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The theory of quantum critical phenomena is used and extended to
study some current many-body problems in condensed matter
physics. Renormalization group concepts are applied to strongly correlated
electronic materials which are close to a zero temperature instability. These
systems have enhanced effective masses and susceptibllity. Scaling ldeas are
developed to obtain the exponents which govern the critical behavior of these
quantities in terms of the usual critlcal exponents assoclated with a zero
temperature phase transition. We show the exlistence of a new energy scale,
related to the quantum nature of the many-body I1instability, which can be
generally associated with the setting in of Fermi-liquid behavior with
decreasing temperature in strongly interacting electronic systems. We use
these ideas to investligate the Kondo lattice problem wh;éh provides a model to
describe heavy fermion systems. The usefulness of the .scaling approach ls
illustrated by applying it to a well studied heavy fermion. We introduce a
scaling theory of the Mott transition with speclal emphasis on charge
fluctuation effects. It leads us to distinguish between the thermal mass, as
cbtained from the linear term of the temperature dependent specific heat, from
the optical mass describing the effect of interactions on the conductivity and
which signals the locallzation transition. Finally we discuss briefly how
disorder c¢an be included in this approcach and how 1t should affect our

results.
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1.1 QUANTUM PHASE TRANSITIONS

1.1.1 INTRODUCTION

Quantum phase transitions distinctively from temperature-driven
eritical phenomena occur due to a competition between different parameters
describing the baslic Iinteractions of the systeml'z. They have as a speciflc
feature the quantum character of the critical fluctuations. Besides at zero
température time plays a crucial and fundamental role, the static propertles
being coupled to the dynamics. In this ré.port we will be mainly interested in
quantum phase transitions which occur in strongly correlated electronic
materials and how scalling concepts can be useful to understand the properties

<
of these many-body systemsi. A gimilar approach has recently been applied to
the case of interacting bosons3. However the fermionic problem has its own
idiosyncrasies and difficulties. For example there is no natural order
parameter associated with the localization transition in the electronic case
while bosons at zero temperature are elther locallzed or superfluid and the

superfluid order parameter can then be used to distinguish between both

phases. We shall be specifically concerned here with heavy-fermion
6,7,8

materialsq' and the highly correlated electron gas The former are
electronlc systems with unstable f-shell elements which are close to a
magnetic instability and have a huge thermal effective mass. The latter are
characterized by their proximity to a metal-insulator transition induced by

electronic correlations. In section 1 we introduce the main ideas and the
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scaling concepts which are used in this work. For thls purpose wé conslder the
simplest model exhibiting a quantum phase transitlon. In section 2 the heavy
fermion problem is introduced and a scaling theory bearlng in the competition
between magnetism and Kondo effect is developed. The theory ls appllied to a
well studied heavy fermion material allowing to fully appreciate 1t’s
usefulness and also limitations. Finmally in section 3 the scaling approach is
used to describe the Mott transition under the assumption that at zero
temperature this is a continuous transition. Different approximations to the
Hubbard model are examined from the point of view of the theory of quantum
critical phenomena resulting in a better understanding of thelr nature. The
exact solution of the Hubbard model in one dimension combines with scaling to
provide a new perspective to the problem of correlated e%etronic systems.

L
The renormalization group {RG) provides the appropriate framework to

describe quantum critlcal phenomena The concepts of <Trossover, unstable
fixed points, attractors, flow in parameter space and relevant or irrelevant
fields turn out to be extremely useful also to describe the physical behavior
of strongly correlated many body systems as we will show here. The
renormalization group is particularly useful Iin cases where the phase
transition is not clearly assoclated with an order parameter like In the case
of the metal-insulator transition due to correlation56 (Mott transition). It
turns out that the flow of the RG equatlions to the different attractors is
sometimes sufficient to characterize the metallic or insulating phases with no

need of considering explicitly an order parameter11

Although the notlon of crossover had an early application in the
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single impurity Kondo problem, which dealt with the formatioh. of a local
magnetic moment 1ﬁ a metal, we show it turns out to be extremely relevant also
for the Kondo lattice In spite of the lattlice translation invariance of thils
system. In this case it 1s associated with a new energy scale and with the
concept of coherence which marks the onset of the Ferml liquid regime in dense
Kondo systems. The scaling approach provides a simple and clear interpretation
of the concept of coherence. This notion underllies most of the physics of
heavy fermions and is very difficult to capture within usual many-body
treatments which are generally restricted to a mean-field level.

The scaling properties of a system close to a quantum phase
transition, can be derived considering an expansion of the RG equations near
the unstable zero temperature fixed peoint governing this;transition. The set

4
of critical exponents associated with this fixed point characterize the
universality class of the transition. Besides specifylng the divergence of
the correlation length, susceptibility, the critical slowing down, etec., for a
many-body system these exponents also characterize the critical behavlor of
the compressibilltylz, the conductivity ma5513 and the enhancement of the
thermal ma9512 close to the zero temperature instability. In spite of the wide
application of scaling ideas in condensed matter, only recently they have been
systematically used in the study of strongly correlated electronic

materia153’4’8

like heavy fermions and Mott insulators. However before we
describe how these ideas can be useful to understand the physics of these
systems, we shall give a brief introduction to the scaling theory at a zero

temperature phase transition using the simplest model borrowed from the theory
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of localized magnetism.

1.2 RENORMALIZATION GROUP AND SCALING RELATIONS

Let us consider the simplest model which exhibits a quantum phase
transition, namely the one-dimensional Ising model in a transverse magnetlc

fie1a’* 10,

H=-1 Z s’s?,, - h'¥ st -H Z s} (1.1)

141

where J is the nearest-neighbor coupling, h the transverse field and H the
uniform magnetic field in the z-directlion conjugate to the order parameter

<S*>. Let us consider initially the case H = 0. Physically we expect that:

i} T=0, h=0. There 1ls long range magnhetic order with an order
parameter <s*> # 0.
ii} T=0, h = w. The transverse fleld destroys the long range magnetic

order and <S*> = 0.

Then we expect that at a critical value of the ratio (h/J) there is
a zeroc temperature phase transition from an ordered state with <™ # 0 to a

disordered state, l1.e. to a state with a wvanishing order parameter,
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<S%> = 0. From the RG point of view this phase transition at (h/J} = {h/J)c

is associated with an unstable =zero temperature f{ixed point' at
[h/J)c. Schematically we have:
ORDERED DISORDERED ATTRACTOR OF
<S> #0 <> =0 THE DISORDERED
F PHASE
0 ih}ch vl o
(PURE ISING UNSTABLE
ATTRACTOR) FIXED
PDINT

Associated with the unstable fixed point F we have a set of critical

exponents whilch characterize the universality class ofﬁthe transition. The

stable fixed points at (h/J) = 0 and (h/J)

ordered and disordered phases respectively.

L

w , are the attractors of the

-

1.3 SCALING PROPERTIES CLOSE TO A ZERQO TEMPERATURE FIXED POINT

Let us consider how the parameters of the Hamiltonian (1) scale,

under a length scale transformation by a facter b,

temperature unstable fixed point ~. Let us define g = I[Eg - [g] | which
c

measures the distance to the critical point in parameter space.

14

close to the zerco

J

We have:
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e
J=bYJ or h =b *h
g = bag . ) {1.2)
H = b'H
since (h/J)’ = (h/J) at the fixed point and where we have introduced three

exponents vy, a and x. The prime refers to the quantities renormalized under
the length scale transformation. The ground state energy density (singular

part) can be written as:
E. = Jf(g,H/]) (1.3)

where f(x,y) 1s a scaling function. The new energy deﬂsity and correlation

length are:

E =b'E = J'f(g’ H'/J)
| ]

(1.4)
& = &g /) =b ‘&g, WD)
Using the relations (1.2) in (1.4) we get:
E (g,H/J)
s . = b-(d%yl £(b .g,b(x+y)H/J)
(1.5}

£(g,H/J) = b6, b H )

Now since b is arbitrary we make
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or

=1l/a

to obtailn

E_- - g(doyl/af[ H/J ]

J P o{xey)/a
) & (1.6)
_ _-1/a H/J
£=¢ E[1' Ixty)/a]
L g

!
4
from where we Jidentify the correlation length exponent v = 1/a and the

exponent A = {x+y)/a = v(x+y). We can define an expon®nt o« through the

m

singularity of the ground state energy density, i.e. the relation J—' =g%,

to get:

2 -a=vid+y) (1.7)

This is a modified hyperscaling relation which relates the critical exponents
vy and a to the dimenslonality of the system d and to the exponent y which
renormalizes the coupling J at the fixed point. It differs from the usual

hyperscaling relation of finite temperature critical phenomena in a very
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fundamental way since d 1is replaced by d + y. We shall réturn to this
important point later.

The magnetization m = <S°> is defined by:
m=- |6E/oH| o |g|®
o H=0

which defines the exponent B£.

Deriving Eq. (1.6) we get:

aE
m= - [aHl] g(d+y)/ag-(x+y)faf, (1,0) « IgIV(d-x)
H=0

consequently _ .

The susceptibility is defined by

a°e
_[ s

-7
—| =« |8
8H2 ]H=0

z:

which in turn defines the exponent 7.
Taking the second derivative of Eq. (1.6) and comparing it with the

equation above defining ¥ , we find
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y =vi(i2x + y - d) (9)

Equation (1.7), (1.8) and (1.9) yleld the standard scaling relation15

a+ 28+ 7y =22 {1.10)

Finally defining the exponent § through in m « I-ll/6 at g = 0 we get:

8§ =(x +y)/d - x)

and the scaling law

8 = A/B (1.11)

with A=8 + 7.

1.4 THE SPECIAL ROLE OF TIME AND THE DYNAMIC EXPONENT

Close to the zero temperature fixed point time T scales as:
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which defines the dynamlic exponent z. The quantum character of the critlcal
fluctuaticns allows us to relate z to the exponent y governing the scaling of
the coupling constant at the unstable fixed peoint as we now show,.
We can write for the critical fluctuations in J and T
Ay =1b7AJ
AT’ = b°At
Now we want the uncertainty relation AJAr = h to be a sca&ing invariant, i.e.:
%

arar =¥ a2z h -

and consequently we must have4:

and the modified hyperscaling relatlion

2 - a=vi(d+ z) {1.12)
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-llf'

Note +that the dimension d in this relation 1is replaced by
d . =d +z which plays the role of an ellectine dimenslaonality. This shift
in the dimensionality has important consequences:
i} It implies that the exponents of the quantum system are the same of
the corresponding classical one in d“T =d + z dimensionsl. For example the
d =1 Ising model in transverse field has critical exponentss, assocliated
with the zero temperature fixed point F, with values: = 1/8, a=0, v =1,
¥ = 1.75. We can immediately identify these exponents with the exact results
cbtained by Onsager for the classical Ising model 1n two dimensfonss. So in
this case we expect to find z =1 which is indeed confirmed by exact
calculations16
fi} Since cle!_f is increased it may reach the upper;critical diménsion in
which case the exponents assoclated with the T = 0‘ fixed polnt assume
classical (mean fleld) values. This is actually what happens for some of the

phase transitions studied in this report.

