the system

ig characterized by mass number AO' charge Zo, volume-VO‘and
total energy EO‘

‘One basic hypothesis is that the system attains the
thermalization just before the break-up. This means that the
reaction time is assumed greater than both the temperature
equilibration time and the composition equilibration time. In
consequence, both the temperature T and the average composition
of the fragments can be regarded as essentially constant through
out the entire volume of the system. ; |

Let's consider the initial hot nuc}ear system {ZO,AO)
to split into different fragments with mass number A, charge 2

and energy E The number of (Z,A) fragments is denoted by

Z,A°

N, - Let's introduce the partition vector {NA}’ where N, =
r

=) N, .. For example, the partition in which a nucleus A,y =
z r

= 10 splits into 2 single nucleons and 2 alfa particles, is

represented by

{Nlo} = (2;0'0'2;---'0)
—p—
10 components

The total fragment multiplicity is

M=} N, . ' (14)

The problem of partitioning a finite particle system
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into several fragments is formally identical to one of decom-
posing a given integer number into integer terms. The number of

partitions of a system with A, nucleons is given by

A, o
P(a)) = ] P(Ay,M) Too.a5)
=1 e
where
P(A,,M) = ] ag P(A,-KM-1,M-1)
- ERE e -
G-K-M 1
Note that for A, = 100, the total number of partitions
is = 2X108.

The statistical multifragmentation model is based on
a microcanonical approach, where mass, chargétand energy are
fixed, but the coa:se_graining approximation is used, i.e.,
state subsets of the system are replaced by its mean values.
In this case, the subsets are represented by the excited states
of each nucleus.

The partitions are required to satisfy to very general
conservation laws:

a) baryon number conservation

A, =] N, o3 (16)
2,A

b) charge conservation

2y = 1 N, a2 (17)
Z,A
c) energy conservation
2.2 '
VRN L I I (18)
Beotar ~Eg * B =3 R " N2,aFz,a (

2,A



CBPF-M0-002/89

—24-

where Egs is the ground-state energy of the initial system and
Ry is related to the volume V, > Vy, at the break-up. The Coulomb
energy of a homogeneous charged sphere has been projected out
from the total energy for computational conveniente.

Then,as usual, the partitions are assumed to'haQe

statistical weights given by

w({NA}) =exP[S({NA}.T,vb)l. ' - (19)

where: .
S(INy},T, V) = [ Ny xS, A (T, V)
Z,A
In order to calculate SZ,A' a génefglization of the
liquid drop model to finite temperature is re&uired. It is assumed
that only the surface and bulk terms are modified.

As a matter of fact, the surface free energy is para-

metrized according with Ravenhall et al. (1983), as

2 2
T =T~ 5/4
FS(m) = 8(ma®/3 = 8, (S a%/3 T<T
A OTQWZ c
c
| T 2 Tc
=0 " (20)
where B8, = 18 MeV. '
The bulk free energy is given by
bulk 72 |
F (T) = (W, = —)A (21)
A 0 €9 ,

where T2/EO takes into account the effect of the excitation in

the bulk energy, and Wo = =16MeV and € = 16 MeV.

The symmetry and Coulomb contributions to the free
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energy are, respectively,
sym (a-23) 2
Fgip = Y g — . Y = 25 MeV (22)
2.2 :
FEo=22°e oyl (23)
2,A 5 7. A ;
r -
with o
x =1+ w3,
0

1/3
0

is estimated as the separation between surfaces of spherical

where R0 = 1.17 A and 248 = 2.8fm. 24 is the crack width and

nuclei, in which the Coulomb repulsion is counterbalanced by

1]

nuclear forces.

Let's now to calculate the free energy for a fragment
(z,A). First, it should be noted that the totél partition function
can be factorized into translational and inté?nal components, if

it is assumed no interaction among fragments, i.e.,

o

_ ptransl int
ZZ,A . ZZ,A *

Furthermore, in the case of subsystem composed of Nz a
r

identical fragments, the partition function is

Z,A

(ZZ,A)

Ny.a

1 g .

z;rinSl is obtained by integrating over the whole
L

available phase space, i.é.,

ptransl _ v (mzpaT,3/2 ' ‘24)
Z,A 9z,a 's orh2

where-gz'A is the spin -‘degeneracy factor,
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My on T mNA (mN = nucleon mass) and Ve =V, - VO = xyo
is the free volume.
As F = TlnZ, we can also decompose the free energy into

translational and internal terms,

_ otransl int
Faoa=Fz,a  *Fga
with:
transl _ _ transl _ _1 | _
szA = =T[ln ZZ,A Nz N In NZ,A 1] (25)
’ [
pint o T aimy a2/ Ly 2202
2.2
+32 m-aw"My as e (26)
Z,A A
9F, A
Since SZ,A = -(_ETL_)V . then
1n{ XV°A3/2 ! 1nw, 1
8 = 1lnig - n +
Z'A Z A AB Z'A Z’A
2T dg ,2/3 3 .
+ EE A-3S5A + 3 A > 4 (27)
23%2 1/2
where A = (mNT ) is the nucleon thermal wavelength.
Once S, , is put in the equation defining wiin, 1,

the expectation value of any guantity X is

X= ] _ wiNb x({) (28)

