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STATISTICAL THERMODYNAMICS
, .
I. SURVEY OF THE MAIN IDEAS IN THEIR HISTORICAL DEVZLOPMENT.

-

l. Introduction. N

The aim of "statlstical thermodynamics" is to give an atomistic
interpretation of heat . phenomena., In the first phase of its historical
development, the atomic conception was restricted to the structure of
ponderable matter and the atomistic treatment of thermal properties of
natter accordingly became known. as "statistical mechanies“. Later on,
however, the phenomenological concepts and laws of thermodynanics were
extended to radiation phenomena, and the interpretation of these phenoa-
.€na 1n terms of electromagnetic fields provided the basis for a sta-
tistical treatment of the thermodynamics of radiaticn on quite the same
lines of that of matter., It seems therefore advisable to replace the
traditional denonmination of "statistical mechanies" by‘a name which in-
dicates more correctly the wider scope of the theory.

In order %o make a first acquaintance with the ideas and methods
of statistical theraodynamics, it is instmuctive to retrace the history
of their birth and growth; we shall accordingly proceed to survey the
developaent of the theory, ccnfining ourselves, however, tc those points
which afford the most significant illustration of the essential features.
Thus we leave out ‘all discussion of the origin of the cencept of the
-aton in Greece, however interesting it would be to dwell upon the ancient ,
”atouists' profound speculations. Our starting point will be the revival
"of atomistic ideas in the time of Newton, within the framework of the
new “"experimental philosophy“_ In fact, the weakness of Greek scicnce
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was its failure to understand the truc ncaning of thg guentitative
aspéct of our acccunt of physical phonomena, Ifcdern scicice was born
with the recognition of the paranocunt importance of this aspcct; a
recognition which could not be expected before the level cf technology
becane such as to nake possible accurate experimenting. We shall at
first be concerned gxcluslvely with the properties of néterial bodies:
the study of radiaticn is a much later developmcnt, which we shall also
discuss in due course

2. Atomistic interprectations of Boyle's law.

One of the sinmplest phenéqena to which atomic ideas could be
applied was the so-called “"spring" or elasticity of gases, newly dis-
covered by Boyle. The problem was to account on atomistic lines for

the gquantitative relation of proportionality between pressure and den-

sity which could be deduced from Boyle's nmeasurenents., Newton's inter-
pretation was based on a representation cf the atoms as genters of
force, a view inspired by his theory of gravitation and which remained
preponderant until the beginning of the XIXth century. One imagined
that atons acted upcn each'other at any distance with forces varying
with the distance according to sone definite law,  The atomic ncdel of
a gas was thus an essentially static ocne: the atoms were thought to be
kept at definite positions as a result of their mutual interactions

and their interaction with the wall of the container. The e¢lasticity
could be acccunted for by postulating the existence of a central repul-
sion between the atoms. Newton* showed by a very sinple argument that
Boyle's law could be obtained by assuming that the repulsive force be-
tween any two atoims varies inverscly to their distance. -Tc see this,
let us cuensider ancther sample of the sane gas, with the same number

of atoms and geometrically similar to the first, the scale of leugths
being multiplied by some factor A . The total forces execrted on two
similar areas of the walls of the vessel will then be in the ratic AT -L

- and since_the areas are in the ratio ?\2, the pressures will be in the S

ratio A~ -3 Now, this is just the ratio of the inverse volumes or den-
sitiles, which gives Boyle's law. Thias ingeniocus argument dispenses us
from_Eprfornigg _any detailed analysis of the aechanisa of interaction

* Principia (1687)
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of the gas atoms with the walls of thc vessel. The ncdel ltself, how-
| evér, invelves an arbitrary clement, viz. the entircly ad hog assusip-
ticn of the inverse distance rcpulsion between the atconse.

Some time later, Daniel Bernculli* ncticed that Boyle's law
could be acccunted for by a quite different atonmic nodel, which was
free fron any artifrary assuiption. According to hin, the pressure
on the walls of the vessel 1s an essentially kinetic effect: the
~atoms of the gas are supposed to move in all directions: when they
bounce against the walls of the vessel they trangfer to them a certain
anount of ncmentum. The total momentum thus received by the unit area
~of the wall during the unit of time is the pressure: althcugh the pro=-
cess of monentum-transfe: is discontinuous, the collisions are lmagined
to take place in so quick succession that the pressure is experienced,
at the macroscopic scale cf observation, as a ccntinucus force. Now-
‘ton's similarity argument may be applied to this model as well, The
geometrical factors A 2‘, A3 of area and volume are the same, but now
the dynanmical factor >~’1 is replaced by a kinematical one: 1in %hc
two sanples of the gas, the velocities of the atons are assumed to be
the same, and the amount of momentum transferred to the wall in each
collision is therefore the same, but the nuambers of collisions per
unit time are in the ratio R.'l,.since corresponding lengths of path
of sioilar atoms reaching the wall during this time are in the ratio

A+ Boylel's law is thus again estﬁblished.without any analysis cf the
‘mechaniso of collisicn of the atoms against the walls: but noreover,
this kinetic nmechansim, as already noted, does not necessitate any
specific assunption concerning the forces between the atous.

3..Atbmistic.v;gws on _the nature of heat._'

In spite of its greater simplicity, Bernculli's kinetic gas
model did not at first find favour, because Newton's static model f£it-
ted better into the generzsl scheme of explanation of physical phencn-
€na in terns of central forces, which was carried to its utmost ccnse-
quences during the XVIIIth century. A striking illustration of the

* Hydrodynamica (1738)
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interpretation of the heat phenonena, whose quantitative analysis is
the work of XVIIIth century physicists, foremcst ameng then Joseph
Black. Heat was thought of as an imponderable fluid, the bealoriek,
whose atcns cculd te bound by specific central forces tc those of pone- '
derable matter. Names still in usé¢, like "quantity of heat", "hcat
capacity' owe theifr origin to this substantialistic ccndeption.

Yet here alsc there was a rival view of the nature cf heat,
based on a kinetic plcture of matter., Heat could be ccneeived as the
result, on cur macroscopic scale of observation, of the individual
noticns of the atoms; if one takes the tenperature as a neasure of the

. average velccities of atcalc notions, transfer of heat from a hot to

-a cold body would be a t#¥ansfer of kinctic energy resulting frea the
Ainteractions cf the atons of the two bodies. This theory of heat
transfer is just as simple and accurate as the substantialistic cne,
accdrdiqg to which the transfer of heat is a flow of caloric frez a
higher to a lower “level" (indicated by the temperaturc)« In foct, as
was pcinted out by Lavoisier and Laplace* the twc theories, s¢ far as
heat transfer goes, are perfectly equivalent.

The superiority cf the kinctic theory of heat becaue apparent,
however, in another field, the exploraticn cf which was initiateq,
during the first<half of thc XIXth century, by the intrcduction of
stean as a scurce of power in industry. This focussed the attention
on the transfornmations of heat intoc mechanical work and vice versa,
and eventually led to the formulction cf the law cf ccnservation cf
energy as a universcl principle, govérning all transformations cf
physical agenciess Rumfcrd was the first tc pcint cut how diffieult
it is for the caloric ccnception to account fcr the producticn cf
~ heat by fricticn,'while.the kinetic thecry ydelds an obvious interpre-
tation of this phenomenon. But it was above all Jcule** who followed
up the ccnsequences of the kinetic thecry cf heat in this respect and
established their truth by rigcrous experimental tests: he shcwed
" how the 1aw of ccnservation of mechanical energy, applied ‘to 'all the

* Ménoire sur la chaleur (1780).
**¥ Joule's great work was carried out in the pericd 1840-43.
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poticns of the systcn, including the intrinsic atcnie noticns manifes- |

ted as heat, could bc cxpressed as a law of eguivalence tetween quan-
" tity of hcat and mechanical work. .

This ncnentcus disccovery was a striking denonstration of the
heuristic power of the kinctie theory of atcuic cchstitﬁtion, and 1t
~established the vallue of this theory as a principle of unificatiocn cf
cur world picture: the laws goveiniag the phencmena of heat were now

"reduced" to those of mechanies. At this stage, a word of warning will

not be superflucus: it wculd bk wrong to conclude (as Joule did) that
the experinecntal verificatiocn of the law of equivalence between heat
and work prcves the truth of the'kinetic theory. 4s a matter of fact,
the law of eguivalence is centirely independent of any particular view
on the naturc of heaty this point was especially stressed by Robert
~ Mayer*, who at the sape time as Joule arrived at the same ccnelusion
by an argunent just .as rigorous as Jcule's and exclusively based con
emplirical relations forimlated in terms of macroscopic quantities (such
as pressurc and specific heat). _ :

Mayer always objected - quite rightly ~ to the phrase "heat

is a mode cf noction" in which cne often scught to ccndense the kinetic -

ccneeplicne. Indeed, heat is and remains a physical phencnencn guali-

Jtatively different froa that of moticn in bulk, and the establishnent

of a guantitative equivalence between the two phencnena in no way af-
fects this quelltative difference., The law ¢f equivalence supplics

| us with a quantitative estincte of transformations of quality in physi-
cal systcns, -Joule and Mayer never understocd cach others; each

" thcught that the other was hopelessly wrong. In fact, thecy were both

right: they enphasized different and equally inportant aspects of

the equivalence tetween heat and work.

L. Use of statistical concepts in the kinetie theory ci gases.
Let us now coue back to the kinetic picture of an ideal gas

as a systen cf atcms moving freely (except for .cccasional collisions)mnsx'

- inside a vessel, agalnst the walls of which they are reflected. We

_* Mayer's first paper was published in 18&2

L]
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have se¢en that Boyle's law is an inoncdiate property of this model, tut
we are now in a position to enquire about its further conseguences, -.
especially concerning the thermal properties of the gas. This investi{_
. gation was, historically, initiated by Joule himself and pursued withgﬁ
greater mathematical skill by Clausiys and Maxwell. The first pro- -
perty to be considered is, of course, that expressed by Charles' law,
i.e. the proportionality of the (invariant) product of pressure and
~volume with the absolute temperature of the gas, A more detailed
analysis of the atomic mechanism by which the pressure is produced
will thus give us a precise kinetic interpretatlon of the concept of .
(atsolute) temperature. - \
An atom of mass m, on being elastically reflected by the wall

with a normal component of wvelocity v, yields to the wall a momentum
2nve Let N be the total number of atoms contained in the volume v

and f(v)dv the fraction of these atoms with a normal velocity compo-
nent in the interval (v v+dv); the numberof collisions of the type
considered on the ynit of area of the wall per unit time will be-
(N/V)y£(v)dve The pressure P will thus be obtained -by integrating ths
expression Z(N/V)nxvzf(v)dv -over all values of v of one sign (indi-
cating an initial motion towards the wall), or half the expression
just written over all values of v. Therefore,

‘= Nm <92>.,
where the notation-

<v2> j f(v)vzdv

representing the average value of the function vd for the gistribution -
of ¥ given by £(v)dv. If K is the kinetic energy of an atom, we have

obviously o
{x) 3'(—;—mv‘1>

and therefore

-%-N(K)

Comparing with Charlel' law, we see that the absolute temperature is
a measure of the average kinetic energy of the gas. Besides yielding

et e . P v

’l
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this kinetic interpretation of temperature, the atove analysié illus=-
trates the general fact that the definition of macroacoﬁic guantities
in terms of corresponding atoirie gquantities essentially involves a ]
statistical average with respect to a distribution which characterizea
the state of the atomic system, This statistical aspect of the atomiq
theory of matter was first clearly rccognized by Maxwell, but it 1s %
inherent in the very conception of an interpretation of observable
phenomena in terms of entities not accessible to direct observation.

- -0Obviously, such an interpretation would be meaningless 1f 1t required

an accurate knowledge of the éynamical behaviour of the individual
atoms.
5, Statistical interpretation of the first law of thermody-
namics.
The example Jjust treazted 1s an extremely simple one, and
the distrilbution function occurring in it is of a very special type.
It shows us, however, how to procced in the most general case. Let
us consider any system of bodies in any physical state: from the
atonic point of view, we have a dynanical system of an enormous hum-

- rer of degrees of freedom, whosec state 1s deseribed by canonical co-

' ordinates qy, Qpyeeey dp; Py Psy se+Dp, and whose behaviour is de-
termined by the Hamiltonian function of these coordinstes. The Eamil-
tonian will further depend on certain macroscopic parameters 8yy85y000
which define the external conditions to which the system is sutjected;-
the values and variations of these paramctcra are under the observer's
control in contrast to those of the atomic coordin:tes q,Ps We ac-
cordingly write the Hamiltonian as a function E(q,p3a) and it will

of course suffice to consider a single external parameter a (e.g. the
volume ¥ of the vessel in the case of a gas). '

While the Hamiltonian determines the state, or phase, of the

system on the atomic scsle, 1ts macroscopic state will te character-
ized bty a distribution density £(q,pja,0)dw , which gives the pro- .
tability to find the system in the é¢lement dwE dq,...dq dpl..dpf '

of phase space around the phase (ql..qf; pl...pf). The distribution
‘£ depends also on the external paraneters 8yy 859000 agd moreover
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" on a parameter © (e.g. the temperature) which characterizes the state
in question from the thermal point of view. The macroseopic quantity
vhich is called in thernodynamics the internal energy U of the system
is then expressed as :
={B) =/ E £ dvw. _ (1)

According to the first law of thermodynanmics, any variation dU of

the iﬁternal energy can bte referred either to external mechanical work
@ performed on the system by varying the parameters g, orto aquan-

tity of heatd Q supplied to the systeu bty varying either aore or

both; i.e. we have

= 3+ JQ’ - (2)
and §C 1s an expression of the form A da, 4 being some function of
a,0. If, for example, g is the voluue ¥V of a gas, A represents the
externmal pressure P wvhich talances that_of the gas; quite generally,
A is called the (generalized) force associated with the parameter g.
" Now the Hamiltonlan, as a function of a2, is so defined that the work
done ty the system when g is varied 1s expressed by - :F das
therefore, we have immediately _

3 5.3? <. ;>da y

<WvE .
as the kinetic interpretation of the. concepts of force and work.
From this, the interpretation of the quantity of heat b Q follows
readily. In fact, we get from (1)

dU:de v fdw + [ B+ af » dw;
_the first term on the right is just é‘ €, therefore by (2) the second
1s §Q: £Q f E s df o dqw. | | (3)

This formula is important in that it shows that the concept of heat
'is very directly connected with the change 1n the statistical dis~
tribution due to the change of eixternal conditicns.. s

_ 6. Statistical interpretations of the second law of thermo= . °
dynamics and the problem of irreversibility.

The second 1aw of thermodynemlcs has two aspects. 1In the >
first place, ii{ states the existence of a thermal quantity, the
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entropy, which (in contrast to the quontity of heat) is uniquely de-
fined (except for an arbitrary additive constant) for each state of
thermal equilibrium. of a physical system.. The entropy difference

dS between two neighbouring states of equilibrium is defined as

. as = 2L, ' W

§q being the quantity of heat which must be supplied to the system -
in the initial state at temperature T, in order to bring it into the |
final state in a guasi-static way, i.e.. by controlled variations of
the macroscopic variables. The second law then makes the further
statement that any spontaneous -transformation of a thermally isola=-
ted system produces an increase of its entropy, indicating its ir-
reversible character, '

The ccmparison of formulae (4).and (3) shows.thatﬁthe kine-
tic interpretation of entropy will involve statistical conceptions
in a much deeper sense than is implied by just taking statistical
averages: a.change of entropy is. directly connected with a cheange of .
the stotistical distribution itself. The fundamentally statistical
meaning of the entropy concept 1is still more apparent in the case
of irreversible prdcesses;. At first sight, we meet here with a paradox.
fal situation: hav can an irreversible .evélution be. -derived.frona a.purel
dynamical imodel, whose behaviour is essentially reversible in time?

This is the central problem of statistical thermodynamics and its
general solution is by no means easy.. It is-clear, however, that ‘it

can only te found in the properly .stotistical feature of the atomic
picture; in fact, it will turn out that thérmodynamic irreversibiliity .
is an example of 2 very general property of stodhastic processes, viz,
the tendency of such_procésses to "tend" (in a sense peculiar <o
statisticel theory) towards the situation of greatest probability.

' A simple example will illustrate what is meant by this.-Con—-,‘
sider the spontaneous mixing of two gases: +the increcse of entropy

in this process, when considered from the atouistic point of view, N
can only appear as a . function of the numbers of atoms involved; and i"
it is in fact siaply related to the greater probtebility of the dis- &
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ordered stote represented by the mixture, as compared with that of
the separated gases. More generally, heat in its various monifesta-
tions is the result of a disordered form of motion of the atoms (in
contrast to the ordered bulk motions on the macroscoplc scale)s; en-

tropy is a stctisticcl measurz of this disorder, and its increase ex-

presses a transitijon to a state of greater probability.

7. Ihe lMaxwell-Boltzuann equation:

The elucidation of the statistical aspect of the second law
of theruodynamics was the joint work of Maxwell angd Boltzmann; the
contributions of toth great physicists to this difficult investiga-
tion are equally essential, but'holtzmann'was'perhaps more actively
engaged than Maxwell in developing the most general implications of
the statistical point of view and in defending it against various
objections. The first problem to te tackled was the simpler one of
the ideal gas; afterwards, the casé.of general dynamical systems of
atoms was treated and required for its solution the elaboration of
new nethcds of approach. We shall now dwell at. some length upon the
discussion of the ideal gas according to the original method of Max-

- well and Boltzmann; in spite of its 1im1tations, this method 1s still

of consideratle interest and trings out the funcamental points very
¢learly.

Let us consider an ideal gas, i.e. an assembly of atoms as-
sumed to bte without interaction except during the short intervals
during which they collide in the course of.their random motions. The
sioplicity of this case lies in the circumstance that we can treat
- each atom scparately and define a distribution function for its pos-
- 8lble dynamical states independently of the other atous. In other
‘words, we may in this special case apply statisfiéal considerations
to the individual atonas and not only to the total system. In order
to cover the case of 1;reversible transformtions, we extend the de-
finition of the distribution function to ncn-cquilitrium states and
. We accordingly assume that the distribution density £(&, P, t)dw
depends an the time explicitly (and not only through the position
vector X and uomentuq P of the aton), here QW is the elesnent of

t

e

P
1

P



where, for simplicity, p
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phase space of a single atom, i.e. the product of the volume element
dv of ordinary space and the volume element dvp of momentum space?

AwE dv dv,_. It is convenient to normalize the distribution density

in such a way that j/fdw= N, the total number of atoms.

As alraa'y stated, we neglect the interactions between the :
atoms (for thelr mutual collisions a schematic treatment will prove
sufficient); we may, howsver, without great complicatlon take account

 of any external force (such as, e.g., gravitation) acting u-on each

atom separately and upon all of them alike, We shall assume that this

- force is defined ty & potential V(X ) and we may thus write the Hamil-

tonian of an atom in the form

H=K+V, K=Zl-npa,
“ stands for |P” I' The equations of motion
(except for the effect of collisions) are then

=
-§L= - grad V.

