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Chapter 1

Classical Solutions in

Multidimensional Cosmology

1. Multidimensional Cosmology with Multicomponent Perfect
Fluid

1.1. Introduction. The model

Multidimensional gravitation and cosmology (see, for example [1-21] and references
therein) is a very interesting object of investigations both from physical and mathe-
matical points of view. Here we continue the study of such models started in [21].

Last decade the interest in multidimensional cosmology was stimulated mainly by
the Kaluza-Klein and superstring paradigmas [22,23]. The "realistic" multidimensional
cosmological models appeared mainly in a context of some uni�cations theories. Certainly,
it is quite natural to believe that the Entire Universe is multidimensional and we live in
a some sort of a (3+1)- dimensional layer, that is Our Universe. Of course, at �rst stage
we should try to understand the structure of our 3-dimensional crude (dense) matter and
the formation of Our Universe. But it seems to be very likely that at some stage of
our development it will be just impossible to describe our (3+1)-dimensional layer (Our
Universe) out of touch with other (multidimensional) layers and domains.

A large variety of multidimensional cosmological models is described by pseudo-
Euclidean Toda-like systems [19] (see formula (1.1.10) below). These systems are not
well studied yet. We note, that the Euclidean Toda-like systems are more or less well
studied [24-28] (at least for certain sets of parameters, associated with �nite-dimensional
Lie algebras or a�ne Lie algebras). There is also a criterion of integrability by quadrature
(algebraic integrability) for these (Euclidean) systems established by Adler and van Moer-
beke [28]. Nevertheless, there are some indications that cosmological models may contain
rather rich mathematical structures. For example, a self-dual reduction of the Bianchi-IX
cosmology [29] leads us to the Halphen system of ordinary di�erential equations [30].
This system may be integrated in terms of modular forms [31] and is connected with a
certain integrable reduction of the self-dual Yang-Mills equation [32] (with the in�nite-
dimensional group SDiffSU(2)). Another example is connected with the Kaluza-Klein
dyon solution from [33]. The �eld equations for a spherically-symmetric Kaluza-Klein
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dyon in 5-dimensions were reduced in [33] to an open (Euclidean) Toda lattice with three
points. Certainly, this problem may be formulated in terms of an appropriate cosmolog-
ical model described by a pseudo-Euclidean Toda- like Lagrangian. So, we are led to an
interesting nontrivial example of an integrable cosmological model.

In this lectures we consider a cosmological model describing the evolution of n Einstein
spaces in the presence of m-component perfect-uid matter. The metric of the model

g = �exp[2(t)]dt
 dt+
nX
i=1

exp[2xi(t)]g(i); (1.1)

is de�ned on the manifold

M = R�M1 � : : :�Mn; (1.2)

where the manifold Mi with the metric g(i) is an Einstein space of dimension Ni , i.e.

Rmini [g
(i)] = �ig(i)mini

; (1.3)

i = 1; : : : ; n; n � 2. The energy-momentum tensor is adopted in the following form

TMN =
mX
�=1

T
M(�)
N ; (1.4)

(TM(�)
N ) = diag(��(�)(t); p(�)1 (t)�m1

k1
; : : : ; p(�)n (t)�mn

kn
): (1.5)

� = 1; : : : ;m, with the conservation law constraints imposed:

5MT
M(�)
N = 0 (1.6)

� = 1; : : : ;m� 1. The Einstein equations

RM
N � 1

2
�MN R = �2TMN (1.7)

(�2 is gravitational constant) imply 5MT
M
N = 0 and consequently 5MT

M(m)
N = 0.

We suppose that for any �-th component of matter the pressures in all spaces are
proportional to the density

p
(�)
i (t) = (1 � h

(�)
i (x(t)))�(�)(t); (1.8)

where

h
(�)
i (x) =

1

Ni

@

@xi
�(�)(x); (1.9)

i = 1; : : : ; n, where �(�)(x) is a smooth function on Rn , � = 1; : : : ;m. So, the total
model is anisotropic.

In Sec. 1.2 the Einstein equations (1.1.7) for the model are reduced to the equations
of motion for some Lagrange system with the energy constraint E = 0 imposed. When
m = 1 and all spaces are Ricci-at (�i = 0 in (1.1.3), i = 1; : : : ; n) such reduction was
performed previously in [9].
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In Sec. 1.3 we consider the Einstein equations, when all spaces are Ricci-at and
h
(�)
i = const, i = 1; : : : ; n, � = 1; : : : ;m. In this case we deal with pseudo-Euclidean

Toda-like system with the Lagrangian

LA =
1

2
Gij _x

i _xj �
mX
�=1

�2A(�) exp(u(�)i xi); (1.10)

where sign(Gij) = (�;+; : : : ;+) [14,15], u(�)i = Nih
(�)
i and A(�) = const i = 1; : : : ; n,

� = 1; : : : ;m. The Einstein equations are integrated in the following cases: 1) m = 1;
2) n = 2, m � 2, A(�) 6= 0, u(�) � u(1) = b(�)u, � = 1; : : : ;m, where u2 = Gijuiuj = 0,
u 6= 0; 3) u(�) = b(�)u, u2 < 0, A(�) > 0, � = 1; : : : ;m.

1.2. The equations of motion

The non-zero components of the Ricci-tensor for the metric (1.1.1) are following

R00 = �
nX
i=1

Ni[�x
i � _ _xi + ( _xi)2]; (1.2.1)

Rmini = g(i)mini
[�i + exp(2xi � 2)(�xi + _xi(

nX
i=1

Ni _x
i � _))]; (1.2.2)

i = 1; : : : ; n.
We put

 = 0 �
nX
i=1

Nix
i (1.2.3)

in (1.1.1) (the harmonic time is used). Then it follows from (1.2.1) and (1.2.2) that
the Einstein equations (1.1.7) for the metric (1.1.1) with  from (1.2.3) and the energy-
momentum tensor from (1.1.4), (1.1.5) are equivalent to the following set of equations

1

2
Gij _x

i _xj + Vc + �2
mX
�=1

�(�) exp(20) = 0; (1.2.4)

�i + �xi exp(2xi � 20) = �2 exp(2xi)
mX
�=1

[p
(�)
i + (D � 2)�1(�(�) �

nX
j=1

Njp
(�)
j )]; (1.2.5)

i = 1; : : : ; n. Here

Gij = Ni�ij �NiNj (1.2.6)

are the components of the minisuperspace metric,

Vc = �1

2

nX
i=1

�iNiexp(�2xi + 20) (1.2.7)

is the potential and D � dimM = 1 +
Pn
i=1Ni .
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The conservation law constraint (1.1.6) for � 2 f1; :::;mg reads

_�(�) +
nX
i=1

Ni _x
i(�(�) + p

(�)
i ) = 0: (1.2.8)

We impose the conditions of state in the form (1.1.8), (1.1.9). Then eq. (1.2.8) gives

�(�)(t) = A(�)exp[�2Nix
i(t) + �(�)(x(t))]; (1.2.9)

where A(�) = const and eqs. (1.2.4), (1.2.5) may be written in the following manner

1

2
Gij _x

i _xj + Vc + �2
mX
�=1

A(�) exp�(�) = 0; (1.2.10)

�i + �xi exp(2xi � 20) = ��2
mX
�=1

ui(�)A
(�) exp(2xi � 20 + �(�)); (1.2.11)

i = 1; : : : ; n. In (1.2.11) we denote

u
(�)
i � Nih

(�)
i = @i�

(�); ui(�) = Giju
(�)
j ; (1.2.12)

where [15]

Gij =
�ij

Ni
+

1

2�D
(1.2.13)

are the components of the matrix inverse to the matrix (Gij) (1.2.6).
It is not di�cult to verify that equations (1.2.11) are equivalent to the Lagrange

equations for the Lagrangian

L =
1

2
Gij _x

i _xj � V (1.2.14)

where

V = V (x) = Vc(x) +
mX
�=1

�2A(�) exp[�(�)(x)]: (1.2.15)

Eq. (1.2.10) is the zero-energy constraint

E =
1

2
Gij _x

i _xj + V = 0: (1.2.16)

Remark 1. In terms of 1-forms u(�) = u
(�)
i dxi , the relations (1.1.9) read: u(�) = d�(�) ,

� = 1; : : : ;m. In this case

du(�) = 0; (1.2.17)

� = 1; : : : ;m. The set of eqs. (1.2.17) (on Rn ) is equivalent to (1.1.9). An open problem
is to generalize the considered here formalism for the following cases: a) du(�) 6= 0 for
some � 2 f1; : : : ;mg; b) du(�) = 0 for all � = 1; : : : ;m, but u(�) are de�ned on an open
submanifold 
 2 Rn with the non-trivial cohomology group H1(
; R) 6= 0.
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Using eqs. (1.2.1) and (1.2.2), it is not di�cult to verify that the Einstein equa-
tions (1.1.7) for the metric (1.1.1) and the energy-momentum tensor from (1.1.4), (1.1.5),
(1.1.8), (1.1.9) are equivalent to the Lagrange equations for the following degenerate La-
grangian (see also [15])

L =
1

2
exp(� + 0(x))Gij _x

i _xj � exp( � 0(x))V (x) (1.2.18)

(L = L(; x; _x)). Fixing the gauge

 = 0(x)� 2f(x); (1.2.19)

where f = f(x) is a smooth function on Rn , we get the Lagrangian

Lf =
1

2
exp(2f(x))Gij _x

i _xj � exp(�2f(x))V (x): (1.2.20)

For f = 0 we have the harmonic-time gauge (1.2.3). The set of Lagrange equations for
the Lagrangian (1.2.18) (or equivalently the set of the Einstein equations) with  from
(1.2.19) is equivalent to the set of Lagrange equations for the Lagrangian (1.2.20) with
the energy constraint imposed

Ef =
1

2
exp(2f(x))Gij _x

i _xj + exp(�2f(x))V (x) = 0: (1.2.21)

Remark 2. We remind that the action of the relativistic particle of mass m, moving
in the pseudo-Euclidean background space with the metric Ĝij(x) has the following form

S =
Z
d� [Ĝij(x(� ))

_xi _xj

2e(� )
� m2

2
e(� )]; (1.2.22)

where e = e(� ) is 1-bein. Comparing (1.2.18) and (1.2.22), we �nd that for V (x) > 0
the cosmological model (1.2.18) is equivalent to the model of relativistic particle with the
mass m = 1, moving in the conformally-at (pseudo-Euclidean) space with the metric
Ĝij(x) = 2V (x)Gij ). In this case e = 2V (x) exp( � 0(x)) . For V (x) < 0 we have a
tachyon. The problem may be also reformulated in terms of a geodesic-ow problem for
conformally-at metric (this follows from (1.2.22) or from a more general scheme).