1.5 THE CORRELATION FUNCTION AT T = 0O

The fluctuation—dissipatlonl7 theorem gives us the following
relation between the wave-vector dependent static susceptibility x(q) and the

dynamic gq-dependent correlation functlon S(q,w) at T = 0.
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do S(q,w)

xlq) =} 5> — | (;313)

The singularity of x(q = 0) « |g|'7 defines the exponent . On the

other
hand the static correlation function is given by:
s(q) = j dwS (q,©) (1.14)
and S(q = 0) x |g|™"s which defines 7.
For {inite tempenatunes T we have x.T = S{q = 0) and ¢ = 7, This

is not the case however for T = 0. Let us consider the scaling ansatz for

S{q,w) which defines the exponent =:

s(q,w) = £ D(qE, wEZ) . (1.15)

taking this scaling expression in Eqs. (1.13) and (1.14) we get17 the

relations

1.={2-z—n)v=:r-vz {1.16)

and 28 = v(d+z-2+n) at 2zero temperature while for T # 0 we have

¥, =¥ = (2-w)v. Note that Eq. (1.15) implies G(r) = 1

rd+z-2¥ﬂ g({r/€) since

4]
—
e

[}
Q
n

I d?G(r]. Comparing with the finite temperature case we see agaln
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that d + 2z plays the role of an effective dimension in the quantum

transitions.

1.5 EXTENSION TC FINITE TEMPERATURES

We would 1like to extend this approach for small but finite
temperatures. Since temperature 1is a parameter it 1s renormalized by the
characteristic energy or coupling constant at the zero temperature fixed

point. We then have

TV _ .7(T / '
[j] = b [j] ty (1.17)

Formally we may think of the renormalized temperature as a "fielgd"
which renormalizes under a scale transformation according to Eq. (1.7). It is
interesting here to consider three possibillties4 depending on the value

assumed by the exponent y.

)y>0

In this case the flow of the renormalization group equations is away from
the zero temperature fixed point. In the renormalization group language
we say temperature is a "relevant field". This is the case for the Ising

model in a transverse fileld (y =2z = 1) and also for the many-body
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problemg we are concerned here.

iiY y=0

This is the marginal case generally assocliated with the collapse of a
finlte temperature fixed point and the one at zero temperature. Such a
situation occurs for example in the anlsotropic Heisenberg ferromagnet in

two dimensions at the isotropic fixed pointls.

1fi) y < 0

This is a peculiar situation which may occur in random magnetic systems.
It leads to dimensional reduction (duT < d) and glves rise to anomalous
critical slowing down for the finite temperature trﬁnsition controlled by

4

the T = 0 fixed point. This is the case of the Ising ferromagnet in a

random fie1d19’20

for d > 2. -
Let us now obtain how temperature will appear Iin the scaling
functions. Returning to Eq. (1.2) and with the additional renormalization

equation for temperature Eq. (1.17) we get for example for the temperature

dependent correlation length:

-vf[H/J T/J ]
|g|””

where f(x,y) is a scaling function.

For the free energy density we find:
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—15_
£ = |g|2‘°‘f5[ = T’;’,y] (1.18)
jgl” g |

where A = B + . We will find out convenient to define a crossover exponent

¢ = vy = vz.

1.6 THE CROSSOVER LINE

Let us consider the one dimensional Ising model in a transverse
field and make an expansion of the RG equations close to the zero temperature
unstable fixed point. We get

n+l

K =b K -K) +K
n [+ c

where Ko = (h/J) and Kc = (h/J)c is the fixed point. For finite temperatures

this equation can be generalized to lowest order in (T/J} and is given by:

K =K +b (K -K)~T
n+l c n [] n
(1.19)
T =0T
n

n+l

where T = (T/J). These equations can be iterated in the following uay21
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a
Kl = Kc +b (Ko - Kc) - TB.
(1.20)
— .V
T1 =b To
and
— . - -—
Kz = Kc +b (xi Kc) 'l‘1
{1.21)
S /
Tz = b T1

Using Eq. (1.20) the equation for Kz can be rewritten as:

= a a - - - S/
K —Kc+b[xu+b(l{o K)-T, Kc] T .

= 2a - _ S
K, =K +b (K K ) l:f"r0 b'T,
a. .y a ¥
K, =K +b®K -x)- ELIUED) o
[ -3 {ba_by)
K =K +b2"[x-x- 1 T]+;b2"‘r
2 c 0 c ba_by ) ba_by 0

repeating the iteration n times we get:

= na _ _ ny
Kn = Kh + b (Ko Kc aoTB) + aob TD



where a_ = 1/(b*-b”), K = h/J and T, = T/J. Taking t=1" we finélly obtain:

0

K, =K + &K ~K -aT)+altT (1.22)

Since ¢ 1s arbitrary we repeat the scaling procedure until
t‘(xo -K -aT)=1

and this length scale deflnes a correlation length

1 1

o " -
1/a v
(KK -a T ) [ h-n(T) b

-

with the correlation length exponent v = 1/a and hc(T) = hc + aoT.
Substituting the expression for £ into Eq. (1.22) we find that at

length scale &,

KE = KC +1+ a, L .
- - (1%
Notlice that if T—v << 1 , K6 is essentlally a cbnstant independent of
(h-h 1"Y

> 1, K

acquires a temperature
[h-h 1Y €
G

temperature. On the other for
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dependence. The same holds for a scaling function f(K_.) whenever KE appears as

3

an argument.

Consequently the line

Tc = (h - hc)¢ with ¢ =vy = vz (1.23)

represents a crossover line which separates two different regimes for the
behavior of K& or of a scaling function f(KE)' in the non-critical part of the
phase diagram, i.e for (h/J) > (h/J)c. Furthermore if there is a critical
line in the h X T phase diagram, as in the two-dimensional Ising model in a
transverse field for (h/J) < (h/J)C, this critical Iiﬂe is governed by the
aame exponent ¢ of the crossover line. This assertion is‘the content of the so
called generalized scaling hypothesis, which plays a fundamental role In the
analysis of the problems discussed in this paperzz. This hypothesis 1s well
stablished in experiments and holds also for disordered systemszs,

The existence of a crossover line, assoclated with a =zero
temperature fixed point, in the non-critical region of the phase dlagram, 1s a
general feature in quantum systems. What is the physical significance of this
crossover line, since there 1s ne phase transition occurring along
it? Consider a physical quantity X written in the scale invariant form as
X = Egl-xf(T/Tc) where TC = Iglvy and g = 0 defines the critical
point. Deriving with respect to temperature yields 8X/aT = |gl™* "Yf‘(t) where

f*'(t) is the derivative of the scaling function f(t) with respect to t = T/Tc.
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If we equate 8X/8T to zero to find the extrema of the quaniity X, we get
f‘(t) = 0, beside trivial roots. This equation will have a solution let’'s say
for tll = w, where w is a constant. This yields Tn = W Tc = nglvy implying
that the extrema of the quantity X cccur along the crossover line. The same
holds for inflexlon points. Consequently any anomaly on physical quantlties,
like maxima for example, in the non-critlical region of the phase dlagram will
occur along the crossover line making this line accessible experimentally.
Although the constant w may depend on the particular physical quantity, as
expected for a crossover effect, the relevant, universal information is
contained in the crossover exponent ¢ = vy which is determined by the
universality class of the transition.

An interesting feature of the scaling approachﬂis that it allows to

«

determine the singular behavior of the physical quantitles of interest, as a
function of temperature for example, just at criticality. *Let us consider the
uniform susceptibility of the Ising model in a transverse flield as It
approaches the critical point at (h/J)c or |g|l = 0, T = 0, from finite
temperatures, The general scaling form for the susceptlbllity Iis
x = |g|-7f(T/Tc] with Tc o Iglvz. In order to have a non trivial result for x»
at the critical point, we require that the dependence on |g| cancels out. For
this purpose the scaling function f(T/Tc) is expanded as f(T/Tc) & (TVTc}x
such that x = lgl [T/T 1" = g T 1T/181Y%1% or x = 1gl” ") Finally
from the condition that the dependence on |gl cancels we determine the
exponent x. This condition is, ¥ + vzx = 0, which ylelds x = -y/vz , implying

T—w/vz

that the susceptibility diverges as x = , at the critlcal point
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lgl = 0 , with decreasing temperature.

In the next sections we use the ideas introduced above to study
strongly correlated electronic materials. In splte of the strong interactions
it turns out, as evidenced by experiments, that at sufficlently low
temperatures and above some lower critical dimension these systems behave as
Fermi 1liquids with renormalized parameters. More speciflcally this Fermi
liquid regime is characterized by enhanced effective mass and susceptlibility
due to the proximity of a zero temperature phase transition. We use scallng
arguments to obtain how the exponents, which govern the enhancement of these
quantities, are related to the usual exponents associated with a =zero
temperature fixed point and which were Introduced above. As expected the
dynamic exponent z also plays a special role in these pany-body systems and

<
shows up explicitly in some important thermodynamic quantities. We study in
section 2 the Konde lattice problem which is a useful model to describe heavy
fermion materials. We illustrate the usefulness of the scaling theory by
applying it to the well studied heavy fermion material CeRu2512. Next, 1n
section 3, we start discussing a scaling theory for the metal-insulator
transition due to correlations ( Mott transition ) giving speclal attention to
charge fluctuation effects, Finally we briefly discuss how the presence of

disorder will modify the results we have cbtained.



CBPF-MO-001/92

2.1 HEAVY FERMIONS

Heavy fermlons are metalllc systems containing elements with
unstable f-shells like Ce, Yb and U. They are characterized by a huge linear
temperature dependent term in the specific heat which 1s attributed to
quasiparticles wlth large effective masseszq. Heavy fermions can attain
different ground states: maghetic, quite generally with long range
antiferromagnetic order, superconductor or a Fermi liquid with renormalized
parameterszs. Recent experiments suggest still another possibility where the
system reaches a non-magnetic, insulating ground statezs. From the magnetic
point of view heavy fermions present at sufficiently high temperatures
(T > Tc } a Curle-Welss susceptibility indicating; the existence of
interacting local moments on the f-shells. For T << 'I‘c the susceptibility
becomes Pauli-like, i.e., temperature lndependent but with an enhanced value
comparable to that of the thermal masszs. The characteristic temperature Tc is
much lower than the Fermi temperature expected from band-structure
calculations.

A nailve interpretation of the behavior of heavy-fermions in terms of
a large density of states, assoclated with the f-electrons at the Fermi
surface, is insufficlient to explain the propertles of these systems. This is
dramatically illustrated by relaxation experiments which, within this simple
model, yleld values for the density states which are lnconslistent with those
obtained by thermodynamic measurement527. In fact the physics of the heavy
fermions is dominated by many-body effecfs as evidenced for example by the

5

proximity of these materials to a magnetlic instabllity".