Our aim must now be to study the way in which the distribue
tion function varies in time, as a result of the collisions, and to
show that 1t does "tend" towards a definite form which 1s stationary,
i.e. for which gf/ &t = 0 for every phase. The definition of the
entropy will suggest itself in the course of the argument. Let us cone
sider the fdw atoms originally occupying the element dw of phase
space; after a time interval dt, if no collision had ocurred, they
would te found around the phase i? X+ (§*/m)dt, P '= P - grad V-dt
within a region whose volume dw?f, to the first order in dt, is equal
to dex (as i3 easily seen by forming the Jacobian of the variable trans-
formation). Thus the difference

— "
af = £(X+ & at, P~ grad V. at, £ + at)- £(5, T, t)
would vanish. However, as a result of the collisions, a certain num-
ber g-dtv dt of atoms will enter into the element 4w and a number . -
b-dwdt will te knocked out of it. Therefore,
a _ . gp - _
r R - (<)

-
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This is the fundamental equation of Maxwell and Boltzmann, which governs
- the variation of the distribution function with time., The left-hand
side can be written more explicitly
- —y
gi = 5_—5-'1- grad £ « -E— - gradp f - grad v, (6).

where gradp f 'denotés' the vector with components #£4ry . . The main
task 1s to estimate the difference a~b on the right.

At this stage, statistical considerations must be introduced.
We cannot hope to evaluate a-b exactly, since to do so we would require
an exact solution of the equations of motion, including the effect of -
the collislons. But we are not actually interested in such an exact
calculation; all we want to ascertain is the average trend of the
distribution. " For this purpose, it 1s sufficlent to replace the dif-
ference a~-b at tiwe t by its average value. The latter is readily ex-
pressed in terms of the probability per unit time for the occurrence
of a collision of a definite type: this probability is the only quan-
tity representative of the collision processes which will enter into
our arguments we shall not require any explicit expression for it, but
only use a very general symuetry property which it must have.

In the first place, we must characterize the different. types
of elastic collisions. We need not make any definite assumption con-
'-cerning the law of interaction of the atoms during a collision;  we as-
sign as space coordinates to the colliding atoms those of their center
of mass, and any further description of the mode .of collision is con-
tained in the above-mentioned probability per unit time., The collision
is then entirely characterized by the values of the momenta of the atoms -
before and after their interaction; these guantities 31,'ﬁé; 3&,'3}
- are only restricted by the conservation. laws

ERARS It P SRR ul

(7)

. In the barycentric system of reference, the momenta of the two atoms

 before and after the'colliSIOH_aré equal and oppdéite, and their abso-
Ilute value 1s not altered by the collision; the only effect of the
latter is to alter the orientation of the common direction of the mo- |
- mentum vectors with respect to the plane defined by the initial mo-
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menta in the "rest" system (in which the gas is at rest): To deteraine

‘the type of collislon, we may accordingly choose as our 8 independent

parameters the two angles which define this orientation and the two
momenta in the initial state,

The protability per unit time for this type of collision
will thus be of the form

W, -3 B ) av av,, avy, @ ¢’

where d §' 1is the element of solid angle for the direction of the

final momenta in the barycentric s.ystem. We. shall also have to con-

sider the "inverse' collision, in which the initiasl and final states
are interchanged; the corresponding probability per unit time is

w(i’l pa_-'ﬁl 32) av dvp!_'_ dvpé ad .

of variation of the paramcters are the ame‘dv dv adr= av ,dv ad’ Jie
assume, moreover, that the probability densi‘c}w l‘fas also t"ne s?ame
value for the inverse collisionsj this assumption of detailed balance
is only fulfilled for the simplest kinds of collision, but since we

'  are here only concerned with the essentlal features of the theory, we

may disregard the complications which arise when it has to be" replaced
by a less restrictive assumption.
We have now, for the average values of 2 and %,

w(?lpa-wpl B,) £(X, B],t) £(X,Bt) av av v, d@ .

.adw = o}

LN -—

( -

baw = | w(B, B, —- B} Pb) £(

- — —
X, Ppht) I(X, B, tlav dvpl 5, ad',
where we must take 'i)’fi =7 s and the integrations must be performed

over the momentum parameters so as to leave f);_ confined to the volume

~element dv_ . These formulae are often rzferred to by the name Boltz-

P
mann gave them: the "Stosszahlansatz®,i.e. the assumption on the

(average) numbers of co}.lisions. For b we get immediately in somewhat

- simplified nota tion,

fw(plpa-»plp'a) £(5) f(pd) av, o', [By = 7k8)

i

It is readily verified that, in virtue of the relations (7) the elements .
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.where the Integration extends over the whole range of momentum Rd and

angular coordinates pertaining to the solid angle §'. In order to

.obtain the corresponding expression for a, we have only to make use
- of the detailed balance assumption, which gives

-] R A 1B . (177] o

8. The Boltzmann distribution.

If in the Haxwell-Boltzuann equation (%) a and b are
understood to be the averages just .calculated, this equation is no
longer an exact dynamical relation, but can only claim to represent
the average trend of the distribution function: this, however, is
Just what we are iaterested ins We shall use it first to derive an
expression for a stationary distribution, and then show that no cther
distribution can te staticnary; this second step will at the same
time provide us with a complete kinetic‘interpretation of the second

- law,

Sufficient conditions of stationarity are obtained in
equating o zero the two sides of equation (5) separately (and putting
#t/3t = 0), Further, the condition a-bso will te satisfied, accord-

- ing to (8) and (9}, 1f we impose for any point X of space the more
-stringent condition

£(5y) f(pd) = £(8]) f("') - (10)

. for any set of momenta satisfying the conservation equations (7). This

will determine the way in which £(¥,p") depends on ¥ for any value
of X.. Then, the condition df/dt 0 with £/ 2% = 0, 1.ey by (6)

grad £. -L - gradpf » grad V= 0 : (11)

" will yield the .dependence of £ on¥.

Let us apply the condition (10) in the tarycentric systen,
in which p; =~P, , P! = <P4, the absolute values of P, and P! or
1 =Pes Pl = Pl 1 1 oT,
if we like, the squares py, p'y , bteing equal, This shows us that
the product 3 £F) £() |
is independent of the direction of B and is a function of p~ only.
But in this system, we have obviously mirror symuectry in momentum
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space, i.e. f(-"f? ) = f(ﬁ\x We may therefore write f("p"} = g(pz) .
Now, let us write the condition (1 ) for a particular collision in
which p% 0, and thersfore p2 pia + p%a » Putting for a moment

p{2 =%, pi° 2+, , this gives

;. £(3)em =g (0)elety).

2 This fu.ncional equation is easily s5o0lved by taking the logarithmie

derivative with respect to ® :

g' (%) . mr %)
g(%)  g(§+h)

" . which shows that this logarithmie derivative is independent of pa and

reduces to a function of ¥, Therefore, £(F" ) is of the form
£GP ) = £,(I) exp - g(D) K ],
i_e where the variable p has been replaced by the kinetic energy Ke

- We must now insert this expression for £(X,7 ) into
condition (11), which gives

_B...[T grad £, + B gradV-Kgrad B]- 0

ff__Since this equation must hold for all values of-p, we have separately
grad 8§ = 0 and -%3 grad £, + 8 gradjv = 0.

; .Thus, B is a constant and f (i?)= const. exp (-pV). Collecting all
the recsults, we obtain a stationary distribution density of the

form : _ o f(?p)z . -BB(Yp,a) _ (12)

where B is the Hamiltonian of the atom, which also contains the ex-
ternal parameters a, and where we have put

zef P aw (13)
in order to normelize tine distribution. TIormula (12) is called the
Boltzmann distributions it is a generalization of that first derived

o by Haxwell for the case of an ldcal gas with no external forces.

Assuming provisionally that Boltzmann's formula represents
the unique equilibrium distridution of the ideal gas, we must still
ascertain the physical mcaning of the parameter B. This will result

‘:..._,;:.__
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from a simple rclation between B and the average kinctic energy (which, -
as we know, is proportional to the absoclute tempcratures For any

. gomponent p_ of the momentum P, we have obviously
. w 2 2

p p
- f e exp (-B _K_) dp 00 Dx
- X -
“.‘_IEL_N_._MZm 4 Zmz =_N_c.9_1°g_[°°eﬁ2m dp_ =
£\ - 2m Px FT) x
=N cxp(-f >z) dp,
S m

"

- Q0

Lo a . ‘
- N :?B' log (iéﬁ)""fe"x dxaN-ji-, log (B .

. or finally 1/ Px 1 g-1_ 1 o~
| Tz == e o Gw
5;'1f we denote by € the inverse of ﬁ.' Therefors, :
()) =21nNe. (15)

 Now, remcmbering the relation, derived above, PV = 2w (K} , and |
-~ combining it with Charles' law PV = RT (where R is tga “"gas constant"), .
7 we get . :
(K):%—RT. o =

. The comparison with (15) gives | |

— . . e =]ﬂ_" (16

-~ with k = R/N. We thus see that @ can be regardsd as a dynamical
measurc of the absolute temperature,
However, for such an interpretation to te at all accept-
able, it must be universal, i.c. independent of the nature of the
gas (which is represented by the atomic mass m). Now, the universal
character of the fundamental formula (14) may be verified by extending
the preceding argument to a mixture of two ideal gases: on account
of the additional condition of the form (10) for collisions tectween
two molecules of different kinds, it will be found that the Boltzmann
. distributions for the &wo gases contain the same parameter B, This
remarkatle property is described as the eguipartition of energy. We
shall presently discuss its wider lmplications, but for the moment
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we are only concerned with 1ts bearing on the ideal gas laws, 1In

the first place, it lmmediately provides the kinetic interpretation
 of the universality of toth the sbsolute temperature (emtodied in

- the empirical fact that all gases have the same thermal dilation co-
efficient) and the gas constant. With regard to the latter, we cone

- elude that it has the same value when referred to the same number of

. molecules of different gases., Hence, the coefficient k is (as it

~ should be for the consistency of our interpretation of ©) a universal
. constant, called Boltzmenn's constant. The property of R just formu-
‘lated corresponds to the empirical law, discovered bty Gay-Lussac, that
R has the same value for all gases when referred to a mass of one
mole: we infer from the comparison of the two statements that one

~ mole of any gas contains a definite number A of molecules. This prop-
erty had been postulated by Avogadﬁo to account for the laws of chemi-
cal combinction of gasses; the kinetic law of equipartition exhibits
1ts close relationship to Gay-Lussac's law. The value of the univer-
- sal constant A, called Avogadro's number, can be ascertained in an a
indirect way by a more detailed kinetic analysis of the non-equilibrium.
 properties of gasses and the deviations from the ideal gaseous state¥*; '
" we then get- the numerical value of Boltzmann's k as R/A, where R now
denotes the universal value of the gas constant referred to ohe mole.

- We guote the modern figures: | :

R = 8,314 joules - deg'lt mole"li-'

= 6.023 ::_10")‘3 mole'l, - ' (1 ‘.
= 1.38 x 10716 erg.deg'l . -

K e

T N AR W W W S S e W A S er WP W B e . W R

* The study of non-equilibrium states (eg.diffusion) yields the mean
free path, or average length.of path between collisions: this is in-
versely proportional to the p£oductgof the number H of molecules per.
unit volume and the square o~ = of_the ‘diameter" of a molecule. On the
other hand, the total volume~N o3 of the molecules was first estima-
ted by Loschmidt from the volume of the liquid into which a unit vol-
~ume of the gas condensesi a better estimate can be derived from the

volume correction of van der Waals' equation of state for non-idedgascs, °
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9. The K-theorem.

Boltzmann's proof of the uniqueness of the stationary distri-

L;bution (12), i.e. essentially that the conditions (10) are necessary

=3

3

for the equilibrium, is one of the finest jewels of theoretical physics.
The idea is the following: consider a functional H[ﬁ} of the distri-

. bution; its variation in time as a result of the collision will be

S

~ some functlonal of both £ and df/dt,

aH af |
—_— = G,
dt [ ’dt_l ’

- in which df/dt must be replaced by its expression a=bs If we use the

. average values (8) and (9) of a3 and b, we shall obtain the average

. trend of the functional H in the form

Rl RIS PRI CARE L=V ¢ DI

where F again denotes the appropriate functicnal. If now we can con-

- struct H in such a way that F never vanishes unless the conditions (10)

are fulfilled, we have obviously achieved the desired uniqueness proof.
“Buch a functional H serves, so to speak, as an indicator of the devia-
tions of the gas from equilibrium. On physical grounds, we would ex-

~ pect that once H would have rsached its extreme value, it would remain

constant, corresponding to the fact that when the gas has reached its

__stationary state, it remains in this state indefinitely. In other

words, we expect the variation of H in tiume to be monotonic until a
constant value corresponding to the equilibrium is attained.

Boltzmann has shown that the functional which represents es-
sentially the average value of the logarithm of the distribution density
exhiblts the expected tehaviour; this is the content of his famous
H-theorem. In preclse terms, let us take '

H= [ £ log (£a1) dw;. '- - @18)

in this formula, W represents a “unit cell" of phase space, of arbdbi-
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trary volume, It has been introduced in order that the quantity
- whose logarithm is considered be dimensionless, ahd its inclusion means
‘that H 1s only defined up to an arbitrary cons$tant N, which 1s of
~course of no influence on its time variation. We have then for the
average time variation of H on account of the collisions
R -1 S

-4 0, aw -

~ the equality holding if and only if the stationarity conditions (10)
ijare satisfied,

. The proof makes an essential use of the assumption of detailed
- balance, Taking account of f (dffdt) dw= 0 we may write

- S SR (a - b) log £ daw
g 7 g et ac = [(a- w0

- = = o f -, e - . ~» :
-L/‘W(plﬁz—wp'l'ﬁé) [f(pl.') £(p') ~ £(5y) f(p?_)l log £(By) *
L |
v dvy dvy, ag .
Since '133 and 'i)’a play'entirely similar parts, |
. ) . . I
dt a J v pl 5, ) log £, By p2> av §vp1 dvp‘a ap' .
‘Interchanging the initial and final stctes, and taking account of the
detailed balance assumption, we finally get
1/ [ ]
= = fwe(f , £ ,-f_ ¢ log (£ . £ -log(f. ,f dvdv dv d
3"y oy~ yte) 308 (5B louleyty) Javav, av, o
.The ﬁruth of the statement (19) is now apparent, owing to the monotonic
character of the logarithmiec function,
' ~ The H - theorem, however, has a much deeper significance than
that of a mere formal instrument to establish the uniqueness of the
equilibrium distribution. The property of the H functional which it
expresses immediately invites comparison with the property of the en-
tropy expressed by the second law of thermodynamics and suggests the
existence of a close rclationshilp between the H functional and the
entropy. We shall first show that the quantity ~-H, taken for the sta-
tionary distribution, may be identified with the thermodynamical en-
tropy of the system in the corresponding state of equilibrium. Strictly
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speaking, this stationary value “Hgotays Which is a dimensionless gquan-
- tity, should be multiplied by the conversion factor k to give the en=-
-tropy in the usual thermodynamic units; but it is more convenient to
-use the dynamic measure 8 of the temperature and accordingly treat the
!entropy as a dimensionless quantity, |
To see this, let us write down the expression for -H

AT e

LA

- stat®

Y " Hstay = N log (2/Fw) + 8 (B) - (2o}
;;and compare 1t with the thermodynamical formula

awhere U 5 {E) and F denotes the free gnergy. We see that the identifi-
-fcation of -HStat with S 1s equivalent with the identification

: ~ F=-N6log (2/8w) , - (22)

- which, incidentally, gives a sivple physical meaning to the normaliza-
~tion integral Z. Now, to justify equation (22), we have to show that

; the function F defined by it plays the part of a characteristic funge.

- tion for the independent variables 9, a, 1.e. that for quasi-static

- transformations dF = - 8§ d@ + 4 da,
: oF P = eF = (2B . \. *
’ 56 S sa <aa s

: - The last formula is an immediate consequence of (22). As to the first,

W may eliminate S from it by means of (21) and transform it into the
Helmholtz formula - .
U <3B (ﬁF) (23)

- This last equation is readily verified to rzsult from (22), which conm-
- pletes the proof of our kinetic interpretation of thermodynamical quan-
tities,
Passing finally to spontaneous, irreversible processes, we see
at once that the H-theorem implies tha law of increase of the entropy
: of an isoclated systzm. ' The fact that the H-theorem gives the average
“trend of the quantity H shows that the increase of the entropy is an
-essentially statistical property, and the irreversibility to which it
corresponds has a statistical origin. The successive values actually

-
oy -
-
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© taken by H in the course of time fluctuate around the averages follow=-
‘ing the trend of the H-theorem and, strictly speaking, this behaviour
' is reversible: even when the system has reached 1ts stationary state,
~ the fluctuations of H around its constant average value continue in~
- definitely, and we cannot excluds the spontaneous reappearance of ény
‘state, however far frqm the equilibrium. However, for systems of a
. large number of degrees of freedom, large fluctuations will be so sel-
- dom as to te practlcally impossible: for such systems, statistical
. predictions such as that cxpressed bty the sccond law of thermodynamics
become practical certainties. For smaller systems, on the other hand,
~as for instance emulsions of submlcroscopic droplets, deviations fron
. the thermodynamical behaviour do occur and the fluctuations eventually
- become so preponderant as to exclude entirely the use of thermodynamic
- concepts, : :
In this connexlon, it is important to realize that the kinetic
view-point is much wider than that of thermodynamics. The functional
- H is defined for every state of the gas, whether in equilibrium or ?
- not, wheress the entropy is only defined for equilibrium states. This
- naturally leads us %o enquire whether the quantity H has any physical
f meaning also for non-equilibrium states., The answer given by. Boltzmann
to this question is extremely interesting; in particular, it affords
~ a still more preclse elucidation of the statistical character of en-
- tropy. Let us consider any distribution of the atoms from the point
" of view of its probability of occurrence. For the evaluation of this
"probability, we may assume that the a priori probability of any “cell®
- of finite volume of phase space is proportional to its volume; we
" have scen, in fact, that this volume remains unaltered when each of
its polnts moves along the corresponding trajectory, even if the effect -
of the collisjons is taken into account. Let us, therefore, divide i
the domain {: of phase space, necessarily finite, within which any atom
- remains in the course of time, into arbitrary cells of finite volumes
243 a distritution is determined by the numbers N, of atoms in these
- cells, and 1ts probability is given by

= -____..NI . (:'.i. Ni g
POy = R i (28
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‘where N = E:INi is the total number of atoms. If we assume that all

“the Ni's are suffleclently large integers (which obviously excludes only
a few very unlikely distributions), we uay write approximately (using
- Stirling's asymptotic formula)

p.ogP(Ni)leog -ﬂ&“-% Ny log -gi-‘-"-‘ .

In this formula, the sign = is used to denote the asymptotic character
.of the approximation; the arbitrary "unit cell W is again introduced

- for the sake of dimensional homogeneity. Now, if for the purpose of
 mathematical computation, we go over to infinitesimal cells wy,—dw,

1
the ratios N‘/u\ will reduce to the corresponding values of the dis-

~tribution density £ and the tern 2 N; log (Nim/“ﬁ) in the last

formula will just reduce to the functional He. We see, therefore, that
apart from an arbitrary additive constant, the quantity -H }f] measures -
the logarithm of the probability for the occurrence of the distribution
f in the course of time. If the distribution is a stationary one, the

lorzar™ithm of its probability of occurrence represents the entropy of

- the corresponding equilibrium state.