1.3. Classical solutions

Now, we consider the following case: �i = 0 (all spaces are Ricci-at), u
(�)
i = Nih

(�)
i =

const, i = 1; : : : ; n. Then Vc = 0 and we put �(�) = u
(�)
i xi in (1.2.15). In this case the

Lagrangian (1.2.14) has the form (1.1.10).
Remark 3. The curvature induced term Vc (1.2.7) may be generated in the framework

of the model with the Ricci-at spaces Mi by the addition of n new components of
the perfect uid with u

(k)
i = 2Ni � 2�ki and �2A(k) = ��kNk=2, i; k = 1; : : : ; n. The

introduction of the cosmological constant � into the model is equaivalent to the addition
of a new component with u

(n+1)
i = 2Ni and �2A(n+1) = �.

One-component matter
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We consider the case m = 1, A(1) = A 6= 0. We denote h
(1)
i = hi , u

(1)
i = ui = Nihi .

We remind [14, 15] that the minisuperspace metric

G = Gijdx
i 
 dxi (1.3.1)

has pseudo-Euclidean signature (�;+; : : : ;+), i.e. there exist a linear transformation

za = V a
i x

i; (1.3.2)

diagonalizing the minisuperpace metric (1.3.1)

G = �abdz
a 
 dzb = �dz0 
 dz0 +

n�1X
i=1

dzi 
 dzi; (1.3.3)

where

(�ab) = (�ab) � diag(�1;+1; : : : ;+1); (1.3.4)

a; b = 0; : : : ; n� 1.
Proposition 1. For any u = (ui) 2 Rn , u 6= 0, there exists a (nondegenegate) n � n
matrix (V a

i ) such that

�abV
a
i V

b
j = Gij (1.3.5)

and a) V 0
i = ui=

p�u2 , for u2 < 0; b) V 1
i = ui=

p
u2 , for u2 > 0; c) V 0

i + V 1
i = ui , for

u2 = 0;
Here and below (u = (ui) = (Nihi))

u2 � uiu
i = Gijuiuj =

nX
i=1

Ni(hi)
2 +

1

2 �D
(
nX
i=1

Nihi)
2: (1.3.6)

(We note that in notations of [14] u2 = ��(h)=(2 �D).)
This proposition follows from the fact that < u; v >� Gijuivj is bilinear symmetric

2-form of signature (�;+; : : : ;+) and the following quite obvious.
Proposition 2. Let v 2 E = Rn , n � 2, and < :; : >: E � E �! R is a bilinear
symmetric 2-form of signature (�;+; : : : ;+). Then there exists a basis v0; : : : ; vn�1 in
E , such that < va; vb >= �ab and a) v = v0 , b) v = v1 , c) v = v0 + v1 , in the cases: a)
v2 �< v; v >= �1, b) v2 = 1, c) v2 = 0 respectively.

Let u 6= 0. In z = (za)-coordinates (1.3.2) with the matrix (V a
i ) from the Proposition

1 the Lagrangian (1.2.14) has the following form

LA =
1

2
�ab _z

a _zb � VA = �1

2
( _z0)2 +

n�1X
i=1

1

2
( _zi)2 � VA; (1.3.7)

where

VA = �2A exp(2qz0); u2 < 0; (1.3.8)

= �2A exp(2qz1); u2 > 0; (1.3.9)

= �2A exp(z0 + z1); u2 = 0; (1.3.10)
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is the potential (1.2.15). Here we denote

2q �
q
ju2j: (1.3.11)

The Lagrange equations for the Lagrangian (1.3.7)

�za = ��ab@bVA (1.3.12)

with the energy constraint (1.2.16)

EA =
1

2
�ab _z

a _zb + VA = 0; (1.3.13)

can be easily solved. We present the solutions.
a) For u2 < 0

zi = pit+ qi; i = 1; : : : ; n� 1; (1.3.14)

2qz0 = y(t); (1.3.15)

where pi and qi are constants and

y(t) = ln[C=D sinh2(
1

2

p
C(t� t0))]; C 6= 0;D > 0; (1.3.16)

= ln[4=D(t � t0)
2]; C = 0;D > 0; (1.3.17)

= ln[�C=D cosh2(
1

2

p
C(t� t0))]; C > 0;D < 0; (1.3.18)

Here t0 is an arbitrary constant, D = �2u2�2A, C = �u2(~p)2 and (~p)2 =
Pn�1
i=1 (p

i)2 .
b) For u2 > 0 we have

zi = pit+ qi; i = 0; 2; : : : ; n� 1; (1.3.19)

2qz1 = y(t); (1.3.20)

with (~p)2 = (p0)2 �Pn�1
i=2 (p

i)2 in (1.3.15)-(1.3.18).
c) u2 = 0, u 6= 0. In this case

zi = pit+ qi; i = 2; : : : ; n� 1; (1.3.21)

z+ = z0 + z1 = p+t+ q+; (1.3.22)

z� = z0 � z1 = p�t+ q� + �2Az(t); (1.3.23)

where for p+ 6= 0

z(t) = 2(p+)�2 exp(p+t+ q+); p+p� = (~p)2 (1.3.24)

(p� = 0 for n = 2) and for p+ = 0

z(t) = t2 exp q+; (~p)2 + 2�2A exp q+ = 0: (1.3.25)

Here (~p)2 =
Pn�1
i=2 (p

i)2 .
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For u = 0 we have

za = pat+ qa; a = 0; : : : ; n� 1; (1.3.26)
1
2
�abp

apb + �2A = 0: (1.3.27)

Kasner-like parametrization. Here we consider the case u2 < 0, A 6= 0. For C =
�u2(~p)2 > 0 we reparametrize the time variable

� =
Tp
"
ln
exp(

p
C(t� t0)) +

p
"

exp(
p
C(t� t0))�p"

; (1.3.28)

where

" � A=jAj = �1; T � (2=�2jAjju2j)1=2: (1.3.29)

We introduce new (Kasner-like) parameters

�i � �2V i
s p

s=
q
�u2(~p)2; (1.3.30)

where (V i
a ) = (V a

i )
�1 and the summation parameter s runs: s = 1; : : : ; n � 1. Then,

due to relations (1.3.2), (1.3.5), (1.3.14)-(1.3.16), (1.3.18) and Proposition 1 we get the
following expression for the metric (1.1.1) [40]

g = �(
nY
i=1

(ai(� ))
2Ni�ui)d� 
 d� +

nX
i=1

a2i (� )g
(i); (1.3.31)

where

ai(� ) = Ai[
sinh(�

p
"=T )p
"

]2u
i=u2 [

tanh(�
p
"=2T )p
"

]�
i

; (1.3.32)

i = 1; : : : ; n; Ai > 0 are constants and the parameters �i satisfy the relations

ui�
i = 0; (1.3.33)

Gij�
i�j = �4=u2 (1.3.34)

(see Proposition 1 and (3.30)). For the density (2.15) we have

�(� ) = A
nY
i=1

(ai(� ))
ui�2Ni: (1.3.35)

We note, that (~p)2 = 2�2jAjQn
i=1A

ui
i

For A > 0 we have an exceptional solution (1.3.31), (1.3.33), (1.3.34) with the scale
factors

ai(� ) = �Ai exp(�2ui�=u2T ); (1.3.36)

�Ai > 0, i = 1; : : : ; n. This solution correspond to C = 0 case (1.3.17).
Remark 4. In [19] the Einstein equations (1.2.10), (1.2.11) were solved for A(�) =

0, � = 1; : : : ;m, �1 6= 0, �i = 0, i > 1. The solutions [19] may be also obtained
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from the formulas (1.3.31)-(1.3.34). We note that the spherically-symmetric analogue of
the solution [19] was considered in [36] (the case d = 2 was considered previously in
[35]). There exists an interesting special case of the solutions [35, 36]. It is the n-time
generalization of the Schwarzschild solution

g = �[(1� L
R
)A]abdta 
 dtb + (1� L

R
)�spAdR
 dR+ (1� L

R
)1�spAR2d
2; where L 6= 0

and A = (Aab) is symmetric n� n matrix, satisfying the relation sp(A2) + (spA)2 = 2.
We consider this solution in a separate publication.

Two spaces with m-component matter
Here we consider the following case: n = 2, m � 2, A(�) 6= 0,

u(�) � u(1) = b(�)u (1.3.37)

� = 1; : : : ;m, where u2 = 0, u 6= 0 and b(�) are constants.
In z -coordinates (1.3.2), where the matrix (V a

i ) satis�es the Proposition 1 (see the
case c) u2 = 0) we have

z+ = z0 + z1 = (V 0
i + V 1

i )x
i = uix

i; (1.3.38)

�(1) = u
(1)
i xi = �+z

+ + ��z�; (1.3.39)

where 2�+ = � < u1; u� >, 2�� = � < u1; u >, and u� = (u�i ) is de�ned by the relation
: u�ix

i = z� (or equivalently < u�; u� >= 0, < u�; u >= �2).
Due to (1.3.37)-(1.3.39) the potential in (1.1.10) is factorized

V = V+(z
+)V�(z�); (1.3.40)

where

V+(z
+) = exp(�+z

+)(�2A(1)+
mX
k=2

�2A(�) exp(b(�)z+); (1.3.41)

V�(z�) = exp(��z�): (1.3.42)

Let A(�) > 0, � = 1; : : : ;m, . We consider the f -gauge (1.2.19) with

F = e2f = V: (1.3.43)

In this gauge the Lagrangian (1.2.20) reads

Lf = �1

2
V+(z

+) _z+V�(z�) _z� � 1: (1.3.44)

In the variables

w� = w�(z�) =
Z z�

z0
dxV�(x) (1.3.45)

the Lagrangian (1.3.44) has a rather simple form

Lf = �1

2
_w+ _w� � 1: (1.3.46)
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The equations of motion for (1.3.46) give

w�(t) = p�t+ q�: (1.3.47)

The parameters p� satisfy the energy constraint

2Ef = �p+p� + 2 = 0: (1.3.48)

Remark 5. It is interesting to note that the so-called D -dimensional Schwarzschild-
deSitter solution [44,45] may be obtained from the considered here cosmological solution
with n = m = 2 and N1 = 1, N2 = D � 2.
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n spaces with m component matter
Now we consider the simplest case of the multicomponent matter. We put in (1.1.10)

n � 2, A(�) > 0, u(�) = b(�)u, u2 < 0, where b(�) are constants, � = 1; : : : ;m.
In z -coordinates (1.3.2), corresponding to the case a) from the Proposition 1, the

Lagrangian (1.1.10) has the form (1.3.7) with the potential

VA = VA(z
0) =

mX
i=1

�2A(�) exp(2qb(�)z0); (1.3.49)

where q is de�ned in (1.3.11) (A = (A(�))). The solutions of the equations (1.3.12) and
(1.3.13) are expressed by the formula (1.3.14) and the following relationZ z0

c0
dx[2E + 2VA(x)]

�1=2 = �(t� t0); (1.3.50)

where 2E =
Pn�1
i=1 (p

i)2 , and c0; t0 are constants.