(N, }

where X({RA}) is the value of X for the partition {NA}' and

the sum is over all possible partitions of the system.
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As a direct calculation of this equation is very
difficult due to the large number of possible partitions (remem
ber that in the case of AO = 100, the number is 2X108), some
approximation scheme has to be used. One possible approximation
is the Monte Carlo procedure. In the following we describe the

main steps:

1. A multiplicity M is randomly - chosen, according with a dis
tribution proportional to the relative number of partitions
with multiplicity M;

2. A random partition is obtained. The charges of the fragments
are then attributed, assuming approximation of beta-stable
nuclei;

3. For a given input (AO and EE/AO)' the tem?erature of Ehe gas
of the fragments is determined by solving‘the equation of
energy conservation. If it happens that this conservation
is not satisfied for any T > 0, then the partition is dropped
and a new partition is tried;

4, With {NA} and T known, the entropy S({NA}) and the probabi-
lity W({NA}) are computed;

5. The quantity X is evaluated and the corresponding expectation
value is computed by Eq. (28); |

6. The procedure is repeated again and again, until satisfactory
statistic is obtained.

In the following, we present the main results from

the statistical multifragmentation model for A, = 100. In

Fig. 14, the average multiplicity M is plotted against exci-

tation energy per particle E*/n. It is seen that M maintains

equal 1 up E*/n =.3 MeV, when the fragmentation begins and, after



that, increases steadly
with increasing E*/n. In
Fig. 15, the average tem
perature T is also given
as function of E*/n. In
this plot, it is cleaf
that, instead one, two
phaée changes are found.
The first one occurs at
T = 6 MeV and E*/n

around 3-4 MeV and
corresponds to the nu-
clear fragmentation,
whereas the second one

is observed at Tzl0MeV

and E*/n around l6MeV

and corresponds to an
equivalent liguid-gas
phase transition at the
critical temperature of
the infinite nuclear matter.,

The average fragment
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FIG. 14 - Taken from Bondorf et al.(1985b).
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FIG. 15 - Taken from Bondorf et al.(1985b).

is plotted in Fig. 16 against the fragment

mass number A for E*/n = 4.0 MeV.This result should not be compared

with éxperimental data, since it does not incorporate secondary

evaporation processes.
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4.3 - Cold Fragmentation

Let me now introduce briefly a reacgion mechanism
for nuclear fragmentation which is appropriate to high energy
heavy-ion-induced collisions. It is proposed by Aichelin,

Hiifner and Ibarra (1984).

At high-energy nucleus-nucleus collision (> 500MeV/n),
the exchanged transverse momentum is small (typically ~ 0.4GeV/c).
This means that for a large longitudinal momentum, we have small
scattering angles, i.e., the nucleons move almost on straight

lines. Then, after the collision,

we find (Fig. 17): ) Prairag-
"""" TR
Nl

Lo

X

F1G. 17 = Taken from Aichelin
et al., (1984).

Projectile Target
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a) a participant region, formed by nucleons which have undergone
scatterings. Essentially this region is given by the geome-

trical overlapping between projectile'and target nuclei;

b} a spectator region, formed by nucleons outside the overlapping.

These nucleons are unscattered and the matter is relatively

cold.

In the participant region, the most part of the beam
energy is converted into heat. High temperatures are reached,
and the region is close to thermal eguilibrium. It uses to say
that it behaves as a fireball. '

It is clear also that the target spectator is almost
at rest, and the projectile spectator moves with approximately
the beam velocity. It is within this particiéant-spectator
picture that the cold fragmentation model is'propoéed.

The relevant feature of this model ts that it does
not assume thermodynamical equilibrium. According to this model,
nuclear fragmentation is regarded as the shattering of a glass,
when hit by a stone. This picture is compatible with nuclear
fragmentation as arising from a mechanical ihstability.

The nuclear fragmentation is treated by this model as
a two-step process:

a) Formation of the participant and the spectatof regions, with
the former giving a fireball and the latter forming a cold
matter;

b) The fireball decays. Some participants escape.without.any
further collision, others penetrate into the spectator region
and deposit momentum and energy. This leads to local insta-

bilities,which destabilizes globally the spectator matter.
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Then, Coulomb forces act on the pieces (prefragments)
pushing them apart. Secondary decays (evaporation) may occur
before they are detected as fragments.