From our present point of view, however, the equilibrium dis-
tritution, instead of belng characterized by its stationarity, can be

defined regardless of temporal succession in a purely statistical way,

.viz, as the distribution of maximum probability for the isolated

. system undcr consideration. To show this, we must find the extremes
- of the functional H{f] for all distributions satisfying the conditions

Jfaw=n  ema  [Efaw=v, (25)

iWthh express that the gas is an isolated system. By the usual method
- of Lagrange multiplicators, we find

| fdf c[rgs+pr 1ogo<]du=-? 0,
*y £= e PE |

1
iz

- Where the param-tc¢s=(,ﬁ are determined in terms of N and U by the
?.accessory conditions (25). These glve -

o= N/2 with z = [ e"PBquw
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"and B = (kT)*l as tefore. It may be observed here that in all formu- .
 1ae involving the equilibrium distribution we have tacitly extended
“¢he integration over the momenta to the whole momentum space, although -
T(as pointed out in the preceding argument) the phases actually occupied
by an atom in the course of time are necessarily restricted to a finite
"domain % of phasd space: owing to the exponential dependence of the
-distribution density on thé kinetic energy, this procedure only in-
fvolves'a quite negligible error., Moreover, it 1s clear from either
’;&erivation that the exponential form of the distribution density is
just an. asymptotic one, valid only for systems of a large number of
atoms.

| We have thus established the asymptotic equivalence tetween the
| stationary distribution recached by the system in its temporal evolution
‘and a purely statistical distribution over the available domain of phas
‘space, from'ﬁhiéh cvery consideration of temporal succession has dis-

" appeared. In other wor¢s, instead of taking averages over the phases
actually occupied in succession by the system, we take them pover all
the possible phases, each being weighted according:to its probability

~ of occurrecnce in the temporal evolution. The equivalence of the two
points of view becomes of fundamental importance for the extension of
statistical thermodynamics to more general systems of atoms,rsuch as

- chrystals, in which the interactions between the atoms play an essen-
ttial part. It is then no longer possible to study in detail, as we

. dia for gases, the effect of the interactions on tine statistical dis-

- tribtution of the dynamical states of the systen, tut it turns out that -
- the equilibriuam distribution can be found. just by following up the idea.

of the equivalence between time averages and statistical averages, This -

is in fact the very foundation of statistical thermodynanics in its

most general form, and we shall have %o discuss it thoroughly later one.

"For the moment, we shall only outlinc the argunent in the still imper- .
- fect, though substantially true, form in which it was originally de~

" veloped by Boltzmann and Maxwell. -
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10. Ihe eréodic theorem.

Since the Hamiltonian of the general system we are now con- -
sidering is no longer separable into a sum of terms pertaining to the
individual atoms, statistical considerations must rot now be applied
to the assembly of atoms, tut to a (fictitious) assenbly of "copies"
~of our total systeﬁ, all placed in the same cxternal circumstances.

A phasc or dynamical state of the system will be represented by a point
in a phase space of 2f dimensions, if f is the number of degreces of
frecdom of the total system. A statistical distribution in this phase
space will refer to our fictitious assembly of systems, i.c., it will
indicate the probability of finding any one system in a given "cell"

of phase space under the-given extcrnal conditions. In the course of
time, the representative point of a system describes a trajeccto

whose differential equations afe, in canonical form,

. E : 2B ¥ | |
3 = gpi y Py =- g%; .(i = 1,2;00e0,f)3 (26)

the canonical coordinates and momenta are denoted, as usual, by a4, pi',_
and the Hamiltonian by E(q,p) (this is now the Hamiltonian of the

whole system). The energy. is a constant of the motion, and its value

E defines a "surface" in phase space !

E(p,q) - 27) .
_in which the trajectory 1is cntirﬁly contained; We assume that all ‘
energy surfaces are confined to a finite domain £) of phase space.

The value of any macroscopic quantity pertaining to the system :
may be interpretecd, from the atomistic point of view, as the avcrage :
of a corresponding atomic quantity over the interval of time necessary
for its mcasurement. If A(q,p) is the atomic quantity in question,
such an averagc would have the fornm

_ t°+T
-ii\%/ & [a(e),p(t) ] at,

o]

where the qi(t), py (t) represent the sblution of the equations of -
motion (26) for the conditlons at the initiel instant t,» The time !
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" interval T of the measurcment may be extremely short on a macroscopic
.. scale and yet cover the passage of thc systea through a great many

" atomic conflgurations. it is then called "physically infinitesimz1l",
" Now, we know by experience how a system behaves from the instant at

~ which all connexions with the surroundings have been severcd: after

Lo

“a pcriod of adJustﬁcnt, or "relaxation”, it soon reaches a stationary

state in which it porsists indefinitely. If we except the short period

of relaxaticn, any tine average will therefore have the same value over ..

any interval: the macroscopic value pertaining to the stationary state

" of the systen may thus be represcntcd bty an average oxtending over an
" infinite time, an idcalized concept more amenalble to a general analysis.
i We denote this average over infinite time by

£+ T : S ‘
. <A>Tt-:: Tlff;o-g—:-/ [Q(t),P(t)ldt' S (38)

Ffit is of course indépendcnt of the time to at which we suppose the

. system to have been isolated from its environment. g
‘ It is clear that the time average '(A)t is equivalent to a D

l;.statistical average: for it embodles all the atomic configurations-
~actually taken by the systen and is of course independent of the or-

der in which they have becen successively taken, All we necd to know
is the relative frequencies of occurrence of the various configura-

- tions of the systea in the course of its ecvolution: these will cor-

.'which will conmpletely characterize the equilibriun state of the isolatec-

respond to a definite statistical distritution on the energy surface,

- systen,  Since this distribution is stationary, its density p(q,p) per

clement of area do- will not contain the time explicitly and will thus

~ satisfy the. condition

dt f p(q,p) da'(q,p)}q & q(t (29)

fjwhere thc q{t), p(t) agaln represent the trajectory.

In order to determine the cquilibrium distribution, some know- .

. ledge is needed of the topological character of the trajectory. For

»

y T Y _ .
P = B(E)
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the very large systems which interest us, one will expect that owing

. Yo the complexity of the intcractions between the atons practically

QVCry configuration ccmpatible with the external ccenditions will cccur-
sooner or later. The sioplest assumption.we can make to.cxpress this -

- intuitive surmise is that the trajectory passes through cviry _point of

the energy surfacc'- this assunptlon was adoptcd by Boltzoann as tho

- basls-of "his argument:and he called it. the crgodic hypothesis. Strictly

speaking,- one ‘sheuld not introduce any hypothesis in addition to the

-'equations of motionj but in-Boltzmann's time the: matheaaticul methods

necessary for studying the. topological properties. of trajectories ‘had

-not yet becen developed and sone-guess had to.be.risked.in order to makcr
V.any progress at all.: -Boltzmann .and: Maxwell regarded the crgcdic ‘hypo-
ffthesis as a natural gbneralizgtion ‘of the Stosszahlansatz of the kinetic
. theory of gases for .describing the- regult of thm ﬂdiscrdeylyﬂ motions e
‘. of atomic systems. o

If we accept thc ergodic hypothesis, it is casy to see that “

_"th& condition (£9) uniquely dcternines. the distribution density p(q,p)
- -on the c¢nergy surfaeec, To this cnd, we start frcm the iaporﬁant.pro-
- perty of dynanical systens exprééééd'by Liowville's theoren, viz. that
- the volume of any doaain D of phase spacc (defined 1n ordinary euclidehn
"neasurc a5 f dw; witk dw. dql...dqf apl....dpf) is invariant wrth _
;-rcspcct - the motion." ” '
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. of.this-thecrea for our later. systenatic treatmcnt l»t us.now pursuc. .

3 thc argument.. Applying Liouvillc s. thecrem to an Llenent of vclune of
3 the i'shell®.of. phase space.. cCJPrised batween the ecnergy surfaccs. . 3?-__F
E, E+dE, We obtain the iﬁvariant blcacnt dnr-- .dn, whcrg dn 15 the

' 'hrca do-. ?his thicknesg Can bc caleulated in terms of the Hamllton-

ian from

.- e
bl
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the Welocity" vfﬁj (ql + pia) at the point (q,p) of the trajectory. .
~8tationary distri%utions on the energy surfack have therefore the gen-
eral form F(E,Iq,eets, I p.5) X v(q,p)” 1a¢-, where F 1s a function of

. g.set of (2f-1) time-independent integrals of the motion. Now, accord-
" ing to the ergodic hypothesis the trajectory is completecly character-
1z¢d by the energy/integral, and the fundtion F accordingly reduces to

- a function of E only; this is just a normalization factor, equal to
“the inverse of the integral .

: () = jEd‘?g' .

- We thus ccnclude that the cquilibrium state of an isolated systea is de-
fined by the ergodic distributicn law

. de-
»(q,p) do = — o —— (30)
. ’ Z(E) V(q,p)
~the corresponding ergodic average of any quantity A(q,p) is
- do~ .
= -““'-' A(q p) . (31)
<>E : F"() ‘£ _ > V(q,p) - .

o The equivalcncc between the tine average (_A)t and the ergodic ‘
~ average <A>E is now readily verified. We write . -
. i

<A>t <(a>t o |

" and, teking account of (29}, we interchange the order of the averaging
- processes on the right-hand sidej this gives ‘

(4 )8 = <<A>E> REOFE

This equality <A>t {4) 5, known as the oain grgodic thcoren.
is indecd the true basis of statistical thermedynamics. But the ergodic
nypcthesis, by which Boltznann tried to establish it, was later proved
4o be wrong: a correct formulation of the ergcdic theoren and the con- ,
ditions for its validity rcquircs the ideas of the ncdern thecry of '
" sets and of integration duc to Borel and Lebesgue. This is a quite

reeent dcvelopament, which we shall discuss in duc course. For the mo- .
nent, there 1s only one important aspect of the ergodic theorem we wanti
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to stress, viz. its relation to the problem of irreversibility.

In the preceding argument we considered a system whose ini-
tial state was described by a well-defined phase- it would have been
more realistic to start froam some distribution of initial phases in an
energy shell, expressing the incompleteness of the determination of the
‘dynamical state of/ the macroscopic system. The ergodié theorem states
_that any such arbitrary phase distribution will in the course of time
spread evenly over the whole energy shell, so as to take the limiting
form of the ergodic distribution; in other words, the motion of the
‘phases in the shell can be compared with a mixing process. We here
face in its most general form thé paradox of an essentially revcrsible -
mechanism leading to an irreversikle situation; ' but we have also in
‘hand the means of solving this paradox. If we analyse at any instant
the distribution arising from any initial one by letting the size of
‘the elements of phase space decrcease indefinitely, wé shall find that
a given infinjtesimal element is either occupied or empty, and the frac.
tion of accupicd elements, by Liouville's theorem, will always remain
ithe sape: from this point of view, there is thus no mixing at all, hut
. a perfectly reversible evolution of the distribution, If howevcr, we
fix our atte ntion upon an element of phase space of arbitrary but
‘finite size, the density of distribution in this element will tend
asymptotically to a constant va2lue: as Ehrenfest expresscd it, the ir-
- reversible behaviour pcrtains to a coarse distribution in phase, The
'dégree of "coarseness", i.e., the size of the cells of phase space with
respect to which the distribution is defined, is arbitrary; but it is
essential that some finite subdivision into cells be assumed. It is
this cell-structurc which ropresents the lack of definition of the
state of the systern nccessary for the application of a statistical mode
of dcscription of its bchaviour. From the mathematical point of vicw,
we need not specify the size of the cells and we may cven ultimately
regard thcm as infinitesimal for the purpose of practical calculationj
but the limiting process of letting tiiz cell-size tend to zero uust-ther'
bc carricd out after the process of lctting the tiue of evolutlon of the
systea tend to infinity. If w¢ should reversce the ‘order of thc two >
1initing processes, we should obtain ‘the reversible behaviour of a "finc:
distribution.
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11. The Cancnical Distribution.

The next essential question that confronts us is the follow-
‘ing. The systems we usually deel with are not isoloted, but can frcely
1 exchangc encrgy with their surroundings. In particular, in order to |
~ assign to any system 8 a dcfinite tempcraturc, we must keep it in ther-
mal centoet with é thermostat{@b l.e., sone system with such a large
~ heat capacity that the exchange of heat between it and the system 8
 does not sensibly alter its own temperature; in other words, the ther- -
f mostat acts as a practically infinite reservoir of heat at a definite
;_tumperature. There is thus a certain opposition, or complementarity,be
- tween an isolated systenm and a system of given temperature: while the
~ former is characterized ty a definite value of the cenergy, in the lat-
" ter the encrgy is essentially undetermined; the ccneepts of (dynamical)
energy and tempceraturc are in this sense mutuwally exclusive., Never-
- theless, the statisticel law of equilibrium distribution of a system
S8 of given temperature is, of course, implicitly ccntained in the er-
- godlc thecorem: for we may treat the total system S + ® formea by'
‘the given system and the thermostat as an isolated system. ‘
There remains, howevcr the practical problem of reducing the
ergodic distribution of the systcm S+ § to a more manageable form:
 for it involves an integration over the dynamiecal variakles cf the
. thermostat which is irrelevant to the physical situationj the only
function of the thermostat is to fix the value of a single macrcscopic
parametcr, viz. the tcomperature. Boltzmann showed how the elimination
of the thermcstat variables could be effected in a simple and gecneral
way, lecaving an cxpression for the distribution density of the system -
S in terims of the variables of that system only. This density is ncw
defined for each volume element dw of thelphase space of the systea .
S, in accordance with the indeternination of the energy of the systen.
we quote it now without proof reserving its derivation and closer dis-,
‘cussion for later: i

(p 'q) dg = X .-BE(q,p3a) 4
P * 2 A | ] '. (32)

vith  z = [ o"FE(2:Pia)q,,, | :
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- In this formula, the thermostat is represented by the parameter B,

~ which is the inverse of the absolute temperature @ in dynamical wnits;
the occurrence of other cxternal parameters in the Hamiltonian has bee:

‘indicated. explicitly. The formal rescmblance with Boltzmann's earlier
result for the distribution of the single molecules of a gas is not _

" surprising: for the gas itself plays the role of thermostat with re-

- spect to each of its molecules.* The law (32), however, is of much -

~ wider validity: it applies to any dynamical systen of a large number

. of degrees of freedom. We shall denote it by the name canonical dis-

; tribution, which was given to it by Gibbs, . .

_ The cestablishment of the canonical distribution ccapletes the
- statistical analysis of dynamical systems, at any rate inscfar as thesc

- systems are closed, i.c. have a fixed nunmber of constituents.. The ap-~

plication of thermodynamics to chemical processes, which becane of |

1_great inportance with the growth of chemical industry in the last dec-.
_ades of the XIXth century, required the removal of this last restric-

- tion., The extension of both thernodyﬁamical and statistical thecry

to open systems is the great work of Gibbs, who introduced the concept -
of chemnical Eotegglg;'an¢ carried Boltzmann's ideas to their last de-

i,gree of generality. Yet the developuent of statiﬁticdl thermodynamics.

in this first phase, however brilliant an achievement, was far fron

being a complete success: -a dark cloud hung ‘over it, portending as it

- were the radical transformation which atomic theory had still to under-

go.

_ The root of the difficulties is the thdoren of cguipartition.
~ of energy, which is a direct ecnsequence of the canoniecal distritution
) law, and. holds ﬁherefore in a much widcr sense than the special o;am;

~ ple we net above when discussing atomiec cocllisions. In fact, the kin-
- etic energy, being a quadratic and homogencous function of the nomen-

tum coordinates, canbe written in the fornm |

" *Hence also the possibility, at first sight paradoxical, of obtaining
an equilibrium distribution for a gas at a definite temperature by .
treating it as an isolated systenm.



=31~

and fcr any one term of this sum we have
oK . -fK = 1 7 ) -BK |
S Spe e = - g w7 apy

1 -
the canonlcal avefage thus becches

1 K\ -1
<“%;&/ea

this nmeans that each degrece of freedom of kinetic cnergy contributes
.E?e to the average cnergy of the systcn. By a similar calculation, -
the same cconelusion can be extended tc those degrecs of freedon of pc-
© tential energy with rQSpect to which the potential function is quadra-‘
tic and homogencous: an inportant example is the casc -of harmonie R
- oscillaticns around static equilibrium ccnflgurations, such as occur
in crystals,’

In terms of dircctly observable quantities, the law of equi-
 partition yieclds definite predictions regarding specific heats. The
~ translaticnal moticns of the molecules in gases, e€.g., give rise to
" a contribution of g R per mole to the specific heat of the gasj the
oscillatory notions just nenticned in a crystal contribute ZR per -ole
~ to the specific heat, It should be stressed that in predictions of
this kind atomic theory goes further than macroscopic thcrmodynamics'
the lattcr establishes certain rulations between physical quantities,
 but the values of sowe of them nust be obtained directly froa experi-
encey atomic theory, on the other hand, supplies a dynamicel interpre- i
tation fcr any physical guantity, from which the value of this quan-
tity can be computed, at least in prineciplec. The conpariscn of the
above statenents ccnccrning spcciflc heats with the empirical facts
is therefore of grecat interest to assess the value of the statistical
theory. : ' ‘ S ' ‘
. Mow, such a ccuparison reveals a very conplex state of affairs
At first sight, the smtuation locks rather enccuraging. icnoatonmic
gasces 4o have 2 specific heat (at ccnstant volume) of very nearly g R
~ per mole in a wide renge of tenperatures and pressurcs; as to the theo=-:

8 :
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retical figure of 3R per nole for the vibrational spceific heat of
crystals, it corresponds quite nicely to the law of Dulong and Petit,
However, the rapid decrcase of the spceific heat in toth cases when
“the temperature becomes sufficiently low is in sharp contradiction
with the independence of temperaturce indicated by the theory. Morcover
 the evidence from optical spectra shows that the atoms and moleculchs
are complex struc{urcs with a ccnsiderable number of internal dcgrces .
- of freecdom: the corresponding ccntributions %o the specific heat which
~the theory leads us to expeet are strikingly absent up to the highest
_?temperaturcs at which nmeasurements have been made. We arc thus Taced,
~undoubtedly, with quite a serious failure of the ecquipartition theoren,
tut it 1s not a complete failure, It rather locks as if the various
degrees of freedom cf the atcmic systems were gradually "frozen int

as the temperature decreases, so that the law of cquipartiticn wowld _
~only have asymptotic validity. The temperature at which the "freezing
“in" appears would seem to depend on sone characteristic frequency of

- the mode cf motion eccnsidered., The internal atomie nctions of high
frequency (corresponding to the frequencies of the accompanying light
‘radiations) freeze in at much higher temperatures. than the slower
“oscillatory notions- of atoms in molecules and crystals. o .
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i, ﬁgenerél Properties of Mechanical Systems

- 1. lotion as isomorphism in phase-space. We consider a mechani~ -
Zhal system, the state of which is described by £ generalised coordinates

| ql and their conjugate momenta Py, The set (qi,pi) i=1,e0e..,f de=-
fines a point P in a 2f-dinensional phase space, to which we assign for _
'-a reason soon Yo become apparent, a cuclidean metric. The measure of an
“elenent of phase-space is accordingly defined as its euclidean volume

f‘ = dql...dqr dpl...dpf.
The succession of states occupiced by the system in the course

or time form a curve or trajectory in phase space, whoae parametric equa-
tions can be written in Hamiltonian form

1 aH . --a ';_ .
“UWEIFP O AT 3'%’1' o (1)

“with the help of the Haniltonian H(qj;p). The system is assuned to be
conservative, i.e¢. H(q;p) = E is a constant of the notion. In other
.vords, the trajectory determined by the initial phase P is contained
-in the gnergy surface H(P) = E = H(P,) passing through P « We assune
that all the energy surfaces of cur system are contained within a fin.
- ite domain of phasc space: physically, this simply ncans that no single
coordinate or momentum ever becomcs infinite, 7This assunption there-
fore, is a quite naturcl one to meke: it is fundamental for the valid-
- 1ty of the whole crgodic theory. '
It is convenient to vizualize the motion, i.e. the passage fronm

‘a phase P to a phase P, as a trensformation of phase space into ijtself, *

The transfornations P-H»Pt-obviously forn a continuous group, of para-
" meter t, whose infinitesimal transformation is Just given by the Haamil-
~ tonian equations (1). In other words, the motion is an automorphisa
- of phase space. Integrals, like the Hamiltcnian, are invarlants of
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this gronp; the corresponding surfaces, like the energy surface, are
invariant domains.