1.4. Concluding remarks

In this section we investigated the multidimensional cosmological model with n (n > 1)
Ricci-at spaces, �lled by m-component perfect uid. In some sense, this model may
be considered as "universal" cosmological model: a lot of cosmological models may be
obtained from it under a suitable choice of parameters. This fact may be used for "Toda-
like" classi�cation of known exact cosmological (and spherically-symmetric) solutions of
the Einstein equations. (We note, that the Bianchi-IX cosmological model is described
by the "Toda-like" Lagrangian (1.10) with n = 3 and m = 6.)

Here we integrated the Einstein equations for some sets of parameters. But an open
problem is the problem of integrability of the considered here model (at classical and

quantum levels) for arbitrary values of the parameters m, n, Ni and u
(�)
i . We hope to

continue the investigation of this problem in forthcoming publications.
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2. Multidimensional Cosmology with Multicomponent Perfect
Fluid and Toda Lattices

2.1. Introduction

We consider dynamical systems with n � 2 degrees of freedom described by the La-
grangian

L =
1

2

nX
i;j=1

�ij _x
i _xj �

mX
s=1

a(s) exp[
nX
i=1

bsix
i]; m � 2: (2.1.1)

A lot of systems in gravitation [33,44] and as well in multidimensional cosmology [1-21,45-
48] reduce to the systems with such a Lagrangian.

Without loss of generality it can be assumed that matrix (�ij) is diagonalized and
�ii = �1 for i = 1; : : : ;m. Such system is an algebraic generalization of a well-known
Toda lattice [24,39] suggested by Bogoyavlensky [25,40]. We say that it is an Euclidean
Toda-like system, if bilinear form of kinetic energy is positively de�nite, i.e. �ij = �ij .
Nearly nothing is known about Euclidean Toda-like systems with arbitrary sets of vectors
b1; : : : ; bm , where bs = (bs1; : : : ; b

s
n) for s = 1; : : : ;m. But, if they form the set of admissible

roots of a simple Lie algebra, then the system is completely integrable and possesses a
Lax representation. Remind, that the set of roots �1; : : : ; �m is called admissible [25,40],
provided vectors �r � �s are not roots for all r; s = 1; : : : ;m. Each simple Lie algebra
possesses the following set of admissible roots

!1; : : : ; !n;�
 (2.1.2)

where !1; : : : ; !n are simple roots and 
 is the maximal root [41] (usually 
 = !1+ : : :+
!n ). Any subset of the set (2.1.2) is also admissible.

If the maximal root holds in the set (2.1.2), then generalized periodic Toda lattices
arise. The di�erent L � A pairs for them were found by Bogoyavlensky [25,40]. There
were also presented the Hamiltonians of this systems connected with simple Lie algebras.

The further progress in this �eld was attained by a number of authors (see, for exam-
ple, [26-28,42,43] and refs. therein). In ref. [28] Adler and van Moerbeke established a
criterion of algebraic complete integrability for Euclidean Toda-like systems. (This crite-
rion was formally applied to multidimensional vacuum cosmology with n Einstein spaces
in [19].) The explicit integration of the equations of motion for the generalized open Toda
lattices (in this case the maximal root is thrown away) was developed by Olshanetsky and
Perelomov [27] and Kostant [26]. (See also [42].)

Here we are interested in the problem of integrability of the Toda-like systems with the
inde�nite bilinear form of the kinetic energy. Let us call such systems pseudo-Euclidean
Toda-like systems. To our knowledge, this problem has not been discussed intensively in
the mathematical literature before. The reason, as it seems to us, consists in the following.
If one try to connect a pseudo-Euclidean Toda-like system by the known manner with
simple Lie algebra it reduces to an Euclidean system for the part of coordinates (see Sect.
2.4). Nevertheless, integrable pseudo-Euclidean Toda-like systems and search for their
solutions in explicit form evoke a special interest, because such systems arise in cosmology.
For instance, 4-dimensional vacuum homogeneous cosmological model of Bianchi IX-type
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is described by the Lagrangian (2.1.1) with (�ij) =diag(�1;+1;+1) [25,40]. (In [31] it
was shown, that this model has a rather rich mathematical structure.)

So, in this section we study integrable pseudo-Euclidean Toda-like systems appearing
in multidimensional cosmology. This trend in the modern theoretical physics has ap-
peared within the new paradigm based on uni�ed theories and hypothesis of additional
space-time dimensions. According to this hypothesis the physical space-time manifold
has the topology M4 � B , where M4 is a 4-dimensional manifold, and B is a so-called
internal space (or spaces). Nonobservability of additional dimensions is attained in mul-
tidimensional cosmology by spontaneous or dynamical compacti�cation of internal spaces
to the Planck scale (10�33 cm.). Integrable cosmological models are of great interest, be-
cause the exact solutions allow to study dynamical properties of the model, in particular
compacti�cation of internal spaces, in detail.

In the Sect. 2.2, as in [37], we consider the cosmological model where multidimensional
space-time manifold M is a direct product of the time axis R and of the n Einstein spaces
M1; : : : ;Mn . We remind, that any manifold of constant curvature is the Einstein one. It
is shown that Einstein equations for the scale factors with a source in the multicomponent
perfect uid form correspond to the Lagrangian (2.1.1) with (�ij) =diag(�1;+1; : : : ;+1).
We develop the integration procedure to the case of an orthogonal set of vectors b1; : : : ; bm
in Sect. 2.3. Sect. 2.4 is devoted to the reduction of pseudo-Euclidean Toda-like system
to the Euclidean one for a part of coordinates. This reduction allows us to obtain the class
of the exact solutions for some nonorthogonal sets of the vectors b1; : : : ; bm . We present
the exact solution in the simplest case, when the reducible pseudo-Euclidean system is
connected with the Lie algebra A2 . Discussion of results is presented is Sect. 2.5. We
single out some interesting solutions, in particular, Euclidean wormholes.

We denote by n the number of Einstein spaces and by m the number of the matter
components. Indices i and j run from 1 to n. Index s runs from 1 to m.

2.2. The model

Here we consider a cosmological model describing the evolution of n � 2 Einstein spaces in
the presence of m-component perfect-uid matter [37] as in Sect. 1.1 with hi(x) = const
(see (1.1.9)). Then

�(�)(t) = A(�) exp[�20 +
nX
i=1

u
(�)
i xi]: (2.2.1)

where A(�) =const and

u
(�)
i = Nih

(�)
i : (2.2.2)

The Einstein eqs. (1.1.7) may be written in the following manner

1

2

nX
i;j=1

Gij _x
i _xj + V = 0; (2.2.3)

�i + �xi exp[2xi � 20] = ��2
mX
�=1

ui(�)A
(�) exp[2xi � 20 +

nX
j=1

u
(�)
j xj]: (2.2.4)
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Here

Gij = Ni�ij �NiNj (2.2.5)

are the components of the minisuperspace metric,

V = �1

2

nX
i=1

�iNi exp[�2xi + 20] + �2
mX
�=1

A(�) exp[
nX
i=1

u
(�)
i xi]: (2.2.6)

We denote

ui(�) =
nX
j=1

Giju
(�)
j ; (2.2.7)

where

Gij =
�ij

Ni
+

1

2�D
(2.2.8)

are the components of the matrix inverse to (Gij) [15].
It is not di�cult to verify that eqs. (2.2.14) are equivalent to the Lagrange-Euler eqs.

for the Lagrangian

L =
1

2

nX
i;j=1

Gij _x
i _xj � V: (2.2.9)

Eq. (2.2.3) is the zero-energy constraint.
We note, that in the framework of our model the curvature induced terms in the

potential (2.2.6) may be considered as additional components of the perfect uid. The
introduction of the cosmological constant � into the model is equivalent also to the
addition of a new component with ui = 2Ni and �2A = �.

Finally, we present the potential (2.2.6) modi�ed by introduction of �-term in the
following form

V =
nX
k=1

(�1

2
�kNk) exp[

nX
i;j=1

Gijv
i
(k)x

j] +

mX
�=1

�2A(�) exp[
nX

i;j=1

Giju
i
(�)x

j] + � exp[
nX

i;j=1

Giju
ixj]; (2.2.10)

where we denote:

vi(k) =
nX
j=1

Gijv
(k)
j = �2 �

i
k

Nk
; v

(k)
j � 2(Nj � �kj ); (2.2.11)

ui =
nX
j=1

Gijuj: (2.2.12)

Let < :; : > be a symmetrical bilinear form de�ned on n-dimensional real vector
space Rn with the components Gij =< ei; ej > in the canonical basis e1; : : : en . (e1 =
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(1; 0; : : : ; 0) etc.) It was shown [14,15], that the bilinear form < :; : > is pseudo-Euclidean
one with the signature (�;+; :::;+). Then the Lagrangian (2.2.9) may be written as:

L =
1

2
< _x; _x > �

mX
�=1

a(�) exp[< b�; x >]: (2.2.13)

(x = x1e1+ : : :+xnen; x 2 Rn ). Here we denoted by m the total number of components,
including curvature, perfect uid and the cosmological term. We note, that for m = 1
the Lagrangian system (2.2.13) is always integrable. The exact solutions were obtained
in [37]. (Some special cases were considered in [20,48].) In the present paper we consider
multicomponent case: m � 2.

We say that a vector y 2 Rn is called time-like, space-like or isotropic, if < y; y > has
negative, positive or null values correspondingly. Vectors y and z are called orthogonal
if < y; z >= 0.

2.3. Exact solutions for orthogonal sets of vectors

Let vectors b1; : : : ; bm satisfy the conditions: 1. They are linear independent;
2. < b�; b� >= 0 for all � 6= � , i.e. the set of vectors is orthogonal.