The model ascribes a following parametrization to .
the triple differential cross section,

ax
Ve

3 .
do av, gV ) E£(E,R,v /By 8,Y,) (29)

_do
d8agaz = az (ZrS:9p)
0

In Eq. {(29), do/dZz is the charge yield curve and gives the dis-
tribution of "cracks" in the target spectator; g(VCi, the
Coulomb barrier distribution, taking into account the different
places in the target that the clusters can be formed;
£(E,Q,V ql,ﬁ,vc), the energy and angle di%}ribution for a
given value of the Coulomb barrier.

In order to calculate do/dzZz, it was used the principle
of minimum information {(Aichelin and HUfner, 1984). In fact,
assuming all partitions to be equally probable, the shape of

the charge yield is given by

p lexp(1.28 2/VZ;) - 117? {30)
where Z, is the charge of the spectator matter and Op is the
integrated cross section for fragmentation of the target.

One criticism which can be made to this model is
that Eq. (30) represents actually a Bose-Einstein distribution.
This means that, in the cold fragmentation model, all nuclear
fragments are treated as if they were bosons, but this is true

only in the case of an even number of nucleons.
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FIG.18 « Taken from Aichelin et al,
(1984),

Figs. 18 and 19 show the results of, the fitting for
dzd/deE (solid line) in comparison with the data taken from
Warwick et al. (1983) and for Bock et al. (1982), respectively.

16

In this latter case, the reactin is “"0O+Au (top curves) and

12C+Au (botton curves), both at 84 MeV/n of bombarding energy.

4.4 - Sequential Evaporation

One model which does not assume a simultaneous break-—
-up is given by the sequential evaporation model, proposed by
Friedman and Lynch (1983a). This model treats nuclear fragmen-
tation as a number of evaporation processes in succession, i.e,
the compound system, assumed in thermal equilibrium, evaporates
a particle, and after thermalization, evaporates another

particle and this process is repeated again and again, until
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the fragment excitation energy is reduced to values below
the evaporation thréshold.

Formally, the evaporation process is treated as a
statistical emission. An expression for the rate of emission is
worked out as a generalization of fhe evaporation of a Férmi
gas from a spherical well. Specificélly, if n, denotes the
number of emitted clusters of type a, with number of protons
Z, and number of neutrons N_, the rate of emission at tempe-

rature T of clusters of type a with energy between E and E+dE,

is given by .

2
2 m_-R
d*N a_a _ - _ B -
JEat - (23a+1)( . 3 } (E Va)G(E Va) exp { KT x
“
1 - - o
exp {ET [Zaf*lT;Dp) + Naf*(T;Dn) - Ba]} (31) -

-

where Sa' m R, and Ba are, respectively, the spin, mass,

a’ A

radius and separation energy of the cluster a. V, represents
the Coulomb barrier and f*, the reduced free excitation energy,
which is a.function of the number density of protons pp or

of neutrons Pne 8 (x) is the step function.

The recoil of the residual nucleus can be also easily

taken into account. For details, we refer the reader to the

3 Y reference given
[ e | above.
2 “me
b
2 . L
L A
hd -*
o
o ) ] ! ) 1 i 3_1_ FIGURE 20 - Taken from Friedmann and
@ ® W W 40 0 0 ™ W Lynch (1983b).

Kinetic Energy (Mev)
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In Fig. 20, we show the energy spectrum of 12C from

132e for T = 15 Mev. The dots denote the results obtained
from sequential evaporation and the histogram, the experimen-
tal data from Finn et al. (1982). The agreement is very nice,
but the temperature used in the fitting is very high and

the corresponding excitation energy per particle (11 MeV).is
much higher than the maximum value (v 6 MeV) expérimentally
observed (see Leray, 1986). Fig. 21 displays the calculated
mass yield (dots} and the data (so- | 2 |
1id line) from Finn et al. {(1982).
Fig. 22 gives the isotopic yield

13ZXe for isotopes of C (so-

from
1id line), N (dashed line) and O

(dot-dashed line).

Yield

n-! L Pt 1

0 4 8 12 1% 20
Mass Number

FIGURE 21 - Taken from '
Friedmann and Lynch (1983 b).

Isctope Yield

"51 t 1.1 11 | KT W S S0 B S R
0 0 -] 20
Mass Number

FIGURE 22 -~ Taken from Friedmann
and Lynch (1983b).
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V. UNIFORM EXPANSION APPROXIMATION AND ENERGY SPECTRA

In order to extract informations from their experi-
mental data, Hirsch et al. (1984) have used the fragment kinetic
energy data for evaluating the location at which the fragment
was produced inside the nuclear system. In the following, we
will discuss how this can be accomplished.