2« Liouville's theorcn} For a statistical description of a
atationary state of the systen, we want a measure in phase-space which
~4s invariant for the motion group. The ncasure_@p introducod ahove

" has this property: /this is the statenent of Liouville's theorem. The

{mpst striking way of proving this theorcm makes use of an analogy be-

- tween the motion in phase-spacc regarded as a euclidean space and a

" hydro dynamical of flow, whose velocity v‘is directly given at any
point by the Hamiltonian cquations (1l). The theoren follows fron the
observatlon that this flow satisfies the condition of 1nconpressibility
div V= = 0, l.e. £

ZcL N’i)m.

a"qi aj_

This means in fact that any donmain D, of phase space will be transformed
by the motion into a domain D, of perhaps quite different shape, but of

- the same volunc.

; From the inveriant measurc Qp. in the 2f-dimensional phase space
it is ecasy to derive an invariant neasure on the (2f-1) dincnsional

“energy surfacc. To this end, consider an gnergy-shell i.c., the.space
between two neighbouring cnergy surface E, E + dB., Let 43 be the Eu-

. ¢lidean measure of gn element of the surface H(P) = E, and dn an ele-
_oent of length along the dircction normal to the surface clement d'Z,
The invariant measure df‘E on the energy surface is then:

apg = %= F
1.e. the euclidean‘element dE is weightcd with the factor dn/dE. The

latter is just el SH\2 2H \2)) -2/2
|grad H(P}|™" = { zi.[(ﬁ) + (‘g‘ﬁ; ]}

1% 1s numerically equal to the inverse of the modulus of the velocity
¥ at point P. In the following, we shall always use the invariant
neasure df‘E’ and we shell drop the index E when no confusicn is to be
fearad. :
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3. Physically cquivalent phases and uniform phase functions.

In the preceding sectlons we have singled out the energy intcgral as
defining id 2f-dimensicnal space a nanifold of (2f-1) dimensions which
hcompletely contains a glven trajectory: It is nccessary to explain
= tHe physicai reason for Aoing 80 and not pursulng the reduction of the
Enumber of dlrchsiong .of this. hdAdfold any further with the help of the
- other timc-independent 1ntegrals. For this purpoke, a closcr bonsideraa .
tion of the physical interpretation of the formalism is needed.
It generally occurs that the same physical state of the systen
-is reprcsented by ncrc than one phase. An examnple i8 offercd by an-
?:gular variatles: phases in which ¢he values of scme angular variables
. differ by 2 m describe the same physical state. Another case, of less
&formal character and of fundamental importance in atomistic physies, is
._that of systems consisting of identical elements, A phase is then de-
“ fined by the sets of canonical coordinates pertaining to all the ele-
) ments, enumerated In a certain order; two phases differing only by this
~order of enumeration are indistinguishable from the physical point of
view, To express thls situatlion, one calls the phases as just defined
; specific phases, and one denotes by generic phase the set of all speci-
| fic phases corresponding to the same values of all coordinates, taken
5 in any order. A physical state of the system is thus described by a
- generic phase. . '
- Phase functions representing physical guantities must have the
same value for all phases corresponding to the same physical state of
" the system. Thus must be periodic with respect to any angular vari-
able *, and if'they refer to a system of identical elements they must
- be symetrical with respect to permutations of the sets of variatles
"pertaining to different elements, Phase functions possessing this .
property will be called uniform. T
( Now, 1f we consider a set of (2f-1) independent integrals not

n——
.
-
o
—
<
k-
- -
-

~ * Strictly speaking, angular variables do not satisfy the finiteness

" condition enunciated above- {paragraph 1). But they nevertheless can be :
used just on account of the periodielty property of all phase functions
of physical significanc¢. See the example discussed in section 4§ be- .
low. ' : -
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containing the time, which fix the shape of a trajectory, they will
not in general be all uniform. We can assign the¢ value of any uni-
form integral, which means that we can control it by physical means;
but it has no physical meaning to assign a value to a non-uniform
'_integral. The lattcr can therefore in any case not be uscd to reduce.
- the manifold containing the trajectory. As regards the uniform intew

grels, the assignéént of a definite value to any one of them i1s purely
a matter of fixing the conditions under which we wish to consider the
system under investigation. “

Thus, we define an 1solated system by fixing the value of the
energy integral. We might wish to fix the value of the momentum and
-angular momentum integfals: this.would mean that we consider the sys-
- tem as free to move in cmpty space. In this case,3the numkter of di-
mensions of the surface on which the trajectory is confiaired would be
reduced by 6 more units. It will be more in accordance with usual
conditions, however, to leave these infegrals indeternined by imagin-
ing the system in contact with an infinitely heavy body, with which
the elements of the system interact elastically. We shall therefore
base the following argument on the consideration of the energy surface-
nothing essential would be changed, of course, by “he assumption of a
9surface” of a somevhat smaller number of_dimensions, corresponding
to the assignment of fixed values to other uniform integrals as well.

li. Example. The above consfderations may be illustrated by
the simple example of a system of two uncoupled rotations around fixed
axes, Let-us take as coordinates the azimiths q;, g, and assume for
simplicity the ftwo moments of inertia equal to unity; the conjingate
nomenta Py pé, which represent the angular momenta arournd the cxcs
are uniform integrals, to which we assign the values ) , &), {rumcris
cally equal, in our case, to the angular velocities of rotation); this
also fixes the cnergy E = 1 @d + Lu, ) The manifold ccntaining

the trajectory thus reduces to the plane gL, q and the trajectory
is a stralght line in this plane. =~ B S

q = wyt+a QP =Wt + g2
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rep The plane is divided by the lines
’ ///, qy = Mm2¥, g, = n.27 (m,n integers)
///// into a chcquer of squares all containe-,
— _ ing phases physically egquivalent to
) 'r//, each other, For all computation of
It .

;"& averages of physieally significant
1 phase-functions, we may accordingly re-
stricet the manifold containing the

NI
\

N
)
-
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NO

N o trajectory to a single sqguare, by
' ' transferring to this square all the
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degments of the trajectory contained
in the cther squares. The equivalent

; trajectory thus obtained ecnsists of a set of parallel segments with-
- in the single square; this set is finite or infinite according as the
quantity wl/wz is rational or irrational.

Now, we may choose 'as a third time-independent integral the

Cqpwy - Wy = ‘1.31’1- -app =M

f”'Fdr the initial phase onc may ﬁrite Mb =W 1q2° - W qﬁ_, but this.

integral is not uniform. In fact, it takes a different value on each
of the finite or infinite set of segments composing the trajectory:
for'on the segment originally in the sguare containing the phase

(q§ + m - 27, g,° + n + 27), the value of M differs from M, by

2w (nmlv- mwz).

B«  Hetrical indecomposability of energy surface. A question
of primary importance fcor the estatlishment of a statistical distri-

- bution on the energy surface is to characterize from the metriczl

point of vicw the set of phases occupled by the system in the course
of time, i,e. to know the measure of this set on the énergy surface.
Our simple example (4) suggests that; apart from exceptional cases
arising from some “degeneracy" (ool/ﬁd rational), any trajectory
will in a certain sense #£ill" the whole energy surface., We must try
to give to this intuitive description of the physical situation a
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‘rigorous mathematical formulation.

Boltgmann and Maxwcll assumed that the trajectory actuclly
passes through every point of the energy surface: this is the famous
ergodic hypothesis, It is easy, however, by the modern methods of the
theory of sets, to disprove this hypothesis (Rosenthal and Plancherel).
Consider a neighbourhocod S of a phase occupied at some time by the
| system; 1t can be chosen sufficiently small to prevent the trajectory
" from remaining inside it at all times, Then it is clear that the part
- of the trajectory inside the neighbourhood will consist of a se¢t of
separate segments. Moreover, the time intervals during which the
systca is inside S will form a siceession of separate finite segments
- of the time axls. According to a well-known property of sets of points,
the set of such time intervals is enumerable., The segments of the tra-
jectory inside § thus form an enumerable set, whose measure on the |
- energy surface 1is zero, _

A corrcct formulation of the "ergodic" situation is obtained

. fron the consideration of the automorphism'defined by the motion of
the system. The set of phases through which a trajectory passes is

- ¢learly an invariant set with respect to this group, and we are con-
cerned with its measure on the energy surface. Let us call the energy
surface ggggicéllx indecomposatle (and the group metrically transitive)
if it cennot be expressed as the sum of two invariant sets both of
positive measure. This npeans, then, that the set of phases forming

a trajectory either is of measure zero (this is an exccptional case,
such as that of periodic motion; with a closed trajectory), or has

the same measure as the whole energy surface, ‘

At first sight, the condition of nmetrical indccomposability
- of the energy surface would sccim impossible to fulfill., ZLet us in
fact consider any time-independent integral I(P), different from the
Hamjltonian; the phase-functibn I(P) thercfore cannot have the sane
value cver the whole energy surface. But then it is always possible
to find a number I such that the invariant scts of phases for which
“I(P)>I and I(P)X I, qpépectively, are both of positive measurc*. At.

Al A W A W S G feg ok W e Ul St AP e

* For the proof, sce Khinchin, p.30, footnote.
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this point it is necessary to rememter that there may be different
phases corresponding to the same physical state of the system; we aight
then have an invariant subdivision of the tnergy surface into parts of
positive measure, such that no two phases of any part are physically
equivalent (ew.gs the chequer of squares in our example, paragraph 4)
such a subdivision, while formally violating the condition of metrical
indecomposability as formulated above, would nevertheless represent,
. physically, an Yergodic' situation,
% We must accordingly modify the definition of metrically in-
deconposable sets so as to cope with this case. We call an invariant
subdivision of the energy surface into two parts of positive measure
- gssential when all physically equivalent phases belong to the same part.
- The surface will then be metrically indecomposatle in the physical sense
when it does not allow of any essential subdivision. This modification
- will not affect the above argument in respect to uniform integrals: these
will bring about an essential subdivision of the energy sufrace., But we
cannot say anything about the effect of non-uniform integralsy in fact,
in the example of paragraph 4, it can be shown that the non-uniform in-
tegral M 1In the general case (xo /co irrational) -does not disturt the
metrical indecomposability of the (reduced)energy surface.,
_ ~ The next question would be, how from the structure of the Hamile-
 tonian could one draw conclusions regarding the metrical indecomposakilit
of the corresponding reduced manifgld. This problem is not solved, how-

ever; in-this sense, the assumption of the metrical indecomposatility of

‘the reduced manifold remains an hypothesis. The progress with respect
- to the original ergodiec hypothesis lies in its precise mathematical for-
mulation.

As we have just seen, we can only assume metrical indecomposa-

bility for the manifold reduced by taking account of all wniform inte-
~ grals. In practice, however, the uniform integrals distinct froam the
- energy will usually have the same value over a very large part of the
- energy éurface, and it will be possible to neglect the domains of very.
- small measure in which they differ from this dominant value. We may
 therefore still restrief ourselves to the consideration of the energy
 surface and speak, in this approximate sense, of its metrical indecon-
~ posability. : : ’
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6. Poincaré's theorem. From the discmésion of the “shape" of
tpe trajectories wd now pass to the consideration of the way in which
- they are followed bty the system in the course of time. This question
is dominated by a theorem enunciated by Poincaré and proved rigorousl;
much later by Caratheodory: :for almeost all trajectories, the system
,returns after a Fufficiently long time arbitrarily near to its initia-
phase. An essential condition for the validity of Poincaré's theorem -
is the finiteness of the encrgy surface containing the trajectories.

The proof consists in showing that the set of exceptional tra-
Jectories, i.c. the sct of those phases near which the systen never
f'rcturns, is of measure zero. We must first formulate in a precise way -
what we mean by the "return" of the system near some phase P,. Let us
~ choosc some time interval & anq‘consider the sequence (P) of phases
IPO,Pl,'Pz - «++ Successively occupicd by the system at tines t -t +&

tot2 T 5 sees. o We shall then say that the system returns near P, if

_every neighbourhood &, of Py, however small, contains at least a
| point of the sequence (ﬁ). The excepticnal phases will thus be those .
for which a neighbourhood cen be found COntainihg no point of the se-f_
quence (P). We must prove that the set of exceptional phases is of
ncasure zero. . — B

To this end, Wwe cover the energy surface with a net, dividing -
-1t into intervals U,;, and so fine-meshed that for every point P and
every neighbourhood 6p of P, there is at lecast one interval U, con-
taining P and contained within <65: this means that we must actually
‘have an infinitely fime mesh, and an enumerable infinity of intervals
U; » Let now D; be the set of phases of U, whose time-sequence (P)
.never returns to Ui or its boundary; the set Di is therefore open and 1‘
accordingly measurable, Mbreovep, the sum DJ=,§§ Di’ is the set of-_

exceptional phases: in fact, every point of D is clearly an exccption
al phasé, énd conversely, it will readily be seen that any exceptional
phase must belong to one of the sets Di;' | . C

The measure of D being the sum.of the measures of the Dy's, the
theorem will be established if we show that each exceptional set D; is
of measure zero. Let us consider the sequence of transforms Di(n) of ;

H
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~ the set D; at the times t.+ nG: no two of these sets Di(n) can over-
~lap, since otherwise they would contain non-exceptional phases. The

. measure of the total set E:.Diﬁﬂ is therefore the sum of the mcasurcs
- 0™, which by Liouville's theorem are all equal to L. (D;)s But
liowing to our assumption that the trajectory is contalned within a2 fi-
nite domain of phade spece, the measure Q(Z Di(n) ) must be bounded:

_this can only occur if Q(Dy) = 0. -

| 7. The rcturn time. A consequence of Poinearé's theorem is

" that almost any state of a dynamical system will recur to any given ap-
proximation in the course of time, and this recurrence will repeat it-

" self an infinity of times. The evolution of the system will thus exhi-
f bit a "quasi-periodic' behaviecur. The "quasi-period", or average time

" of recurrence of a given phase to a specified approximation will, how-
ever, not only depend on the demanded accuracy of reproduction of the
“original phase, but above all on the number of degrees of freedom of

the system., The sensitiveness of the latter dependence accounts for

~ the fact that the recurrence of a phase of a system of macroscopic
5_d1mensions is never observed, whereas the quasi-periodicity expressed
'fby Poincaré's theorem is the rule for smaller systems. A simple example
- will illustrate this situation and give an idea of the orders}of_magni-
- tude involved. _ . _ -

Consider a vessel containing 2N molecules of an ideal gas under
“normal conditions of tamperature and pressure. The probability of find-
- ing an excess of molecules in one half of the vessel comprised between -

8§ « ¥ and (é + ag) N is, asymptotically 2
; dN)

F(S)ds'ﬁi-_-l_;ﬁe- as - x.

o (B 6%y,

~1f we assume that this inequality has arisen in the course of random
;fluctuations. Now,'if it -is the average time interval needed for the
relative excess § to chdnge by | 48 |, the probability of occurrence
~of an excess in the inferval (§,8+ a6 ) in the course of the evolu-

- tion of the system may be expressed as the fraction dt/T of the average




i)

~ time T between two successive occurrences of the excess§ . The ergo-
~aic theorem, as we shall see in the next chapter, allows us to equate
| the two probabilities Just cconsidered and in tuis way obtain an esti-
. mate of the recurrence time T for the excess‘J C

dt
= l |
_ o w(&) |
~'Phe average time variation of the excess § is of the form
. § ~ et

- where the relaxation time & is determined by the mechanics of the ir-
reversible diffusion process leadlng to the establishment of a uniform
-'density. One has, therefore, -

L% ,-1
o s ' at g
and 2
N T
| ua?-“' ©

+

If D is the diffusion coefficient, the order of magnitude of € 1is re-
lated to the linear dinmensions L of the volume in which the process

takes. place by a formula of the type
2
L

W g .
C ™ ' - i !

D
If the volume is of macr oscopic dimensions, Laylcm, say, one has
_23‘” 1l sec and K "'1019. Bven an extremely small relative excessof den-
I_sity,é a2 10 6, would not recur s?ontaneously befere times of the fan-
‘tastic order of magnitude T::elo sec. But i the volume is of micro-
'_scopic dimensions, eg. L&10" -3 cm, an excess of density of 1% will
“have a recurrence time of thg order of 10~ -9 Secs '
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II. The Errmodic Theorems.,

1. Ezistence of the time average. Let us ccnsider the evolu-
tion of a system starting at time t, from a certain phase P,. As ex-
plained in the introduction, the measurement of -some macroscopic guan-

tity corrésponding jto the microscopi¢ phase function f(P) yields in
the first instance a time average £ 4T

B P

- F(Po3te,T) = %j[ f (Pg) at, Q)
) to .

taken along the trajectory defined by the initial phase Pg; in this

_formula, the symbol Ptfdenotes the set of canonical coordinates of a
. -point of this trajectory, expressed as functions of the time and the
- initial conditions Poy tye One is led to expect that this time of
average has a 1limit for T-sco, which 1is independent of the initial con-
ditions and represents the value of the macroscopic guantity for the '
system in its given stationary state. We must now discuss the mathe-
matical Justification of this surmise.

The first.step is descrlbed by Birkhoff's ergodic theorem, which
states that the limit

F(P,) = 1lim F(Po, t,T) ' (@)
- T

_ exists for almost all trajectories, and is independent of the initial

 time t,. We first prove the theorem for the case that the time interw
val T varies by' finite increments of duration T, if.c. we take T = nC
and investigate the limits of the sequence

F, (Pos to) = F(Pys to, n8) - (3)
as n—ew . Let P, be an exceptional phase,_ €, such that F (Po; ty)
has no 1imits this means that the lower bound F (P,) and the upper
bound F(P,) are different. We can then choose a pair of membersﬂf,ﬁ
& ¢ B) between F(P } and F(Po), i.e. such that ‘

E(Po)<x ° F(py)>B8 - (i)

Now, if the set D of exceptional phases were of positive measure, it



~lyly - |
is easlily scon* that one could find a pair (& ,p) for which the con~
@itions (4) cre satisfied for all the phases P, of a subset D* of
" positive measure. By showing that this last property A (D¥)>» 0 is con-
tradictory to the inequalityO(< By we deduce that the set D of cxcep-
tional phases is of mcasure zero.

The contradiction is elicited as follows. Let us consider the
‘sequence of times ti:"' to+ k¢ and the corresponding phases P,

( k being an integer of any s%gn), we define

£, (P,) = t?.[ £(p,) at - (5)

- the time average over the interval (tk’ tk-i-l) By a change of origin
“of the times, we sec that .

= P
by

-Now, the time average F (Po, ty) is exprissed as -
n-

Pos to) = = f
FaPos o) = 1 2 Ty (Po) 5.