Then m � n. It is not di�cult to prove
Proposition 1. The set of vectors b1; : : : ; bn may contain at most one isotropic vector.
Proposition 2. The set of vectors b1; : : : ; bn may contain at most one time-like vector

and, if it holds the other vectors must be space-like.
Remark 1. The additional term a(0) exp[< b0; x >] with zero-vector b0 = 0 does not

change the equations of motion, but changes the energy constraint (2.2.3)

1

2
< _x; _x > +

mX
�=1

a(�) exp[< b�; x >] + a(0) = 0: (2.3.1)

It corresponds to the perfect uid with h
(0)
i = 0 for all i = 1; : : : ; n. Such a perfect uid

is called the sti� or Zeldovich matter [49]. It may be considered also as minimally coupled
real scalar �eld [50]. We take into account this additional component by modi�cation of
the energy constraint

1

2
< _x; _x > +

mX
�=1

a(�) exp[< b�; x >] = E0: (2.3.2)

These propositions allow to split the class of exact solutions under consideration into
following subclasses:

A. There are one time-like vector and at most (n� 1) space-like vectors.
B. There are at most (n � 1) space-like vectors.
C. There are one isotropic vector and at most (n� 2) space-like vectors (this subclass

arises for n � 3).
To integrate eqs. of motion in all subclasses we consider an orthonormal basis

e01; : : : ; e
0
n . These vectors are such that

< e0i; e
0
j >= �ij ; (2.3.3)
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where we denote by �ij the components of the matrix

(�ij) = diag(�1;+1; : : : ;+1): (2.3.4)

Let us de�ne coordinates of the vectors in this basis by

x = X1e01 + : : :+Xne0n: (2.3.5)

For these new coordinates we have

X i = �ii < e0i; x >; xi =
nX
k=1

tikX
k; (2.3.6)

where we denoted by tik the components of a non-degenerate matrix de�ned by

e0k =
nX
i=1

tikei: (2.3.7)

Components tik satisfy the relations:

nX
k;l=1

Gklt
k
i t
l
j = �ij: (2.3.8)

Let us try to �nd exact solutions for subclasses A, B and C.
A. Let b1 be a time-like vector. Then < br; br >> 0 for r = 2; : : : ;m (in this case

m � n). We choose the orthonormal basis e01; : : : ; e
0
n as

e0s = bs=j < bs; bs > j1=2; s = 1; : : : ;m: (2.3.9)

Then we have:

< bs; x >= �ssj < bs; bs > j1=2Xs: (2.3.10)

The Lagrangian (2.2.13) and the energy constraint (2.3.2) for the coordinates X1; : : : ;Xn

have the form

L =
1

2

nX
i;j=1

�ij _X
i _Xj �

mX
s=1

a(s) exp[�ssj < bs; bs > j1=2Xs]; (2.3.11)

E0 =
1

2

nX
i;j=1

�ij _X
i _Xj +

mX
s=1

a(s) exp[�ssj < bs; bs > j1=2Xs]: (2.3.12)

Lagrangian (2.3.11) leads to the set of eqs.

�Xs = �j < bs; bs > j1=2a(s) exp[�ssj < bs; bs > j1=2Xs]; (2.3.13)
�Xm+1 = : : : = �Xn = 0; (2.3.14)

which is easily integrable. We get

Xs = ��ssj < bs; bs > j�1=2 ln[F 2
s (t� t0s)]; (2.3.15)

Xm+1 = pm+1t+ qm+1; : : : ;Xn = pnt+ qn; (2.3.16)



CBPF-MO-002/95 17

where we denoted

Fs(t� t0s) =
q
ja(s)=Esj cosh[

q
jEs < bs; bs > j=2(t� t0s)]; if �ssa

s > 0; �ssEs > 0;

=
q
ja(s)=Esj sin[

q
jEs < bs; bs > j=2(t� t0s)]; if �ssa

s < 0; �ssEs < 0;

=
q
ja(s)=Esj sinh[

q
jEs < bs; bs > j=2(t� t0s)]; if �ssa

s < 0; �ssEs > 0;

=
q
j < bs; bs > a(s)j=2(t� t0s); if �ssa

s < 0; Es = 0: (2.3.17)

By t0s , E0s (s = 1; : : : ;m); pm+1; : : : ; pn , qm+1; : : : ; qn we denoted the integration con-
stants. Some of them are not arbitrary and connected by the relation

E1 + : : :+ Em +
1

2
(pm+1)2 + : : :+

1

2
(pn)2 = E0: (2.3.18)

We have for components tik

tis = bis=j < bs; bs > j1=2: (2.3.19)

It is convenient to present the exact solution in a Kasner-like form. Kasner-like para-
meters are de�ned by

�i = tim+1p
m+1 + : : :+ tinp

n; (2.3.20)

�i = tim+1q
m+1 + : : :+ tinq

n: (2.3.21)

Then for the scale factors of the spaces Mi (see (2.3.6)) we get

exp[xi] =
mY
s=1

[F 2
s (t� t0s)]

�bis=<bs;bs> exp[�it+ �i]: (2.3.22)

Vectors �; � 2 Rn , are de�ned by

� = �1e1 + : : :+ �nen; � = �1e1 + : : :+ �nen (2.3.23)

satisfy the relations

< �;� >= 2(E0 � E1 � : : :�Em) � 0; (2.3.24)

< �; bs >=< �; bs >= 0; s = 1; : : : ;m: (2.3.25)

We remind that < �; � >=
Pn
i;j=1Gij�

i�j .
Remark 2. If m = n then � = � = 0.
Remark 3. The set of constants E0 , Es , t0s , �i and �i is the �nal set. Only 2n

constants from them are independent.
Remark 4. The subclass of the solutions may be easily enlarged. It is clear, that the

addition of new component inducing a vector collinear to one of b1; : : : ; bm leads to the
integrable by quadrature model. Let us take into account the following additional terms
in the Lagrangian (2.2.13)

�
m(�)X
�=1

a(��) exp[b(��) < b�; x >]; (2.3.26)
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where b(��) =const 6= 0 for � = 1; : : : ;m(�), 1 � � � m. It is not di�cult to show,
that the modi�cation of the exact solution (2.3.22) only consists in the replacement of the
function F�(t� t0�) by one F (t� t0�), satisfying the quadrature

Z
dF=

vuuutE�F 2 � a(�) �
m(�)X
�=1

a(��)F 2(1�b(��)) =< b�; b� > (t� t0�): (2.3.27)

The additional components with other numbers � may be taken into account by the same
manner.

B. We have the set of m space-like vectors b1; : : : ; bm (m � n�1) and the orthonormal
basis de�ned by

e0s+1 = bs=
q
< bs; bs >; s = 1; : : : ;m: (2.3.28)

The Lagrangian (2.2.13) and the energy constraint (2.3.2) in terms of X -coordinates have
the form

L =
1

2

nX
i;j=1

�ij _X
i _Xj �

mX
s=1

a(s) exp[
q
< bs; bs >X

s+1]; (2.3.29)

E0 =
1

2

nX
i;j=1

�ij _X
i _Xj +

mX
s=1

a(s) exp[
q
< bs; bs >X

s+1]: (2.3.30)

The corresponding eqs. of motion

�X1 = �Xm+2 = : : : = �Xn = 0; (2.3.31)

�Xs+1 = �
q
< bs; bs >a

(s) exp[
q
< bs; bs >X

s+1] (2.3.32)

lead to the solution

X1 = p1t+ q1; (2.3.33)

Xs+1 =
�1p

< bs; bs >
ln[F 2

s (t� t0s)]; (2.3.34)

Xm+2 = pm+2t+ qm+2; : : : ;Xn = pnt+ qn; (2.3.35)

where functions Fs(t � t0s) are de�ned by (2.3.17) (in this case all �ss = 1). Some of
integration constants in (2.3.33)-(2.3.35) satisfy the relation

E1 + : : :+ Em � 1

2
(p1)2 +

1

2
(pm+2)2 + : : :+

1

2
(pn)2 = E0: (2.3.36)

To present the scale factors in a Kasner-like form we de�ne the parameters:

�i = ti1p
1 + tim+2p

m+2 + : : :+ tinp
n; (2.3.37)

�i = ti1q
1 + tim+1q

m+2 + : : :+ tinq
n: (2.3.38)

Then from (2.3.6) we obtain the same formula:

exp[xi] =
mY
s=1

[F 2
s (t� t0s)]

�bis=<bs;bs> exp[�it+ �i]: (2.3.39)
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The relations (2.3.8) lead to the following constraints for the Kasner-like parameters �i

and �i :

< �;� >= 2(E0 � E1 � : : :�Em); (2.3.40)

< �; bs >=< �; bs >= 0; s = 1; : : : ;m: (2.3.41)

Remark 5. If m = n � 1, then either < �;� >< 0 or � = 0; and � has the same
properties.

Remark 6. We may also consider the enlargement of this subclass by the manner
described in Remark 4. If we add to the Lagrangian (2.2.13) the terms (2.3.26) for some
� � m, we should replace the function F�(t�t0� ) in eq. (2.3.39) by the function F (t�t0�),
satisfying (2.3.27).

C. Let b1 be an isotropic vector. Then < br; br >> 0 for r = 2; : : : ;m (in this case
m � n� 1). We choose the orthonormal basis e01; : : : ; e

0
n by

e0r = br=
q
< br; br >; b1 = e01 + e0m+1: (2.3.42)

Then we get

L =
1

2

nX
i;j=1

�ij _X
i _Xj � a(1) exp[�X1 +Xm+1]�

mX
r=2

a(r)exp[
q
< br; br >X

r]; (2.3.43)

E0 =
1

2

nX
i;j=1

�ij _X
i _Xj + a(1) exp[�X1 +Xm+1] +

mX
r=2

a(r) exp[
q
< br; br >X

r]; (2.3.44)

The corresponding eqs. of motion have the form

�X1 = �a(1) exp[�X1 +Xm+1]; (2.3.45)
�Xm+1 = �a(1) exp[�X1 +Xm+1]; (2.3.46)

�Xr = �
q
< br; br >a

(r) exp[
q
< br; br >X

r]; (2.3.47)

�Xm+2 = : : : = �Xn = 0: (2.3.48)

To integrate (2.3.45), (2.3.46) it is useful to consider the eqs. of motion for X+ =
X1 +Xm+1 and X� = �X1 +Xm+1 . Then we get the solution

X1 =
1

2
(p+ � p�)t+

1

2
(q+ � q�)� 2 ln[f(t)]; (2.3.49)

Xm+1 =
1

2
(p+ + p�)t+

1

2
(q+ + q�)� 2 ln[f(t)]; (2.3.50)

Xr =
�1p

< br; br >
ln[F 2

r (t� t0r)]; (2.3.51)

Xm+2 = pm+2t+ qm+2; : : : ;Xn = pnt+ qn; (2.3.52)
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Here by f(t) we denoted the function

f(t) = exp[
a(1)

2(p�)2
exp[p�t+ q�]]; p� 6= 0; (2.3.53)

= exp[
a(1)

4
exp[q�]t2]; p� = 0: (2.3.54)