The characteristic temperature Tc assoclated, for example, with the
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crossover In the magnetic susceptibllity provides a clear evidence for the
importance of many-body effects as will become clear below. This crossover
from a high temperature local moment behavior, as indicated by the Curie-Weiss
temperature dependence of the susceptlbllity, to a Fermi-liquid, 1i.e.
temperature independent behavior at low temperatures, is reminiscent of the
Kondo effect In dilute alloys. This has led to some confusion on the nature of
the energy scale which is contained in Tc resulting in a wrong ldentification
of this characteristic temperature with the single-ion Kondo temperature TK
( see Fig.1 ). If one looks for other physical properties of heavy fermions,
like the resistivity as a function temperature, it becomes clear that a new
low energy scale, related to the interaction between the f-electrons, Iis
coming into action and 1s intrinsically distinet from that of the single ion
4

5,25

Kondo effect This is illustrated in the resistivity versus temperature

curve of a non-magnetic heavy fermion, like CeCu showrd in Fig.2. At high

6 *
temperatures the resistivity is metallic increasing with temperature. As the
temperature is lowered the resistivity rises with a logarithmic behavior which
can be described as a Kondo effect due to the f-moments scattering the
conduction electrons incoherently. A further decrease in temperature does not
lead to a saturation of the resistivity as In the dilute alloy Kondo
effect. On the contrary the resistivity drops due to the fact that the
interacting f moments are displayed on a translation Iinvarlant lattice
resulting in a coherent scattering of the conduction electrons. The
resistivity goes to zero with a T? behavior characteristic of an interacting
Fermi~liquid. The drop in the resistivity at low temperatures is inextricably

linked with the concept of coherence. 1t marks the onset of the interactions

between the f-electrons, periodically displayed on a lattice, glving rlise to a
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physical behavior which is completely distinct from that which.occurs in the
single-impurity Kondo case where translation invariance is lost. Concomitantly
to the decrease of the resistivity and the appearance of a T2 term, one
observes the crossover in the susceptibility which we described above. From
the magnetic point of view coherence manifests as a passage from local moment
to Pauli-like behavior as the system enters a renormalized Fermi-liquid
regime. The characterlistic or coherence lemperature Tc provides the energy
scale in which this crossover occurs and 1s a truly many-body effects. If we
neglect the occurrence of superconductivity the physics of heavy fermions,
contained in the energy scale given by Tc , may be understood as a direct
consequence of the competition between the Kondo effect, which acts to
reinforce a non-magnetic ground state and the Indirect irteraction betﬁeen the
5

f-moments, medlated by the conduction electrons, which aims to establish long
range magnetic orderzs. -

The essence of thlis competition is contained in the so-called Kondo
lattice hamiltonlan which provides a useful model to describe the magnetic
degrees of freedom of the heavy fermion problemzs. This hamiltonian can be

written as:

_ + =2

H = Z Ekcmcm + J z gi.o*i (2.1)
k,o i

where the first term describes a band of conduction electrons of width W and

the second the coupling between the conduction electrons of spin # and the

local moments gl assocliated with the f-electrons which are displayed on the

sltes 1 of a lattice.
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This hamiltonian has been studled by different methodsza'zg'lo.

The
general picture which emerges 1s that at zero temperature, depending on the
ratio (J/W), we may have a non-magnetic ground state ( (J/W) > (.I/H]c } or a
magnetic ground state ( {(J/W < (J/w)c ). Here (J/H)c is the critical value of
the ratlo between the coupling J and the bandwidth W at which the zero
temperature transition occurszs. Within the renormalization group
approachg’10 this T=0 transition ls assoclated with an unstable fixed point
occurring at (J/H]c ( see Fig.1 ).

We can use the scaling concepts which were developéd'in the last

section to obtain the scaling expressions of the relevant physlical quantities

close to the zero temperature unstable fixed point at (J/w)c. We get5

£ a |35 £ IT/T B/H ]

% @ |77 £ IT/T W/H ]

moayel/Ta |J|z-u-zvz

f [T/T W/H ] {2.2)
c c e

T |37V £ IT/T WA ]

§e |J|7 £ [T/T ,WH ]

where f, X M stand for the singular part of the free energy denslity, the

order parameter susceptibility and the thermal mass obtained from the linear
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term of the specific heat respectlvely. <t is the characteristic relaxation
time which governs the c¢ritical slowing down and § the correlation length
measured by neutron scattering. Also T = 1317 Hc=|J|A and
J= (J/H]—(J/H)c measures the distance to the critical point in parameter
space. Since heavy fermions are generally close to an antiferromagnetic
1nstab111ty25, the order parameter is the staggered magnetization m which at
zero temperature scales as m, o Ijls. Consequently in the equations above, H
is a staggered field conjugated to the order parameter and X, @ staggered
susceptibility. The exponents a«, A =8 + ¥, v and z are assoclated with the
zero temperature fixed point and obey standard scaling relations 1llke
o+ 28 + ¥y =2, However, as shown in the previous section, because we are
dealing with a zero temperature Instabillty the hyperscaling relation is -
modified and is given by 2-a = v(d+z). ‘

In the argument of the scaling functions temperature appears scaled

vz

by the characteristic temperature T = | 3| Since the scaling functions

have 1in general different asymptotic behavior for (T/Tc) > 1 and
(T/Tc) << 1, the line T = |j|vz , In the non-critical part of the (T/W)
versus (J/W) phase dlagram, represents a crossover line between different
regimes. The arguments summarized in the beginning of this section concerning
the physics of heavy fermions and In particular the behavior of the
susceptibility and the resistivity have led us to 1identify this crossover
temperature or line with the coherence temperature associated with the onset
with decreasing temperature of the Fermi liquid or dense Kondo regime in these
materials. This crossover temperature clearly represents a new energy scale

much lower than the single-ion Kondo temperature which is alsoc shown in the

phase dlagram of Fig.l1l. Besides the collective nature of this crossover or
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coherence line is clearly indlcated by the fact that, accerding to the
generallized scaling hypothesiszz, the critical Neel line in the critlcal
region of the phase diagram ( J < Jc ) is governed by the same exponent of the

crossover line , i.e. Th o l,jl')z

{ see Fig.1 ). The identification of the
crossover line with the coherence transition showing unambiguously the
existence of a new low energy scale Tc , different from that of the single
impurity problem TK , represents an achlevement of the scaling approach. The
critical Neel line in Fig.l gives the Neel temperature T“ for a glven ratlo
(J/W) smaller than the critical one. Since temperature is a relevant field
the exponents determining the singularities at the finite temperature
antiferromagnetic instability along the Neel line are different from those
associated with the zero temperature fixed point at (J/H?F

The discussions above imply that in establishing the Fermi-liquid
regime below 'I'c interactions between the moments play *an important role.
Consequently the nature of the screening, which leads te the observed Fermi
liquid behavior for T « Tc , i1s in the lattlce problem quite distinct from
that which occurs in the single impurity Kondo effectao.

Since for T << Tc, i.e., below the coherence line, the system
attains a Fermi liquid regime as evidenced by experiments, the scaling
functions f(T/Tc) in Eqs. (2.2) have Sommerfeld-like expansions in this region
of the phase diagram, i.e. f( T/T << 1) &1 + a(T/T)* + b(/T ) + ...
Using such an expansion for the free energy we have obtalned the scaling
expression of the thermal mass mT , defined as the coefficient of the linear
term of the specific heat, which is given in Eq. (2a). This thermal mass is

meaningful only for T << 'I‘c when the system has reached a truly Fermi-llquid

regime. Notice that if 2-e-2vz < 0, the thermal mass will be enhanced as a
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consequence of the proximity te the magnetic instability. A similar
enhancement occurs for the limiting Paulli-like uniform susceptibllity as we
discuss below.

Further insight into the significance of the crossover llne and the
asymptotic limits of the scaling functions can be obtained examinlng the
uniform magnetic susceptibility. For this purpose we have to introduce a new
exponent ¢ which controls the renormalization of the uniform magnetic fleld h

close to the zero temperature fixed point. We have
(h/J)' = b7 (h/J) (2.3)

and the scaling form of the magnetic field dependent free energy density is

given by:
£ |3¥% £ 1 /151% ) (2.9

where ¢h = v(e+z). The uniform susceptibility X, is given by

x, = -8°f/80° o |J|*%

%u £ (1/T ,/h] with h_ a [§|%. The temperature
independent or Pauli-like behavior of the uniform low field susceptibility 2,
for T << T, implies that in the equation above fc( T/T << 1 ) = constant such
that x, « 13)>%2s. For 2-«-2¢, < O this uniform susceptibility is enhanced
as Indeed 1gs found experimentallyzs. On the other hand local moment or
Curie-Weiss behavior for T >> Tc implies the following asymptotic behavior for
the susceptibility scaling function: fc( T/'I‘c > 1 ) ~ (T.t"T.:}‘-1 such that in

3 a-u-z¢h+Vz
this 1limit X, © l—i-——f————— . Since the uniform susceptibility In this



CBPF-M0-001/92

-28-

high temperature regime ( T » Tc ) is related to the magnitudé of the local
moments u through X, pz/T we conclude, by comparing with the previous
expression for Xy v that even in this regime the moments are renormalized by
the interactions. A useful expression for the uniform susceptibility, which

2

interpolates between the two regimes, 1is given by Xy © T:-l'l‘ with
[ +]

2 2-a—2¢h+vz vz
po o |J] and T = 1317° .

2.2 THE KONDOQ LATTICE PHASE DIAGRAM AND THE INFLUENCE OF PRESSURE

How can we explore the phase diagram of the Héndo lattice? Can we
verify the scaling predictions and obtaln the critical exponents associated
with the zero temperature uhstable fixed point at (J/'n')c ?. It 1s clear that a
given physical system corresponds to a fixed wvalue of the ratlo
(J/W). Fortunately this ratioc depends also on the volume of the system and
can be varied by applying external pressure or chemical pressure what Iis
achieved by doping convenlently. This allows to move along the phase diagram
of the Konde lattice and provides a possibility of extracting the critical
exponents from experimental data. The volume dependence of the ratio (J/W) is
in general modeled by an exponential volume .dependence
(JW) = (J/W)oexp[-q(V~Vo)/V0] where VO and (J/H)o are the equilibrium values
of the volume and of the ratic (J/W) respectively and q a pau‘ameter31

Let us conslder a physical quantity X whose critical behavior is
characterized by the exponent x, i.e. X « |j|-x. We can define a Gruneisen

parameter associated with the physical quantity X through5
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_ dLnX _ ~qx
T = qmv = =0/ s, (2.5)

This equation shows that if the system is close tc the magnetic Instability
such that (J/‘u']0 ~ (.J/H)c the Gruneisen parameter will become very
large. This is indeed the case in heavy fermions where the large Gruneisen
parameters lead to an extreme sensitlivity of these systems to volume changes
or external applied pressuresaz. Introducing the compresslbillity
k = (-1/V)8V/8P we can express the Grunelsen parameters explicitlx.in terms of

variation with respect to external pressure P. We get

_ 8LnX
I"x = ( 1'/K) —'8T

It turns out to be convenient to consider the ekpansion of Ln X(P)

for small external pressures:

8LnX
LX) = Lak(0) + T, P ¢ ouﬁ (2.6)
from which we find
Ln(X(P}/X(0)] » - x (xT) P . @n

where Ko is the equilibrium compressibility and I' a property independent
Gruneisen parameter defined by I' = |8Lnj/dLnV| such that r,=-—=xr ( x>0 ).
The analysis above shows that by comparing the Grunelsen parameters

of different physical quantities we can obtaln relations between the exponents
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governing thelr critical behavior. Furthermore for small appiied pressures
the logarithm of a given quantity, normalized by it’s equilibrium ( =zero
pressure ) value varies linearly with pressure, with a coefficient that is
directly related to the  exponent characterizing it’s critical

behavior5 (Eq. 2.7 ).

