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ABSTRACT

An agent-based computer simulation of death by inheritable mutations in a changing environment shows a maximal

population, or avoids extinction, at some intermediate mutation rate of the individuals. Our results indicate that death

seems needed to allow for evolution of the fittest, as required by a changing environment.

Key words: changing environment, computer modeling, evolution, mutation, selection.

INTRODUCTION

More than a century ago, Weissmann argued that aging
and death are needed to make place for our children;
and children are, in turn, needed to allow for Darwinian
evolution through survival of the fittest. Kirkwood
(2005) summarized this theory of aging and many other
ones, and specific computer models of aging and death
were reviewed (Moss de Oliveira et al. 1999, Stauffer et
al. 2001, 2006), such as the Penna model (Penna 1995,
Moss de Oliveira et al. 1996, Stauffer 2007), and the
oldest-old effect (de Oliveira et al. 1998, 1999). A math-
ematical argument against immortality was recently
given in this sense (de Oliveira 2007a, 2009).

Now we want to understand the need for death
through Monte Carlo simulations of individuals. We
distinguish between newborns and adults, and take into
account environmental changes. They may come from
climate change, like ice ages and warmer periods during
the existence of Homo sapiens, or they may be caused by
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migrations of people from one environment to another. A
single environmental change was already used to justify
sexual over asexual reproduction (Sá Martins and Moss
de Oliveira 1998) or to account for geographic variation
(Cebrat and Pekalski 2004). Thus, we may allow the
mutation rate of individuals to change in order to find
its optimal value. Here “optimal” either means a maxi-
mum of the population in a fixed environmental carrying
capacity, or survival instead of extinction, depending on
which of our two models (A and B) were used.

In these two models, by using sexual reproduction,
the genome is represented by two strings of L bits each,
i.e. L loci. They represent the L most serious genetic dis-
eases. Each mutation damaging the phenotype (i.e. the
health of the individual) reduces the survival probability
per iteration by a factor x . As genetic load, we count
those bit positions that differ from an ideal bit-string.
This latter bit-string is initially zeroed, with changes
happening at each iteration with a probability p at one
randomly selected bit position. It thus represents the re-
quirement of the changing environment at each locus.
For reproduction, the two bit-strings of the father are
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crossed-over at one randomly selected bit position, the
same happening for the mother, and then one of the two
resulting bit-strings from the father (the gamete) is com-
bined with one of the two from the mother to give the
child genome. Mutations are also inherited from the par-
ents, and m new mutations are introduced at birth to each
gamete (if m ≥ 1; for m < 1, one new mutation is added
with probability m). The genetic load N is the number
of loci (bit positions) where the genome is not adapted
(i.e., it is not the same as the ideal string) to the current
environment. All the changes in the individuals and the
environmental bit-strings are reversible.

Model A’s population is not constant and finds as
an optimal m – a mutation rate for which the equilib-
rium population reaches a maximum. Model B follows a
tradition of theoretical biology and keeps the population
constant except if all adults die out during one iteration;
then, we check which mutation rate avoids the extinc-
tion of the whole population. Further details of the two
models will be discussed in the corresponding sections.

MODEL A WITH CHANGING POPULATION

In model A, each of the individuals survives the next
time step (iteration involving all survivors) with prob-
ability x N (1 − P/K ), in which P is the current total
population and K is a fixed input parameter, sometimes
called the carrying capacity, representing limitations [due
to the lack of food and space] for the population growth.
Here, N is the genetic load, the number of bits that are not
adapted to the current requirement of the environment.
The Verhulst factor 1 − P/K applies to all individuals,
differently from Sá Martins and Cebrat (2000).

Recessiveness is defined differently in two differ-
ent versions A1 and A2 of model A, implying in a dif-
ferent computational procedure to determine the genetic
load N in each one. For A1, the computational pro-
cedure is to take the logical and of the two bit-strings
of the individual, and then count as N the number of
bit positions where the result of the and operation dif-
fers from the ideal string. This procedure is close to
(Stauffer and Cebrat 2006), and means that heterozy-
gous loci do not count for the genetic load N if the
ideal string (the environment) has a bit zero in those
loci, but count if the bits are set. For A2, we count for
N only those positions where both individual bit-strings

agree with each other (homozygous loci) and disagree
with the ideal bit-string. In biological terms, for A1 the
allele 0 is always dominant over the recessive allele 1.
For A2, in contrast, allele 1 becomes dominant and allele
0 recessive when the environmental bit is 1 instead of 0.

