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Abstract

The improved treatment developed by Bublitz and de Sousa [Phys. Lett. A 323, 9 (2004)], the

differential operator technique in the effective field theory (EFT) with finite cluster of N = 2 spins

(EFT-2) and used to describe the phase diagram in the T − H plane on the quantum spin-1/2

Heisenberg antiferromagnet in the presence of a longitudinal field (H) on a simple cubic (sc) lattice,

is herein extended for larger clusters (N = 4 spins, EFT-4) to study the criticality on the sc and

body centered cubic (bcc) lattices. For the sc (z = 6) lattice we obtain by using EFT-4 at null

temperature (T = 0) the critical field (Hc = 5.85J) smaller that the classical value Hc = 6J ,

while EFT-2 found Hc = 6.24J . In the case of the bcc (z = 8) lattice we have observed for this

quantum model a reentrant behavior around the critical field, which was also observed in the Ising

antiferromagnet [Neto and de Sousa, Phys. Rev. B 70, 224436 (2004)].

PACS numbers: 72.72.Dn; 75.30.Kz; 75.50.El
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I. INTRODUCTION

The quantum spin-1/2 Heisenberg antiferromagnetic model (HAM) has been exhaustively

studied by using several approximative methods[1—10]. The aim motivation to study this

quantum model is its importance in the description of magnetic properties of antiferromag-

netic compounds with localized magnetic moments (insulating), in particular, the undoped

La2CuO4 compound[1]. When doped with holes, this compound (i.e., La2−xSrxCuO4) be-

comes high-temperature superconducting (x > 2, 5%)[11], whose physics is thought to be

dominate by CuO planes, with only one CuO plane per unit cell and does not have the com-

plications of chains. Anderson[12] original suggestion that novel quantum spin fluctuations

in the CuO planes, common in al these doped cuprates, is responsible for the superconduc-

tivity. Therefore, the study of the properties of the CuO planes in La2CuO4 helps in the

understanding of the whole class of superconducting cuprates.

The competition between the antiferromagnetic exchange interaction and the alignment

of the local moments with the external field presents interesting properties in the phase

diagram in the T − H plane, for example, reentrance phenomenon, multicritical points,

successive phase transitions, etc. In the case of the classical Ising antiferromagnetic model

(IAM), only second order phase transitions are observed for all values of field H in the

interval between H = 0 and H = Hc = zJ at T = 0 (ground state), where J is the

exchange interaction and z the coordination number. Around the critical field H = Hc, the

phase diagram shows some qualitative differences, dependent on the dimensionality (d) and

symmetry of the lattice. In non-frustrated two-dimensional lattices, the critical temperature

TN(H) decreases with an increase of H, going to zero at H = Hc. The theoretical phase

diagram on a square lattice is in accordance with the experimental results of the quasi-two-

dimensional CoCs3Br5 compound[13].

From a theoretical point of view, an interesting property in the IAM in the presence of a

longitudinal field is the sign of the slope of the phase boundary at T = 0, i.e., ac =
¡
dH
dT

¢
H=Hc

.

In 2d lattices the slope is always negative (ac < 0), while for 3d lattice ac ≥ 0, depending
on the value of z (topology of the lattice). We can estimate the values for the slope of

the phase boundary[14]; for example, we have ac(square lattice-sq)= −0.67, ac(simple cubic
lattice-sc)= 0 and ac(body-centered cubic lattice-bcc)= 0.13, indicating that the critical

curve TN(H) for the bcc lattice shows a reentrant behavior in the low-temperature (high-
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field) region. Results using series expansion (SE)[14], Monte Carlo simulation (MC)[15] and

renormalization group (RG)[16] have observed this reentrant behavior in the phase diagram

on a bcc lattice, while for the sc lattice all this methods found ac = 0 (no reentrance).

On the other hand, the phase diagram of the 3d HAM in an external field is not completely

known. Calculations of high-temperature series expansion[17] and variational treatment[18]

have obtained the critical behavior TN(H) in the high-field and low-field regions, respectively.

Recently, Bublity and de Sousa[19] studied the phase diagram in the T − H plane in all

interval of field H ∈ [0, Hc] on a sc lattice by using an effective-field theory in cluster with

N = 2 spins (EFT-2). Due to quantum fluctuations, the critical field found is different

from the classical value Hc = 6J . Usually quantum fluctuations reduces the critical values

in comparison with classical ones; therefore, this larger value found for Hc = 6.24J can be

due to a finite-size effect, since a small cluster (N = 2 spins) was used. The field-induced

quantum phase transition has been analyzed intensively in one-dimensional quantum spin

models. For example, the ground state for the 1d HAF in a longitudinal field was studied by

using density matrix renormalization group (DMRG)[20], where a fixed field Hc = 1.883J

smaller than the classical valueHc = 2J is found. To our knowledge, few people have studied

the 3d HAM in the presence of a longitudinal field[17—19].