The integration constants satisfy the relations

1

2
p+p� + E2 + : : :+ Em +

1

2
(pm+2)2 + : : :+

1

2
(pn)2 = E0; p� 6= 0; (2.3.55)

a(1) exp[q�] + E2 + : : :+ Em +
1

2
(pm+2)2 + : : :+

1

2
(pn)2 = E0; p� = 0: (2.3.56)

The Kasner-like parameters are de�ned by

�i =
1

2
ti1(p

+ � p�) +
1

2
tim+1(p

+ + p�) + tim+2p
m+2 + : : :+ tinp

n; (2.3.57)

�i =
1

2
ti1(q

+ � q�) +
1

2
tim+1(q

+ + q�) + tim+2q
m+2 + : : :+ tinq

n: (2.3.58)

Then from (2.3.6) we obtain the scale factors in a Kasner-like form:

exp[xi] = [f(t)]�b
i
1

mY
r=2

[F 2
r (t� t0r)]

�bir=<br;br> exp[�it+ �i]: (2.3.59)

The Kasner-like parameters satisfy

< �;� > = 2(E0 � E2 � : : :�Em); < �; b1 >6= 0 (2.3.60)

= (E0 � a(1) exp[< �; b1 >]� E2 � : : :� Em); < �; b1 >= 0; (2.3.61)

< �; br >=< �; br >= 0; r = 2; : : : ;m: (2.3.62)

Remark 7. For the parameters p� and q� we get:

p� =< �; b1 >; q� =< �; b1 > : (2.3.63)

Remark 8. If m = n � 1 and < �; b1 >= 0, then < �;� >= 0, i.e. � = p+b1 . If
m < n� 1 and < �; b1 >= 0, then < �;� >� 0.

Remark 9. Let us consider the enlargement of this subclass by the addition of the
terms (2.3.26) to the Lagrangian. The modi�cation of the exact solution (2.3.59) for
each � = 2; : : : ;m is described in the Remark 6. Let us take into account the additional
components, induced by isotropic vectors collinear to b1 . It is not di�cult to show that
in this case (for � = 1) the additional terms (2.3.26) leads to the following modi�cation
of the function f(t)

f(t) = expf a(1)

2(p�)2
exp[p�t+ q�] +

m(1)X
�=1

a(1�)

2b(1�)(p�)2
exp[b(1�)(p

�t+ q�)]g; p� 6= 0;

= expf(a(1) exp[q�] +
m(1)X
�=1

a(1�) exp[b(1�)q
�])

t2

4
g; p� = 0: (2.3.64)

In (2.3.56) and (2.3.61) the additional terms appear

m(1)X
�=1

a(1�) exp[b(1�)q
�]: (2.3.65)

These are all modi�cations in this case.
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2.4. Reduction of pseudo-Euclidean Toda-like system to Euclidean one

Now we consider the case, when the set of vectors b1; : : : ; bm is not orthogonal. It is easily
shown that eqs. of motion of our system with the Lagrangian

L =
1

2
< _x; _x > �

mX
�=1

a(�) exp[< b�; x >]: (2.4.1)

for the new variables

p = _x 2 Rn; (2.4.2)

l� = a(�) exp[< b�; x >] (2.4.3)

have the following form

_p = �
mX
�=1

l�b�; (2.4.4)

_l� = l� < b�; p > : (2.4.5)

Note that this representation is valid for non-degenerate bilinear form < :; : > with
arbitrary signature.

Let us consider a simple complex Lie algebra G. Let H be a Cartan subalgebra,
and hi; e! be a Weyl-Cartan basis in G [41]. We denote by h1; : : : ; hn some basis in H
and by !1; : : : ; !N the set of roots (! 2 H;  = 1; : : : ; N ). If the roots !1; : : : ; !m are
admissible, then we have [25,40]

[h; e!�] = (!�; h)e!�; h 2 H (2.4.6)

[e!�; e�!� ] = ���!�; �; � = 1; : : : ;m; (2.4.7)

where we denote by (:; :) the Killing-Cartan form. Let us de�ne in the algebra G the
vectors (L�A pair) [25,40]

L(t) =
mX
�=1

f�(t)e�!� + C
nX
i=1

hi(t)hi + C2
mX
�=1

e!�; (2.4.8)

A(t) = � 1

C

mX
�=1

f�(t)e�!�; (2.4.9)

where C is arbitrary constant. Using (2.4.6-2.4.7), it can be easily checked that eq.

_L(t) = [L(t); A(t)] (2.4.10)

is equivalent to the following set of eqs. for the variables f�(t); hi(t)

_h = �
mX
�=1

f�!�; (2.4.11)

_f� = f�(!�; h); (2.4.12)

where we denoted h = h1(t)h1 + : : :+ hn(t)hn; h 2 H .
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Consider the real linear subspace of dimension n H 0 2 H such that the Killing-Cartan
form (:; :) on H 0 is a real non-degenerate bilinear form with the signature (�;+; : : : ;+),
i.e. < :; : >. It is evident, that the sets of eqs. (2.4.4-2.4.5) and (2.4.11-2.4.12) are
identical, if h; !1; : : : ; !m 2 H 0 . Thus, if the set of vectors b1; : : : ; bm 2 Rn equipped with
the bilinear form < :; : > may be identi�ed with a set of admissible roots !1 : : : ; !m 2 H 0 ,
then pseudo-Euclidean Toda-like system with the Lagrangian (2.4.1) possesses the Lax
representation. If such identi�cation is possible, then the system is called to be connected
with the simple complex Lie algebra.

Proposition 3. Let a pseudo-Euclidean Toda-like system is connected with a simple
complex Lie algebra. Then it is reducible to an Euclidean Toda-like system for a part of
coordinates.

Proof. We get in an arbitrary orthonormal basis e01; : : : ; e
0
n

L =
1

2

nX
i;j=1

�ij _X
i _Xj �

mX
s=1

a(s) exp[
nX
i=1

Bs
iX

i]; (2.4.13)

where we denoted

Bs
i =

nX
j=1

�ijB
j
s : (2.4.14)

We remind, that bs = B1
se

0
1 + : : :+Bn

s e
0
n .

It is known [41] that the Killing-Cartan form de�ned on the real linear span of roots
of a simple (or semi-simple) complex Lie algebra is positively de�nite. But we have the
inde�nite bilinear form < :; : >. Then the �rst components of the vectors b1; : : : ; bm must
be zero in a suitably chosen orthonormal basis, i.e. Bs

1 = 0 for s = 1; : : : ;m. Then, in
this basis Lagrangian (2.4.1) has the form

L =
1

2

nX
i;j=1

�ij _X
i _Xj �

mX
s=1

a(s) exp[
mX
k=2

Bs
kX

k]: (2.4.15)

Coordinate X1 satis�es the eq.: �X1 = 0 . Eqs. of motion for X2; : : : ;Xn are followed
from the Euclidean Toda-like Lagrangian

LE =
1

2

nX
k;l=2

�kl _X
k _X l �

mX
s=1

a(s) exp[
mX
k=2

Bs
kX

k]: (2.4.16)

Thus, we obtained the reduction of a pseudo-Euclidean Toda-like system to the Euclidean
one.

Integrating the eqs. of an Euclidean Toda-like system by known methods [26,27,42],
we obtain the class of exact solutions for some nonorthogonal set of vectors b1; : : : ; bm .
Here we consider this procedure for the simplest 2-component case (n � 3), when Toda
lattice is connected with Lie algebra A2 .

Suppose, that the vectors b1 and b2 , induced by two components in the Lagrangian

L =
1

2
< _x; _x > �a(1) exp[< b1; x >]� a(2) exp[< b2; x >]; (2.4.17)
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satisfy the following conditions

< b1; b2 >= �1

2
< b1; b1 >= �1

2
< b2; b2 >< 0: (2.4.18)

Then, we have two space-like vectors with the same lengths. The angle between them is
equal to 120� . We denoteq

< b1; b1 > =
q
< b2; b2 > = b: (2.4.19)

Let us de�ne the orthonormal basis e01; : : : ; e
0
n in Rn by

b1 = be02; (2.4.20)

b2 = b(�1

2
e02 +

p
3

2
e03): (2.4.21)

In this basis the Lagrangian (2.4.17) and corresponding energy constraint have the form

L =
1

2

nX
i;j=1

�ij _X
i _Xj � a(1) exp[bX2]� a(2) exp[b(�1

2
X2 +

p
3

2
X3)]; (2.4.22)

E0 =
1

2

nX
i;j=1

�ij _X
i _Xj + a(1) exp[bX2] + a(2) exp[b(�1

2
X2 +

p
3

2
X3)] (2.4.23)

For the coordinates X1; X4; : : : ;Xn we get the following eqs. of motion:

�X1 = �X4 = : : : = �Xn: (2.4.24)

Therefore

X1 = p1t+ q1; X4 = p4t+ q4; : : : ;Xn = pnt+ qn; (2.4.25)

where p1; p4; : : : ; pn; q1; q4; : : : ; qn are arbitrary integration constants. The eqs. of motion
for the coordinates X2 and X3 follow from the Lagrangian

LE =
1

2
(( _X2)2 + ( _X3)2)� a(1) exp[bX2]� a(2) exp[b(�1

2
X2 +

p
3

2
X3)]: (2.4.26)

Let us introduce new coordinates y1 and y2 as

y1 =
b

2
p
2
X2; y2 =

b

2
p
2
X3: (2.4.27)

We obtain the Lagrangian of the open Toda lattice connected with the Lie algebra A2 =
SL(3; C)

LT =
1

2
(( _y1)2 + ( _y2)2)� �g21 exp[2

p
2y1]� �g22 exp[�

p
2y1 +

p
6y2]; (2.4.28)

where we denoted

b2a(1)=8 = �g21; b2a(2)=8 = �g22; (2.4.29)

� = sgn[a(1)] = sgn[a(2)] = �1: (2.4.30)
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To study the open Toda lattice it is useful to add the additional coordinate y3 :

LT =
1

2
(( _y1)2 + ( _y2)2 + ( _y3)2)� �g21 exp[2

p
2y1]� �g22 exp[�

p
2y1 +

p
6y2]; (2.4.31)

After the orthogonal linear transformation

q1 =
1p
6
(
p
3y1 + y2 +

p
2y3);

q2 =
1p
6
(�p3y1 + y2 +

p
2y3); (2.4.32)

q3 = �2y2 +
p
2y3 (2.4.33)

the Lagrangian (2.4.31) takes the well-known form [24,26-28,42,43]

LT =
1

2
( _q21 + _q22 + _q23)� �g21 exp[2(q1 � q2)]� �g22 exp[2(q2 � q3)]: (2.4.34)