2.3 QUANTUM SCALING IN CeRu2512

The system CeRuzsi2 ls a moderate heavy fermion33 with a ¥y value
glven by ¥ 2 360mJ/mole K?. This material has been extensively studied by

33,35

neutron scatteringa4. Magnet1033 and resistivity mgasurements were done

<
for different pressures and external magnetic fields. The neutron scattering
measurement534 indicate that Iin CeRuasi2 the magnetic %torrelation lengths
( for the ab and ¢ directlions ) increase with decreasing temperature before
saturating at a constant value for temperatures smaller than a characteristlc
temperature. These results show that this system does not order magnetically
down to the lowest temperatures. The susceptibility at high temperatures has
a temperature dependence characteristic of interacting local moments i.e. a
Curie-Welss behavior. With decreasing temperature it presents a maximum at a
temperature 'I‘M before reaching a temperature Ilndependent Pauli-like behavior
at low temperatur3533 ( Fig.3 ).

Doping CeRuz‘Sl2 with Lanthanum ( La )} 1is equivalent to applying
negative pressure in this systemgs. In fact Ce1

concentration X = 7% becomes antiferromagnetic36. This is a nice illustration

La RuSi at a critical
X X 2 2

of the Kondo lattice mechanism in operatlon since magnetic ions ( Ce ) are
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being substituted by non-magnetlec lons ( La ) and magnetism is.being induced
in the system.

In Figure 4 we show the logarithm of several normalized physical
quantities measured in the system CeRu2512 as a function of pressure for small
pressuresS ( P s 8 kbars }. The expected general linear behavior given by
Eq.2.7 is observed in every case. Furthermore all the straight lines have the
same JInclination implying that the physical quantities shown there are
governed by exponents which assume the same numerlcal values within
experimental accuracy. The quantities whose pressure varlatlons are shown in

this figure are:

1) Ln[Tc(P)/Tc[O]] where Tc is the coherence tempe{ature defined by the
maximum of the low field wuniform susceptibility33 { see Fig.3 ). In
fact using the scaling expression for X, it is &asy to show ( see
section 1 ) that maxima in this quantity will occur aleng the coherence

line Tc = I,jlvz .

1/2

1i) Ln{IA(P)/A(0)]1" "} where A is the coefficlent of the T term of the

low temperature resistivity { T << Tc } and deflned by p = Py * AT® where

33,35

p. 1is the residual resistivity In the Fermi 1liquld regime at

0
T << Tc , 1.e. below the coherence line, we expect A &« T;z.

iii) Ln[hc(P)/hc(O)] where hc is the characteristic uniform magnetic field
at which the uniform differential susceptibility x = -8°f/8h° = duw/dh has
a maximum for a fixed temperature T << Tc. This maximum at hc defines a
metamagnetic-like transition32 which shows the existence of strong

antiferromagnet correlations in the Fermi liguid.

v) Ln[xh(h=hc,-THO. P=0)/xh(h=hc, T=0, P)] where xh(h=hc, T=0) 1is the
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value of the uniform differential susceptibility32 Xy = dm/dh , at the

characteristic fleld hc for T << Tc
v) Ln[xo(hﬁo, T=Tc, P=0)/x°(h=0, T=Tc, P}] where xo(hio, T=Tc] is the
value of the uniform 1low field susceptibility at the coherence
temperature33
Let us see which information on the exponents we can obtain from
these experimental results. The fact that the data of 1) and 1i) fall on the
same line just confirms the Fermi liquid nature of the state attained below
the coherence line since In this case A « ng as expected from the scaling
form of the resistivity p = p(T/Tc]. The data of i) and 1ii) falling on the
same line imply the Iimportant exponent equality ¢h = vz since the
characteristic field hc and the coherence temperature T' shift wlth pressure
at the same rate.
On the other hand the scaling form of the uniform susceptibllity
X, o |\j]2_ﬁ'¢_2“f’h f(T/Tc,h/hc), the results of iv}, v) together with the data of
1i1) and 1) falling on a unique line, imply the exponents relations
2 -q=vz with vz = ¢h
The equality 2 - a = vz shows that the exponents associated with the
zero temperature unstable fixed point of the Kondo lattice violate the
modified hyperscaling relation 2-a = v{(d+z). This in turn suggests that the
magnetic phase transition associated with this fixed point occurs above the
upper critical dimension dc for this transition,
We can extract some consequences of the empirical relations

2-w=vz-= ¢h , implied by the results contained in Fig.4, which are

independent of the particular value of these exponents. These are:
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i) First the Wilson ratio xo( T << Tc, h =20 )/mr turns. out to be a
constant independent of pressure ( this 1s due to the equality
¢h = vz ). Unfortunately the specific heat of CeRu2512 has not been
measured yet as a function of pressure to confirm this prediction.
ii) Second the empirical Kadowaki-Woods type of relationaT A o 12 or
A/wzt constant ( see Fig.5 ), where A is the coefflicient of the T2 term of
the resistivity and y « m the coefficient of the linear term of the
specific heat, 1s directly obtained from the Fermi liquid relation A « T;2
and the equality 2 - a = vz,
iii) Thirdly consider the scalling expression for the uniform magnetization
m o 9f/8h « |J|2-Mﬁh £ (T/T_,h/h ). The equality 2 - @ = ¢_ implies that
the metamagnetlc-like transition at h = hc and T <-!<‘Tc occurs always at
the same fixed value of the magnetization independent of pressure.i.e.
mn = fn(h/hc) = constant for h = hc(P]. This has intleed been verified
experimenta11y33.
iv) The amplitude of the magnetic moment obtained from the Curie-Weiss
form of the high temperature susceptibility ( T >> T ) scales as
2 2-0-2¢ +vz ¢
po o= || as we have shown before. Consequently the relation
2 —a=vyz= ¢h implies that p does not renormalize as |J| varies. In the
table below we show the limiting Pauli susceptibility and the value of the
effective moment extracted from the high temperature susceptlbllity for

two non-magnetic heavy fermions. Notice the small relative renormalization

of the moments p compared to that of the susceptibilitiles X,
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System "("3) ;25[10-3anu o1 ')

CeCu, 2.69 34

CeRuzsiz 2.42 12

Table 1. The effective moment obtalned from the
high temperature susceptibility ( x = uz/SkB[T-B) )
and the limiting Pauli susceptibility xo(T+0), for
different heavy fermions. The effective moment for

a free trivalent Ce ion is 2.54 My ( from
A.Lacerda, PhD Thesis, Universite J.Fourier,
Grenocble, 1990 ).

;
{
4

The experiments menticned above either confirm the exponents
relations we have found analyzing the data shown on Figﬁh or remain to be
checked. In any case the actual values of these critical exponents «, v, 2
etc., cannot be unambiguocusly determined from the experimental data glven in
this figure. However considering the Ising nature of the antiferromagnetic
state of doped Ceb“LaJh5512 and the fact that the uniform magnetic field
acts as an additional relevant fleld besides the staggered field, as evidenced
by the behavior of the uniform susceptibllity, has led us to suggest that the
exponents associated with the zero temperature Konde lattlice unstable fixed

peint can be identified with those of a classical tricritical points. In fact

for a tricritical point the wupper critical dimension do 3. Since

deff =d + 2, we get deff = clc even for the marginal case z = 0 in three
dimensions, supporting the idea that we are dealing here with a classical

tricritical transition with mean field exponents., Also the triceritical mean
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field value for the crossover exponent, ¢t = ¢h/vz =1, is in égreement with
the experimental results. The classical tricritical exponents38
«a=1/2, v = 1/2 together with the empirical relation 2 - a« = vz imply that
the dynamic exponent z assumes the value z = 3. This value for the dynamic
critical exponent is generally assoclated wlth ferromagnetic spin
fluctuations. These fluctuations are plausible to occur at a metamagnetlc
transition which for (J/W) = (Jf‘n')c occurs at arbitrarily low magnetic
fields. Another possibility to have z = 3 is to take into account the long
range nature of the RKKY interaction between the local moments which show a
1/r3 dependence, z being related to the exponent of this power law.

An unambiguous confirmatlon, or refutation, of these values for the
Kondo lattice critical exponents could be obtained fro? measurements of the

<

correlation length at very low temperatures ( T << Tc ) for different aphlied
pressures. Also NMR or EPR on dissoclved magnetlc impurities under applied
pressure could provide information on these exponents confirming or not the
tricritical values we have suggested. A similar analysis carrled on for CeA_l3
for pressures above 3 Kkbars and which include EPR data at different
pressure539 confirm the classical tricritical nature of the zero temperature
Kondo lattice exponents and show that this system is in the same universality
class of CeRu2812 .

As we have mentioned before Cel_xLaxRuasi2 above a critlieal
concentration x = 7% becomes antiferromagneticas. The system at the critical
concentration X i.e with (J/'--']=[J/‘n']c 1s particularly interesting. This
system does not cross the coherence line and consequently does not enter the
Ferml 1liquid regime. Besides it has a phase transition Jjust at =zero

temperature. Consequently we have here an interesting possibility of having a
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metallic system with weak disorder which does not behave as a'Fermi-liquid.
The thermodynamic properties of this system at the critical concentration can
be easily obtained from the scaling theory. Requiring that the dependence on
[j| cancels out in the thermodynamic quantities, we get for the specific heat
at criticality ( |} = 0 ): C/T = m. = T" where x = ( 2 - a - 2vz )/vz or
using the modified hyperscaling relation, x = ( d - 2 )/z . Similarly we
obtain for the uniform susceptibility at criticallty: X, = TP  where
p=(2-a- 2¢h J/vz . For small unifoerm magnetic fields xh diverges at

small fields like x = h? with q = ( 2-a-2¢ )79, .

