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Life, amazingly rich in diversity of shapes and functions, explores the limits of extreme complexity in nature.
In this review we shall discuss in general terms the use of multiscale mathematical and computer models to
study the dynamics of biological systems. These models permit integration of the rapidly expanding
knowledge concerning the molecular basis of biology and its complex, nonlinear relationship with the
emerging shapes and functions of cells, tissues and organs in living organisms.
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1. Introduction

Mathematical modeling of biological systems has a long and
fruitful history. A large number of discrete, continuous, and spatially
explicit models were designed for the description of subcellular
systems, physiological dynamics, developmental and population
biology. Almost always, these traditional models are focused on single
biological scales.

In the last few decades, the biology came into a new age: the era of
“omics” [1]. The advent of various high-throughput experimental
technologies produced systems-level measurements for virtually all
types of biomolecules and provided unprecedent views of cells
working. Mainly, these large-data set begin to guide our efforts to
integrate all the facets of biology, from the molecular scale to the
whole organism level. Such an integrative agenda demands for new
modeling approaches in which multiple scales are considered at once.
The aim of this review is to discuss some of the multiscale models
recently proposed to investigate relevant biological problems.

2. Multiple scales in biology

The hallmarks of life are self-organization and self-reproduction. In
all multicellular organisms, self-organization extends from supramo-
lecular structures at the subcellular scale to the tissue and organ levels.
This hierarchy is shown in Fig. 1. A myriad of small molecules, mainly
proteins, nucleic acid, and phospholipids, are self-assembled by the
electromagnetic interaction in non-covalent supramolecular structures.
l rights reserved.
Ribosomes, chromatin, filaments and tubules, vesicles and membranes,
molecular motors and catalysts comprise all the organelles and engage
the intricate networks of chemical reactions operating inside the cell.
The ordered dynamics of the cell (or simply, its physiology) emerges
from a combination of complex stereospecific interactions (determinis-
tic self-assembly), that occur even at thermodynamical equilibrium, and
a striking variety of dynamical interactions between molecules that
require energy dissipation (self-organization) [2]. The spatial scale of
cellular morphogenesis lies between the limits of 1 to 100 µm, far
beyond the effective range of electromagnetic forces that are strongly
screened in anaqueousmedium.Hence, in addition to self-assembly, the
formation of large-scale supramolecular cellular structures requires the
differential activation of genes, in time and space. Cell morphogenesis is
also the result of cell physiology.

At the next level, the cells integrate themselves into tissues
through cell–cell adhesion and communication structures and the
adhesion to surrounding extracellular matrices (ECMs) that are
secreted by themselves and self-assembled by covalent (disulfide)
and non-covalent (hydrogen) bonds [3].

Finally, various tissues arrange themselves into organs, many
organs composing systems and apparels of an organism. Clearly,
processes for pattern formation able to distribute differentiated cells
in appropriate three-dimensional structures in space and time are
required. At these levels, self-organization progress through Turing-
like mechanisms [4]. In such a chemical morphogenesis scenario,
different regulatory genes are switched on in distinct places, and, by
their expression, develop different organs.

Summarizing, living organisms are organized in multiple, inter-
related scales that no single one can be fully considered in isolation
from the others. Indeed, molecular signals from the outside can elicit
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Fig. 1. The hierarchy of life from atoms to living organisms. New phenomena emerge at each upper level that cannot be seen at lower ones. Information flows both up and down these
scales. This hierarchy connects to the hierarchy of inanimate matter through DNA and RNA macromolecules. They constitute the genome of all living systems, controlling their
maintenance, replication and evolution.
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changes in the cell metabolism and gene expression pattern; cells
acquire identity from contact with other cells and ECMs; tissues are
delineated and integrated with other tissues by specialized ECMs; and
molecules carry messages from organ to organ. The time scales
involved vary from seconds (for cell signaling) to years (for organism
development and life span), and the spatial scales range from
nanometers (for protein–DNA interactions) to meters (for nerve
impulse propagation).

3. From biomolecules to cells

Fundamentally relevant biological processes start at the macro-
molecular level. Examples are protein folding, nucleic acid packaging
andmembrane remodeling. Suchphenomenaevolve on length and time
scales ranging from 10 nm to tenth of microns and from micro to
milliseconds. However, those processes are strongly coupled to atomic
and/or molecular dynamics (e. g., fluctuations in side chain conforma-
tion) occurring at Angstrom length and picosecond time scales. Hence,
the analysis of biomolecular structure formation and self-assembly of
supramolecular complexes through a purely molecular dynamics (MD)
approach is neatly unfeasible. Indeed, MD simulations involving many
atoms reach at most nanosecond time and nanometer length scales [5].