In this representation the additional degree of freedom corresponds to the free motion of
the center of mass ( �q1+�q2+�q3 = 0). The integrating of the eqs. of motion for this system
leads to the result [26,27,42]

g21 exp[2(q1 � q2)] =
F+

F 2�
; g22 exp[2(q2 � q3)] =

F�
F 2
+

; (2.4.35)

where

F� =
4

9A1A2(A1 +A2)
fA1 exp[�(A1 + 2A2)t�B1] + (2.4.36)

�(A1 +A2) exp[�(A1�A2)t� (B1 �B2)] +A2 exp[�(2A1 +A2)t�B2]g:
The integration constants B1 , B2 are arbitrary and A1 , A2 satisfy the condition: A1A2 >
0. For the energy of the system with Lagrangian (2.4.24) we have

1

2
( _q21 + _q22 + _q23) + �g21 exp[2(q1 � q2)] + �g22 exp[2(q2 � q3)] =

3

4
(A2

1 +A1A2 +A2
2):(2.4.37)

Doing the inverse linear transformation

y1 =
1p
2
[q1 � q2];

y2 =
1p
6
([q1 � q2] + 2[q2 � q3]); (2.4.38)

y3 =
1p
3
(q1 + q2 + q3);

for the system with Lagrangian (2.4.22) we get the solution

X2 =
1

b
ln[

8

b2ja(1)j
F+

F 2�
]; (2.4.39)

X3 =

p
3

b
ln[

8

b2(ja(1)j(a(2))2)1=3
1

F+
]; (2.4.40)
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and the following energy constraint

E0 = �1

2
(p1)2 +

1

2
(p4)2 + : : :+

1

2
(pn)2 +

6

b2
(A2

1 +A1A2 +A2
2): (2.4.41)

To present the scale factors in the Kasner-like form let us introduce the Kasner-like
parameters

�i = ti1p
1 + ti4p

4 + : : :+ tinp
n; (2.4.42)

�i = ti1q
1 + ti4q

4 + : : :+ tinq
n; (2.4.43)

where components tik are determined by (2.3.7). In this case they satisfy the relations

ti2 =
1

b
bi1; ti3 =

2p
3
(
1

b
bi2 +

1

2b
bi1): (2.4.44)

From (2.3.6) we obtain the coordinates xi and �nally present the exact solution in the
form

exp[xi] = [ ~F 2
�]
�bi1=<b1;b1>[ ~F 2

+]
�bi2=<b2;b2> exp[�it+ �i]; (2.4.45)

where

~F� =
1

8
b2f(a(1))2ja(2)jg 13F�; (2.4.46)

~F+ =
1

8
b2f(a(2))2ja(1)jg 13F+: (2.4.47)

The vectors � and � de�ned by (2.3.23) satisfy the relations

< �;� >= 2(E0 � 6

b2
(A2

1 +A1A2 +A2
2)); (2.4.48)

< �; br >=< �; br >= 0; r = 1; 2: (2.4.49)

Remark 10. If n = 3, then < �;� >� 0 and < �; � >� 0.

2.5. Discussion

Let us consider some cosmological models corresponding to the introduced in the Sect. 2.3
integrable subclasses of pseudo-Euclidean Toda-like systems. For this purpose in Table I
we present values of the bilinear form < :; : > (see Sect. 2.2) for the vectors

vi � v1(i)e1 + : : :+ vn(i)en; vj(i) = �2
�ji
Ni
; (2.5.1)

u� � u1(�)e1 + : : :+ un(�)en; uj� = h
(�)
j +

1

2 �D

nX
i=1

Nih
(�)
i ; (2.5.2)

u � u1e1 + : : :+ unen; uj =
2

2�D
; (2.5.3)

induced by curvature, perfect uid and �-term correspondingly.
Within the subclass A we are able to construct the model with one Einstein space of

non-zero curvature. Let (n� 1) Einstein spaces are Ricci-at and one, for instance M1 ,
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have a non-zero Ricci tensor. Then we put b1 � v1 . To get the orthogonality with b1 for
at most (n�1) available components of the perfect uid (b(�+1) � u(�) for � � n�1) we

put: h
(�)
1 = 0 (see Table I). Then, these components appeared to be in the manifold M1

in the Zeldovich matter form (see Remark 1). The model of such a type was integrated
in [47]. In the same way the model with all Ricci-at spaces and �-term arises . In this

case we put b1 = u. The condition of the orthogonality reads:
Pn
i=1 h

(�)
i Ni = 0 for all

� � n � 1. Then we get the negative values for the some h
(�)
i . It means that for such

perfect uids p > � in some spaces (see (1.1.8)).
The vectors vi and u induced by curvature and �-term correspondingly are time-

like, therefore subclasses B and C correspond to the Ricci-at models without �-term for
some multicomponent perfect uid source. These vectors can not be roots of any simple
complex Lie algebra. Therefore, the models with more than one non-zero curvature space
and the models with curvature and �-term are not trivially reducible to the Euclidean
Toda lattices. Some possibilities of integration of these models were studied in [18,46].

In conclusion we discuss the existence of the Euclidean wormholes [51-54] within the
class of the obtained exact solutions. We consider the simple model within subclass A
with the manifold R �M1 �M2 , when M1 has a nonzero Ricci tensor with �1 > 0 (see
1.1.3) and M2 is Ricci-at. The integrable model arises in the presence of the perfect uid
in the Zeldovich matter form for the space M1 . It means h1 = 0 and the other parameter
in the equation of state for M2 (see 1.1.8)) may be arbitrary positive constant h. If we
demand the positiveness of the mass-energy density for the perfect uid (A > 0), then
from (2.3.22) we get for the scales factors of the M1 and M2

exp[x1] = fF 2
1 (t� t01)g�

1
2(N1�1)fF 2

2 (t� t02)g
1

h(N1�1) ; (2.5.4)

exp[x2] = fF 2
2 (t� t02)g�

1
hN2 ; (2.5.5)

where

F1(t� t01) =
s
1

2
�1N1=jE1j cosh[

q
2jE1j(N1 � 1)=N1(t� t01)]; (2.5.6)

F2(t� t01) =
q
�2A=E2 cosh[h

s
1

2
(N1 � 1)N2jE2=(N1 +N2 � 1)(t� t02)]: (2.5.7)

In this case E1 < 0 and E2 > 0. The energy constraint (2.3.24) leads to the condition:
�E1 = E2 � E .

We may suppose that M1 is 3-dimensional sphere S3 and M2 is d-dimensional torus
T d . Then formulas (2.5.4-2.5.7) present the multidimensional generalization of closed
Friedmann model. This model may be relevant in the theory of the Early Universe,
because the Zeldovich matter equation of state: p = � is valid on the earlier stage of its
evolution [49].

To prove the existence of the Euclidean wormholes we use the transformation t! it
. Then for the case t01 = t02 = 0 we obtain

exp[x1] = f�
2A

E
cos2[

s
Ed

d+ 2
ht]g1=(2h)f3�1

2E
cos2[

s
4E

3
t]g�1=4; (2.5.8)

exp[x2] = f�
2A

E
cos2[

s
Ed

d+ 2
ht]g�1=(hd): (2.5.9)
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It is easy to see that when d
d+2h

2 > 4
3 one has wormhole with respect to the internal

space T d . The case d
d+2

h2 < 4
3
corresponds to the wormhole for the external space S3 .

Note, that for h = 2 and d = 1 the wormhole for the internal space is accompanied by
the static external space. It is not di�cult to show that wormhole with respect to the
whole space for this model arises in the presence of the additional component in the form
of minimally coupled scalar �eld.
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vj u� u

vi 4( �ij
Ni
� 1) �2h(�)i �4

u� �2h(�)j

Pn
i=1 h

(�)
i h

(�)
i Ni+

2
2�D

Pn
i=1 h

(�)
i Ni

1
2�D [

Pn
i=1 h

(�)
i Ni][

Pn
j=1 h

(�)
j Nj ]

u �4 2
2�D

Pn
i=1 h

(�)
i Ni �4D�1

D�2

TABLE I
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3. Billiard Representation for Multidimensional Cosmologywith
Multicomponent Perfect Fluid near the Singularity

3.1. Introduction

A lot of interesting topics in multidimensional cosmology were considered: exact solutions
and the problem of integrbility, superstring cosmology and the problem of compacti�ca-
tion, variation of constants, classical and quantum wormholes, chaotic behaviour near the
singularity, etc.

In the present section we deal with a stochastic behavior in multidimensional cosmo-
logical models [53-55,18]. This direction in higher-dimensional gravity was stimulated by
well-known results for "mixmaster" model [56-59]. We note, that there is also an ele-
gant explanation for stochastic behavior of scale factors of Bianchi-IX model suggested
by Chitre [58-59] and recently considered in [60-62]. (For "history" of the problem see
also [63].) In the Chitre's approach the Bianchi-IX cosmology near the singularity is
reduced to a billiard on the Lobachevsky space H2 (see Fig. 4 below). The volume of
this billiard is �nite. This fact together with the well-known behavior (exponential diver-
gences) of geodesics on the spaces of negative curvature leads to a stochastic behavior of
the dynamical system in the considered regime [64,65].

Chitre's approach [58] may also be used in the multidimensional case [55]. It allows
us to obtain a more evident picture for the origin of the oscillatory behaviour near the
singularity using the formation of billiard walls. The present section is devoted to a
construction of the \billiard representation" for the multidimensional cosmological model
describing the evolution of n Einstein spaces in the presence if (m + 1)-component per-
fect uid [37] (see section 3.2). One of these components corresponds to the cosmological
constant term [66]. In some sense the model [37] may be considered as \universal" cos-
mological model: a lot of cosmological models (not obviously multidimensional) may be
embedded in this model.

We impose certain restrictions on the parameters of the model [37] and reduce its
dynamics near the singularity to a billiard on the (n�1)-dimensional Lobachevsky space
Hn�1 (Sec. 3.3). The geometrical criterion for the �niteness of the billiard volume
and its compactness is suggested. This criterion reduces the considered problem to the
geometrical (or topological) problem of illumination of (n � 2)-dimensional unit sphere
Sn�2 by m+ � n point-like sources located outside the sphere [68-69]. These sources
correspond to the components with (u(�))2 > 0 (Sec. 3.3). When these sources illuminate
the sphere then, and only then, the billiard has a �nite volume and the cosmological model
possesses a stochastic behavior near the singularity. (We note, that, for cosmological and
curvature terms (u(�))2 < 0 and these terms may be neglected near the singularity). For
the case of an in�nite billiard volume the cosmological model has a Kasner-like behavior
near the singularity. When the minimally coupled massless scalar �eld is added into
consideration, the evolution in time is bounded: t > t0 and the limit t! t0 corresponds
to the approach to the singularity. In this case the stochastic behavior near the singularity
is absent.