So depending on the value
of the critical exponents we may find that the system just at criticallty does
not behave as a Fermi-liquid as characterized by the behavior of the specific

heat and susceptibllity. ;
i

The empirical relations betiween the critical exponents ZQu =
vz = ¢h that we have found analyzing the data of CeRu2312 implies for the
system at x_, i.e. { [§| =0), the following behavior: C = constant, x = 7!
and X, = h_l. The temperature independent anomalous behavior of the specific
heat indicates that we have in fact to look for the expression of the free
energy density at criticality. We then find a contribution linear in
temperature at |Ji = O for this quantity which in turn gives rise to a finite
residual entropy. Recalling the behavior of the uniform 1low field
susceptibility, Xy © T-l, we can give a simple interpretation for these
results, That 1is the system with x = X behaves as a collection of
non-interacting local moments, decoupled from the electron gas, with a Curie
type of susceptibility down to the lowest temperatures and a finite residual

entropy due to the degeneracy on the orientatlon of these local magnetic

moments. From the point of view of the antiferromagnetic side of the phase
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diagram { (J/W) < (J/N)c ), this is consistent with the fact.that the Neel
temperature goes to zero at X, or Ijl = 0. In the real system however
residual interactions may mask thls simple behavior but the result looks
sufficiently interesting to be worthwhile doing experiments at this partlcular
concentration.

The positive and large exponent of the specific heat, « = 1/2, that
our analysis of the experiments on CeRu2512 under pressure suggests, implies a
great sensitivity of these materials to disorder. This a consequence of the
Harris criterion40 which for « > 0 implies that disorder is a relevant "field"
in the renormalization group sense. In this case dilution and the disorder
inherent to it, may give rise to new physical behavior leading to a different
universality class and cannot be viewed simply as a negative pressure effect.

\

In fact we have falled to analyze recent experiments41 on UYPd with the
exponents obtained for CeRu2812. These systems are strohgly disordered and
non~-Fermi liquid behavior in this case can be attributed to disorder and not
necessarily to the effect discussed above namely the system being on the edge
of an instability. The best system to study scaling properties would be an
antiferromagnetic system with a small Neel temperature. Pressure in thlis case
would lead to destruction of the long range order and eventually would drive

the system along the coherence line allowing to check the scalling predictions

and in particular the generalized scaling hypothestis,
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3.1 SCALING APPROACH TO THE MOTT TRANSITION
3.1.1 THE HUBBARD MCDEL

The Hubbard Hamiltonian was originally proposed to describe the
magnetism of transition metals where the electrons involved have a large
degree of 1tinerancy42. Hubbard made some approximations concerning the
Coulomb interaction arguing that it was sufficlient to consider correlations
between electrons on the same site. Even wlthin this drastic aﬁproximation the

resulting hamiltonlan still represents a very difficult many-body problem for
43

which only in one-dimension an exact =solution can be found ™~ . The Hubbard
hamliltonlan is given by:
!"‘ ‘
; =s;m t, CroCye * U ); L “ (3.1}

where the first term allows the electrons to hop from site to site and glves
rise tc a narrow band of width W. The second term represents the Coulomb
interaction between two electrons on the same site. Many techniques have been
devised to deal with this hamiltonian. A variety of solutions have been found
besides that describing itinerant ferromagnetism for which it was originally
conceived44.

For n =1, where n is the number of electrons per atom, it is
generally accepted45 that this model yields at zero temperature, above a lower
critical dimension, a metal-insulator transition occurring as a function of
the ratio of the parameters U/W. For n # 1 one finds magnetic transitions

occurring in the metalllc state, as the ferromagnetic instability which has

been used to model the ferromagnetism of the transition metals and still more
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complicated types of long range magnetic order44’46.

The Hubbard model glves also an adequate description of the
excitations and physical properties of nearly ferromagnetlc systems, lilke
Palladium47 which is close to a ferromagnetic instabllity. On the other hand
in the half-filled band case ( n = 1 ), where the metal-insulator transition
occurs accompanied by the appearance of antiferromagnetic order ( Mott
transition ), this model provides the basls for understanding the behavior of
systems in the metéllic side of the localizatlion transition like doped Véoa or
V203 under pressure48. Mott in his classlical book "Metal-insulator
transitions" uses the expression "highly correlated electron gas" to designate
these "nearly localized" electronic systems49. The receﬁt discovery of
superconductivity on doped antiferromagnetic 1nsu¥ating compounds of
transition metals has led Anderson50 to suggest that{‘superconductivity’ in
these materials is just another manifestation of the “HoEt phenomenon" which

is essentially the physics of highly correlated electronic systems contained

in the Hubbard hamiltonian.

3.2 THE HIGHLY CORRELATED ELECTRON GAS AND THE NEARLY FERROMAGNETIC METAL

The metallic phase of the materlals which are close to a Mott
transition that is the "highly correlated electron gas" resembles that of
"nearly ferromagnetic" metals In many aspects. Both kind of systems have an
enhanced Paull susceptibllity at low temperatures and a large electronic
contribution to the low temperature specific heat. An Interesting and

instructive illustration of the applicabllity of these two concepts46 is
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provided by the Fermi liquid system 3He. Initially it was suggested that
liquid 3He is nearly ferromagnetic in order to understand the enhancement of
it’s thermal mass , obtalned from the 1linear term of the speclfic heat and
it’s susceptiblility. Alsc a logarithmic temperature dependence in these
quantities provided evidence for the existence of paramagnons which are
excitations characteristic of nearly ferromagnetic systems. In the paramagnon

approximation for a nearly magnetic metal, as described by the Hubbard model,

the mass m is enhanced as47

muLn(u-uc] (3.2)

and the uniform susceptibility as:
-1
x « (u uc)

where u = (U/W) and u, is the critical value of the ratic between the Coulomb
repulsion U and the bandwidth W at which the ferromagnetic instabllity
occurs. Notlce that in this case the ratlo x/m will depend on ( u-u_ )} and
consequently on pressure which is the external parameter used to vary the

ratio UsW. On the other hand in the Brinkman and Rice45 approach toc the
51

highly correlated electron gas, using Gutzwiller's approximation (BRG), they
have obtained:
ma (u=u ¥
c
and (3.3)

-1
xu(uucl
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for a metallic system cleose to locallization. In this case the ratio y/m turns
out to be independent of pressure. The mass m iIs generally calculated from the
residue of the pole of the one-electron propagator 2 (( m « 1/2 ). In
principle then the pressure dependence of the ratio x/m allows to distinguish
a nearly ferromagnetic system from a nearly localized one. The experiments on
3He favor the latter approach since the ratio }/m experimentally varies little
wlth pressure, although the compressibility decreases, suggesting that 3He is
nearly localized it’s physics being more close to that of the highly
correlated electron gas than to that of a nearly ferromagnetic meta146. Notice
that localization In this case may be interpreted as a tendency to
solidification. In the experiments the mass m is obtained froﬁ the linear term
of the specific heat and the result above relles in that thlis mass is the same
as that calculated from the quantity 2Z, an assumptibn that the scaling
approach will lead us to question. .

An  interesting asﬁect of the Brinkman-Rice~Gutzwiller (BRG)
approach to the highly correlated electron gas is that the divergence of the
uniform susceptibllity at Uc in this case is not related to the appearance.of
long range magnetlc order but to the formatlon of independent local moments at
zero temperature45. In fact the Curle susceptibility of free moments
X, « p?/T is infinite at T = 0. The BRG approach describes a pure
localization transition missing the 1long range magnetic order which 1is

expected to occur at the Mott transition45. Although magnetic fluctuations

are Iincluded in this method to a certain extent46 they are not the dominant
excitations which in this case are due to charge fluctuations.
The discussion above shows the importance of determining the

exponents which govern the c¢ritical behavior of the susceptibility, the

compressibility and in particular the enhancement of the thermal mass close to
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an instability of the 1nteracting electron gas. These exponents determine how
these quantlities vary wlth pressure and reflect the nature of the incipient

“instability.

3.3 THE CONDUCTIVITY AND THE CHARGE STIFFNESS

The most direct way of constructing a scaling theory of the Mott
transition is to conslider the situation where both the localization transition
and the magnetic one occur at the same value of the ratic (Us/W). In this case
the staggered magnetization asscoclated with the long range éntiferromagnetlc
order accompanying the localization transition can be used as the order
parameters. Since however magnetic fluctuations have aiready been considered
Iin detail in the heavy fermion problem we shall emph%§ize here the pure
localization aspects of the Mott transition. We shall 1lock at this
transition from the point of view of the scaling theory of quantum critlical
phenomena which was developed in the previous sectionslz. Although thls
localization transition can generally be associated with a zero temperature
unstable fixed point at (U/H)c ., the scaling approach to this problem differs
in some fundamentals aspects to the previous one developed for heavy fermions.
The reason, as we mentioned before, 1is that in thls case there is no
identifiable order parameter assoclated with the locallzation transgition. In
spite of the fact that the flow of the renormalizatlion group equations to the
metallic attractor ( (U/W) = 0 ) or the insulating one ( (U/W) = »w ) allows to
distinguish the nature of the phases, it is essential to find the relevant
physical quantity which can be unambiguously assccliated with the localizatlon

phenomenon. This quantity turns out to be the conductivity effective mass52
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m‘, obtained from the frequency dependent conductivity o{(w) or alternatively
the charge stiffn95553 Dc o l/m‘. For a perfect conductor, which is the case
of the lattlce translatlon invariant systems at T = 0 that we are considering,
the frequency dependent conductivity ¢ (w) has a delta function at zero
frequency due to free acceleration of the carriers. The weight of this delta

function defines the charge stiffness Dc' We have:
o™ () = (¢°/B)D _8(hw) + ¢ (w) | (3.4)

The free acceleration term in the real part of the frequency dependent
conductivity gives rise, through the Kramers-Kronlg relation; to an imaginary

part which is inversely proportional to frequency52 l.e.
Ime™ () = (Zethzw)nc + Imv:x(w) (3.5)

These results can be made more concrete by considering the simplest

approximation for the frequency dependent conductivity namely the Drude

equation54:

ne T
olw) ~ 1= 1ot (3.6)
with a real part
nez T
Rec(w) = — 23 (3.7)

and an lmaginary part given by:
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ne®> wt®
Ime () = —- = (3.8)
m wtT +1
For a perfect conductor, i.e. in the limit that v -+ » , we obtain
( 2
Rec(w) = ne‘u §(w)
m
1 ne? (3.9)
Imo(w) = —
L m
the last equation leads to
ne’ '
m wime(w) = = "_ : {3.10)
W0 m \