In order to investigate the mesoscopic to nearly macroscopic
dynamics that are critical to complex biomolecular systems, a variety
of multiscale methods are currently being developed [6]. Essentially,
these methods connect high-resolution atomistic models at small
scales with coarse-grained representations at large scales in which
particles are groups of molecules or even parts of the concerned
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structures (e. g., one turn of a double helix) [7]. The coupling of the
course-grained and atomistic-level models represents the crucial step
in these multiscale approaches. It determines the way in which one
level affects the other, i.e., how the information is transferred across
various length and time scales. In general terms, three alternatives are
used: (1) coarse-grained force fields are systematically derived from
atomistic MD simulations through different methods such as reverse
Monte Carlo [8] or “force matching” [9,10]; or (2) knowledge-based
potentials are used as, for instance, Gö-type potentials that produce
funnel pathways for protein folding [11–13]; or (3) the entire systems
are described through elastic network models in which the biologi-
cally significant fluctuations are collective modes of these elastic
materials [14–16].

Nowadays, multiscale approaches associated to enhanced com-
puter power allow the simulation of biosystems of relevant length
and time scales. Recent applications include modeling of DNA
packaging into viral capsides [7], nucleosomal array folding [17],
monomeric binding in homodimeric proteins [18••], folding and
stability of β-sheet complexes [19], confining effects of chaperonin
cages on the protein folding kinetics [20••], lipidic bilayer, micelles
and vesicles formation [8], structural dynamics of protein–DNA
complexes[21], movements of the ribosome [22] and of tRNA in
ribosomal bound structures [23].

As can be inferred from this short list of applications, various
multiscale studies have focused on the self-assembly of supramo-
lecular structures and provided valuable insight into the interactions
among proteins, nucleic acids and lipids. However, a quantitative
model of the entire cell is yet a distant goal. Indeed, individual
proteins carry out their function in complex networks of interacting
macromolecules [24•]. Of special significance are the regulatory
cascades in which membrane receptors stimulation triggers the
assembly of signaling complexes on receptors down to the formation
of transcriptional complexes that bind on DNA, regulating gene
expression. In feedback, the outcomes of cell signaling lead to
cytoskeletal reorganization, membrane remodeling, sequential transi-
tions in the cell cycle and so on, thereby controlling central events in
several physiological processes, such as cell metabolism, motility,
migration, division, and differentiation.

At the level of metabolism (length and time scales of micrometer
and second, or longer), the complex spatial and temporal dynamics of
signaling pathways are modeled either through continuous (differ-
ential equations) [24•,25•] or discrete (cellular automata) [26]
dynamical systems. In a multiscale approach, the ligand binding
constants, reaction rates, diffusion coefficients and bound-states
lifetimes parameterizing these dynamical systems are, in principle,
determined by the structure and surface properties of the biomole-
cules and their macromolecular complexes. In turn, the network
dynamics changes its own topology, consequently the cellular
environment, protein synthesis and degradation, phosphorylation
and dephosphorylation. So, self-organization and assembly of the
macromolecules (protein folding, protein–protein docking, rearrange-
ment upon ligand binding or after biochemical reactions) also change,
affecting the parameters of the dynamical systems. Information
moves both up and down the molecular and cellular scales.
4. From cells to organs

Biological tissues are complex composite materials. Neither the
detailed microscopic description of million of cells nor the absolute
negligence of subcellular effects represents an adequate approach to
explain how these tissues and organswork. Again,multiscalemethods
seem to be appropriate tools to quantitatively explore functionality
from the levels of gene to the physiology of organs and systems.
Multiscale modeling the heart firmly confirms this point [27]. In this
case, there are both detailed experimental information at the cellular
level and reliable models of all themain types of cardiac myocytes and
of the three-dimensional anatomy of the whole organ.

The main physiological feature of cardiac cells is their ability to
form and transmit action potentials. A multiscale model approach
[28••] successfully explains the physiology of ventricular action
potentials. At the subcellular scale, the model assumes that ion
channels stochastically transit between open, closed and inactive
states corresponding to their discrete structural configurations. At the
cell level, the rate of change of themembrane potential is described by
a Hodgkin–Huxley type formalism [29] for the total ionic current
associated to ion channels, pumps and exchangers, as in the Lou–Rudy
model [30]. Thus, in one hand, the ventricular action potential at the
cellular level is determined by the ionic currents through all the ion
channels operating at the subcellular scale. On the other hand, since
the dynamics of an ion channel is controlled by voltage dependent
transition rates between its different conformations, the global cell
response influences the subcellular level. Using this multiscale
modeling strategy, it was possible to integrate ion channels (normal
or mutant) into the whole cell and study how genetic defects lead to
cardiac arrhythmias [27,28••], such as congenital long-QT syndrome
due to a genetic mutation in the SCN5A gene [31].