Our K is mostly 2 million, the initial population is
K/5, and the resulting equilibrium population is mostly
of the order of one million if it does not die out. The two
individual bit-strings are mutated independently, each
one with a mutation rate m. Each surviving female adult
at each iteration gives birth to B babies, which become
adult at the next iteration; we used B = 4. Mostly
10,000 iterations were made (100,000 for most cases
with m < 0.001), and averages were taken from the
second half of this time interval.

CASE A1

Figure 1 shows our main result: the population P has
a maximum as a function of m at some intermediate m
value. Thus, neither very small m (“eugenics”) nor very
large m (“instability”) are optimal; an intermediate mu-
tation rate leads to the largest P or the lowest 〈N 〉, and,
in all cases, to a finite lifespan.

Instead of applying the Verhulst deaths to all ages,
Figure 2 shows the correlation between genetic deaths
only and genetic load by applying the Verhulst deaths
only to the births (Sá Martins and Cebrat 2000). Data
are taken from averages calculated at different time steps
of a single run for each value of x .

CASE A2

The modified recessiveness defined above for model A2
reduces N and makes survival possible for a changing
environment even for an unrealistically small x . For x ≥
0.8 we see in Figure 3 top a plateau for small mutation
rates m, followed by a decay for a larger m. Thus, there
is no longer the clear population maximum as it was
seen in model A1. A similar result was obtained for
model A1 in a stable environment (not shown).

MODEL B WITH CONSTANT POPULATION

In this version, there are no random deaths by the Ver-
hulst factor. Instead, individuals die exclusively due to
genetic reasons. At each time-step, each individual with
a genetic load N survives with probability x N+1. So,
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Fig. 1 – Model A1. Search for the optimal mutation rate, in which the population (top) reaches the maximal value and the number 〈N 〉 of unadapted

loci (genetic load, bottom) gets the minimal, at x = 0.98. For x = 0.99, L = 64, p = 0.01, the results are similar; for x = 0.96, the populations

die out for some values of these parameters.

an individual with zero load can still die with a prob-
ability 1 − x . This selection mechanism may lead to
the extinction of the whole population for some values
of the model’s parameters. If there is no extinction at
a given time step, the survivors breed, generating new
individuals until the initial population size is restored

for the next time step. There is no distinction between
males and females, and the population may be regarded
as one of hermaphrodites.

To generate the offspring’s genome, the genetic
strings of each parent are crossed-over and one gamete
of each is randomly chosen. A number M of muta-
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Fig. 2 – Model A1. Average age of survivors versus the number of unadapted loci, when the Verhulst

death probability applies to the births only; the individuals are represented by pairs of 64-bit strings and

results are shown for various values of m after some simulation time. The curves show 1/(|lnx |N ).

tions extracted from a uniform distribution in the in-
terval [0, 2m) is then introduced in this genome, each
one at a random location of a randomly chosen gamete.
Thus, m = 2 in this model (B) corresponds to m = 1 in
model A. If M is not an integer, then int(M) mutations
are added, where int(x) is the largest integer contained
in x, and an extra mutation is added with probability
M − int(M). As a result of this strategy, m new muta-
tions are added to each offspring genome on average.

The model treats heterozygous loci in the same
way as model A2, that is, they never contribute to the
genetic load. A slightly different version of this model,
in which x was recalculated at each time step to keep
constant the fraction of deaths, was presented in de Oli-
veira (2001) and de Oliveira et al. (2008).

The results for this model shown in Figure 4 should
be compared to Figure 1. We keep the mutation rate
of the environment as p = 0.01, the selection strength
as a fixed x = 0.98 and then compute the average ge-
netic load 〈N 〉, the fraction of the population that dies per
time step, and the fraction of perfect, or ideal, genomes
in the population for different values of the mutation
rate m. (Perfect, here, means that no homozygous un-
adapted locus is present, although heterozygous loci can

be present at the individual’s genome). We find that
there is an intermediate range of values of the muta-
tion rate for which both the genetic load and the death
rate go through minima, while the fraction of perfects
reaches a maximum. This result matches with what
was found, in similar situations, in our model A1. (For
L = 3200 in Fig. 4, extinction happens for mutation
rates below 0.1 or above 1.2.).