Consider a remnant of the proton-induced reaction
with radius RO' A fragment of radius r is assumed to be formed
at a distance R from the center of the remnant (fig. 23). For
simplicity, it is'assumed
that the fragment interdis-
tances are changed in the
same way ?5 the radius of

K
the system (uniform expan-

\ . .
FRAGMENT sion}. This*means that a

REMNANT charge which initially is

outside a sphere of radius R

FIGURE 23

will stay outside during the
whole expansion process, and vice-versa. In éonsequence, the
charges outside the sphere of radius R will have no influence
on the Coulomb repulsion energy of the fragment.
In the uniform expansion, the final kinetic energy
of the different fragments is

final _ E initial _ E break-up

E k : Coul *

k

Therefore, the Coulomb energy of the fragment (Z,A)

is given by
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2
22, e :
_ 2%eT o3 _ A2
Eoour = 5 3 (R *+ 3RV -2 (32)
0 .

where ZO' AO refer to the remnant and the last factor is in-
cluded in order to take into account the momentum conservation.
Solving this equation for R, we obtain

R

= % (9r? + 4c)1"2 ~5r O (33)

(X[

ECoul)

where

2 3
c= 2 : A .2 Ecoul
ZZOe (1-3—)
0

Assuming Eklnltlal very small, such that
.
o

ECoul ’

and putting experimental values of Ek {peak values)} in the
above equation,.it is obtained a correlation between the frag-
ment size and the location where the fragment is most likely

be formed inside the remnant. Effectively, in fig. 24, fragment
location is plotted versus the fragment mass A for p+Kr (a) and
p+Xe (b) reactions. It is clear that the larger fragments are
formed closer to the center of the remnant.

However,-it is notéd that the expression for ECoul
was derived by assuming implicitly that the fragment radius
also increases during the expansion in the same way than the
rest of the system. This assumption is clearly unreasonable

and may produce large systematic error, mainly in the case of

large fragments.
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FIGURE 24 - Taken from Hirsch ef #i;“(1934).
In order to clarify this point, Chuﬁg, Donangelo and
Schechter (1987) have proposed a modification to the uniform
expansion of Hirsch et ai., by assuming the fragment radius
fixed at its initial value és the expansion proceeds.In conse-
qguence, the remaining charge distribution develops a hole

around the fragment. Under this assumption, the kinetic energy

due to Coulomb repulsion is

2
Z72.e

—03— rZ (1 - KA—)Z (34)
R, 0 - :

ECoul =

which does not contain the term 3 R r of Eq. (32) . Since this
term may give important contribution, Eg. (32) is expected to
overestimate the fragment kinetic engrgiesl

It should noted that in the uniform expansion
approximation, ECoul = f(R), where R is the location of the

fragment at the beginning of the expansion.
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However, at the break-up, the fragments already
have thermal velocities. So, their relative velocities are

expected to shift during theé expansion. As these initial velo-

cities depend on the average temperature and the fragment
masses, the deviations from Eq. (34) ére expectéd to dgpénd on
the total energy of the system as well as on the maés of ﬁhe
particular fragment which spectrum is being considered.

In order to make comparisons with the results pre-
dicted by the new assumption, Chung'ét al. (1987) have peffor—
med a dynamical calculation, using the stafistical mpliifrag—
mentation model to describe the break-up process. At the break-
-up, it is assumed that the fragments are sufficientlf sepa-
rated, so that only Coulomb forces must be gonsidered.

To obtain a dynamical description of the Coulomb

expansion, it is assumed the following classical Hamiltonian,

2 2
P, 2,2, e '
H = L + z LJ_“— i = 1,..' 'M (35)
Z 2m . - - "
i i i<j Iri-rjl

The coupled differential equations of motion are ob-
tained from this Hamiltoﬁian and then integrated numerically.
A Monte Carlo procedure is used to produce average values of
the physical quantities. The positions ;i are .randomly selected
from a uniform spherical distribution, and the 51 are obtained
from the Maxwell-Boltzmann distribution assoéiated ta the
excitation energy of the system. The time evolution of the
Coulomk expansion process is stopped when the total enerqgy of
each fragment ceases to display appreciable changes. These

final total energies are then stored and the procedure repeated.
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They have calculated the energy spectra for "°C for

different excitation energy'per particle. The results are dis-

played in Figqg. 25.._It is seen that the spectra_calculated_with

] AL T T T . ; N T
E A e ERMAENTS E
g &0l . E ;‘A. = Nay i | m.
i OYNBMrAL g DYNAMCAL
E U0 feas 42 S LAFORM feg 32
E . WEOB (e 34 T 2 UMECAM {eq 34 3
2T 1 &
- :
- STy 3
2 | 17 1 :
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o __! ' L‘-'} -
i--l“=------s 1 h‘-—‘
80 LA 80 Lo.u
ENERGY OF ¢ v (Mev)

FIGURE 25 - Taken from Chung et al. (1987).

g

Eq. (34), using the new assumption, are quité different from the
calculated with Eg. (32) and are closer to the®experimental re-
sults, in spite of the fact that the secondary evaporation was

not taken into account.