Concerning the organ level, multiscale models for heart dynamics
attempt to integrate cellular electrical activation, soft tissue
mechanics, and ventricular and coronary fluid mechanics [32••].
Electrical activation processes are described in terms of Hodgkin–
Huxley-like equations for the time-dependent gates controlling the
flow of ions across the cell membrane, as mentioned in the preceding
paragraph. Tissue models involve either discrete cells [33] or a
continuous (syncytium) [34] ruled by partial differential equations
coupling the transmembrane and the extracellular potentials. The
myocardium is modeled as an incompressible elastic solid whose
mechanical behavior is defined through constitutive laws specifying
the relationship between active forces developed by cardiac myocytes
and strains, strain rates, and strain history [35]. Finally, blood flow and
the coronary circulation are governed by the Navier–Stokes equations
[36]. The major challenges are imposed by moving boundary
conditions (e.g., the ventricular endocardial surfaces), the intricate
motion of the valve leaflets which plays a major role in vortex
formation, and the coupling of blood pressure and velocity fields to
the viscoelastic properties of arterial and venous blood vessel walls.

These multiscale models are now able to provide rather accurate
reconstructions of, for instance, the spread of the electrical activation
wavefront in the heart or the coronary circulation. Furthermore, they
become valuable tools to help the design of new medical devices such
as ventricular assist devices [37] and bioprosthetic and mechanical
heart valves [38]. However, new structural and physiological features
as, for instance, the sinus node, atrium, metabolic and signal
transduction pathways, need to be incorporated in these models
before significant progress can be made in supporting clinical
diagnostic and drug discovery, since diseases and therapeutic drugs
act at the level of proteins. Finally, multiscale simulation is now being
done for a wide range of organs and systems such as the lung and the
respiratory system [39], kidney [40], musculoskeletal system [41], and
brain activity [42].

5. From models to therapies

Despite the extensive information on the genetic and molecular
basis of diseases currently available, the integration of this informa-
tion into the physiological environment of the functioning cell and
tissue remains a major challenge. In the previous section, it was
mentioned howmathematical models help us to meet this challenge
in the context of cardiac excitation and arrhythmia. In turn, this
section illustrates how multiscale modeling might be complemen-
tary (maybe necessary) tools to understand cancer growth and
improve its therapy.



Fig. 2. Hierarchy of scales and the related mechanisms and modeling approaches. The arrows indicate the mutual interdependence between the levels in multiscale modeling of
cancer growth, implying that models/subsystems at a given scale use information from another scales.
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The tumor growth is intrinsically multiscale in nature. It involves
phenomena occurring over a variety of spatial scales ranging from
tissue (for instance, tissue invasion and angiogenesis) to molecular
length scales (for example, mutations and gene silencing), while the
timescales vary from seconds for signaling to months for tumor
doubling times. Moreover, all those processes are strongly coupled.
Indeed, an oncogene activation may confer a proliferative advantage
to a given cell, promoting its clonal expansion and the depletion of the
nutrient and oxygen supply which, in turn, affect the growth of cell
clones. To survive in a hypoxic (low level of oxygen) environment, the
transformed cells may acquire new traits such as resistance to
apoptosis by a tumor suppressor gene inactivation or activated
synthesis of growth factors that stimulate angiogenesis [43]. Thus,
Fig. 3. Simulated patterns generated by the nutrient-limited cancer growth model of referenc
for nutrients increases. Bottom: common morphologies observed in cancer. From left to righ
and the characteristic ramified morphology of trichoblastomas. All these histological patter
information flows not only from the finer to coarser scales, but
between any pair of scales [44•], as shown schematically in Fig. 2.

A model, proposed by the authors [45], integrates the cellular
(mesoscopic) and tissue (macroscopic) scales in avascular cancer
growth. Furthermore, it introduces an effective stochastic cell kinetics
controlled by local probabilities as a strategy to connect the
macroscopic diffusion equations for nutrients and/or growth factors
to cell response and interactions at the microscopic scale, a central
challenge in developing multiscale models. Essentially, the tissue is
represented by a regular lattice in which normal and tumor cells
compete for nutrients supplied by a single capillary vessel localized at
the top of the lattice. These nutrients diffuse through the tissue
towards individual cells and their concentration fields follow linear,
e [45]. They change from compact to papillary or finger-like patterns as the competition
t, a compact solid basocellular carcinoma, a papillary pattern of a squamous papyloma,
ns were obtained from dogs.
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continuous reaction-diffusion equations. Chemotactic interactions
among cancer cells mediated by diffusive growth factors (again,
governed by linear macroscopic equations) can be added to the
competition for nutrients. The cells are discrete individual agents
constrained to the lattice sites, and any site is occupied by only one of
the cell types (normal, cancer and tumor necrotic cells).