-and if we integrate this over any set of phases Do(n) 4 we get.
" n-1

n-1
[ f ‘A | f | |
nJD(En) Fn (Pos to) d/*‘ Z Ib(.n)' . (Pg) d/; 1?’(‘) qgn)fo(_P)d’ ’

~ where Dk(n) is the transform of the set Do(n) when Po—b Pk’ If now
1{®) 35 & subset of D* such that for any P, of D,'™ one has
F (Po3 to)) B, we obtain the inequality

n-l '
| - {n) :
f " ) f (P) d/d).l’_l_ﬁj.l (‘D_O‘ .) .‘

Supposé further that the sets Dk(n) are non-overlapping, and call
their sum n-1

@, ST p
D
® k=0 Dk -

Since, by Liouville's thebr-ern, /,{ (Dk(n)) = M. (Do.(n))a we then have

- ———— - e g . St g e S R

* For details, see Khinchin, p. 19-27
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Yow it can be shown that such sums of non-overlapping sets D(n) can
actually he specified for each value of n in such a way that they
together exhaust D*. We can then sum the inequalities of the type
just derived for alfl n, and we get in the limit n-oo ‘ :

fo(P) 4 (D¥*)
[, To® ap) pu0
A Similar argument leads to. fD*' £.(P) ap (G(/J (p*) ,

“and these two inequallties with /u (D*)) 0, do indeed contradict the .
inequalitya{ ¢ 8 . '

To complete the proof of Birkhooff's theorem, we have to con- ]
pare the average for an arbitrary time interval T with that for the in-
' terval of the sequence n & nearest to T. We have

totT oFT
llf f(P)dt---f f(P)dt |->o,
TJt, |
and ' to+T . ot +nE' ' [;b°+,‘1' |
_ 1! 1 :
to . o o+nt .
with the notation (5).. It is readily verified that
Ha 1 fe (pe)| =0
n—a& n

almost ev‘erywhere. The proof is of the familiar type: one shows by
making use of (6) and of Liouville's theorem, that the set of phases
P, for which Ifn(Po)l) ng is of measure zero, Hence, the time aver-
age F (Pys to,T) has a limit for T—»oo almost everywherc.

. . Finally, it must be shwon that this 1limit is independent of
the initial time t,. We.have |
rtqa+T

| LM 1 t1+T' Nah
lim = [ = lim = lim - =
T T Tty Jt Ty

0 o
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.8ince the difference of the last two expressions tends to zero like

(tl-to)/ T. Further, the difference
T £+ %

?also tends to zero,/which complete the proef.

2. Eguivalerice of time average and statist;ca; average,

%he time average whose existence is estatlished by Birkhoff's theorem
does not yet correspond, in general, to the physical notion of a 3 CTo-
SCOplc quantity attached to an isolated system, since it may still de-
pend on the particular trajectory followed by the system and have dif-
ferent velues for different trajectories even on the same energy surface.
It is easy, however, to indicate a general condition sufficient to en-
sure the constancy of all time averages almost everywhere on the energy
surface: 1t is the metricel indecomposability of this surface, at least
in the physical sense. For if the time average F(P) is not almost” every-
where constant, 1t is possible to find a value F of F(P) such that the
f:'eonditions E(P) >F and F(P){ F define two invariant sets of positive
.measure, effecting an essential decomposition of the energy surface.

5 If the energy surface . 1s metrically indecomposable, the con-
stant value of the time pverage can be expressed as a statistical aver-
gge over this surface., Roughly speaking, the trajectory along which

the  time average is taken "fills“ the whole energy surface: the time
average can thus be considered, if we disregard the temporal succession
of the phases as an average over the energy surface, with a definite

L._

welghting of each surface element, This statistical weight turns out to fe

have an extremely simple specification: if we use the invariant measure
on the surface, the statistical distribution equivalent to the time
average is uniform; in other words, the amount of time spent by the
system in any reglon of the surfaceiis-proportional to the invarilant
measure of this region., This uniform statistical distribution is cal-
led ergodic and the fundamental corollary of Birkhoff's {heorem which

express this situation can be formulated as follows: . I
If the energy surfaceﬁﬁ is metrically indecomposable, the !

T L. __
-
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time'average F of the phase function £(p) is given by the ergodic aver-
age ' ' :

— l ” . . * h
In the first place, it is clear that the 'ergodic average of £(P) is the -
same as that of the/time average F(P,; %oy T) over any finite time in-

. terval T; indeed
- T+ T

1 - 1 £ L1 '
P ; t - ——
ma]}, o3 ter®) e =T[to T E® fn?(P‘:). V=
- R S |
1 /‘ e 1 [
T Jy, ¢ /“(n')fn £(Fo) Fe,

in virtue of the invariancet'o_flthe energy surface {1 ; and this is

1 Q .
= Tlo at = 7
E E
i/ ,_

Since, owing to the constancy of F,
| - 1 j‘ K .
F=-=_ Fd ‘ o
| L R S !
it remains to prove that
~ f '[F-F(pa; tg, T)] dpip =0
My -

This is readily*. seen to be 2 consequence of the efgodic theorem
F(Po; t53T)3 F £6r Twaw for almost all Pp,.

The last step established in the physical equivalence between
time average and 'ergodic average is an obvious extension of the preced-
ing theorem; |

If the energy surface ) is metrically ihdecomposable in the )
physical sense, the timé‘évérage'F of'any iform phase function £(P) .
is equal to its ergodic,average; I

F= flg L (8
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The equation (8) is valid for almost all phases of the energy
surface. For the physical interpretation,. it is therefore necessary
to introduce a further averaging in order to eliminate the possibility
"that the initial phase would happen to be an exceptional one. Instead
of starting from a Wwell-defined initial phase, we thus assume an 1nit1a1
“distribution of "chies" of our system over a finite dowain of the
energy surface. The time average F must then be aversged again over
this domazin: any exceptional phases contained in it will not give any
contribution to the average, and the result will again be expressed by
"an equation perfectly similar to (8)s The replacement of an initial
‘phase by an initial "cell® of finite (and arbitrary) size-has a great
-importance for the physical interpretation of the theory. Before we
- discuss it, however, we shall proceed to an extension of the ergodic
theory which first displays its full scope.

_ 3. Hopf's ergodic theorem.
“The restriction of the phases to an energy surfzce is a strong ideali-
;sation of an isolated system. It is more realistic to allow a certain .
" margin to the definition of the enengy,'i.e. to regard as possible all
~trajectories contained within an gnergy shell, ccnsisting of all enefgy
- surfaces in the energy interval (E,E + dE). The crgodic average over
an energy shell is even somewhat simpler of expression than that on
‘the energy surface, since 1t corresponds to a distribution of uniform
' density with respect to the simpler measure 1in phase-space given by
31Liouv1lle's theorem: denoting the energy shell by (E) and the corre- i
- sponding ergodic average by fl(E)’ we have ‘

_ . o | _ _
f] = . f f(P) d = dq ”-o_.d dp o..dp : (9)
. BE AT J g o d;" 1°+*94p APy es+@Pss
-E‘I_hereﬁ[(E)_] = f( £) d,{l represents the measure of the energy shell.

_ The condition for the equivalence of time average and ergodic

f'average over an energy . shell is not simply that all the energy surfaces
;.within the shell be metrically indecomposable. An additional condition j
;-is needed, involving mutual relationships between these surfaces. The i
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;'situation will be made clear by a simpie example., Consider a mction

- of a single degree of freedom, defined by an angle variable

. q =wt (mod 27) and the corijugate action variable f 5 which is a con-

- stant of the motion. We may assume that the value of P fixes the energy
&in the "“phase space" (p,q,) the "energy surface” is then the line

" p = const., or rather the segment 0§Q £ 2 on this line. An energy

- shell will be a strip limlited by two such lines. Whilé each energy

line is metrically indecomposable, the situation with respect to an
energy strip will be Tadically different according as the integral p-

- 1s or is not independent of W . In the first case, any initial distri-
~bution will simply be displaced along the strip without any tendency

;to uniform sﬁreading. In the latter case, the initial distribution,
~while remaining of the same total area, will spread out in the form

P P P :

N7/ N /i W 7/7/7/1

2r q ‘ Zw q —2% g

;of a more and more intricate subdivision of partial domains stretching

over the whole energy strip: this illustrates the “mixing" mechanisa

by which the ergodic districtuion is established asymptotically.

The general analysis of this “mixing" over an energy-shell

“has been carried out by Hopf. It introduces two new elements into
_the problem., In the first place, it is neccessary to give a precise
~mathematical definition of the mixing process; moreover, we must for-
mulate the additional condition which guarantees this process to take

-obtains for the time average on an energy surface: it has the character -

place, The limiting process corresponding to the mixing over an energy
shell is somewhat weaker than the convergence almost everywvhere which

-of Yconvergence in the mean"., To define this, let us staft at time

't =0 f‘gm come arbitrary distribution characterized by a dcnsity g(P),

_the statistical av.erage of a phase-function £(P) for this distribution
is given by .

M e ey
: .



? o , (f,8) = ff(P) « g(P) dy, -

the integiation telng extendzd to the whole phase-space (the limitation .
H.‘l:o an energy shell is contained in the form of the density function

g(P) » AL time %, the distribution density has becoae g(R) , 1o, tne

transform of g(P) Yy the automorphism PP, ; this is some function of

P end t which we dencte by CS g(P). The average of £(P) at time t is

accord¢ﬁgly (£, Z?tg). The liniting forn g(P) ef the distribution denw

»sity is then defined, in the sense of conve.gence in the mean, by the
bcondition

' T
L _ 2
t: Ua L Icf,Ctg) -, B a=0 0
- T-’w T 0 N '

L
L

“for any pair of functicns £(P), g(P). This means, physically, that the
~time average of th: statistical fluctuations of the phase average of .
£(P) around its limiting value (f,g) tends to zero as the time T in- %
_¢reases indefinitely. “Such a formulation 1s all that is needed for |
“physical applicetions, - - IR
ﬁ We must now state the condition for the existance of .a liait- !ﬁ
ing éistrirtuticn g(P) satisfying (10); as our example shcws, this ccn-
diticn must express a relation tetween different energy surfaces. in
its siuplest form it must refe: to a pair of energy surfaces, It is
- convenient, zor the consideration of such a palr, to #duplicate" in a
“eertain sense the phase space, i.e. to introduce a phase space whose
coordinates consist of a pair of sets of coordiirates of the original

“phase space: this new pbase space, may be described as the "direct
/p“oduct“ of the original one into itself. A pair of energy surfaces
‘of the original phase space thus appears as a single energy surface
.of the product Space. We are now in a position to enunciate * Hopi''s
theore:: if every energy surface of the original phase space is metri- :
’cally indeconposatle, and almost eve.y energy surface of the product »
space has the same propesrty, every distritution tends to a limiting
-distributicn of uniform density in the sense of equation (10). This .

S L

-* We shall not give the p100¢ of LKopf's theorem, since it does not :
involve any essentially new fenture. : N o
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~ theorew completes the foundation of the concept of ergodic distribu-
. tion, on which the whole structurz of statistical thernodynamics rests.

tbe The ergodic districutiocn. . F‘
, Let us now discuss from a more physical point of view the main
- features of the ergodic districution and of the mixing process ty Which °
;:it comes about. In c.nsidering this process we immediately facc the .
- paradox of an essentilally reversitle uechanism lecading to an irreversibl
; sltuation; bPut we have also in hand the means of solving this paradox.
- If we analyse at any instant the distribution arising fron any initial
? one bty letting the size of the elements of phase space decrease in-
~definitely, we shall find that a given infinitesiwmal element is either
occupied or empty, and the fraction of occupied eleuents, by Liouville's
theo;em, will always rewmain the same: from this point of view, there
is thus no wixing at all, but a perfectly reversible evolution of the .
~distritution. If hcwever, we fix our attention upon an element of
phas¢ space of arbitrary but finite size, the density of distribution
"in this element will tend asymptotically to a eonstant value: -as
- Ehrenfest expressed it, the irreversible behaviour pertains to a
- goarse distrlbution in phase. The degree of “coarseness®, i.c. the
7_size of the cells of phase space with respect to which the distritu-
tion is defined; is arbitrary; but it is essential that some finite
_subdivision into cells be assumed. It is this cell-structure which
%?represents the lack of definition of the state of the system necessary
- for the application of a statlstical mode of description of its be-
~ haviour. From the mathematical point of view, we need not specify
~the size of the cells and we may even ultimately regard them as in- g-
1~fin1tesima1 for the purpose of practical calculation; tut the limit-
- Ing process of letiing the cell-size tend to zero must then be carried .
out after the process of letting the tiuc of evolution of the system
tend to infinity. If we should reveisse the order of the two limiting B
r""Il?roces'e.c—:s we should obtzin the reversible tehaviour of a “fine" dis-
~ tribution. |
The next problem concerns the time of rclnxation of the mix-
ing process, d.e. the average time which must elapsc before any given

v
ey

L B Ll
-
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. déistribution has practically reached its asydptotic uniforinity. At
“'first sight, it would scem that we are landing into another paradcx;

- our example of section 3 suggests that we oust expect the ulxing to

. proeeed during a time sufficient tc allow the systen to return several

- tines near phascs previously ceccupicd, in accordance vith Poincar*'s

theorem. But the peeurrence of such repctitions of initial configura- '
- tions is Just the kind of behevicur charscteristic ¢f the pur:ly
i mechanical evoluticn of: the system as opposed to its statlstical, ir-
; reversible evolution. The fantastic order of magnitue ¢f the times of
recurrence accounts for the failure to ohserve such repetitions in
usual cases; and if the wixing process should re :ally have to involve
them, the whole statistical interpretation of irreversitility would
collapse.
To clear up the-situation, it ‘wast be remembered that the

usual systens to which theimcéynsmies is aﬁplied arec compcscd of a
| large number of identicel eleuents: they arc either bodies tuilt up

"of atoms or rediation ficlds consisting of proper oscillations. The
. physical stetes of such systems are represented by generlc phases: the
latter do not correspond to single "cells! of phase spzce but to regions
called “constellations” ty Ehtrenfest containing many cells and in-
- tricaiely imbricated through cach other ove. each energy shell. The
measure of a constellation, according to the ergodic theorcis, gives
the rslative probabllity of occurrence c¢f the stote represented ty the
corresponding generic phase in the course of tinme. States veiy near
to equilibrium will thus oceupy & much larger pact of the energy shell
- than states deviating appreclatly from the cquilidbriun conditions.

Thus, if a trajectory starts from such an "improbable" c. ‘nstellation,
it uill soon enter into mcre and more probable ones and when it will
have reached the equilibriun constellation, it will stay in it most

of the time, clthough it will continually cross less probable ones, .
-appearing as "fluctuations" from the equilibrium state., The roturn of i
a very 1uprobat1e state, i.e. thevreturn of the trajectory to g vetry’ f
inprobable constallution, would require a time of a fantastic order S
~of magnitude; but the tine of relaxation is defined as that needed -
~to reach the most protatlsz ccnstellétion, starting from a less pro- 4
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- batle onej and this 1s extrenely short as soon as the number of ele-
_ments is rcascnabiy larges The inmportance of the ccensideoation of

. generic phases for the consistency of the statistical thcory in all
cases in which 1ts application is significont was, cf course, fully re-
_'ccgnized toth by Gibbs and bty Bcltzmann. But the mode of czposition

_ adopted by Gibbs tchded to obscurz this issue., Gibbs was worried by
- the discrepancies bctween theory and experizcnt, especially wlth re-

; spcet to the consequences of the equipartition of cnergy for the spe-

? cific hcats; these discrépancies scemed to be connected with the as-
;fsignmcnt of the nunber of degrees of freedom of the atonmic systenss
“in the hope of throwing light cn the origid of the difffculty, hc ac-

~ eordingly sct hiisclf the task to derive as rigorously as possible all-

- those statistical propertics which apply to the most general mechanical
- systems, without any restriction as to the number of degrees of freedoa..

“ Hence the emphasis in his bock upcn the derivation of such results,
whilce the discussion of systems of identical elements was confined to
- the last chapter. Boltzmonn strongly objected to the tondency cof
 Gibbs® book: “I can understand statistics applied to a gas! he saig*,
ﬂ'"but I see no point in applying it to asewing machine®. Gibts' Qis-
~ trust of detailed atomic-ucdels was part of en attitude of mind shared
by meny physicists towards the end of the XIXth ccntury: it was an
_.essentially idealistic rcaction against the mcchanisties school which
- had flourished during the seccnd half of the century, and of which

- Kelvin - is the typical representative. Boltzmann rcaained to the last
a staunch supporter cf the mechanistic ideal; and in spite of the fact
that this ldecal has now bcen recogniged to be too narrow, it did at the
- time give Boltzmann the right inspiration, Eis views cn statistical
mechanics wcre perfectly clear and precise, although he lacked the

' nathematics, we now hove for thelir appropriate expression. Y:t he hagd
.. to face widespread acepticism and opposition and did not live to sce
~ the triumph of his ideas,

; In'fact, the objcctions raised egainst Boeltzmann's position

o This uttcrance wos reported in cconversation by Bhrenfest whoe had
been & pupil cf Bcltzmann's. . ,



“Blpm

~are only intcresting insofar as they show the kind of mlsunderstanding
- of the significcnce of the statistilczl approach onc r:ight fall into,

. Loschmidt obscrwes that if at a certain time all v-loeitics (and nag-
netie fields) of the system are invcrted, the system will so to speak,
- retiracc its steps:  if therefore, its évoluticn went fream less tc

- more probabdle ccnfigurations, it will now exhitit an opposite trend.

- -Zerazlo, evailing hiusclf of Poincaré's theoremy pointed cut that any
B ccnfiguration, hewever io probable, must be expected tc repeat itself

* with ariitrary accuracy in the coursc of the time. Both assertions are,
. of course, pzrfectly truc: they can be visualized by following the

- path of the system aacns the ﬁnt&hglbaents of the various constella-
 tions. But they are teside the point: it is the g¢=uarse distribulton
vhich has an irreversible evoluticn, and w: have szen that such an ir-
reversible trend is perfeetly compati‘*lr~ with the reversitility of the
mechansim by the "mixing“ of the coarsz distribution is brought atoute.

Ce Systems with weak_;nteractggns.

e may follow up the last argument more guantitatively. We
*introduce the phase space of a single clement of the systea, the "M -
"space" in Threnfest's terainology. The total phasc space of a system
of N elemcnts, or i‘r'--Space", is the direct product cf ¥ identical

" spaces, Let us subdivide the p-space into cells of arbitrarily small,
- but finite size Wy ; this defines a subdivision of " -space intc cells
cerresponding to the specific phases of tie systci. Thus, ccnsider
the speeific pnases for which there are L elea.e'uts in the /-h-c‘.ll W

it
they occupy a cell in [ -space of measure “’1""".3 vee, OT ﬂw Hy .