-

comparing with the previous equation for the charge stlffness, Eqs.3.4 and

3.5, we find the relation between this quantity and the effective mass,

*
Dc = nah’/m . Equation 3.10 abeove was wused by Kohn52 to dlscuss the

metal-insulator transition due to correlations. The basic idea is that for an

*
interacting electronic system the vanlshing of Dc , or the divergence of m

should signal the metal-insulator transition. There 1is however a basic
difficulty in implementing thls 1idea for Fermi ligquids since for an
interacting Ferml-liquid the conductivity or optical mass m* never gets
renormalized by the interactions due to Galilean 1nvar1ance55. This is not the
case however for Interacting lattice systems as noticed by Shastry and

Sutherlandsa. For these lattice systems a divergence of the optical mass is

expected to occur at the localization transition.
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The authorss3 above also pointed out an important connection between
the charge stiffness and the sensitivity of the electronic system to a change
in the boundary conditions. They considered the difference Iin ground state
energy of a d-dimensiocnal interacting fermionic lattice system of finite size
L under a twist ¢ 1n the boundary conditions. The difference in the total
ground state energy density of the twisted and untwisted system can be written

a853 (to order L™2):

D
E(¢) - E(0) _ AE(¢) _ " .2 ‘

L L L

where Dc is the charge stiffness appearing 1n thg_ frequency dependent
conductivity. Long ago Byers and Yan356 have shown thatta change in boundary
condlitions in a finite system of size L is formally equivi}ent to Imagine such
system, in the shape of a ring, threaded by a flux ¢ In the so-called
Bohm-Aharonov conditions where the electrons are not in direct contact with
the magnetic fleld. The flux @/00 where Qn = (hc/e) 1s related to the twist ¢
by ¢/¢0 = ¢. Notice that from this point of view an insulator, for which

*

Dc =0 orm = wm has an additional symmetry ( see Eq. 3.11 ), namely gauge

invariance, as compared with the perfect conductor for which the energy of the

individual states and in principle the total ground state energy density

depends on the flux through the ring at least to order LFZ.
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3.4 PERFECT CONDUCTOR VERSUS SUPERCONDUCTOR

The assertions above must be taken with extreme care and their
content constitute the central point of an interesting dlscussion57. In the
same paper56 referred above, Byers and Yang Iintroduced a criterien to
distinguish a superconductor from a perfect conducter ring which 1is
essentially based on the sensitivity of the system to a flux threading it.
According to them for a ring of superconducting material the total ground
state energy depends on tﬁe enclosed flux ( in fact is a periodic function of
® with period QO/Z ). This is not the case however for a perfect conductor
where, although the individual energy levels depend on the.flux, the total
energy does not. This cancellation is a macroscopic eff?ct and 1s ifllustrated
in Fig.6 for systems of different slizes. For small, megoscopic systems, flux
dependence does occur leading to interesting ahd 1mport§nt behaviorss. How
can we reconclile the Byers and Yang criterion for superconductivity with the
results of Shastry and Sutherland relating the charge stiffness to the flux or
boundary condition dependence of the ground state energy of a perfect
conductor as given by Eq. 3.11 ?7 The point is that the result given in this
equation is valid only for small values of ¢ that is for ¢ < 1/Ld-1. For
larger values level crossing occurs giving rise iIn the limit of large systems
to the cancellatlon effects mentioned above and which form the basis of the
Byers and Yang criterion to distinguish perfect conductivity from

superconductlivity.
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3.5 SCALING APPROACH TO THE MOTT TRANSITION

3.5.1 THE CONDUCTIVITY MASS

The scaling properties of the charge stiffness Dc or of the

*
effective mass m close to a Mott transition can be t:.‘bta.i.m;dl:3 either from
finite size scaling theory together with Egq. 3.11 or more directly from the

scaling form of the frequency dependent conductivity e¢(w). In fact jJust on

dimensional grounds we can write o(w) = (ez/h)Ez-df(wﬁ) vhere
T = €2 . In both cases we find D« |g|2~—a——2v or alternatively
Dc ot E-(d+z-2) where we used the modified hyperscaling relation. The quantity

g measures the distance in parameter space to the transition ( g8 = 0 defines
the critical point } and € = |g| U is the correlation langth in the metallic
phase which can be identifled with a characteristic screening lengthsg. The
characteristic time "l.'g = Ez sets the timescale for the critical slowling down
close to the transition. In the derivation of the critical behavior of the
charge stiffness using the scaling form of the conductivity, we make use of
the asymptotlc properties of the scaling function f(w‘l:E) in ¢(w) at certain
limits. Specifically for a perfect conductor Imf(m:€ 2 0) « 1/.‘.::1:E (see
Eg.3.9 ) which together with the expression Ime(w) = ne’/m‘w yields the above
result for the scaling behavlior of D.:3 o l/m‘ close to the metal-insulator
transition. The critical exponents o, v and the dynamical exponent z are
assoclated with the unstable =zero temperature fixed point controlling the
transition.

It is interesting to point out out that the charge stiffness scales
as the superfluid density close to a T = 0 superfluid-insulator

transitiona. Also for one dimensional Lorentz Iinvarlant systems such that
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d+z=1+1=2, the charge stiffness reduces to a constant amplitude due to
conformal invariancels.

Qur previocus study of the heavy fermlion problem led us to recognize
the existence of still another mass for the highly correlated electron gas
namely the thermal mass m, obtained from the linear term of the specific
heat. This mass is meaningful below a crossover line 'I‘c in the non-critical
part of the phase diagram of (T/U) versus (U/Uc] ( Fig.7 ) where a Fermi
liquid regime is attained. In this case for T <« Tc the scallng functlon for
the free energy has a Sommerfeld-like expansion and allows to define a thermal
mass from the linear term of the specific heat as a function of temperature.
As in the previcus section we find that the thermodynamic ﬁass m scales as
I2-0;—2vz

mT x |g close to the transition and consequently with a different

» .
exponent of the conductivity mass m . K

3.5.2 THE HUBBARD MODEL AND THE MOTT TRANSITION

A metal-insulator transition associated with a 2zero temperature
fixed point has been obtained for the Hubbard mecdel with one electron per atom
( n =1 ) using a renormalization group approach60 for dimensions d 2 2. The
unstable fixed point at the critical value of the ratio u_ = (U/H)c separates
two regions in parameter space. For u > u, the flow of the renormalization
group equations is towards the strong repulsion attractor which characterlzes
an insulating antiferromagnetic phase. For u < u, the flow is towards U/W = 0,
i.e. the Fermi liquid fixed peint, which ls identified as the attractor of the
metallic phase. This approach yields values for the zero temperature critical

exponents which are not rigorous due to the approximations Iinvolved in the
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renormalization procedure. It considers the renormalization of the relevant
parameters of the Hubbard hamlltonian under scale transformations on blocks of
finite size. Since the fluctuations in the number of particles are of the
order of the total number in these finite cells this method has difflcultles
when dealing for example with the Mott transition which occurs as the number
of electrons per site 1s varied to reach the critical value n,6 = 1., Besides
the compressibillty of the phases 1lnvolved are not given correctly for the
same reasons. Slnce it will turn out very important for our scaling analysis
to distinguish between these two situations namely, the Mott transition
occurring at fixed density n = 1 but varying the ratio U/W, from that at fixed
u > u but varying the electron density, we shall take as fhe basis of our
discussion of the localization transition the Brinkman and Rice approach to
the Hubbard model based on the Gutzwiller approximationﬂ(BRGJ. This method as
menticned before describes a Mott transition occurring as a function of U for
fixed n = 1, However, as shown by Nozieres61, it can be generalized to obtain
a phase diagram as a function of the chemical potentiallz. We shall give a
fresh look at the BRG solution from the point of view of the scaling theory of
quantum critical phenomena developed in previous sections. We 1ldentify the
critical exponents assoclated with the BRG approximation and discuss the
mean~fleld nature of this approach.

In Fig.8 we show the zero temperature phase diagram of the Hubbard
medel, in the reduced chemical potential versus U/W phase space, as descrlbed
by the BRG approximation extended by Nozleres. The dashed line gives the
trajectory of the fixed density n = 1 transition which occurs by varying the
ratio U/W between the Coulomb repulsion U and the bandwidth W. Alternatively
the Mott insulating phase can be reached by varying the chemical potential pu

61,12

or the electron density. The equation for the phase boundary is
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HoK [U-U

1/2
m -TTJq where B, = Us2 is the chemical potential for the half-filled

c
band ( n =1 ) and Uc = (U/N)CH the critical value of the Coulomb repulsion
at K-

In order to identify the critlcal exponents associated with the
fixed density metal-insulator transition as described the BRG approach we have
to deduce first how the relevant physical quantities like the compressiblility
and susceptibility scale close to the Mott transition. The behavior of the
optical and thermal masses have been obtained before. For this purpose we
consider the renormalization of the chemical potential p close to: the critical
point of the fixed density transition at U = Uc » U= U2, S;nce this is Jjust
a parameter it will acquire a renormalization when properly normalized by the
relevant interactions. Within our previous notation we take the exponent y to

'
describe the scaling of U or W at the zero temperaturetunstable fixed point

f.e. U’ =b YU or W=1b W at (U/W)_, u = Us2. Consequently we have for the

rencrmalized chemical potential
(8u/U)’ = b’ (ap/U) (3.12)

where 3y = p-U/2 and which allows to obtain the scaling form of the free

energy density in terms of the chemlcal potentlial close to Uc. We get

f « (U - Uc)z'“ f[_w_w_u';};i'] (3.13)
(u-uc)

where we identified the exponent y with the dynamic exponent z using the same
arguments as before. We can now deduce quite generally the scaling form for

the compressibility or charge susceptibility « which behaves as
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2
9—2 o {U--Uc}2 %-2vz close to the critical value Uc for the fixed density,

B
= 1, Mott transitlon independent of a particular approximation.

=]
I

The scaling of the susceptibility close to the localization
transition described by the BRG approximation can be obtained conslidering the
effect of a small external magnetic fleld in the chemical potential12 , We

find y « |g| (&7%"2v2)

Notice that there is no new exponent introduced here
for the susceptibility since In the BRG treatment localization occurs without
the appearance of long range magnetic order.

It is a well known resu1t46 that in the BRG approximation, the
singular part of the ground state energy density varles as_E' o (U-Uc)2 for

n=1 close to Uc' From thls result we 1identify +the BRG exponent

a = 0. Similarly a characteristic screening length can be obtalned within
!
1
this approach46 which dlverges at the localization transition as
£ o {U-Uc}"”2 . This length plays the role of the correlation length in the

metallic phase and consequently we Ilidentify the critical exponent v = 1/2
within the BRG theory.
From the equaticn of the critical line limiting the incompressible

Mott insulating phase in the (wU) versus (U ) phase diagram,
H-p U-u ¢

[ +] = c
H [ v

172
] , see Fig.8, the scaling form of the free energy ( Eq.3.13)

-]

and using the generalized scaling hypothesls22 we can identify the exponent
vz = 1/2 within the BRG approach. Since we found previously that v = 1/2 we
get z = 1. This value of 2z corresponds to what is known as the Lorentz
invariant case since time enters on the same footing as the space
coordinates. Now that we have obtained the basic exponents associated with
the BRG approximation, namely @« = 0, v = 1/2 and z =1, we can substitute in

the scaling expression for the compressibility to find that it wvanishes
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linearly at the localization transition i.e. Kk (U-Uc). This well known
resu1t46 represents the behavior of the full compressibility and not just the
singular part. This is due to the fact that the Mott phase is incompresslible
( x = gﬁ =0 , since n is fixed and equal to 1 in this phase ) and
consequently there can be no regular or non-critical contribution for the
compressibility at the transition.