VI. PERCOLATION MODELS
6.1 - Percolation Background

It seems to be worthwhile to give some backgfound in
the percolation theory, before to discuss percolation models.
Let me begin with some historical notes:

1940 - Flory and Stockmayer (study of molecules growing)
1957 ~ Broadbent and Hammersley (coined the name and gave an

initial mathematical formalism)
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1971 - Emphasis on critical phenomena

Nowadays, the percolation theory has widé—spread
applications, e.g., gelation of polymers in condensed matter,
study of the plasma quark-gluon (Baym, 1979; Ngd et al., 1988),
spread of fires in forests, propagation of disease in blanta-
tions, and many others. The reader interested in percolation
theory will find useful the fbllowing references: Essam (1980),
Kirkpatrick (1973) and Stauffer (1985).

We.introduce now the basic ingredients of the theory,

i.e:

1} A distribution of a collection of points in a d-dimensional
space. For simplicity, a regular lattice is used and, in
this case, the points are the lattice sitéé.

2) A criterion for. deciding whether two given points are connec-
ted or noﬁ;.Subsets of connected points are called clusters

and the study of the properties of these clusters constitutes

the percolation theory.
The main types of percolation are the following:

a) Bond Percolation, in which all sites are occupied and each
bond can be broken with probability Py or unbroken with.
probability 1 - pé, where 0 S Pp s 1.

b) Site Percolation, in which all boﬁds are unbroken and each
site has probability p to be occupied or 1-p to be Hunoccu-

pied, with 0 s p £ 1.

A hybrid percolation is also possible and is given
by the site-bond percolation. In this case, the sites of the

bond percolation are no longer all occupied:; only a fraction of
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sites is occupied. Bondg between neighboring -occupied sites
are unbroken with probability 1 - Pg- - _

:One important quantity in the percolation theory is
the percolation threshold"pc, which.is defined as the concen-
tration p at which an infinite network {peréolétion cluster)
appears in an infinite lattice, so that for p 2 P.s one has a
cluster extending from one side of the system to the other
(percolating cluster); and for p < P.r NO such infinite clus-
ter exists. In Table 1, percolation thresholds are listed for

several types of lattice, both for bond and site percolation.

TABLE 1 ~ Taken from Stauffer {(1985).

LATTICE SITE BOND
-
Honeycomb 0.6962 0.65271
Square 0.59275 0.50000
Triangular 0.50000 0.3472%
Diamond _ 0.428 0.388
Simple cubic 0.3117 0.2492
BCC 0.245 0.1785
FCC 0.198 0.119

" However, it should be noted that in actual lattices, finite-
~size effects will modify somewhat this result. Instead a sharp
transition from non;percolating regime to percolating regime,

it is observed a smoother transition with a width that is re-
lated to finite-size effects, such as it is exemplified in

Fig. 26, taken from Bauer et al. (1986). In this figure, the or-
dinate represents the probability for the formation of a perco-
lating cluster pperc and the abscissa, the breaking probability

for bond percolation Py The curves are results of a simulation

on simple. cubic lattice with n3 sites.
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Let me now remind that per-

colation theory is concerned with the

properties of the clusters. so, if

n, denotes the number of cluster of 04L nE 2 e -
' i - . MRS
! B 4§ com= |.°_. S
size s per lattice site, the first | dzi AT 8 cimee I (A
step is to obtain the function n, = ? 0.0 F n=20. L
= f(p,s), where p is the probabili 06 02 04 06 18 0
Ps
ty. The second step is to study its IR _
' FIGURE 26 ~ Taken from Bauer
properties, mainly for p -+ P.* et al. (1986).

Now, we summarize the main results of the percolation
theory, such as given in Stauffer (1985). In this discussion,
only infinite lattices are considered. PFor simplicity, we begin
with simple cases, where exact solution does exist (one dimen-
sion and Bethe lattice). First, we consider the one-dimensional
lattice. .

In this simplest case, the "lattice" is just an infi-
nitely long linear chain of points, placed in fixed and equaly

spaced distances. If p is the probability for each site to be

occupied, simple probabilistic arguments give

ng=p% Q-p? . (36)

In Eq. (36), for p <1, n, « exp{-s) if s + =,

In this one-dimensional lattice, for p = 1, all sites
are occupied and we have only one single cluster. For every
p # 1 , the percolation cluster will fail to exist, since in
this case at least one hole will be found in the chain. There-

fore, Pe = 1, and we have, in one dimensicn, only the region

P < Pg-
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This means: no phase transition in one-~dimensional
percolation problem.

It is usefull to define the mean cluster size,

S2

s =12 .37
g I ns ' ',37

o]

or, according with Egq. (36),

S = (1+p)/{(1-p) P < Pg {38)

Therefore, in one dimension, S diverges at the criti
cal probability.