In this work, first we develop the EFT in a larger cluster ( N = 4 spins) to study the

phase diagram of the HAM on a sc lattice, where our aim objective is to obtain the value of

the critical field and verify if Hc < 6J . Another interesting critical behavior in this quantum

model is to analyze the existence or not of reentrance in the phase diagram on a bcc lattice,

where this reentrant phenomenon was observed in the IAM case[14—16]. In Section II, the

model and the formalism are detailed. The phase diagram in the T −H plane is discussed

in Section III on three-dimensional (sc and bcc) lattices. Finally, in Section IV we present

the conclusions.

II. MODEL AND FORMALISM

In this work we consider the nearest-neighbor (nn) Heisenberg antiferromagnet in the

presence of a longitudinal field divided into two equivalent interpenetrating sublattices, A
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and B, which is described by the following Hamiltonian:

H = J
X
<i,j>

σi · σj −H
X
i

σzi , (1)

where J > 0 is the exchange coupling, σi = (σ
x
i , σ

y
i , σ

z
i ), σ

µ
i are components (µ = x, y, z) of

the Pauli spin operators at ith site, < i, j > denote sum over all pairs of nn spins and H is

the longitudinal field.

Some years ago, a simple and versatile scheme, denoted by differential operator

technique[21], was proposed and applied exhaustively to study a large variety of problems, in

particular, to treat the criticality of quantum models[4, 9, 19] obtaining satisfactory results

in comparison with more sophisticated methods (for example, Monte Carlo simulation). This

method is used with a decoupling procedure which ignores all high-order spin correlations

(effective field theory-EFT). The great advantages of this technique is the small CPU time

and the possibility of obtaining good qualitative results using small systems. As a starting

point, the averages of a general function involving spin operator components O({n}) are
obtained by[4]

hO({n})i =
¿
Tr{n}O({n})e−βH{n}

Tr{n}e
−βH{n}

À
, (2)

where the partial trace Tr{n} is taken over the set {n} of spin variables (finite cluster)
specified by the multisite spin Hamiltonian H{n} and h· · ·i indicates the usual canonical
thermal average.

The method treats the effects of the surrouding spins of a finite cluster with N spins

through a convenient differential operator technique[21] such that, in contrast to the usual

mean-field approximation (MFA) procedure, all relevant self-spin correlations are taken ex-

actly into account. The interactions within the cluster are exactly treated and the effect

of the remaining lattice spins is treated by a given approximation (here we use the ran-

dom phase approximation-RPA). In order to treat the Hamiltonian (1), we use the four-site

cluster approximation, given by

H4 = J (σ1 · σ2 + σ2 · σ3 + σ3 · σ4 + σ4 · σ1)−
4X

r=1

arσ
z
r, (3)

where ar = −J
X
δr

σzr+δr +H and δr corresponds to nn vectors.
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Substituting Eq. (3) in (2), we obtain the average magnetizations in sublattices A and

B, respectively, by

mA = hσz1i =
¿
∂ lnZ4(a)
∂(βa1)

À
, (4)

and

mB = hσz2i =
¿
∂ lnZ4(a)
∂(βa2)

À
, (5)

with

Z4(a) = Tr{σ}e
−βH4 , (6)

where a = (a1, a2, a3, a4) and {σ} = {σ1,σ2,σ3,σ4}.
Using the identity exp(a · D)f(x) = f(x + a), where D = (D1,D2, D3,D4) and x =

(x1, x2, x3, x4) are four-dimensional differential operator and vector, respectively, Dµ =
∂

∂xµ
,

and also the van der Waerden identity for σzi component Pauli spin operator, exp(λσ
z
i ) =

cosh(λ) + σzi sinh(λ), Eqs. (4) and (5) are rewritten as (µ = A or B)

mµ =

¿
z−2Q
δ1

(α1 + σ1+δ1β1) ·
z−2Q
δ2

(α2 + σ2+δ2β2) ·
z−2Q
δ3

(α3 + σ3+δ3β3) ·
z−2Q
δ4

(α4 + σ4+δ4β4)

À
fµ(x+ L)|x=0

(7)

with

fA(x) =
∂ lnZ4(x)

∂x1
, (8)

fB(x) =
∂ lnZ4(x)