For the optical mass, we introduced before, the BRG exponents give
rise to a critical behavicr m o {U-U‘::)'1 and this divergence signals the
appearance of localization. This optical mass is not necessarily gqual to that
obtained from the residue of the pole of the one-electron propagator Z , which
is connected to the discontinulty of the average occupatloh number at the
Fermi level, m, o 1/2 and was found to diverge as m, e (U—Uc)-1 in the

original paper by Brinkman and Rice4s.

This 1is cleariy 1llustrated by the
case of Luttinger 1iquids62 for which 2 = 0 although Dc =‘P in general and m*
is finite in the metallic phasess. It turns out then from these
one—dimenslional Luttinger liquids that £ ls not the most appropriate quantity
to signal the metal-insulator transition. On the other hand the effective mass
m* o (l/Dc) is sensitive to this transition even for one-dimensional
interacting electronic system553 ( see below ).

It would be desirable to cbtain the scaling properties of the mass
defined from the quantity Z. Since Z 1is obtalned from the renormalized
one-particle Green’s function, differently from the optical mass or
compressibility which are related to two-particle propagators, it is more
appropriate to consider this quantity as an order parameter for the

localization transition63. In fact we expect that Z scales as Z « lglZB where

B 1s the usual exponent associated with the order parameter ( see below for
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the reason of the factor 2 ). The situation for the Luttinger liquids, i.e.
for d = 1, resembles that of the XY model in d = 2. In both cases the order
parameter is always zero however the suscéptibility { the optical mass for the
localization transition ) diverges at the transition.

Since the quantity Z is related to the self-energy Z(w) { neglecting
k-dependence ) by64 2= (1-32/60]-1 , this implies, assuming a scaling ansatz
for Z(w), that this quantity scales as Z{w) = &d-2+nf(wrg) where we used the
modified scaling relation 28 = v{d+z-2+yn) and rg = Ez. Alternatively we get

T(w) = w(z-d-n)/z

f(wrs). Then if d = 2-n is the lower critical dimension for
some instability of the electron gas we expect to find logarithmic corrections
for the frequency dependence of the self energy at this instability. This
behavior of the self-energy characterizes the marginal Fermi liquid of Varma
et a1.65. Originally thils argument was used by Fisher,*Grinsteln and Girvin3
to predict a 2zero temperature universal conductance at the
superconductor-insulator transition in two dimensions. Starting from the
scaling expression for the conductivity c(w) « Ez-df[T/Tc) they obtained,
using the procedure described in section 1, that at the transition

o(T) o T(d—z)/z_

For d = 2 the conductivity attains a constant, wuniversal
value at T = 0. For thls argument to apply it is essential that d = 2 lis
nelther the lower nor the upper critical dimension for this transition in
which case logarithmic corrections invalidate this result. In our case this is
Just the situation of interest since it generates this type of corrections to
the self-energy. Notice that the same expression for ¢(T) at criticality holds
for the metal-insulator transition considered here.

As we have shown previously there is still another mass in the
2-a-2vz

problem namely the thermal mass m which scales as m {u-uc) . If we

use the BRG exponents we find the surprising result that m, (U-Uc) and
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consequently vanishes at the localizatlon transition.

The quantum scaling approach to the interacting electron gas shows
that near an instability, independent of ény particular approximation, one has
to distinguish between different masses which scale differently close to the
transition. In particular the different critical behavior of the optical and
thermal masses close to a zero temperature instablility implies that in general
the excitations which transport heat may be different in nature from those
responsible for electric transport. In this case the Wiedmann-Franz ratio
close to the transition will not necessarily be a universal
constant. Considering the next term in the Sommerfeld expansion for the free
energy, the BRG exponents yield a T° contribution to the speéific heat with a
coefficient that is independent of {U-Uc). Suffic%ently close to the
transition this contribution may be dominant signali%ﬁng a change in the
character of the elementary excltations as the localization transition 1is

approached. All these results point to a breakdown of Ferml-liquid
-

theory. Indeed for a Fermi-liquid one expects that the masses m, n and m

For classical, mean field exponents this occurs whenever the dynamlc exponent

» -
z takes the wvalue z = 3 in which case m =m_= mz = m o (U—Uc] 1. For

T

classical tricritical exponents this happens for z = 2 and m « (U—Uc]_l/z,
this assuming that Z « lgl28 in both cases. The essgential point to recognize
is that the validity of Fermi lliquld thecry imposes restrictions on the value
of the dynamic exponent z at a metal-insulator transitlon. We recall that in
Hubbard ‘s approach to the the Mott transition42 he obtalned the gap exponent
vz = 3/2 differently from BRG where vz = 1/2.

Another important consequence of the existence of different masses

concerns the 3He problem summarized earller. We recall that one of the

evidences that this system was nearly locallized was obtained on-the basls of a
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comparison between the predictions of the BRG and paramagnon models for the
pressure dependence of the ratlo x/mT. A main argument supporting that liquid
3He is nearly localized as opposed to nearly ferromagnetic is that the mass,
obtained from the low lemperature specific heat, has an enhancement and varies
with pressure at the same rate as the uniform susceptibility x. The BRG
method ylelds y = (U-UC)w1 as can be easily seen from the expression for %
given before and the BRG exponents. However the scaling analysis shows that in
this approach the thermal mass is reduced as the system approaches
localization in spite that the mass obtalned from the residue of the
one~-particle Green's function, m, o (1/2) diverges. The enhanced thermal mass

fad in He® may be due to magnetic correlaticns which are

observed experimentally
not fully taken into account in the BRG approach. On the other hand these
results suggest that charge fluctuations anticipafting a leocallzation
transition do not cause an enhancement of the thermal mass.

The BRG exponents &« =0, v =1/2 and z = 1 , are suggestively
mean-field 11ke38. This led u512 to conslider that this approximation provides
the mean-field solution for the fixed density localization transition in
correlated electronic systems described by the Hubbard model. If this is the
case we can substitute the BRG exponents a« = 0, v = 1/2, z = 1 in the modified
hyperscaling relation to find out the upper critical dimenslion dc = 3 for this
transition. We note that these exponents coincide with those for the
classical fixed density Mottt transition of Iinteracting Ilattice boson53
(dc = 3 also for bosons ). We recall that taking 2 « lglZB with the mean
field value B = 1/2 we reproduce the BRG result m, o 1/2 « [U—Uc]_l.

The Fermi lliquid regime attained below the crossover line in the

phase diagram shown in Fig.7 may be identified with the so called "highly

correlated electron gas" as is usually referred in Mott’s book a metalllc
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system which is close to a Mott transition. The properties of thls gas are
not totally described by the BRG approach, as we have seen, since it does not
take into account fully the magnetic cofrelations. These may lead to larger
values for the dynamic exponent z and an enhanced thermal mass. In real
systems the entrance 1into the renormallzed Fermi-liquid regime Iis
characterized, as in the case of heavy fermions, by a crossover in the
magnetic susceptibility from a temperature dependent to a Pauli-like behavior.
This behavior is illustrated for doped V203 as shown66 in Fig.9 . Note that
the "coherence temperature" in this case is much larger. The renormalizatlon
of the strong interactions, giving rise to a Fermi-liquid behavior below some

characteristic temperature, seems tc be a unlversal feature of the electrenlc

systems considered in this report,

3.6 THE DENSITY-DRIVEN MOTT TRANSITION

The Mott insulating phase shown in Fig.8 can be reached elther by
varying the ratio (U/Uc] for fixed n = 1 or by varying the chemical potential
or electron density for U > Uc' These transltions are not necessarily in the
same universality class, that is they may be governed by different flxed
points with different critical exponents. For the density-driven Mott
transition, with the crltical behavior expressed in terms of & = u - ucUJL
the singular part of the free energy density deflnes a new exponent «’ through
f « ]6|2-“’. Here uc(U) is the value of the chemical potential at the phase
boundary of the Mott insulating phase for a given U > Uc. The singular part of
the compressibllity K, 8°r/8p° |6|~u' for this density-driven

transition. The new exponents reflect the possibility that the fixed density
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and fixed U transitions are in different unlversallty classes. Using a
finite-size, finite-time scaling expression for the singular part of the free

energy density f = |5|v’(d+z !

f'[E/L,Ez’/B] of a system of spatial size L and
temporal extent B and assuming that the compressibility is the coefficient of
the finite-time corrections, we find alternatively for the total
compressibility &k « |6|v'(d-z’). The incompressible character of the Mott
insulator, which rules out a finite contribution for the compressibility at
the transition, allows to equate the expressions for the total and the
singular part of the compressibility. We then get, -«' = v’{(d-z’) and using
the modiflied hyperscaling relation 2-a’ = v'{d+z’) we obtaln the important
relation v'z’ =1 for the density-driven transition. Tﬁis equality is
rigorous for the superfluid-Mott Insulater transition in a lattice system of
interacting bosons3 as the number of particles is varie&. In the fermion case
the assumption above, that the compressibility Iis the‘Foefficient for the
finite time corrections, can not be rigorously justified. In the boson case 1t
relies on the existence of an order parameter associated with the zero
temperature superfluid-to-Mott-insulator transition and it's effective actlon.
On the other hand since the compressibility determines the stiffness of the
sound excitations of the Fermi liquid, like in the superfluld case we expect
that, at least whenever charge and spin separate, the relation v'z' = 1 should
hold for the metal-to-Mott-insulator denslty-driven transitlion. We will show
below that this is indeed the case for d = 1.

Notice that a separation between spin and charge occurs for the
localization transition in the Hubbard model described by the BRG approach in
the sense that the charge degrees of freedom become critical at the transitlon

without the appearance of long range magnetic order. For the density driven

transition described by the BRG approximation, as extended by Nozieres, the
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equality v’'2’ = 1 is suggested from the linear shape of the boundary of the n
= 1 Mott phase at Uc/U = 0 ( see Fig.8 and the equation for the critical
frontier ). This leads to a linear relatién between the chemical potential and
the Coulomb repulsion U as U becomes very large.