Next, we consider the Bethe lattice which also pre-
sents an exact solution. Bethe lattice is a structure in which
from each site come out z other neighboring gites,'in a ramifying
way. -

In this case, the percolation threshold is Pe = 1/(z-1)

and the mean cluster size (hereafter the case of z = 3 is assumed)

is

s = p(l+p)/(1-2p) p<p, - (39)
Furthermore,

n (p)/ng(p,) = exp(-cs) (40)

where ¢ « (p-pc)2 with p - Poe and ns(pc) is given by the

T , for large s (t = 5/2 in

Fisher droplet model as ns(pc) « g
the Bethe lattice).
With relation to ns,'an attempt to generalize for

d-dimensional case the formulae derived in one-dimensional and
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Bethe lattices is
n, « s exp(-cs) ; 5 +® , (41)

with ¢ « |p-pc|1/° + P*p, and o is another critical exponent.
However, the one-dimensional result does not fit in

this generalization, because from Eq. (36),
2
n_(p) = (p,-P) exp[-(p,-p) 8] + P Pg (§2)

we have a power of (p-pc) instead a power of s. What' to do ?
Keep the one-dimensional result ? Or the Bethe lattice result ?
It seems that the last alternative is more reasonable,

because the Bethe lattice presents at least a percolative phase
v
A '

transition {pc <1).

One possible modification is to drop the combination

zZ =Cs « |p—pc|1/° s

in favour of

z « (p-pc) s7 .

In this case,
n_(p) = n_(p.) exp(-z}
where ns(pc) = s ;, Ore

ns(p) =g " exp[-constX(p-pC)sU] . {43)

But, this expression is somehow similar to the pre-

vious assumption
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n (p) = s~ ' expl-const Ip--l:»c[:“CI s] . (44)

In fact, both expressions depend on two variable, s
and (p-p_), through the combination |p-pe| s’ only. Therefbre,
we arrive to the scaling function

ng=s ' fllp-pde’l , . p*p, ., s> (45)

The precise form of the scaling function
f [(p—pc)sol has to be determined by computing calculations
and no deviations from this scaling assumption has béen detected
(at least, yet) for conventional percolation in two and three
dimensions. Note that £(0) = 1.

From Eq. (45), we obhtain a power_lé% for ng in the
case of p +~ P.e

It is important to define the moments M, of the dis-

tribution D, i.e:

_v k
M, = g s'n , (46)

where the sum has to be understood to exclude the infinite cluster.
After this digression in percolation theory, let me

discuss the percolation models for nuclear fragmentation.

6.2 - Percolation Approach for Nuclear Fragmentation

M.

The percolatiéﬁ approach for nuclear fragmentation is
based on the assumption that the nucleon configuration inside the

nucleus can be described by a lattice. This should cause no emba-
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rassment since, in the range this approach is supposed to hold,
the nucleon Fermi motion can be neglected.
The most part of the percolation models are éoncerned
mainly with the way of how to generate and identify clusters.
In what follows, only site percolation is used, unless‘tﬂe con-
trary is explicitly assumed.
The procedure to generate clusters may be the following:
a) Choose a lattice (the simplest one is the cubic simple, but
other lattices also can be used as the fcc and the bcc),.
containing AO sites; : '
b) If the site probability is p, then the number of occupied sites
(= nucleons) is A = PA,-

c) Alocate randomly these A nucleons into Aoﬁsites;

d} Look for all subsets (clusters) formed by'Lonnected nucleons
and collect them according with its size. The conventional
definition of clusters requires only connection via nearest-

-neighborhood distance, such is illustrated in Fig. 27.

The first simulations of nuclear -

fragmentation based on percolation theory

are due to Campi and Desbois (1984,1985),

Bauer et al. (1986) and Biro, Knoll and

Richert (1986). In the following, we

FIGURE 27

will discuss briefly only the first two

works.

6.3 - Exotic Configurations in Percolation Approach

When the dices begin to decide whether the sites are



CBPF-M0-002/89
kT '

occupied or not, they don't care whether the clusters may assume
or not quite exotic configurations. In consequence, we can find

clusters like that (Fig. 28}).

FIGURE 28 ' 5——4>—-4——o__4
These clusters hardly can be identified.with'nuclear

fragments, at least with the final state nuclei. At ﬁost, one
may associate them with excited primordial fragments, but in
this case one has necessarily to let them to evaporate.

| One possible'way to deal with such éxotic clusters
has been proposed by Campi and Desbois (1984,1985)..Considering
the nucleon Fermi motion, they have imposed “c;mpactness“ con-—

ditions on every cluster with A nucléons, both in configuration

and momentum space, i.e,

~1/2

A A
1y @ -1 )2 $ (1+¢) rqal/3 (48)
— A A -1/2
1 > 1 > 2 ) 3

where kF is the Fermi momentum, rg = 1.2 fm and € = 0.1. Adop-
ting site percolation in a simple cubic lattice, they have found.
a percolation threshold P ® 0.60. The fragment multiplicities
n{A,p) are given in Fig.29 as function of A, for different va-

lues of the concentration p. We can see that for small p, only
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light fragments are formed and with
increasing p heavier fragments are

builded up, so that for large p,

only light and heavy clusters are

observed. This is just what has to _ pses
be expected.
In Fig. 30, the mass . P
.A -
yield ¢ is shown as function of x = : _ :
FIGURE 29 - Taken from Campi and

= A/A,, where A, is the target Desbois (1984).

mass number. The result of their calculation (histo-

gram) are compafed'witp the experimental data (dot line) of
p+109Ag reaction (English G. et al., 1974).