∂x2
, (9)

and

Z4(x) = Tr{σ}e
A(x), (10)

where L = βH(1, 1, 1, 1), αr = cosh(KDr), βr = sinh(KDr), K = βJ and the normalized

operator A(x) is defined by

A(x) = −K (σ1 · σ2 + σ2 · σ3 + σ3 · σ4 + σ4 · σ1)−
4P

r=1

xrσ
z
r. (11)

The operator (11) can be written in matrix form, then using the basis of the {σzr} com-

ponents for diagonalization, i.e., {|m1,m2,m3,m4i ,mr = ±1}, we obtain the following
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symmetrical block matrix

A(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+ 0 0 0 0

0 B 0 0 0

0 0 C 0 0

0 0 0 B 0

0 0 0 0 A−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
16×16

, (12)

with

A± = ∓(x1 + x2 + x3 + x4), (13)

B =

⎡⎢⎢⎢⎢⎢⎣
b11 −2K 0 −2K
−2K b22 −2K 0

0 −2K b33 −2K
−2K 0 −2K b44

⎤⎥⎥⎥⎥⎥⎦ (14)

and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 −2K 0 0 −2K 0

−2K c22 −2K −2K 0 −2K
0 −2K c33 0 −2K 0

0 −2K 0 c44 −2K 0

−2K 0 −2K −2K c55 −2K
0 −2K 0 0 −2K c66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

where b11 = −(x1 + x2 + x3 − x4), b22 = −(x1 + x2 − x3 + x4), b33 = −(x1 − x2 + x3 + x4),

b44 = −(−x1 + x2 + x3 + x4), c11 = −(x1 + x2 − x3 − x4), c22 = −(x1 − x2 + x3 − x4) + 4K,

c33 = −(−x1+ x2+ x3− x4), c44 = −(x1− x2− x3+ x4), c55 = −(−x1+ x2− x3+ x4) + 4K

and c66 = −(−x1 − x2 + x3 + x4).

The matrix (12) is diagonalized numerically and then the functions fµ(x) are obtained

for a given value of the reduced temperature t = 1/K. On the other hand, Eqs. (7)

are mathematically intractable because they involve an infinite number of coupled correla-

tions functions. Here we use an approximation (RPA) which neglects correlations between

different spins, i.e., ­
σzi · σzj · · · ·σzl

®
' hσzi i ·

­
σzj
®
· · · · hσzl i , (16)

where i 6= j 6= ... 6= l. Approximation (16) neglects correlations between different spins but

takes relations such as
­
(σzi )

2® = 1 exactly into account, while in the usual MFA all the self-
and multi-spin correlations are neglected.
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Using the approximation (16) in Eq. (7), we get the following set of state equations:

mµ = Φµ(mA,mB), (17)

with

Φµ(mA,mB) = (α1 +mBβ1)
z−2 · (α2 +mAβ2)

z−2 ·

(α3 +mBβ3)
z−2 · (α4 +mAβ4)

z−2 fµ(x+ L)|x=0 . (18)

The calculations of Φµ(mA,mB) were performed analytically, where the coefficients of

the expansion in terms of mA and mB powers are written as a function of fµ(x), which is

obtained numerically through of the diagonalization of the A(x) matrix, Eq. (12). The final
expressions are too lengthy and will be omitted.

Defining the uniform m = 1
2
(mA+mB) and staggered ms =

1
2
(mA−mB) magnetizations,

we can show that, near the critical point TN(H) (ms → 0, m→ mo), the magnetization in

sublattice A is expanded up to linear order in ms by

mA ' A0(T,H,mo) +A1(T,H,mo)ms + ... (19)

where the coefficients Ar=0,1(T,H,mo) are given in Appendix A. Using the fact that mA =

mo +ms, from Eq. (19) we obtain

A0(T,H,mo) = mo, (20)

and

A1(T,H,mo) = 1. (21)

III. RESULTS

The Néel temperature TN(H) is obtained if we simultaneously solve the set of two equa-

tions above, Eqs. (20) and (21), for each intensity of the external field H. For fixed coor-

dination number (z), we determine the phase diagram in the T −H plane that comprises a

field-induced antiferromagnetic (AF) phase with ms 6= 0 at low fields and paramagnetic (P)
phase with ms = 0 at high fields. In the limit of null field (H = 0), we have mA = −mB

(mo = 0) and the Néel temperature is obtained by solving numerically only one equation
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A1(TN , 0, 0) = 1. For the sc (z = 6) and bcc (z = 8) lattices we found by using EFT-4 (EFT-

2) kBTN(0)/J = 4.81 (4.95) and 6.89 (6.94), respectively. Note that EFT-2 for a sc (z = 6)

lattice was treated previously in Ref. 19, here we extend the method for the bcc (z = 8)

lattice. Our results for TN(0)on a bcc lattice can be compared with the kBTN(0)/J = 5.53

value obtained by using SE[17]. With increasing cluster size, we have observed a small

convergence of the critical (Néel) temperature.