In Sec. 3.4 we illustrate the suggested approach on an example of the Bianchi-IX
cosmology.
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3.2. The model

Here we start also from the cosmological model describing the evolution of n Einstein
spaces in the presence of (m + 1)-component perfect-uid matter (see section 1.2). The
metric of the model

g = � exp[2(t)]dt
 dt+
nX
i=1

exp[2xi(t)]g(i); (3.2.1)

is de�ned on the manifold

M = R�M1 � : : :�Mn; (3.2.2)

where the manifold Mi with the metric g(i) is an Einstein space of dimension Ni , i.e.

Rmini [g
(i)] = �ig(i)mini

; (3.2.3)

i = 1; : : : ; n; n � 2. The energy-momentum tensor is adopted in the following form

TMN =
mX
�=0

T
M(�)
N ; (3.2.4)

(TM(�)
N ) = diag(��(�)(t); p(�)1 (t)�m1

k1
; : : : ; p(�)n (t)�mn

kn
): (3.2.5)

� = 0; : : : ;m, with the conservation law constraints imposed:

5MT
M(�)
N = 0; (3.2.6)

� = 0; : : : ;m� 1. The Einstein equations

RM
N � 1

2
�MN R = �2TMN (3.2.7)

(�2 is gravitational constant) imply 5MT
M
N = 0 and consequently 5MT

M(m)
N = 0.

We suppose that for any �-th component of matter the pressures in all spaces are
proportional to the density

p
(�)
i (t) = (1 � u

(�)
i

Ni
)�(�)(t); (3.2.8)

where u(�)i = const, i = 1; : : : ; n; � = 0; : : : ;m.
Non-zero components of the Ricci-tensor for the metric (3.2.1) are the following

R00 = �
nX
i=1

Ni[�x
i � _ _xi + ( _xi)2]; (3.2.9)

Rmini = g(i)mini
[�i + exp(2xi � 2)(�xi + _xi(

nX
i=1

Ni _x
i � _))]; (3.2.10)

i = 1; : : : ; n.
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The conservation law constraint (3.2.6) for � 2 f0; :::;mg reads

_�(�) +
nX
i=0

Ni _x
i(�(�) + p

(�)
i ) = 0: (3.2.11)

From eqs. (3.2.8), (3.2.11) we get

�(�)(t) = A(�) exp[�2Nix
i(t) + u

(�)
i xi(t)]; (3.2.12)

where A(�) = const. Here and below the summation over repeated indices is understood.
We de�ne

0 �
nX
i=1

Nix
i (3.2.13)

in (3.2.1).
Using relations (3.2.8), (3.2.9), (3.2.10), (3.2.12) it is not di�cult to verify that the

Einstein equations (3.2.7) for the metric (3.2.1) and the energy-momentum tensor from
(3.2.4), (3.2.5) are equivalent to the Lagrange equations for the Lagrangian

L =
1

2
exp(� + 0(x))Gij _x

i _xj � exp( � 0(x))V (x): (3.2.14)

Here

Gij = Ni�ij �NiNj (3.2.15)

are the components of the minisuperspace metric,

V = V (x) = �1

2

nX
i=1

�iNi exp(�2xi + 20(x)) +
mX
�=0

�2A(�) exp(u(�)i xi): (3.2.16)

is the potential. This relation may be also presented in the form

V =
�mX

�=0

A� exp(u
(�)
i xi); (3.2.17)

where �m = m+ n; A� = �2A(�) , � = 0; : : : ;m; Am+i = �1
2
�iNi and

u
(m+i)
j = 2(��ij +Nj); (3.2.18)

i; j = 1; : : : ; n. We also put A0 = � and

u
(0)
j = 2Nj ; (3.2.19)

j = 1; : : : ; n. Thus the zero component of the matter describe a cosmological constant
term (�-term).

Diagonalization. We remind [14,15] that the minisuperspace metric

G = Gijdx
i 
 dxi (3.2.20)
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has a pseudo-Euclidean signature (�;+; : : : ;+), i.e. there exist a linear transformation

za = eaix
i; (3.2.21)

diagonalizing the minisuperspace metric (3.2.20)

G = �abdz
a 
 dzb = �dz0 
 dz0 +

n�1X
i=1

dzi 
 dzi; (3.2.22)

where

(�ab) = (�ab) � diag(�1;+1; : : : ;+1); (3.2.23)

a; b = 0; : : : ; n� 1. The matrix of the linear transformation (eai ) satis�es the relation

�abe
a
i e
b
j = Gij (3.2.24)

or equivalently

�ab = eaiG
ijebj =< ea; eb > : (3.2.25)

Here

Gij =
�ij

Ni
+

1

2�D
(3.2.26)

are components of the matrix inverse to the matrix (3.2.15) [15], D = 1 +
Pn
i=1Ni is the

dimension of the manifold M (3.2.2) and

< u; v >� Gijuivj (3.2.27)

de�nes a bilinear form on Rn (u = (ui) , v = (vi)). Inverting the map (3.2.21) we get

xi = eiaz
a; (3.2.28)

where for the components of the inverse matrix (eia) = (eai )
�1 we obtain from (3.2.25)

eia = Gijebj�ba: (3.2.29)

Like in [15,21 ] we put

z0 = e0ix
i = q�1Nix

i; q = [(D � 1)=(D � 2)]1=2: (3.2.30)

In this case the 00-component of eq. (3.2.25) is satis�ed and the set (ea; a = 1; : : : ; n�1)
is de�ned up to O(n � 1)-transformation. A special example of the diagonalization with
the relations (3.2.30) and

za = eaix
i = [Na=(

nX
j=a

Nj)(
nX

j=a+1

Nj)]
1=2

nX
j=a+1

Nj(x
j � xi); (3.2.31)

a = 1; : : : ; n� 1, was considered in [14,15].
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In z -coordinates (3.2.21) with z0 from (3.2.30) the Lagrangian (3.2.14) reads

L = L(za; _za;N ) =
1

2
N�1�ab _za _zb �NV (z); (3.2.32)

where

N = exp( � 0(x)) > 0 (3.2.33)

is the Lagrange multiplier (modi�ed lapse function) and

V (z) =
�mX

�=0

A� exp(u
�
az

a) (3.2.34)

is the potential. Here we denote

u�a = eiau
(�)
i =< u(�); eb > �ba; (3.2.35)

a = 0; : : : ; n� 1, (see (3.2.27) and (3.2.29)). From (3.2.35) we get (see (3.2.26), (3.2.27)
and (3.2.30))

u�0 = � < u(�); e0 >= (
nX
i=1

u
(�)
i )=q(D � 2): (3.2.36)

For �-term and curvature components (see (3.2.19) and (3.2.18)) we have

u00 = 2q > 0; um+j
0 = 2=q > 0; (3.2.37)

j = 1; : : : ; n. The calculation of

(u�)2 = �abu�au
�
b =< u(�); u(�) >= (u(�))2; (3.2.38)

for these components gives

(u0)2 = 4(D � 1)=(2 �D) < 0; (um+j)2 = 4(
1

Nj

� 1) < 0; (3.2.39)

for Nj > 1, j = 1; : : : ; n. For Nj = 1 we have �j = Am+j = 0.

3.3. Billiard representation

Here we consider the behavior of the dynamical system, described by the Lagrangian
(3.2.32) for n � 3 in the limit

z0 ! �1; z = (z0; ~z) 2 V�; (3.3.1)

where V� � f(z0; ~z) 2 Rnjz0 < �j~zjg is the lower light cone. For the volume scale factor

v = exp(
nX
i=1

Nix
i) = exp(qz0) (3.3.2)
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(see (3.2.30)) we have in this limit v! 0. Under certain additional assumptions the limit
(3.3.1) describes the approaching to the singularity. We impose the following restrictions
on the parameters u� in the potential (3.2.34) for components with A� 6= 0:

1)A� > 0 if (u�)2 = �(u�0 )2 + (~u�)2 > 0; (3.3.3)

2)u�0 > 0 for all �: (3.3.4)

We note that due to (3.2.37) the second condition is always satis�ed for �-term and
curvature components (i.e. for � = 0;m+ 1; : : : ;m+ n = �m).

We restrict the Lagrange system (3.2.32) on V� , i.e. we consider the Lagrangian
L� � LjTM�; M� = V� �R+; (3.3.5)

where TM� is tangent vector bundle over M� and R+ � fN > 0g. (Here F jA means the
restriction of function F on A.) Introducing an analogue of the Misner-Chitre coordinates
in V� [58-59]

z0 = � exp(�y0)1 + ~y2

1 � ~y2 ; (3.3.6)

~z = �2 exp(�y0) ~y

1� ~y2
; (3.3.7)

j~yj < 1, we get for the Lagrangian (3.2.32)

L� =
1

2
N�1e�2y

0
[�( _y0)2 + hij(~y) _y

i _yj]�NV: (3.3.8)

Here

hij(~y) = 4�ij(1 � ~y2)�2; (3.3.9)

i; j = 1; : : : ; n� 1, and

V = V (y) =
�mX

�=0

A� exp ��(y; u
�); (3.3.10)

where

��(y; u) � �e�y0(1 � ~y2)�1[u0(1 + ~y2) + 2~u~y]; (3.3.11)

We note that the (n� 1)-dimensional open unit disk (ball)

Dn�1 � f~y = (y1; : : : ; yn)jj~yj < 1g � Rn�1 (3.3.12)

with the metric h = hij(~y)dyi 
 dyj is one of the realization of the (n � 1)-dimensional
Lobachevsky space Hn�1 .