Our main result refers to the need for a strong se-
lection mechanism as a means to enforce a small genetic
load: death of the least adapted individuals makes way
to fitter ones. In Figure 5 we show the time evolution
of the average genetic load of the population for four
different sets of parameters. In all four, we simulate a
population of 1000 individuals, each one represented by
two bit-strings of 3200 bits size, with a mutation rate at
birth of m = 1.0. In case (a), x = 0.98 (weak selection)
and p = 0, the environment does not change. The aver-
age genetic load starts at 0 (ideal individuals) and grows
to a small value of order 1. The distributions of genetic
loads are shown in Figure 6, averaged after the initial
5000 time steps. For case (a), it has a peak at 0, mean-
ing that most of the population carries no genetic load,
with a small width. When the environment changes with
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Fig. 3 – Model A2. As Figure 1 but with modified recessiveness and smaller x .

a probability of p = 0.01 at each time step (case (b)),
the average genetic load increases to a value of order
10 and its distribution peaks at a small non-zero value
of the same order. Further increase in the rate of envi-
ronmental change to p = 0.02 leads the population to
extinction (case (c)). The average genetic load increases
rapidly and its distribution widens (Fig. 6). The genetic
load accumulates thanks to the joint effects of the mu-

tation rate at birth and a fast environmental change that,
even with a weak selection, leads eventually to extinc-
tion. The need for a strong selection is now shown: for
the same parameters ( p and m) but smaller x = 0.95
(case (d)), the population resists and the distribution of
genetic load is very similar to the one in case (b).

The same qualitative results were obtained for hap-
loid asexual populations, but extinction is avoided only
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Fig. 4 – Average genetic load 〈N 〉, deaths and number of perfect individuals as a fraction of the population.

Top figure for bit-strings of size 64, and bottom figure for 3200. Simulations running for 106 time steps.

for larger populations and stronger selection pressure,
similar to de Oliveira (2007b).

Extinction can then be correlated to features of
the distribution of genetic load. It is avoided as long
as the average genetic load is not much larger than the
width of the distribution. This is more clearly shown

in Figure 7, where we plot the results of simulations
of populations with each individual represented by two
bit-strings of 2048 bits size, with x = 0.9 (strong se-
lection), m = 1, and p ranged in the interval [0, 0.36].
Both the average genetic load and the width of the dis-
tribution increase monotonically with p, while the frac-
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Fig. 5 – Time evolution of average genetic load for the four cases ((a)-

(d)) described in the text. Case (c) leads to extinction, while case (d)

shows survival when selection is increased.
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Fig. 6 – Distribution of genetic load for the four cases ((a)-(d)) de-

scribed in the text.

tion of individuals with zero load decreases. Beyond
p = 0.35, this fraction vanishes and extinction is the out-
come of the simulation. In the same plot, we also show
the fraction of individuals that die (for genetic reasons
only, in this model) at each time step. As p increases,
survival of the population becomes more difficult and
causes this fraction to be ever increasing.

CONCLUSION

In all our models, the genetic heritage of a diploid in-
dividual is represented by a pair of bit-strings, which
undergo mutations at birth, while the ideal phenotype is
mapped into a single bit-string. Environmental change
is translated into a mutation of this ideal phenotype.
The genetic load of an individual is determined by a com-
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population with no genetic load and fraction of deaths per time step

(y scale on the right). Values correspond to averages taken after 5000

initial time steps, up to 106. Similar results are obtained for L ≤ 32768.

parison between its genetic strings and the ideal pheno-
type. This genetic load determines the death probability
of each individual.

Our results come from simulations with a fixed
rate of environmental change and a fixed value for the
parameter that measures selection strength x . We show
that population fitness, determined by its size, reaches a
broad maximum, while the average genetic load reaches
a minimum, for some intermediate range of the mutation
rate at birth (model A1). So, nature has self-organized its
cellular error correction machinery to ensure a mutation
rate within some range.

On the other hand, when the rate of environmen-
tal change increases, our results are consistent with the
interpretation that selection has to get stronger to avoid
population extinction (model B).

A more realistic approach would assign a different
selective value for each different bit position, since dif-
ferent inherited diseases differ in their danger to survival.
However, since these values would have to be free pa-
rameters, their introduction in the model would render
it almost useless.
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RESUMO

Simulação computacional de agentes individuais que se repro-

duzem e morrem por acúmulo de mutações herdadas mostra

um máximo da população ou evita extinção, para taxas de mu-

tação intermediárias. Assim, as mortes parecem necessárias

para a evolução dos mais adaptados a um ambiente mutante.

Palavras-chave: ambiente mutante, evolução, modelagem

computacional, mutação, seleção.
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