- To find the measurc of the corresponding generic phase, we have simply e
to wultiply this by the number of ways in which the N clements can |
~ be asranged in groups of i Hyy Nyyesenovey 1eca Ni / Nyl §,1 seee;  the
-measure of the guneric phase 1s thus ﬂi e
n(Hi, Nas o.-) = Ni ri-l % SRS} SYRY
- 1

To go on with explicit calculaticns, we must restrict oursclves =
~to a perticular type cf system: we assune that the intcractions be- '
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tween its ceclements can be neglected; cxamples of such systems are the
- 1deal gas and the pure radiation field. It 1s inmportant to ncte that
in order that the equilibriun distribution of the system be crgodiec,

it is cssential that the elements do interact; othcrwise, thz numters
- of elements in the wvaricus encrgy shclls of/l =5pace would c¢cbviously
- remaln unaltered iy the ccurse of tiae,

g But thc magnitude of the interacticn is irrelevant and in

~ suitable circumstances can be regarded as negliglble in comparison with

- the proper energies of the elecents. In this Ci5C, we uay assign a |
- well-d:fined energy B; %o all elcments in the }4-ccll t,; and the to-

- tal energy of the system is an additive function of the Ei'3°

i . _
. If the tctal encrgy E is given, this 1s a conditicn liaposed on the dis-
tribution cf the elements among the cells &), Ancther condition is,

of course '

Bx DomE (12)

Ne BN | oan

?nWe nay now reedily evaluatce the distribution Ny which, under the ccn-
diticns (12) (13) gives the constellation of maximum measure (11). If
_:the Hi's are large, the asyaptotic expression for this distritution is

Nil = 2wy o P e
~ where '
- =£E o

A ? w, e i (1)

and the perameter € must be determined in terms of E from the ccndi-
tion (12)e In evaluationy the “sum cver states® Z it is pe:missible
to treat the p-cells as infinitesimal, and to write '

7 e fe-ﬁﬂ-(p, )

ap, (16)

 where E(p,q) is the Hamiltonian. of a single elecuent.and the integratiocn
is extznded to the whole‘4-space.
Let us now eviluate the ﬂeasure.fl(ﬁil Wd| s ees) of the -

| equilibrium constellation, and coupare it with. the neasure of the



cnergy shcll in | spacc in which it is containcd. We have
log n(rﬁ|__', NEIE,. ces) ™ Nlog 2+ B E, an
2" 4 - .

so that the problea is reduced to the computation of log Z. To this
cnd, we dccoapose the integration in M space intc an iategration over
‘211 the values of thc’ encrgy and cnother over cach eneirgy surface in
E-tt:u'n, using, of course, the invariant measurc in accordance with

;if-l = d/uE * d& . For the invoriant mcasure of the energy surfaece E
‘we write ‘

f(E) =T (B

.thus * 400
Z = f e ¥ (E)-FE dE

The exponcnt of the integrand has a maximum for an energy Em given by

(—.g_:.i':..)_tﬁ
dE B

Expanding it near the naximum, we have, to a sufficient approxinmation,
' : 2
n 1l ., 4850 R Y-E

the ccefficient % (%ag/ dE) 1s assumed to be negative. This de-
fines a Gausslan distribution of the energy arcund the average value Eu'
The mzan square fluctuation AEC of the energy is I(dao‘/ dE‘i)ml"l .

which gives the physical.meaning of the latter guontity. To this approxi-
mation, we get for log Z _ '

———

log Z % log /-{ (Em) -ﬁEm + log V2w AEd'
~ logm ([ B, 1) 5,

if we denote bty [Em] an energy 'Ishell in 4 -space of thickness Ve 6E2
around the energy surface Em. Inserting the last formula into (17) and
noting that NE_ & E, we see that !\.(NIIE, NE]E,'“..) ‘takes the form

3}“([ Em] )N of the measure of the energy shell in r' Space consisting
of the shells [Em] in all the M-spaces. In this sense, we may say
that, asymptotically, the equilibrium constellation is equivalent to
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the whole energy shell in [ space. The distrihution (14), which cou-

pletely descrites the eqguilibrium constellation, may therefore be used
‘to compute, to a sufficient approx cimation, the ergodic averages of all
additive phase functions for the special type of system he.e considered
and, in particular, to define the thermodynamical functions pertaining

to it. We shall comF,back to this last point in a moment, after having
discussed it for the most general isolated systeus,

6. Thernodynamics of isolated systems.

Isolated systems do not lend themselves very well to a dis-
cussion of thermsl quantitles, for the definition of temperature re-
quires,'from the physical point of ‘view, the possitility of an ex~
change of energy tetween the system and its surroundings. Neverthe-
less, one can speak of the entropy of an isolated system and may thus
ask for the atomistic interpretation of this quantity. The tempera-
ture will tiws not receive any direct physicai interpretation, tut will
‘appear as a derived concept. We shall give later a more satisfactory
‘treatment of this problem, btut we may just as well tale it up at this
stage in order to present the general point of view from which it is
considered. _

Let us first recall the peculiar way in which macrosoopio
‘variables enter into the fundamental thermodynamics relations. ZEach
non-thermal physical aspect is represented bty a pailr of variables (a,a)
-whose autual relationship is characterized by saying that if the magni-
-tude of g is controlled by some agency external to the system, the
‘work done on the system to change . a by da is 4 » da. In the atomistic
itreatment, we may take account of these macroscopic variatles (a,A)
éby introducing into the Hamiltonian of our system suitatle terms of
?potential energy which will contain the parameters a. The asscciated
;variables A, called "forces" in an extended sense, will then be de-
fined as the statlstical averages of the phase functions

E (3/3a) E_(p,q; a) «

For an isolated system, we must take the ergodic averages:

Lo E
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The thermal transformations are also formally represented by a pair of

-associated variatles, the entropy and the temperature, tut these omust,
of course, bte treated separately and in a guite differsnt way.

: For an isolated system, the independent variables (i.e. those
which are controlled by external azencies) are the energy E and the
parameters a. The eptropy then plays the part of the characteristic
function, from which all other quantities are obtained by differentia-

tion and algetraic combination., If 6 denotes the absolute temperature,
one has 1 A .
ds--d]?.-—da, (18)
9 e :
so that

(-@-i) -te(2d, . (19)
d acgp
Je shall always give the temperature, the dimension of an energy; the
entropy will accordingly be dimensionless. Now, we can readily indi-
cate an exp:iesslion pertaining to the atomistic description of the sjrs-
.tem and which formally satisfles the relations (19) characteristic of
the entropy. Let {1 represent the part of phase space “enclosed“ by
the energy surface E, i.e. containing all the energy surfaces corres
sponding to energy values smaller than E. We may then take j .
= log M (S1) (20)
The verificction of the suitablility of this definition must
e limited to the second relation (19), since the first one can only
ba regarded as a formal definition of the temperature., - In order to cal-
‘culate the derivative 38 /38 at constant E, let us introduce the
characteristic set funetion 5 (£1) of the set.ﬂ. i.e. a function egual
to wnity for all phases of fland zero for all other phasess in the

present case, we may express & () very simply as the *step! function
& (x) of the argument X=E-H(p,q) :

1  forx )0
6(3;) 3{ .
0 forx(O

The derivative bf ¥ (x) is the distributionj (x). This allows
us to write
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PV =f E[E-H (pasa)] ap

the integration extending to the whole phase space, We further get

ﬂ—l f—h— J[E-H(pq,a)] d/u
de' § (z-3") f df'E' f: IEH(E)

‘Therefore g 1og 4 H .. A, HEE . -
da MG
But clearly }J(E) _ 2 H(QJ
. . 9B
and therefore M(E) _

) ¥z [ 108 clnh)]

whence finally A
-52; [1og/:(ﬂ)]=--5-

In the special case of systems with weak 1nteractions; discus-
sed in the preceding section, we may, of course, use the definition

(20) of the entropy; but we may just as well take for this purpose a
somewhat different definition, wiz.

whose explicit form is glven by (17). The “force' A4 is now expressed
as an average over the most probable distribution (14) '
Aw N [ 2E 4-f ap
yA g a _
the Hamiltonian H(p,q3a) now referring to a single element, and the
integration teing extended to the corresponding/H -space, From (21)
and (17) we derive |
43, = ¢

‘which gives the interpretation of the perameter ﬁ.aé the inverse of
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the esbsolute temperature, and - -
1 E =
St R Y I L T

~waich shous that the definition (21) of 8 is as acceptatle as (20).,
It is esscntial for this equivalence that the systea ccnsidered has a
large nuaber of degrees of freedom; for the equation (17) is an asympto-
" {tic one. This anmbiguity in the entropy definition for large systcms
- was discussed in dctail by Gibbhs, and also from a more physiccl pcint

of view by Lorentz, who called it the “insensitility" of the entropy
definition. The reason for this 1ztitude in the choice of the function
S is clear. We hawe seen already that the measure of f)(Nz]E, ﬁZ]E..)
is practicclly the same as ‘that of an energy shell in r'-space; and the
“latter is not significantly different from the measure of the whole
domain £l when the number ¥ of elements is very large. To give a
simple example, consider an ideal monoatomic gas, w2§§e Hamiltonian

consists of the kinetic energy of translation "%E i%i pid {m being

the mass of an atom) and of a potential energy expressing that the

. system is confined to a volume V. In computingfx(fl) the integraticns
. over the position and momentum cocrdinctes can be performed sepcrately,
the former gives a factor VH, the latter the volume of a 3H—diﬁensional ;
" sphere of radius 2m 3, which 1s proportional to g30/2) | the measure E

- M(Z)AE oi; an energy shells giifers from /J'(-.ﬂ.) only by the replace-
‘ment of B2 Lo o E ﬁ—a—l AE, vhich for very large N is

. quite insensitle. _ ,

' Our two definitions of the eniropy have a common feature: -
- they both express the entropy as a logarithm of the measure of 2 domain
of phase space, i.e. of tha relative probability of occurrence, in

the course of time,'of the phases contained in this domein. The logae-
rithmic character of the link Ltetween entropy and probability is easy
to understand: if we unite two independent isolated systems into a
single system, their entropies should be addsd, the probatilities of
their configurations pultiplied. The definition (£1), usually adopted.
for systems with weak interactions, corresponds to a more detailed >
discrimination of the coafigurations than the general definition (20).

y
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The law of increase of entropy appears as a statistical
law, If (by removing constraints) we allow the isolated system to
pass from an initial state of equilibrium to the state of equili-
brium coiresponding to the new conditions, the vhlues of the entropy
in the final state will necessarily be larger then the initial one;
but the behaviour;of the statistical function log - fl(N Nyeeeo)
during the transition will, as already stated, exhibit contlnual
fluctuations (even after the new state of equilibrium is reached),
The concept of entropy, however, essentially refers to the state
of equilibrium under neglect of such fluctuations. The statistical
interpretation thus indicates the limit of validity of the entropy
concept: 1if the fluctuations form a prominent feature of the rhenon-
enon, as in Brownian motion, the thermodynamical concepts become
meaningless. The second law is not “violated®, it ceases to be appli-

cable. On the other hand, the statistical treatment is still perfect~

ly adapted to this kingd of phenomena; e.g. it can be used to evaluate
the average anplitude of the observed fluctuations. In this sense,
the scope of statistical mechanics is wider than that of phenomeno-
logical thermodynamics.



II1. STATISTICS OF CLOSED SYSTTHS

1. Sxétem of given temperature:

To ensure that a system S has a definite temperature,
we wust iwagine it in ''thermal ccntact' with a “thermostat”, i.e.
some other system T whose heat capacity is so large that the ex-
change of heat with the system S does not sensibly alter its tem-
perature. The two systems S and T, freely exchanging energy with
each other, have then a coumcn temperahuzc, which is entirely fixed
by the thermostat. From the atomistic point of view, we have a total
systemsg consisting of the system S under investigation a2nd the
thermostat T, such that the number of degrees of freedowm of S is much
smaller than that of T. While the energy of tcth S and T continually
varles, we may assume that the total enargy of qg remains constant, |
i.e. that gf is isolated. The problem is thus to derive from the
statistical distribution of the isolated system J that of a small
part § of & . ,

For this purpose, we consider the phase-spaces of S and T,
with measures d/‘s’ qﬁg? and the product space of gf with measure -
_ d¢:= dflsd}JT- Horeover, although the systems S and T are esscn-~
tially interacting, we may assume that the magnitude of the inter-
action is negligible, so that the total energy E 1s compcsed addi-
tively of the energies Eqy Ep of the systems S and T. We again ine
troduce in the S and T-spaccs and in the product spaces the domains
F}S’flm,.fl enclosed by the energy surfaces Epy Eg, E. Now we

arc interested in the averages of phase functions pertaining to the 'y
cystem S, l.c. depending only on the phase coordinates PS. Ve B
may write down these averages immediately as ergodic averages in
the totallﬁ--space; We shall then seck to transform these exprcs-
sions so as to eliminate the irrelevant phase coordinates P@ and
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the thermostat will te represented in the final result by only one
parameter, which plays the part of the temperature.
For the transformation we have in view, it will be con-
venient to write the ergodiec average in the form
Tlp = —- =L 7 2P ap (1)
;. M(B) @ YN -

For a phase function f(PS) belonging to S we may carry out the in-
tegration with respect to the variatles PT; for each phase Ps, %o
which corresponds an energy ES HS(P ), and accordingly an energy
Ep = E - Hy, this gives a factor Mipfny (B - Hg)] . The integra-
tion over Ps extends over the dbmain enclosed by the surfaces cor-
responding to the largest value of Eg, viz. E; but we may actually
extend it over the whole S-space since for larger values of Eq, the
factor p o vanishes., Thus,

.Jff(PS) dp = f E(P) M ¢ [QT (B - Ey)) dpg o

The derivation with respect to E transforms ﬁ!T(f}T) into the in-
variant measure of the limiting energy surface/u'T (E - Hg) and we

get from (1)
r(E=Ho)

M (E)

/e have now expressed the ergodic average of f(PS) as an
average over the phase space of the system S alone, each element of
this space being affected with the statistical weight/u-T(n-Hsgghim;;
since this weight factor only depends on the energy H , One may say
that it affects the energy surfaces or energy shells in S-~space.

As a result of the contact with the thermostat, the energy ES of the
system S is not fixed, but has the equilibrium distribution given
by /J G - ES)/%J( Y: we nust therefore take all ergodic averages
fIE and add them up with the weights corresponding to the distri-
rutfon of Eg_ :

2. Canonical distribtution. _
Our next task is to find a simpler cxpression for the energy-

distribution in S - space, This means essentlally that we want to-

2 (Bg)lg = ff ) £ dpug (2
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transform the factor/JT(ET), for the factor,a(E) is easily evalua-
ted in terms of it; in fact, by an argument similar to the above,

we find
_ p () = [ By M g(B) Moy (B-Eg (3)

the integration extending over all values of the energy E

Now, we nocte that the structure of the thermostat is en-
tirely arbitrary, apart from the requirement that it be a very large
system. Ve avail ourselves of this latitude to obtain an asymptotic
expression for M T(E ¢ to this end, we assume the thermostat to
ccensist of a large number of pargs Tl, Ta,... whose interactions we
may neglect. By making repeated use of a formula of the type (3)

we get

po(Ep) = [ @y fd“ra""f‘mr f“rl(“‘r,)"m N R o M e S

l.-.-.E )

Tn--l
- The formal analogy of this equation with the “law of compcsition®
of probabilities suggested to Khinchin an elegant application to

our problem of the "central limit theorem" of probability,

' Ccnsider n stochastic variatles xl, XpyeeeX, with in—
dependent distributions ul(xl)dxl, u,(x,)dx >3eee The distri-
bution of the sum x = Xy + x, + x, oreys the law of compositions:

w(x)dx = fdxl {dx .o jd:&,1 1 ul(xl) ua(xd)...u (:t:--le_-xa....:::n 1) -y

Now, prcvided that the distribution laws ui(xi) satlisfy certain
cinditions the most important being that the mean fiuctuations of
the variable x; are finite, the distribution law for x has the
_asymptotic form (for n-»o0) "$§:¥)2 : .

u(x)axe 1 : (=)
> _

where x EL. xn is the sum of the average values xi J[.xiui(xi)dxi,

-
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i.c. the average value of x, and B = 2, b, 1s the sun of the mean
quadratic fluctuaticns

T .
by =] - %D wy ) axy
We cannot, however, immediately identify fMq (Eq }dET
_ i °1 i
with a distributifp law u, (x;)dx; because the measures ;:Ti(E ),
'though finite, are not necessarily bcunded: they generally increase

as some power cf the energy. This obstacle is, of course, easily
overcome by putting -

. -(B '
Uy B = ZI%M e | ThAy B 6
where ' '
o - By ‘ .
() = fe Thpy (By) dBp, &P

secures the ncrmalization, and 1s an arbitrary positive paramecter.
In fact, the ui's 50 defined aire bounded and satisfy the law of cone-
" position (4); 1t can be verified in detail* that they satisfy all
the ccnditicns for the validity of the asymptctic formula (5).

The law of distritution u(Ep) derived from the set (6)
by the law of composition (i) has exactly the same form as each
of the uy's, the nornalization factor Z(8) teing the product of the
‘1'3' We readily get

By = - _Q.les_: (8)
and > .98 |
Bp = —9-%55—5 (9
| - 3 |

It is easily seen** that equation (8) uniquely determines J in

terms of E.: this makes it possible to fix the parameter § ty
relating it to the given average energy of the thermostat. We shall
henceforth assume that 8 has the value resulting from this equation
(8): it 1s this parameter which will "represent® the thermostat in
the final result, and we shall see that it is simply related to the
temperature. :

e Daking for u(ET) its asymptotic form (6) we get for

* Voir Kdinchin, p.. 86
#x VYoir Khinchin; pg. 77
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/IT(ET) the asymptotic expression

~ 2(p) B

(Ep-Ep)~

(10)

In applying this formula to the argument ET = E - ES, we note that
(Bp~ E&)a = (ES—/Eé)a. Now, excepting the unlikely cases when Eg
happens tc be widely different from its average ES’ the quadratic
fluctuatlons of the system S will be of a much smaller order of mags:
nitude than those of the thermostat whose average'is given by BT:

we shall accordingly neglect them altogether and write

(B) R(E~Eg)
Pp® - Bg)  Thaire

 For the factor M (E) we may write down a completely similar expres-
sion since according to (3) the systems S and T are linked together
by the same law cf composition as the various parts of T: we may
therefore treat the total system S as we have just treated the

thernostat. Thus, 28 (B
(B) =2 LiB) oFE
F J27B

2(B) = 2o(R) 24(P)

and

while B differs from BT only by the contribution from the small
system S which can be neglected. For the energy distribution of
the system S we therefore get the very simple expression

(E"ES) -ﬁE .

lEI______ ~ . e S 11

JM(E) Z1IC N | ()
in which the thermcstat only appears through the parameter

De

. In its most general aspect, the prcperty expressed
by formula (11) may be stated as follows: any small*.part of

- P U ey e s B W e B P T

* It need hardly be emphasized that the “small" part can be any masx -
croscopic system; it is small only with respect to its surroundings
which constitute thes"thermostat”. On the other hand, the small par%
could also be just an atom of an ideal gas: Boltzmann's theorem then
gives an lndependent derivation of the theory of systems of weakly
coupled identical elements which we have studied.
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a large system, whosc interacticn with the system is weak, is dis-
tributed in cnergy according to the law (11)e. In this form, the
thecrem is due to Beltzmann, whe recognized its fundamental impor-
tance for the statistics of non-isclated systems. The law of dis-
tribution (11), under the name of cancnical distributicn law, was
extensively stgd%pﬁ by Gibbs; the insufficient emphasis put by
Gibtbs on Bcltzmann's theorem 1s no doubt responsible for the wide-
spread confusicn about the physical significance of the cancnical
distribution. The above derivation, due to Khinchin, has the merit
of elucidating the deep-lying reclation cf Bcltzmann's theoren to
the general principles of statisties.
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3, Energy distribution. | ]

The canonical distributicn law has important consequences for
the average value of the energy. In the first place, the study of
this quantity will allow us to establish a very simple relation be-
tween the thermostat parameter § and the absolute temperature as
usuélly defined., Further, we shall derive a general property known
as "equipartition of the energy'. Finally, it is also possible, at
least for a certaln class of systems, to derive the explicit law of
distribution of the energy around the mean and, in particular, the
mean quadratic fluctuation of the energy.