GIX) t On the other hand, in order to
(mb) :

T

PrAg —A 4o exploit as much as pogbible the geometry,

a very simple topological way has been

100}
proposed by Chao and Chung (1988), namely,

the so~called tetrahedron percolation mo-

10}

del. In what follows, we will summarize

the main ingredients of this approach.

I &

Gos 1 Lot : .
s consider a finite sphere
X=A /Ar
FIGURE 30 - Taken from containing AO sites arranged on an fcc
Campl and Desbois (1984).

lattice of size d. A certain fraction of
sites A = p Ao is occupied by nucleons.

The nucleons in a cluster are constrainedto a tetra-
hedron linkage. A partition of the system is obtained by, first,
looking for all possible groups of four nucleons in a tetrahedron
binding and, second, combining two diffefent clusters into a

single one, when they have at least one nucleon in common (model I)
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or at least two nucleons in common {(Model II). The Model II is
more suited thén the Model I for allowing compact fragments to
be formed.

Evaporation and other secondary effects are expected,
at least in part, to be taken into account through the geometry,
since the tetrahedron linkage constraint forbids the build-up
of very dilute and ramified clusters.

The authors have performed calculations for a system
with AO = 87 nucleons, and found that thé mass distribution
curves for small-to-medium fragments follow a power-law. This
is illustrated in Fig. 31 for p = 0.724 (dots) and p = .0.805

(crosses) in the case of Model II. Fig. 32 shows the curves of

4 T and <M> as function
“10 L L L) L) T LA . !\
2 - . of p also in the case
8103} ] .
= of Nodel II. It is ob-
E 2 served that for
.;&; 10 4 . .
3 - . 0.66 < p < 0.79, the
8] L _
10 F B values of 1T are practi
T TN P IS NN cally constant (2.6-2.7)
3} 5 10 20 30 50 100 and <M> = 4 in this

Ag

FIGURE 31 - Taken from Chao and Chung (1988a). Tange. In Fig. 33, the

same quantities are

5 ' .
i plotted for the case
4 | t"'"'""'a\ <M> J
z el -3 of A, = 135, 201 and
3 o " \/‘ -. )
8 ———, volume expansion. In
o L ' ; -—-'-_—'f/l\
2 } . . L this last case, they
™
1 R T consider that the nu-

0.5 0.6 0.7 0.8 0.9 1.0
P
FIGURE 32 - Taken from Chao and Chung(1988 a). a volume expansion be-

cleus thermalizes with
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fore undergoing fragmentation. The calculations are performed
with 135 nucleons occupying spherical volume containing 141,
177, 201, 225 and 249 sites, with corresponding values of p =
= 0.957, 0.763, 0.672, 0.600 and 0.542.

The energy spectra of 12C f;agments,for p+Kr_ colli-
sions are also computed within the tetrahedron percolatioh
model, in which the dependence of the concentration p on the

impact parameter was taken into account (Fig. 34).

VOLUME

S EXPANSION
A 5 .
= 7+
v {
e gl
o -
l-.. ] o S,

1

Qs 0.8 07 [+ 4.1 Q9 1.0

FIGURE 33 - Taken from Chao and Chung(1988 b).

p "% — ooy

e

05F

o 18 s 34
ENERGIA LMev)

FIGURE 34 - Taken from Faulhaber

6.4. PERCOLATION WITH SECONDARY EVAPORATION

If the phylosophy is to extend as much as possible
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the geometrical approach, the exotic configﬁrations may be
dealt also by couﬁling an usual evaporation treatment to each
cluster obtained by conventional percolation methods. In this
regard, Santiago and Chung (1989) have made calculations with
a conventional site percolation pfocedure. The evaporation from
excited fragments is treated by the Weisskopf's statistical
theory (Weisskopf, 1937). For simplicity, they have assumed
that the evaporation timescale is much larger than the dynami-
cal expansion timescale, so that the evaporation processes can
be switch on solely after the whole expansion stage is com-
pleted,