The tumor grows from a single cancer cell, introduced at the center
of the normal tissue, according to a stochastic dynamics involving
three complex cellular processes: division, migration and death of
cancer cells whose probabilities are dependent on the local concen-
tration fields of nutrients and growth factors. Their functional forms
are chosen in order to take into account some general features of the
cancer biology. Finally, the model parameters characterizing the
cancer cell response to nutrient concentrations and growth factors
embody complex genetic and metabolic processes. Their values
should be determined in terms of the underlying biochemistry and
molecular biology, still an open problem. The other model parameters
associated with the consumption of essential and non-essential
nutrients for cell proliferation by the normal and cancer cells, are
more easily determined from biological experiments.

Typical patterns generated by the model vary from compact to
papillary-like shapes, as shown in Fig. 3. The tumor morphology is
determined primarily by nutrient consumption rates and chemotactic
signaling among cancer cells. All the simulated growth patterns, with
and without growth factors, reproduce a main feature of avascular
tumors, namely, the formation of a necrotic core of dead cancer cells due
to nutrient starvation, of an outer rim of nutrient-rich, proliferating
tumor cells and, in between these two layers, an intermediate region of
quiescent cells. Such multilayered structure was observed in multi-
cellular spheroids of cancer cells formed in culture essays [46,47].

This model [48] and other multiscale approaches [49] were used to
analyze the effects on cancer growth of chemotherapy, radiotherapy
[50], anti-angiogenic [51], and macrophage-based treatments [52].
Some recent applications of multiscale modeling have focused on
oncolytic virotherapy, one of the most promising strategies to treat
cancer [53]. It consists in the use of programmed viruses to specifically
target, replicate in and ultimately kill cancer cells.

Extensive simulations of a multiscale virotherapy model proposed
by Ferreira et al. [54,55••] revealed predictions that are in qualitative
agreement with results from clinical reports. From a therapeutic point
of view, their findings indicate that a successful, single agent
virotherapy requires a strong inhibition of the host immune response
and the use of potent virus species with a intratumoral high mobility.
Moreover, due to the discrete and stochastic nature of cells and their
responses, an optimal range for viral cytotoxicity is predicted since the
virotherapy fails if the oncolytic virus demands either a too short or a
very large time for killing the tumor cell. This finding suggests that the
virus which kills cancer cells most rapidly is not necessarily the more
effective agent to eradicate the tumor. The implications of such a
result for the design of new replication-competent viruses are clear.

Again, new features underlying cancer growth and invasion as, for
instance, the immune response, angiogenesis, tumor–stroma interac-
tions, metabolic and signal transduction pathways, need to be incorpo-
rated in thesemodels before significantprogress canbemade indeducing
how distinct mechanisms interact in cancer and predicting the global
response of the system to therapeutic interventions. Such mechanistic
models can provide real insights into critical parameters that control
cancer progression, guide the design of new essays by indicating relevant
physiological processes for further clinical investigation, and prevent
excessive experimentation needed to develop effective treatments.

6. Conclusions and perspectives

The complexity and diversity of biological phenomena, the range
of spatial and temporal scales over which they act, extending from the
molecular to the organism levels, and the intricate way in which they
are interwoven, make practically unfeasible the understanding of
living systems through intuition alone. Therefore, theoretical multi-
scale approaches are essential tools in the quest for a quantitative, “ab
initio” physiology and pathophysiology of whole organs and systems
beginning at the level of genes.

Today, the quantitative success of multiscale modeling is limited
whereas the unresolved scientific problems are widespread. However,
the increasing computer power, the development of inherently multi-
scale modeling and theoretical ideas, and a growing interest from
physicists, mathematicians and biologists on this type of multidisci-
plinary approach, will certainly accelerate the progress and the broad
applicability of themultiscale program in biological sciences. Hence, we
can confidently predict a major role for multiscale models in future
medical and pharmaceutical research, transforming biology in a highly
computer-intensive science. The hard calculations and extended
simulations necessary for the solution of multiscale mathematical
models can be closer to the patient's bed as physicians never dreamed
before.
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