The canonical average of “the energy of our system S is given

by ‘E‘S - dlog %
ap
If, in particular, the system S5 is an ideal monoatomic gas, we have
- prs )~ES3§- 2
" whence : .
zg (1) = [ e P55 (mg) amg
-fx =1 - b
ﬁf/ue X du ~v 7 Z
and ' . _ Lt
£, = 31 )

S 2 ;B

-y

The thermodynamical value of the energy of such a gas is
%; R T per mole, where R is the gas constant and T the_absolute .
temperature in the Kelvin scale. This may be wr1tten g Ne, it N
is the number of atoms per mole and & = kT, with k = s is the
- measure of the absolute temperature in an energy scale. The converw
sion with the statistical formula fixes the relation of the thermo-
stat parameter p with the absolute temperature:

= = ' j (13)
Tha simple formula (12) is a special case of a more general

: property, If we can i%olate in the Hamiltonian of the system any
group of terms H' homogeneous and quadratic in some of the p's, i.e.
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we msy perform the calculation of the canonical average H' expli-
‘citly. In fact, putting K = H', we may write: |

g = %fd}a" g~FH" fH' =P ap'

~ where d}’ = d/a' d}a" with df; = dpl...dpk. Now, for any of the
relavant pi's we have

ap
whence 1
-H-'-=.:'.-::- A . .
s3=kkoe (1)

The same argument applies to the case that the quadratic homogeneous
part of the Hamiltonian belongs to the potenilial energy, d.e, has
this property with respect to some of the gq's.

The general formula (1l}) expresses the law of gguipartition
of the energy: for a system of temperature ® , every degree of freee. .
dom for which the kinetic or potential part of Hamiltonian is. homo-
geneous:asd.ghadratic in the corresponding canonical variable con-
tritutes 1 6 to the average energy of the systems In particular,
every degTee of freedom of harmonic oscillation contributes 8-to the
average energye : :

If the system S can itself be analysed into a large number
of component parts with weak interactions, e.g. if it is an ideal
gas, we can apply to the measure of its own energy surfaces f"s(Es)
_the asymptotic formula that we had derived tur the thermostat. The
law of distribution of the values Es of the energy then takes the

simple form: (Bg-Eq )2
PEg =i (E-Eg) -
W(Bg) = M (Eg )M'-: BB % 2By . Zp(F) es s :
F (E) | QZ?B..S ‘ES"Es)a

L

'“P-{_gﬁ_Ig:_s_lE;.}Zn'B e-_BEr: 1 i ZB% -



where ES is defined by

-}ﬂ-r-—_'l'-—:c———
B

We thus obtain a Gaussian distribution of the energy with a mean
quadratic fluectuation By * which 18 always smaller than By: the
exchange of energy with the thermostat thus results in a negative
correlation of thelenergy distribution between the two-parts of the
total system

The value of the mean quadratio fluctuation BS is easily

computed. One has ——Tp _ 2
| By = (Bg - Eg)° = B~ (Bg)

poo8lez  R..i1®z g1, 1 Az,
s Bl i ap za sﬁ+ AT
i.eﬁ, ) — L] :
i = -.dE_§ =Q.F£92 1 .
Bg * = (15)

This formula exhitits a fundamental feature common to all
 fluctuation phenomena: while the product © dEs is of mmcroscopic
order of magnitude, there is an extra factor © which contains the
essentially atomistic constant k. In fact, fluctuation phenomena
are outside the scope of macroscopic physics: they are essentially .
linked to the atomic theory of matier and radiation. Accordingly,

- the observation of their macroscopic effects, such as Brownian

- motion, light scattering, etec., affords a proof of the consistency

- of the atomic picture and a possibility of determinaticn of atomic

- dimensions. |

lie Thermodynamics of closed systems.

We shall now follow a line of argument parallel to that de-

" veloped for isolated systems. We shall look for an atomistic inters:

pretation of the characteristic function corresponding to the choice

of the temperature and the external parameters as independent vari-

ables: this is the free energy of the system, defined as *®
B B N - - (16)

- s T e - - - -

* We may now drop the index
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In fact, we find

| dF = -5 d & + A da, (17)
l.e.

From (16) and (17), we derive, by making use of the general t.anss .

formation formulq;
e QE = - ﬁ oF
ae a0 ?

the Helmholtz relation between mean energy and free energy

v = aF _ D .
50 _ 3 (fF) (19)
Now, a direct calculation gives for the' canonical average

of the force (JH/oa)

Q
i

this formula, together with the previous one
E= - Blog Z
| op |
shows by comparison with the second equation (18) and with (19),
" respectively, that we must take for F the expression

F=-91log 2, - (20)

except for an arbitrary linear function of & (without physical
meaning). Formula (20) completes the atomistic interpretation of
the thermal guantities pertaining to closed systems, viz. tem-
perature and free encrgy. The entropy now appears as a derived
quantity: : S -
S=1logz+pE (21)

It is not surprising that this expression for the entropy
is fermally similar to that we have obtained for the systems of
jdenticalelcments with weak interactions: for, as already noted
(see footnote at the end of paragraph 2), the theory of such sys-
tems can te regarded as a special application of that of closed : - -
systems*. _However, the scope of formula (21) is much wider : it

s e e T . g o il T

* The system S then represents a single element, and the expression
(21) accordingly gives the entropy per element.
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applies to any kind of systém without restriction. If the system

is sufficiently large to allow the use of the asymptotic expression -
for the measure of its energy surfaces, we nony compare the value (21)
of the entropy with the logarithm of the measure of the surface cor-
responding to the mean energy E viz.

' /,103 ME) = log ié—-"_—(-cn__ij_)e ‘Gﬁ}= 8 - log (VZ7B)

S 1s log measure of energy shell as before,

With the help of (21), we easily verify the well-known
thermodynamic property, on which the phenomenoclogical definition
of the entropy rests, that the inverse temperature § is an integrat-
- ing factor of infinitesimal guantity of heat supplied to the system
in a quasi~static transformation. This quantity of heat is

$§q = dE - Ada

whence

d(fE)-E’dp-gAda

£aQ

d (FE) + log 2) =

Finally, let us introduce with Gibts the concept of pro-.
bakility exponent which will give us not only a compact notation
for canonical averages, but also exhibit a new aspect of our en-
» tropy definition. The canonical average of any phase function

= 1 - -
fi= 3 If Py e au

may be written as

‘ T= £ (p) eMP a p T (22)
with ' o
(P36 , a) = L?(G a) - H (P; a)] (23)
‘The function 1s called by Gibbs the "probvability exponent”, since
3(P; ©, a) = (24)

- represents the density of probability in phase space for the canoni-
cal distribution. Now, the entropy, according to (16), is Just minus
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the canonical average of the probability exponent:

S:_:b;.; : -
this may be written, with the notation (2l}) ‘ )
' =-fnlognd/-r (2%)

Again we find here a formal analogy with Boltzmann'’s H-
function for systems of weakly coupled elements. The éxpression
(25) may te applled to quite general systems: it does not then re-
fer however, to any actual distribution of physical elements, but
to a purely fictitious distribution of “copies" of the system - -
der investigation.

'~ The statistical foundation of thermodynamics just outlined
is not yet logically complete., The tasic differential eguation (17)
refers essentially to guaéi-stgtic transformations. We still have
to investigate the behaviour of the entropy when the system is sub-
jected to irreversible transformations. But before this, we have a ~
more immediate taske In the preceding discussion, all macroscepic
quantities have been as a matter of course represented by canonical
averages: this procedure, however, implies the assumption'that-the'
quasi-static transformations do not disturb the canonical form of
the equilibrium distribution. Quasi-static transformations are of
two dictinet types: isothermal or adiabatic, For isothermal trans- -
. formations, the assumption just mentioned is obviously justified
since the system remains in contact with the same thermostat dur-~
ing the transformation. But the case of adlabatic transformations
requires. a closer investigation. In fact, in such a transformation;'
the contact with the thermostat is initially severed, and at the
end the temperature of the system has varied, i.e,. it 1s in equi-
librium with another thermostat: it is then far from obvious that
the distribution, while both external parameters and temperature
varied, nevertheless remained canonical., This is what we shall
now proceed to show. '

5. Permanence of canonical distribution in quasi-static
adiabatic transformations.

An adiabatic transformation can be analysed as a succes-
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sion of steps in which, the system being isolated, some external
parameter (or set of parameters) g is varied suddenly by a very
small amount da, after which the system is left to itself for a
certain tinme, A second sudden variation of g, is then applied and
the process is repeated with suitably chosen intervals between the
. successive variations so as to approximate any continuous variation
a(t) of the parameter a. In order for the transformation to bhe
‘quasi-static, we must, after each small variation of g, allow suf-
ficient time to elapse for the system fo.reach the state of equi-
librium corresponding to the new value of the parameter: a quasi-
static adiabatic transformation-corresponds in this sense to an in-
finitely skow variation of a. ° . -

For our present purpose, it is of course sufficient to con-
sider a single step, leading from aj to a = a, + da, and to show
that if the initial distribution was canonical, with a certain
temperature (or, in Gibbs®! terminology, “modulus") 8,5 the final
distribution is again canonical, with a slightly different modulus.
The variation of a has the effect of deforming the energy surfaces
50 that a distribution which was originaliy ergodic ceases to have
this property when referred to the new energy surfaces. Eventually
however, it will tecome ergodic on these new surfaces, and the new
phase density will be given by the ergodic average of the old one,
taken on the new energy surfaces. The initial phase density was
given hy es0(0,805 P Q) | 4y, new one is accordingly

0_,")(80’ 3 P q l

E(a)
Ve want to show that this quantity can again be written in the

form of ‘a canonical distribution of suitable modulus O.

To this end, let us first expand the distribution density
7)(90: ap; P )

e around the new value a of the parameter:
(80, 255 P Q) b(eo, a3 PA ¢ gq ad
e S -2 a-2)
7’(90’ ai rq)

and accordingly, since the factor e 1s constant on the
new energy surface E(a) ' '
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% (80,803 PQ) %(8o, a3 pq) d -
e E(a) T © [1 N e'%"(A B AIE(a))J

Now, for systems with a large number of degrees of freedom , the
canonical distribution has a sharp maximam for the average E and
we may use the expansions

— , .- '-=. ' ¥ m—n ‘ )
AIE A | éﬂlE (E-E) + .21.. ._.._:Qi‘,a* (E-E)Z
aZAI
= A). + = E-E
: IE e bﬁz =

The difference 4 - A|_ will thus involve, besides a term linear
InE ~E a term conta?nlng :

E - F)2 - (E - B)2 = (E - )% - B

this term will be negligible in comparison with the first one,
and we may therefore write

e)}(eo’ 203 qul ~ (Bo,a;pq) [1 da éﬂl - E)]
E(a) ™ 6, OF
It is now clear that the correction term in E - E can be compen-
sated by a sultable change of modulus; for if we pass from 8, to
. 8 = 0 + d& we have, using Helmhcltz's formula

ebcaoia’ pQ) -’)(9 »23Dq) [1 - 2 (E‘E)]

We conclude that the final distribution is indeed the canonical one
of modulus 8, provided that the variation d® of modulus is related
to the variation da by the equation

20 2z

dga =0
9% OFE

Replacing A} _ 'by‘A and 8, by é and noting, at constant g
B . :

Q4 _ QA - ’
dE Je ae-
the last equation may be written - - S

1 RE 3p. 28 gqa=o .
8 30 20 -
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It is readily verified * that this equation just expresses the
constancy of the entropy, 45 = 0, during the transformation.
6. Irreversitle transformations.

The last step in establishing the statistical foundation
of thermodynamics consists in verifying that our interpretation
of the entropy m}nus as the average probability exponent of the
canonical distribution satisfies the pafrt of the second law fefer-
ring to irrcversible transformations. ~VWe -must show. - thet
In- an sirreversible passage of cur system from one equi- - .
libriuvz:state. to another, the cntropy ~of: the final state .
of the system is larger (or at any rate_not-émallerj than that of
the initial state; if we formuilate the law in terms of average
probability exponents, the direction of the inequality is reversed.
It must be observed that a probability exponent which would cor-
respond to an equilibrium state under certain conditions repre-
sents an arbitrary density distributicn if these conditions are
altered. Ve shall thus have to introduce, following Gibbs, ar-
bitrary probability expcnents  (P) and study the behaviour of
their average values, ' _

o = Jﬁﬁew

under the varicus transformiions satisfying the above-mentioned
conditions All such transformations reduce to two types: (a) the
adiabatic transformations, during which the system is thermally
isolated, (b) the heat exchange, in which two initially separated
- systems are brought into thermal contact and separated again. We .
shall discuss these {wo types in succession, closely following
~ Gibks' elegant treatment of the problem,

(a) Adlabatic transformations., During an adiabatic
transformation, the distribution changes independently in each

Ao Y g (Y S e ek A e ST Sl e VU e U S e Sl R S S e g

* In fact, from (18) it follows that

94 _ 98

o8 Sa
and from (19) that'® 1 E - . éa_g' _2as
. 6 8 = 20 6
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energy shell: we shall thus compare distritutions with the same
total number of "copies! of the system in the same cnergy shell,
and prove that the distributions with probability exponent
constant in cach energy shell have a smaller average probability

exponent than the others. We call this statement the first lemna
of Gibbs. The assumption is

|- . -
)
f em d )u = f e °© dfu
(E)
for each energy shell (E)., For the average of G‘)o over a shell we
may thus write |

f &g ewod/-l @, j - > Ieu‘.)d =/ o Bau
“(E). (E) ° ~ g o

and therefore ' - , =
| W, = f & e”

We must now prove that

& - / (O - w) ew d,.« ),0

Gibbs uses here a G?eneral procedure applicable to any inequality
of the form - f dfx > 0. He refers this inequality to a pro-
perty of the exponential function:

-1-x;,0 for any x.

To this end, he uses the normalization conditions to show
that the appropriate terms e* - 1 associated to =x have the aver-
_age 0. In the present instance -x = (U - &j; frem the normaliza-

tion conditlons D iy} :
| f e du = f e © ap=1
it indeed follows that @5 ?.TJO-GJ

/e Le -1] d/u- 0

Adding this to the expression Jf(t.'D-G'JO) e dp, we immediately
conclude that this quantity is always > 0.

Let us now copsider the successive steps da of the adia-
batic variation of the parameter g from aj to a . Let Gy, Wyeues,¥n
be the successive probability exponents. If the transformation is
quasi-stitic, the differences |
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quasi-static, the diffcreﬁces - +la..u.z are of the second order in
da, the difference 53 53 after a finite variation of 2 is infinis. -
tesimal: the entropy in th:r.s case remains constant. If, on the other
hand, the transformation is irreversible, the successive differences
will 3n general be of order da, and for a finite variation of a there
will be, by Gibbfs' lemma, a finite increase of the entropy.

(b) Heat exchange. To discuss the case of heat exchange -
wve have to consider a system composed of two distinect parts Sl’ S
we accordingly distinguish the two phase spaces of these parts and
the total phase space which is their direct product. Between the
respective elements of measure we have the relation '

Apr G = dp
The distribution e™ defines the distributions in the Sl’ and SZ
spaces as = - D Y _
- aw1=fewd ea=fe d/uli'

these partial distributions are, of course, normalized to unity; -

S e [ %2 apy = [P ap =

Gibbs! second lemmm states that

auq +w2 "

the equality holding only if the two distributionsuﬁ_ U-é, are en-
tirely mdependent, S0 that o= wl(P) + (pa)

To prove the lemna, note that

— Wl _ — & = - "I,
.—..fwle dpl-]wled,wa-fwae d/;

and therefore

-8y -3, = [(@-Gy - @ Pap

The normalization conditions give _

f“"’ Tyt @p= 1)d}4=0

whence the announced,inequality follows, HMorcover, the equality is

——

seen to hold only 1f G- -wa 0, as stated,
With the help of this lemma, the discussn.on of the thermal



=719~

centact of two systems is imiediate. Before the contact, we have
independent distributions with exponentf GDI,CEE and the exponent
of the total distribution is W —G-" + Wa « &85 a result of the ther-
mal contact {(during which the total system is isolated) the exponent

changes from & to T/, and by the first lemma

| @ W’

Now, we had on the one hand
W = + E’d’
- and on the other, by the second lemma
= a&) &)l
| w 1+%%,
u'.!'r 63'2 teing the exponents of prohability of the two systems in
their final states, Therefore
= =1 =
& tw t .
W+ A @) (26)
i.c. the heat exchange has caused the sum of the cntropies of the
. two systems to incrcase.

It is interesting to analyse somewhat more closely the
role of the temperature in the phenomena of heat exchange. The
basis for such an analysis is supplied by a third lemma of Gibbs:
If 6 is a positive parameter, the quantity Go+ (E / @) is minimum
for the canonical distribution of modulus © . For the lattier dis-
tribution, the quantity in question is just F/@; the lemma thus ex-.
presses a minimua property of the free energy of a system of given
temperature; wnich is parallel to the maximum property of the en-
tropy of an isolated system. Ve have to prove | '

J(@+r/e) e® - ap -0 30, 1o [(@-) o® au 30,

having the probability exponent of the canonical distridution of
modulus © . By the usual proceduré, we derive from the norwaaliza- |

tion conditions - -
fe'w Ee'q-w -1] du =0

vhence the preceding inequaiity follows. -

_ Suppose one of the two systems just considered is a |
“ thernostat® of temperature ea. ' Besigies the inequa;iiy (26) we may
now write, bty the third lemna, ‘ :



-80-

‘*2 o/ Qa-éstqd + I3 /- 9a

since the initial statc was described by a canonical distribution -
of modulus 92 . Therefore

- W
or in terms of thermal quantitiles
. ' _ 0
84 - <
4 sl;} = ’

i.ec. the entropy increase of a system brought in contact with a
thermostat of temperature 6, is at least Q/8, , where Q is the
quantity of heat passing from the thermostat to the system. Using

E& B 2 i E1
we can also write the inequality (27) in the form
u) E’ + B B!
1 52 ?’1 qa

showing how the quantity &+ (E / 8,) pertaining to the system Sy
decreases after thermal contact with the thermostat, until, by
repeated or prolonged contact, the canonical distritution of :modulus
8, 1s reached, and with it the minimum value of the quantity in
questicn, which is then the free energy of the system.

We may finally consider a system S undergoing a cycle.
of transformations in which it comes successively in- contact with
various thermostats of temperature 8;, 9,.... Assuming S, to be
initially at temperature © o) We have

———

- ‘*’o"'wl"'_ﬁ’a*"")’ § o+ +WL L,

OB = E. o Ce
S+ 212 G+ 55 (1 =0, 1, 2, -»)
whence _ - - e

— — ? -.._‘ . ) Ca e
E-é:'E'J- + L'Z E2 +.‘0.... é 0 . (28)

the term pertaining to the system S0 has disappeared since §'°=§5
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‘uing to thoreyelie chorseter of the transformation. The inequal-
ity (28) coincides with an important.theorem proved by Clausius
and used by him for estatlishing on a phenomenological basis the _
concept of entropy. If therc are only two,thermostats, we have the
kind of idealized engines ccnsidered by Carmot. Calling 9,,Q,. the
algebralc quantities of heat supplied by the thermostats during

a cycle, inequality (28) takes the form

il @ ,
&y T &, £°

If the heat transfers are irreversible and not accom-
panied by any mechanical work, e.g. if heat is conducted or radiated
through the systea Sb’ we have Qy = -Qa‘ an@ the inequality mgre;y
expresses the fact that heat pastces irreversibly from the hot to
the cold thermostat. If an amount of mechanical work W = Q +Q,
is supplied hy the engine (91 > 6,3 levo), we find for the ef=
ficlency the well known expression S

T¢ 8%,
%} &
- the equality corresponding to Cannot's_zeuersible englne, !

r . i .