The mass yield is shown in Fig. 35, where the open

circles denote primordial yields UKL AL L

(before evaporation) and the

bold circle, the final yields

{after evaporation). Also, it E
=
is shown in Fig. 36 120 kinetic > 10 1
: t X 9
energy spectra (dot line), com 10
o (N EERETL [ W |
pared with the experimental da _ 1 2 5 10 20 50 A
ta of Hirsch et al., 1984 (so  1GURE 33 - E’g‘;‘gfa‘“‘“” and Chung

1id line). The agreement seems very fine, even in the high

energy region of the spectrum. However, the temperature (v11MeV)

1.0 necessary tc fit the data is
1 much higher than the maximum
E 0'§' value found experimentally
0 b in excited nuclei, although

0 18 36 54 TZ‘EUEN) lower than the value used by

FIGURE 36 - Taken from Santiago and

Chung (1989). Friedmann and Lynch.
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6.5. EVENT-BY-EVENT ANALYSIS

In the case of N events, eq. (46) for the moment of
the mass distribution actually is written as

N

M (p) =] |§ I n(s,p) (50)
s i=1

where the quantity in brackets is an average over many events
for fixed p and n; {s,p} is the number of s-clusters in the

single event 1i.

However, as p is not an experimental observable, we
have no way to classify the events according to p, so that it
is difficult to use directly Eq. (50) for ana}ysing experimental
data. In order to avoid this difficulty, Caﬁbi {1986) has
proposed the so-called event-by-event analysis, in which Eq.

(46) is applied for each event separately, i.e,
Mi(p) =7 gk n, (s,p) {51)
5

In this manner, we can plot different moments versus
each other, independent of the value of p. For example, Campi

(1988), analysing the experimental data of Waddington and Freier

(1985), has produced the Fig. 37, o F ﬁk“vqg
in which the second moment M, is £ F éggishﬁzaﬂm*‘““-_
_— _

1°
E Q

plotted against the reduced mul-

tiplicity n. Using bond percola

8,
oy

L] aQ a
Y 0o

tion, he computed M2 for one-

FIGURE 37 - Taken from Campi (1988). o o o5 om
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-dimensional (crosses) and three-dimensional simple cubic lat-
tice (open circles) cases. The full circles represent.the va-
lue of M, obtained by using the above mentioned experimental
data.

From the percolation theory, we know that in'oné di-
mension systems there is no phase transition (cf. Sect.6.1).
This is just the opposite we find in the three dimension sim-
ple cubic lattice case, where a sharp second order phase tran-
sition is expected to occur. Fig.37 shows that M, is qualita-
tively the same for the experimental data and the three-dimen-
sional system, but different from the one-dimensional case.

Furthermore, Campi claims that the existence of a

maximum of M, is a manifestation of a phase transition, i.e, a

L

percolative phase transition.

In the same direction, Bauer (1988) khas proposed in
the case of finite systems that Eg.(51) must be truncated, be-
fore the clusters in the sum reach the size of the system. As

a matter of fact, he has found that the cut-off size should be

Saut = ATIZ. In order to investigate - ﬁdz

the question of the signature of a - E? 8 -
phase transition in finete systems, "E’ f:h"i‘

he also plotted (Fig.38) the 1n M, :g (a)
versus multiplicity (M,), calcula- 3; |

ted with 5000 simulations and

ha(At,)

lll‘_-alll.‘-aa.slno;-l-l‘- |.c-l;-a-lua.;l‘.“&g.'.-a

Scut = 30, for a system of A0=108. _
In Fig.38a, only undercritical events <T : _ (b)
(i.e, corresponding to p < P~ 0.7) co 20 40 60 8G :0C

and in Fig.38b, both undercritical multiplicity

A : oy s FIGURE 38 - Taken from Bauer
as well as critical and overcriti- —_— (1988) .
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cal events were considered. He claims that the appearance of a
maximum of M, has to be interpreted as a signature of a phase

¥

transition.

VII. SUMMARY AND CONCLUSIONS

The main experimental results of nuclear fragmentation
are given as mass spectra, energy spectra and isotopic yield.
In particular, it was shown that the mass spectra display a
power-law. Several theoretical models were proposed and, in
spite of the quite different assumptions, all of them seem to be
able to reproduce wiih comparable error the existing data. This
situation may be simply a conseguence of the inclusive character

of the experimental data. ;
4

It was suggested that the power-law behaviour of the
mass yield is a manifestation of a liquid-gas phase transition,
but this interpretation is still very controversial. On the other
hand, as the same power law can be obtained in percolation mo-
dels, it was proposed that moments of the mass distribution can
display a signature of a percolative phase transition.

It is obvious that nuclei are not lattices, but it is
certain that percolation ideas may be very usefull in nucléar
fragmentation. However, it remains to be accomplished the non
easy task of relating the concentration p with the dynamic of
the process, e.g., the fundamental nucleon-nucleon interac-
tions, projectile energy or target excitation energy. One step
toﬁard this goal is given by Barz et al. (1986) who relate the

probability p with the expanded volume of the nuclear system.
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