A pure localization transition without the appearance of long range
magnetic order as described ln the BRG approach may not in fact occur in high
dimensional fermlonic systems. However for d =1, where charge and spin
degrees of freedom separate, a pure localization transition OCCUurs as a

function of density or chemical potential for the Hubbgrd models3

{ Fig.10 ). It can be shown67 from the Bethe ansatz solution that the
compressibility k diverges as k « (n-n.:)-.1 and that the chafge stiffness Dc

vanishes linearly67 with the number of holes, i.e., Dc o (n-nc) at thils

transition with n, = 1. The optical mass m' L (I}Dc] & (n---n‘::)-1 and
consequently diverges with the same numerical exponent of the
compressibility67. The above exact result for the critical behavior of the
compressibility together with a rigorous relation between the singular part of
m‘ and this quantity67, namely m* « K , allow to determine unamblguously the
critical exponents characterizing this density-driven transition when
expressed in terms of 8 = p - uc(U), where uc(U] is the value of the chemical
potential at the phase boundary shown in Fig.10. For this purpose we note

that n « af « |a|““ . If (1-a’) =21 i.e. «' = 0 , the relation between p and

3
n is regular, i.e. {n—nc) x 3 = [u-pb(U}], otherwise68
(n-ncl o |511'“'. The compressibility x = 82f/8p2 = |5|““'. Let wus assume
that the regular term dominates i.e. 1-a* 2 1 ( «’ = 0 ), Then (n-nc) « 3 and
consequently Kk « (n—nc)'a'. Due to the exact result k « (n-nc]"1 we should

then have o' = 1. This is in contradiction with the initlal assumption that

the relation between p and n is regular, i.e. that «¥ = 0. The alternative
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1
possibility vylelds [u“pc(u)] o (n—nc)l‘a and Kk (n—nc]-(“ /1-a ). A
comparison with the exact result Kk « [n--n'::)m1 determines o' = 1/2. On the
» =-(2-a'-2v’)
other hand the optical mass m Ip-uc(U)I , as derived before, and
*
since m « Kk we have 2-a'-2v' =« or v = t-a’ = 1/2. Finally from the
hyperscaling relatiocn we get z' =2 and consequently v'z’ =1. These
exponents &' = 172, v’ = 1/2 and 2z’ = 2 are the same which have been found for

the denslty-driven superfluid-Mott-insulator transition for one-dimensional

interacting bosons in a lattice3'69.

It is possible, as the results above
suggest, that whenever spin and charge separate the density-driven
localization transition for fermions is in the same universality class of the
corresponding transition for bosons. Furthermere z* = 2 is the 'dynamical
critical exponent of the metal-insulator transition due to band filling for
the non-interacting one-dimensional electron gasg. The!‘gap exponent v’'z’ = 1
also in this case. .

For the lattice boson problem3 the upper critical dimension for the
density-driven superfluid-localization transition is dc = 2. For d 2 2 the
exponents assume the classical, mean-field values, &' = 0, v = 1/2, 2" = 2
etc.. In the case of fermions, for d = 2, the density-driven locallzation
transition lIs accompanled by long range magnetlc order70 at T = 0. In this
case the analogy with bosons may cease and presumably v’z' # 1. However there
is numerical evidence that the compressibility still diverges with the Inverse
of the hole concentration for a square lattice in the Hubbard model close to
the density-driven transltion?l. If the analogy with the d = 2 boson case or
with non-interacting es.-lezctrons'irl was still valld we would expect a logarlithmic

divergence of k. The numerical result suggests a similarity of the d = 2

density-driven transitlion with the one-dimensional case at least as concerns
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the behavior of the compressibility and the optical mass.

We have studied the metal-insulator transition described by the
Hubbard model from the point of view of the theory of quantum critical
phenomena. The n = 1 Mott insulating phase can be reached either at a fixed
density or by varying the number of electrons. These transitions may be in
different universality classes. They are quantum transitions governed by zero
temperature fixed points. The exponents associated with these fixed polnts
determine the critical behavior of the different quantitlies of physical
interest. In particular they control the divergence of the optical mass which
characterizes unambiguously the locallzation transition. Our analysis of the
BRG approximation has led to new insight on the nature éf this solution
revealing it ‘s mean field character. The scallng approa9h provides a critical
view of the different approximations to the difflcult m&hy body problem posed

by the Hubbard hamiltonlan.

4.1 CONCLUSIONS and PERSPECTIVES

We have discussed the scaling theory of quantum critlecal phenomena
and applied it to some current and important many-body problems. Although
scaling ldeas have been widely applled to magnetlc systems, both pure15 and

disorderedlg, only recent1y4.5,8,12,13

they have been used to describe
strongly interacting many-body electronic systems. This has coinclded with
extensive work on the scaling properties of Iinteracting bosons on a

latticea’sg.

The instability of the interacting electrons has been assoclated
with a zero temperature unstable flixed point. The exponents related to thils

fixed point determine the unlversality class of the transition and obey
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standard scaling relations. However because we are dealing with a zero
temperature transition the hyperscaling relation is modified giving rise to a
shifted dimensionality. We have emphaslized that time plays a distinct role in
quantum phase transitions. It is precisely the dynamic exponent z associated
with the critical slowing down of the quantum fluctuations that appears in the
modified hyperscaling relation.

The zero temperature exponents determine the critical behavior of
the different physical quantities close to the phase transition. For an
electronic system close to localization these exponents yleld the critical
behavior of the optical mass which characterizes unambiguously this
transition, the enhancement of the thermal mass and of thelcompressibility.
The scaling analysis led us to recognize the existence ?f distinct masses for
the correlated electronic system as anticipated. by LEggetth. Although we
could not derive rigorously the scaling law for the mass m, o 1/2 as we dld
for the thermal and the optical mass we argued, as previous author563, that
the quantity Z scales as an order parameter. We have shown that the
proﬁortionality between m and m, expected for a Fermi liquid, Iimposes
constraints in the value the dynamic exponent z assumes at a metal-insulatoer
transition. The concept of a thermodynamic mass m. defined from the linear
term of the specific heat, is closely related to the existence of a crossover
line in the non-critical part of the phase diagram. This line marks the onset
of a renormalized Fermi-liquld regime which is evidenced by experimental
observation on strongly correlated systems. In the heavy fermion problem this
new energy scale, which is lower and distinct from the single ion Kendo
temperature, has been associated with the notion of coherence. The scaling
theory presented here is most useful above some lower critical dimension such

that the zero temperature transitlon occurs at a finite critical ratio of the
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parameters. In this case a Fermi liquid regime for the Ilnteracting electronic
system is always expected. The scaling analysis can however be extended for
marginal cases where the relevant transition occurs for any finite value of
the lnteractions4 and also In one dimension. It relies only on the existence
of a continuous transitlon at T = 0 associated with an unstable fixed polnt.

We have dealt here with pure systems with no disorder. If disorder
is relevant, in the renormalization group sense, it wlll take the system to
another fixed point and a different unlversallty class. Close to this new
fixed point a simllar scaling analysis can ln principle be carrled outh. An
important question concerns whether the crossover line associated with this
new fixed point, as we have interpreted here, completely éubsides implying
that no Fermi-lliquid regime can be found in the disordered case. It is clear
that a large value of the dynamic exponent z will redﬁce the region in the
phase diagram where Fermi liquid behavior is expected to 2ccur speclially close
to the transition. Disorder may also raise the upper critical dimension such
that mean field exponents are not expected to occur for the T = 0 phase
transitions in these systemss.

The application of simple scaling concepts to the many-body systems
studied here leads to new insight Into these difficult problems. These ideas
play an important rele in the understanding of the physics of highly
correlated electronic materials and of the approximations implemented to solve
the problems posed by these systems. The quantum scaling method should be

viewed as a complementary approach to other techniques.
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FIGURE CAPTIONS

Figure 1. Phase diagram of the Kondo lattice { Ref.4 ). The critical Neel
line 1s governed by the same exponent of the crossover or coherence line Tc.
The renormalized Fermi liqulid regime is attained for T « Tc' The fligure shows
unambiguously that the coherence temperature represents a new energy scale in
the non-critical part of the phase diagram lower than the single ion Kondo
temperature T, .

K

Figure 2. The resistivity of the non-magnetic heavy fermion CeCu, as a

6
function of temperature ( Milliken et al., Ref.25 ). The drop on the
resistivity at low temperatures is associated with the, coherence effect.

1

-

Filgure 3. The low field magnetic susceptibility of CeRu2512'as a function of
temperature { Ref.33 ). Notice the crossover, passing through a maximum, from
a temperature dependent behavlior at high temperatures to a temperature
independent, Pauli-like regime at low temperatures. The maximum defines the
crossover or coherence temperature. This maximum shifts to higher temperatures

as pressure Iincreases and the system moves away from criticality tracing the

coherence line,

Figure 4. Pressure dependence of: (%) hc[P)/hc(O); (x) xh(hc.P=0]/xh(hc.P] for
172 . - ~
T« Tc ; (+) [A(0)/7A(P)] i (#) TC(P)/TC(O) ; () xb(Tc.P-O]/xUITC.P) for

h « hc { Ref.5 ). For further details and references see text.

r
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Figure 5. The relation between the the coefficient of the Tz term of the
resistivity ( A ) and the coefficient of the linear term of the specific heat
y for different heavy fermions ( from Ref.37 ). The line represents the
relation A « 12. The triangle is for CeRUZSi2 and the cross-dots are for CeAl3
at different applied pressures ( Phlllips et al., Ref.25; J.Flouquet et.al.,

Ref.36 ).

Figure 6. The total energy of a two-dimenslional free electron gas In a ring as
a function of the flux through the ring. As the number N, of electrons and
sites, increases the flux dependence of the total energy decreases approaching

a flat line as N goes to infinity.

H
L

Figure 7. The phase diagram of the Hubbard model as described by the BRG
approximation ( Ref.12 ). The incompressible, n = 1, Mott "insulating phase can
be reached either at constant density ( the dashed line trajlectory ) or by
varying the chemical potential or electron density. These transitions are not

necessarily in the same universality class.

Figure 8. The phase diagram of a Mott insulator { schematlc ) as a function of
temperature. The continuous line is found in experiments to be first order.
The highly corrélated electron gas regime defined as a renormallzed
Fermi-liquid close to a Mott transition 1s attalned below the crossover line
( dashed line }. The stralght dashed line represents the Fermi energy of the

non-interacting system.
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Figure 9. The low fleld maghetlc susceptibility of doped V203 as a function of
temperature ( Ref.66 }. This system does not become magnetic down to the
lowest temperature. The susceptiblility shows a crossover from a temperature
dependent behavior to a Pauli-like one as the system enters the highly

correlated electron gas regime with decreasing temperature.

Figure 10. The phase diagram of the one-dimensional Hubbard medel. The
critical frontier uc(U), separating the metalllc from the insulating phase, is
obtained from the exact expresslon for the gap ( Refs. 43 and 67 ), namely

o
{(A/U) = (t/U)ZI dz(zz-l)l/zcosech[ntz/ZU). The insulating phase for u = U/2
1

(WU = 0.5 ) extends to (t/U) = @ , 1.e for any value of U > O.

'
4
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