IV. STLIISTICS OF OPEN SYSTEMS.

1. Phase functions and averages for open systens.

Our last objeet of investigation is the statistical deseription of
systeams consisting of a variable number of elewments. Since the main
applicction of this theory is the study of chemical reactions, we
shall specak of systcms of “"molecules", We start from thej;(-Spaces
of the single molecules, from which we construct by direct product
the[ “spaces corresponding to any given numbers of molecules of the
various species occuring in the system considsred. In the follow-
. ing, we shall only treat the case of a mixture of two distinct ccn-
stituents, which is sufficiently typical. HWe denote by‘FNlﬁé_the
set of cocrdinates.of the [ -space corresponding to Nl_molecules
of the first species and N, molecules of the other,

The definition of phase functicns requires sone care.
in general a physical quantity pertaining to a system of N mnle-
cules of the same species may be expressed in terms of other quan-
tities attached either to a single molecule or to a pair of mole-
cules or, more generally, to a cluster of any number of molecules.
It can thus be written in the form

n . o
£(py) =37 2 (p,) + }I_g; . e )+l )
= s 7 T

vhere P; denctes a phase in the fA=space of the $-th molecule. The -
extension of this definition to the case of a mixture of molecules
~is immediate: 1t gives a well-defined meaning to the notation

f(PN-‘lﬂa_) .
In order to compute the statistical average of such a

phase functicn for an open system, we follow the same line of argu~-
ment as for closed systems: we consider our sysiem in conjuncticn

" with the requisite number of very large reservoirs of mplecules of e

the different species, so that the total system may be regarded as”

.. P [ P e .
N e e e s s . SR e Amrmen o b me—em L
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closed. For the closed system, which we assune to have a definite
teaperaturc, we wmay write down the cancnical average of the phase
Muncticn. There then remains the task of eliminating the variatles
pertaining to the reservoirs. The exchange of mclecules between the
system S containing a mixture of different species and any reservoir
R containing one definite species must be imegined to take place .
through a suitabdle,semi-permeable membranc: the physical existence of
such menbranes, however, is not relevant to the argument; it suffices
that the concept of semi-permeable membrane be logically consistent
with the basic assunmptions of the atomic theory of matter,

The phase functions rceferred to the closed systenm
S + R1 + P.a are themselves statistical averages over all possible dis- '
tritutions of the molecules betiween the system S and the appropriate. .
reservoir. With respect to each species of moleculés, the system S
can be regarded as a Small part of the corresponding large reservoir;
. the law of distribution of neolecules in S therefore takes the asynp-
- totic form of & Poisson distribution * N

W(N) = _g—; e (2)

N being the average number present in the system S. Thus, the phase

function whose caaonical average 1is needed is ' P
Tz__ W(Ny) W) £ (rﬁlﬁ_a) v . o (3)
-.Tlgha il i

with the definition (1) of f(Plea). Here, f(Pnga) depends only

on the variables of the system S. Ve have also to écnsider the

total Hamiltonian of the closed system S + Ry, + R,, which we nay

take to be the sum of the Hamiltonians of the three parts:

E + Hp, + Hy,. For any distributicn of the molebules, character-

ized ty the numbers_Nl, Na, we have, more explicitly

HCPNgN,) + Hpy (Pyp ) + Hpo(Pyso) W

- where PN:' denotes the phase of the reservoir Ri containing.Ni'
molecules. If UME represents the total number of molgcules of
species 1, we have N} = ‘/Va - N;, so that the phase -function of =
the more general type (4) is also specified by the nunbers Nl’NZ

s We might even take a Gaumssian distribution, but the choice of the
‘Poisson distritution is somewhat nore generai and fits in better with

the thermodynawical formulae. o : .

.
.
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> nwelecules in the systen S. _

The statistical weight of the phase PNlN& of the system .
S 1is therefore prcpcrtional to

PRy ) [ -6 H;i, (Py)*. By acpﬂéﬂ

s dei,Fﬂg dlei df‘Né ,

i.e. .‘ ,FH( N1 ) -
g, © Ty (M- W7y, (I - )

where ZRi(Ni) represents the “sum. over states” for the reservoir
Ri containing Ni oolecules. Denoting the corresponding sum over -
states for the system by 7Z(Ny,N,), we finally get for the canonical

. average of any phase function pertaining to the system S the expres-
sion ’ o

| | (Pror)
- SDOUmU () zﬁluﬁ-nl)zR N /f(PNiN e 91 M o

~ N l’NZ

*‘5

Nﬁz WO 7y UG-z, W Tp) 2 (N, W) B

In this formala, the parameters deflning the external conditions
under which the system is considered are, tesides the temperature
and the non-thermsl parameters of type g, the average numbers

ﬁi, NZ of molecules in the systenm (which however, are not neces=-
sarily all independent).

2+~ Chemical potentials.
The problem now confronting us is to find some

- Simple asymptotic expression for the dependence of the function
'ZBﬁgﬂi), representing the reservoirs.in formula (5), on the num-
- bers N{ of molecules’ contained in them, " Sin;e the total num- _
be:suN; can te made arbitrarily large, we are actually interested .
only in small relative deviations E-n-{ H' - N') / Nl of the ) 1
" numbers Ni from their average values 2 N'= JVidv _i. Bven the ab-
solute fluctuation. N' - Ni = -(N - Ni) may be restricted in !
magnitude; for the contributlons of terms corresponding to large .
flucuations are in any case cut down by the distritution factors .-
W(N;). The situation here is entirely similar to that we had when

..ﬂ-wﬂ-ﬂ,,.
“‘\‘\w___ﬁh

m rmmmmdrw e . ws u am e

?
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discussing the energy fluctuations in the interaction of a closeé
system with a thermostat. Ve have thus to compare each ZR (N'
with its average value 7 JR (N') for relatively small dlfferences
Ny - N, , and in order first to obtain the dependence of, the
latter runction on the average number ﬁ' ~we shall make use of the
fact that log. ZR (Ni) is directly connected with the Ifree energy
“of the system.Ri . The following argument is essentially due to

Tolman*. -
To rresent the matter as simply as possible, we shall

first consider in general terms the gquestion of how the macroscoe.
~ pic variables describing a system of identical elements depend. on
‘the number of these elements. From this point of view the vari-
ables fall into two classes. Some of them called intensive ones,
are proportional to the number of elements: they describe those

- properties of the homogensous sysiem which are due to additive con-
tributions from the various parts of it; examples of extensive
variables are the volume, the mean energy, and the characteristic
functicns: entropy and free energy. Extensive variables give rise
to corresponding “densities", which are again intensive variables:.
the density is the partial derivative of the extenéive variable
‘with respect to the number of elements, provided that the other
independent variables kept constant in the derivatlon, are all
~intensive. :
| It is always possible to have all iundcpendent variables
intensive, for each pair a,A consists of an extensive and an in-
tensive variahie, sither of which can be chosen as representative
of the corresponding physical phenomenon. Thus, we may take
either the volume or the pressure as the mechanical variable of a
‘body of isotropic structure; there are accordingly two different
#free energies® F(6, V) and G(&, p) which are usually associated
in a rather arbitrary fashion, with the names of Helmholtz and
Gibbs, respectively. In general, the passage from the character-
istic function r(e a) to the function G(8, A) is affected by a
."Legendre transformation®

ks Al A B Py e iy S P A T T S e Y % I
R ! ~

* Cf R. Tolman, Phys. Rev. 57, 1160, 1940 - : J)/’

T . -



-86-

(e, a) =Fle, a(a)} - a(a) « &,

where a(a) 1s the inversion of the function A(a) computed from
F(o,a). Thus, G(N; 6,p) = F(N; &,V) + Vp, and the corresponding

density 1is

g(e, p) = N) 9 3

"so that ' f i o
' © G(Nj3 o, p) N g(G,P) ‘_(7)
From the connexion
log Z (N; &,p) = - B G (N; 6, p)

between the statistical function log Z and the characteristic
function G we derive lmmediately

log Z (N3 ©, p) = -N © g(B, p)

.i.e. log Z is an extensive function, This formula, it is true,
is not strictly applicartle to the case of our reservoirs, because
the variation of the number of molecules in such a reservoir does
not occur in an externally controlled way, at constant pressure,
but as the result of random fluctuations. The pressure in the
reservoir is regulated by the mechanical equilibrium conditions
across the scmi-permiabple membrane through which the exchange

'of molecules with the system S takes placej its value is thus a
function of the average numbers N,, N3 of molecules in the system
8, and every deviation from these averages brings about a pertur-
bation of. the equilibrium. For small deviations, however, we may
write: :

- (6)

(N!; 0, D:) - N .
log EB* _;3 i =-(N - N}) B &y (B,pi) =
Zp, (VY O,py) o =

_ _ =(ﬁi - Ni) p gi(espi) ’ ' -
where the reservoir pressure p; is a function of the pressure p of
the system S and of the average numbers Nl’ NZ' Apart from a
factor independent of Ni, ‘and which therefore cancels out in the -

average (5) of the phase function f, we have the required asymp-
totic expression B ) SR

Va
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Z-Ri(()v'i -N) v e

Combining this with the factor H(Ni), given by (2); we may say that
in the average (%), each number Ng is weighted by a factor of the
form .. 1 esfiN1

ERA
where the function ‘§,(8,p; ﬁi,ﬁé) = -g; + 8 log ﬁi represents
the reservolr R, in the same way as the parameter © represents the
thermostat. In view of its fundamental importance for the deter-
mination of chemical equilibria, it is usually called the chemical
potential of the molecular Species i in the system S:
The average (5) of the phase function f now takes the

1 BN, ¢ ~PH Py ) Gl
1 17 Z‘ZJ( NiNo’ SH NN
L LT £ Prawp)e ,

- Y T2 " g 8)
=’ Fiw 21891 " 5202
2> TTHT © 7 (N, ,N.)
NN 1 327 : : o ;’ 2

The pnase integraticns indicated hy_ prlNZ are over specific |
- phases, and the factor (Ny! Nal)”l.has_theaeffect of reducing them
to integrations over generic phases, in which each physical con-
'figuration of the system is counted only once. The introduction
of this reduction factor was preéented by Gibbs as a matter of
convention, justified by its success, and it has given rise to
mach co..™ased discussion: the present.derivation*ﬁ shows how
naturelly it comes in when'a physical point of view is adopted,
in contrast to the more abstract attitude of Gibbs. According

to formula (8) the average T can be described as a canonical
average over generic phases for cach possible set of numbers of
molecules, weighted ty an exponential distribution factor

c. B Ny + ‘@ .N5) there is a complete anaogy with: fHe condepts
which we followed in all . ,.

“On this point even Tolman's papes.,
other particulars is not sufficieﬁzly explicit.

} It is easily found (see: Tolman's paper) that the effect_of _
the perturbation of the equilibrium is of the order (Nily -N)/N} .

-
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of canonical average itself which is an ergodic average over each
cnergy surface, welghted by an expocnential factor exp[-BH:[ .
Hence the somewhat awkward nomenclature'proposed ty Gitbs: the or-
dinary canonical distribution of copies of a closed system forms a
npetit ensemble"; the distribution just found for an open system
is a "grand ensemble". It 1is often, more simply called a grand
canonical distribution.

"

3. Thermodynamics of open systems.

The statistical interpretation of the thermodynamical
functions for open systems 1s a straight forward extension of the
theory of closed systems, but 1t adds an aspect of fundamental ime
portance in chemistry, viz, the way in which the characteristie
functions depend on the numbers of molecules of various species
present in the system., We are here ccncerned, of course, with
the equilibrium states of the system, and therefore with the aver-
age numbers of molecules. Let us assume, for definiteness, that
the independent mechanical variable is the pressure; the character-
istic function will thus be the Gibbs free energy.

Let us put . :

Z (Kf Nz) i Z(Nl, Na)z | (9
For a system with fixed numbers of molec%les Nl’NZ’ we may define
the free energy by

G(Ny, Np) = - 6 log & (N, N,): (10)

this differs from our previous definition only by a constant
term without interest so long as the numbers of molecules do not
varys- Let us now consider the denominator of our fundamental for-
mila (8): .
A ,{ Ny, 1) e BOS 4Ny +¥aNp) (11)

Nl’NZ :
and differentiate it with respect to all macroscopic varlables:
this differentiation includes the average numbers N,, N,, but
leaves out the numbers N,, N5, over which a summation is performad.
We get '
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-a{)

o~ PG N+ N,)
GQZ. L (Hp,Np)e ShrSte

5.N, - SR

[d 10g:$(NlNa)+N1d( p ‘61) +

oL
+N, a (34))

1]

a { 8 G (Nl,nfa)]+ N, a (5%6,) + K, ap ‘fé),

where the averages refer to the distribution of the numbers NyoN,
given by the probabllity law- -

oo B('§ 4Ny + LN)
The last equation may alse be writien

a [+ pS Fp+ 8¢, ,) o 4 [ G(Nlﬂai}? -J’}'ild Fy+ b'%gd P (

which shows that the characteristic function in terms of the¢ inde-
pendent variables 6, p; Np, N, 1s Q+ g (8, §, +¥¢_¥,)

if, in the right hand side of eguation (11) we replace
the sum over the N 's by the single term corresponding to the values
Nl’ NZ of these numbers, we derive from 1t an approximate form of
the characteristic function,.

Qip g, M +¥, Lmw po ¥,y A3
accordiﬁg to (10). To this approximation, which is justified pro-
vided that the numbers 52, NZ are very large, we thus see that the
characteristic function is still the free energy *, taken for the
average numbers of molecules, even when these average numbers are
varied 1ndependently. Now, however, we see that 1t is quite essen-
tial to introduce the factor (NllNal) , whose role is to reduce
the "sum over states" to the physically distinct states of the '("
system, represented by generic phases. Indeed, it is cnly when
the integration is reduced to generic‘phases that the free energy

. . 3
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* The factor § can evidently be retalned or omitted without chang-
ing the propefty of tpe function of being a “characteristic! one.
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of a system of idcntical elements preservés its extensive character
when 8 subdivision of the system into parts is taken into consider-
ation. For if we make such a subdivision into two parts containing
N, and Ng elements, respectively, and consider the sums over state
VA (N, + NB) Z (N ), Z(NB) , integrated over all specific phases
of the total systfm and of the two parts separately, we have

(N +N_)1-
A_B Z(N,) Z(Np)
N, Npl |

2 (NA * NB)

e

i.e. precisely -
| Z (N, +¥p = Z );£(NB).

The argument 1s immediately extended td the more general case we
are consldering of homogeneous systems ccntaining several species
of molecules. We must only generalise the concept of .extensive anad
intensive functions: these will denote homogeneous functions of
the numbers of molecules, of degree 1 and O, respectively;
Using the approximation (13) we get from (12) the

fundamental relation N . : '

?, o[ 2& )

o ]

_ Ni Q,piNij - |
the symbol {Ni} indicating that all N 's except Ni are kept con-
stant in the derivation. The extensive character of G allows us to

. write -
G=§’_ NiaBN—i.: N, €: | . | -as
Comparing (15) with (13), we see that, to the approximation con-'
sidered, {l~0. This means that the denominator of formula (8}
practically reduces to unity, which considerably simplifies this
formula. '

~ An interesting fealure of the free energy for a mixture
of molecules 1s that it does not reduce to the expression for a
single species if the different kinds of ﬁolecules are identified, .
Take e the simple*case of a_nmixture of two species of molecules
in the ideal gas state. Ve have . lf/’—



oy
BG=-Nllogzl-NalogZZ+zi 1ogNii

If we identify the molecules*Zl = 2, = 2, the two first terms re-
duce to the expected form - (N, + NZ) log Z, but the last cne is
different from log (Nl + Na)l This "Gibbs paradox" shows how
essential it is fdr a consistent treatment of systems of various
kinds of elements that these elements be distinguished bty dis-
gontinuous criteria. Of course, the selection of those marks
which will be used to distinguish different species is a matter

~of convention, to be decided according to the circumstances of the
concrete problem at hand. Thus," in ordinary chemical reactions,
isotopes must be treated as identlcal elements, wherecas in questions
of isotcpe separation they will naturally be distinguished into -
different species ty taking into consideration the mass differences

| . wWhich are neglected in principle for the definition of chemical
species,

L. Characteristic functions invclving the temperature.

In the preceding section, we have chosen as independent
variables, besides the temperature , the pressure and the numbers
of molecules: we have secn that the corresponding characteristic
function is the free energy G(®, p, N) in the sense of Gibbs. Always
keeping the temperature as the independent thermal parameter, we
have in principle 3 other possible combinations for the mechanical
and chemical variables, according as we choodae the volume instcad
of the pressure and the chemical potentials instead of the numbers
of molecules. It is easy to ccnstruct the characteristic functicns
for all these cases, by applying the suitable Legendre transforma-
tionse To begin with, we can eliminate the choice of 9, p,'g as
independent variatles, for the characteristic function would then _
tecome G - Z N f,l, i.c. by (15), identically zero. There ac-
cordingly re&ain three possibilitiles, viz.*®

;-Egg—fﬁnction £} in (26) has a different meaning from the function
denoted by the same letter in section 5« Henceforth, 0 will always
denote the function defined in (16). _ -



O
F (8, v, N) =%"N1'€i_-—pv‘ (16)
(e, vS) =-pvV
The property of being a characteristic function is expres-
scd in the three cases by similar equations:
dG=-,$de+Vdp+§: Qs AW, | |
daF -sae-pdv=+§;gidni - an
afl= - Sd @, - pdv - ; N, a€

Thus wee sece that the chemical potentials can be defined by

ar_&L) e, v;i‘@ } - (18)
just as well as by (1) . On the other hand we have :

¥, = - (28 29 a9
_ 2% 94/ 8, V3 {(S }

“The statistical deflnitiqns of the characteristic func-
tions {1, F,G, are likewise quite parallel: the present common
feature of teing simply related to the normalization factors of the
respective statistical distributions. The‘definition of {)is in fact

]

i b . '
e = Wr— ¢ (20

NiNZ"‘ 2 J

wilere the Hamiltonian is cxpressed in terms of the volume as the
external mechanical variable; the proof is immediately obtained* by
computing the differential of f% with respect to the independent
variables @, V -and the“% 'Se From (20) and (16) we derive for the
function ¥ the equation -

RS L) H (P 5V)
-gF E ' AR 11/ + NlNZ... -

e’ a

. HNN,eee  (21)

- The 51tuation is very similar to the above discussion of equation
(11), but there we had chosen the pressure as independent variable,

which eventually led to the result that the other characteristic
function.f).defined by (ll) vanishes. . _ y.
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if we neglect the fluctudtions of the numbers Ni around theiy
avcrages Vi this cxpr0931on reduces to

-ﬁI l ) "'B H(PN—' ﬁ' «“n e ; V)
e . = e 172 AL == = 5.
1IN, 1 J[ , Nyls eee (22)

N
Now, the aorrespoqdi;; rigorous and approximate expressions for
‘the funetion G are the same as those for F, cxcept that the Hamil-
tonian must now be expressed in teirms of p. This corresponds, for
the macroscopic quantities, to the passage from the “energy" to the
"enthalpy" of the system. From thc atomlstic point of v:ew, we
nave : e LA
B (P; P) H (P' V) + PV . . (23)

T o
the physical meani ng of this r°lation-1s that 1n this passage we’
change the defirition of the mechanical system consideredi In fact
if the volume is given, the Hamiltonian is simply the energy of the
system of molecules enclosed in a fixed containers If the pressure
is given, we must imagine that, for instance, one wall of the conw
tainer is a rwovable piston, upon which-the external pressurc is
exerted: this picton is now part of the system and contributes
a term pV to the Hamiltonian (where V is now regarded as a function
of p and the other independent macroscopic variablese) '