FIG. 1: Behavior of the reduced critical temperature kBTN/J as a function of the reduced fieldH/J

for the quantum spin-1/2 Heisenberg antiferromagnetic model on a simple cubic (z = 6) lattice.

We present the results obtained bt the EFT-2 (Ref.19 ) and EFT-4 (present work) methods.

The results for the critical frontier of the quantum spin-1/2 Heisenberg antiferromagnet

on a simple cubic (z = 6) lattice in the T −H plane are shown in Fig. 1. We compare our

results (EFT-4) with those obtained by using the EFT-2 method[19], where lines of second

order phase transitions between the AF and P phases are observed. The critical behavior

are different, where TN approaching zero when the field increases to H = Hc (critical field)

with Hc = 6.24J > 6J (classical value) and Hc = 5.85 < 6J obtained by using EFT-2

and EFT-4, respectively. We found by larger cluster the expected result of the reduction of

critical value due the quantum fluctuations at T = 0. The value for Hc by using EFT-2, in
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principle wrong qualitatively, can be attributed to a finite size effect (cluster with N = 2

spins).

FIG. 2: Behavior of the reduced critical temperature TN (H)/TN (0) as a function of the reduced

field H/Hc of the quantum spin-1/2 Heisenberg antiferromagnetic model on a body-centered cubic

(z = 8) lattice. We present the results from EFT-2 and EFT-4 methods both obtained in this

works. We compare our results with series expansion (SE)[17].

To analyze the existence or not of reentrant behavior at low temperature in the phase

diagram in the T − H plane on a bcc lattice, in Fig. 2 we present the results obtained

in this work by using EFT-2 and EFT-4. In the low field region, we compare our results

with the SE[17] method. For a better comparison of results, we renormalize the field and

temperature by the critical values at T = 0 (Hc) and H = 0 (TN(0)), respectively. We

observe a good qualitative accordance between our results (EFT-2 and EFT-4) and those

obtained by using a rigorous method (SE). Quantum fluctuations decrease with increasing

coordination number (z), finally disappearing in the limit z → ∞ where MFA results are

exact. The phase diagram for this model on a bcc lattice, obtained by using MFA[22],

presents Hc = 8J . At low temperature, around the critical field Hc, we have observed a

small reentrant behavior, with positive slope ac > 0, and critical fields Hc = 8.22J (EFT-2)
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and 8.09J (EFT-4) in contrast with MFA results[22]. Using EFT-2 and EFT-4 we have

found a reduced critical field Hc/8J ' 1, which is due to the small quantum effect when the
value of z is increased, such that limz→∞(Hc/zJ) = 1.

IV. CONCLUSION

We have studied the criticality of the quantum spin-1/2 Heisenberg antiferromagnetic

model in the presence of a longitudinal field by using the differential operator technique in

the effective field theory (EFT) in finite clusters (N = 2, 4). We obtained the phase diagram

in the T−H plane on sc and bcc lattices for all interval of field. At null temperature, we have

found a critical field value Hc smaller than 6J (classical value) on a sc lattice by using EFT-

4, while the EFT-2 method[19] obtain Hc > 6J . We expect a critical behavior Hc < 6J ,

and, therefore, the result obtained by using EFT-2, in principle wrong qualitatively, can

be attributed due the finite size effect. On the other hand, we obtain on a bcc lattice, by

using the two methods, a value of the critical field Hc > 8J . Since it is expected that Hc

is smaller than 8J , due to quantum fluctuations, we believe our result is a finite-size effect.

As obtained for the sc lattice, we believe Hc will decrease if bigger cluster are used.

Appendix A

The coefficients A0(T,H,mo) and A1(T,H,mo) are defined by the expressions:

A0(T,H,mo) =
4Q

r=1

(αr +moβr)
z−2 fA(x+ L)|x=0

and

A1(T,H,mo) = (z − 1)
4Q

r=1

(αr +moβr)
z−2 4P

l 6=r
(−1)lβl (αl +moβl)

z−3 fA(x+ L)|x=0

We have used in this work z = 6 and z = 8 to study the phase diagram in the T − H

plane for the sc and bcc lattices, respectively.
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