We �x the gauge

N = exp(�2y0) = �z2: (3.3.13)
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Then, it is not di�cult to verify that the Lagrange equations for the Lagrangian (3.3.8)
with the gauge �xing (3.3.13) are equivalent to the Lagrange equations for the Lagrangian

L� = �1

2
( _y0)2 +

1

2
hij(~y) _y

i _yj � V� (3.3.14)

with the energy constraint imposed

E� = �1

2
( _y0)2 +

1

2
hij(~y) _y

i _yj + V� = 0: (3.3.15)

Here

V� = e�2y
0
V =

�mX
�=0

A� exp(�(y; u
�)); (3.3.16)

where

�(y; u) = �2y0 + ��(y; u): (3.3.17)

Now we are interested in the behavior of the dynamical system in the limit y0 ! �1
(or, equivalently, in the limit z2 = �(z0)2+ (~z)2 ! �1, z0 < 0) implying (3.3.1). Using
the relations (u0 6= 0 )

�(y; u) = �u0 exp(�y0)A(~y;�~u=u0)
1 � ~y2 � 2y0; (3.3.18)

A(~y;~v) � (~y � ~v)2 � ~v2 + 1; (3.3.19)

we get

lim
y0!�1

exp�(y; u) = 0 (3.3.20)

for u2 = �u20 + (~u)2 � 0, u0 > 0 and

lim
y0!�1

exp�(y; u) = �1(�A(~y;�~u=u0)) (3.3.21)

for u2 > 0, u0 > 0. In (3.3.21) we denote

�1(x) � + 1; x � 0;

0; x < 0: (3.3.22)

Using restrictions (3.3.3), (3.3.4) and relations (3.3.16), (3.3.20), (3.3.21) we obtain

V1(~y) � lim
y0!�1

V�(y0; ~y) =
X
�2�+

�1(�A(~y;� ~u�=u�0 )): (3.3.23)

Here we denote

�+ � f�j(u�)2 > 0g: (3.3.24)

We note that due to (3.2.39) �-term and curvature components do not contribute to V1
(i.e. they may be neglected in the vicinity of the singularity).
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The potential V1 may be also written as following

V1(~y) = V (~y;B) � 0; ~y 2 B;
+1; ~y 2 Dn�1 nB; (3.3.25)

where

B =
\

�2�+

B(u�) � Dn�1; (3.3.26)

B(u�) = f~y 2 Dn�1jj~y + ~u�

u�0
j >

s
(
~u�

u�0
)2 � 1g; (3.3.27)

� 2 �+ . B is an open domain. Its boundary @B = �B n B is formed by certain parts of
m+ = j�+j (m+ is the number of elements in �+ ) of (n � 2)-dimensional spheres with
the centers in the points

~v� = �~u�=u�0 ; � 2 �+; (3.3.28)

(j ~v�j > 1) and radii

r� =
q
(~v�)2 � 1 (3.3.29)

respectively (for n = 3, m+ = 1, see Fig. 1).
Fig. 1
So, in the limit y0 !�1 we are led to the dynamical system

L1 = �1
2( _y

0)2 + 1
2hij(~y) _y

i _yj � V1(~y); (3.3.30)

E1 = �1
2
( _y0)2 + 1

2
hij(~y) _yi _yj + V1(~y) = 0; (3.3.31)

which after the separating of y0 variable

y0 = !(t� t0); (3.3.32)

(! 6= 0 , t0 are constants) is reduced to the Lagrange system with the Lagrangian

LB =
1

2
hij(~y) _y

i _yj � V (~y;B): (3.3.33)

Due to (3.3.32)

EB =
1

2
hij(~y) _y

i _yj + V (~y;B) =
!2

2
: (3.3.34)

We put ! > 0, then the limit t! �1 describes the approach to the singularity. When
the set (3.3.24) is empty (�+ = ;) we have B = Dn�1 and the Lagrangian (3.3.33)
describes the geodesic ow on the Lobachevsky space Hn�1 = (Dn�1; hijdyi 
 dyj). In
this case there are two families of non-trivial geodesic solutions (i.e. y(t) 6= const):

1: ~y(t) = ~n1[
p
v2 � 1 cos'(�t) � v] + ~n2

p
v2 � 1 sin'(�t); (3.3.35)

'(�t) = 2 arctan[(v �pv2 � 1) tanh(!�t)]; (3.3.36)

2: ~y(t) = ~n tanh(!�t): (3.3.37)
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Here ~n2 = ~n21 = ~n22 = 1, ~n1~n2 = 0, v > 1, ! > 0, �t = t� t0 , t0 = const.
Graphically the �rst solution corresponds to the arc of the circle with the center at

point (�v~n1) and the radius
p
v2 � 1. This circle belongs to the plane spanned by vectors

~n1 and ~n2 (the centers of the circle and the ball Dn�1 also belong to this plane). We
note, that the solution (3.3.35)-(3.3.36) in the limit v ! 1 coincides with the solution
(3.3.37).

We note, that the boundary of the billiard @B is formed by geodesics. For some
billiards this fact may be used for "gluing" certain parts of boundaries.

When �+ 6= ; the Lagrangian (3.3.33) describes the motion of the particle of unit
mass, moving in the (n� 1)-dimensional billiard B � Dn�1 (see (3.3.26)). The geodesic
motion in B (3.3.35)-(3.3.37) corresponds to a "Kasner epoch" and the reection from
the boundary corresponds to the change of Kasner epochs. For n = 3 some examples of
(2-dimensional) billiards are depicted in Figs. 2-4.

Figs. 2-4

The billiard B in Fig. 2. has an in�nite volume: volB = +1. In this case there
are three open zones at the in�nite circle j~yj = 1. After a �nite number of reections
from the boundary the particle moves toward one of these open zones. For corresponding
cosmological model we get the "Kasner-like" behavior in the limit t!�1 [19].

For billiards depicted in Figs. 3 and 4 we have volB < +1. In the �rst case (Fig. 3)
the closure of the billiard �B is compact (in the topology of Dn�1 ) and in the second case
(Fig. 4) �B is non-compact. In these two cases the motion of the particle is stochastic.

Analogous arguments may be applied to the case n > 3. So, we are interested in the
con�gurations with �nite volume of B . We propose a simple geometric criterion for the
�niteness of the volume of B and compactness of �B in terms of the positions of the points
(3.3.28) with respect to the (n� 2)-dimensional unit sphere Sn�2 (n � 3). We say that
the point ~y 2 Sn�2 is (geometrically) illuminated by the point-like source located at the

point ~v , j~vj > 1, if and only if j~y � ~vj �
q
j~vj2 � 1. In Fig. 1 the source P illuminates

the closed arc [P1; P2]. We also say that the point ~y 2 Sn�2 is strongly illuminated by

the point-like source located at the point ~v , j~vj > 1, if and only if j~y � ~vj <
q
j~vj2 � 1.

In Fig. 1 the source P strongly illuminates the open arc (P1; P2). The subset N � Sn�2

is called (strongly) illuminated by point-like sources at f~v�; � 2 �+g if and only if any
point from N is (strongly) illuminated by some source at ~v� (� 2 �+ ).

Proposition 1. The billiard B (3.3.26) has a �nite volume if and only if the point-like
sources of light located at the points ~v� (3.3.28) illuminate the unit sphere Sn�2 . The
closure of the billiard �B is compact (in the topology of Dn�1 ' Hn�1 ) if and only if the
sources at points (3.3.28) strongly illuminate Sn�2 .

Proof. We consider the set @cB � Bc n �B , where Bc is the completion of B (or,
equivalently, the closure of B in the topology of Rn�1 ). We remind that �B is the closure
of B in the topology of Dn�1 . Clearly, that @cB is a closed subset of Sn�2 , consisting
of all those points that are not strongly illuminated by sources (3.3.28). There are three
possibilities: i) @cB is empty; ii) @cB contains some interior point (i.e. the point belonging
to @cB with some open neighborhood); iii) @cB is non-empty �nite set, i.e. @cB =
f~y1; : : : ~ylg. The �rst case i) takes place if and only if �B is compact in the topology of
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Dn�1 . Only in this case the sphere Sn�2 is strongly illuminated by the sources (3.3.28).
Thus the second part of proposition is proved. In the case i) volB is �nite. For the
volume we have

volB =
Z
B
dn�1~y

p
h =

Z 1

0
dr(1 � r2)1�nSr: (3.3.38)

The "area" Sr ! C > 0 as r ! 1 in the case ii) and, hence, the integral (3.38) is
divergent. In the case iii)

Sr � C1(1� r)2(n�2) as r ! 1 (3.3.39)

(C1 > 0) and, so, the integral (3.3.38) is convergent. Indeed, in the case iii), when r! 1,
the "area" Sr is the sum of l terms. Each of these terms is the (n�2)-dimensional "area"
of a transverse side of a deformed pyramid with a top at some point ~yk , k = 1; : : : ; l . This
multidimensional pyramid is formed by certain parts of spheres orthogonal to Sn�2 in the
point of their intersection ~yk . Hence, all lengths of the transverse section r = const of the
"pyramid" behaves like (1� r)2 , when r! 1, that justi�es (3.3.39). But the unit sphere
Sn�2 is illuminated by the sources (3.3.28) only in the cases i) and iii). This completes
the proof.

The problem of illumination of convex body in multidimensional vector space by point-
like sources for the �rst time was considered in [68,69]. For the case of Sn�2 this problem
is equivalent to the problem of covering the spheres with spheres [70,71]. There exist a
topological bound on the number of point-like sources m+ illuminating the sphere Sn�2

[69]:

m+ � n: (3.3.40)

Thus, we are led to the following.
Proposition 2: When m+ < n, i.e. the number of the components with (u�)2 > 0 is
less than the minisuperspace dimension, the billiard B (3.3.26) has in�nite volume: vol
B = +1.

In this case there exist an open zone on the sphere Sn�2 and the stochastic behaviour
near the singularity is absent (we get a Kasner-like behaviour for t!�1).

Remark 1. Let the points (3.3.28) form an open convex polyhedron P � Rn�1 . Then
the sources at (3.3.28) illuminate Sn�2 , if Dn�1 � P , and strongly illuminate Sn�2 , if
Dn�1 � P .

Scalar �eld generalization. Let us assume that an additional (m+1)-th component

with the equation of state p
(m+1)
i = �(m+1) is considered, i = 1; : : : ; n. This component

describes Zeldovich matter [49] in all spaces and is equivalent to homogeneous massless

free minimally coupled scalar �eld [50]. In this case u
(m+1)
i = 0, i = 1; : : : ; n and the

potential (3.2.17) is modi�ed by the addition of constant Am+1 > 0. Then the potential
V� (3.3.16) is modi�ed by the addition of the following term

�V = Am+1 exp(�2y0): (3.3.41)

This do not prevent from the formation of the billiard walls but change the time depen-
dence of y0 -variable:

exp(2y0) = 2Am+1 sinh
2[!(t� t0)]=!

2; (3.3.42)
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(! > 0) instead of (3.3.32). In the limit t! t0+0 we have y0 ! �1 and ~y(t)! ~y0 2 B .
So, the stochastic behavior near the singularity is absent in this case.

3.4. Bianchi-IX cosmology

Here we consider the well-known mixmaster model [56,57] with the metric

g = � exp[2(t)]dt
 dt+
3X
i=1

exp[2xi(t)]ei 
 ei; (3.4.1)

where 1-forms ei = ei�(�)d�
� satisfy the relations

dei =
1

2
"ijke

j ^ ek; (3.4.2)

i; j; k = 1; 2; 3. The Einstein equations for the metric (3.4.1) lead to the Lagrange system
(3.2.14)-(3.2.17) with (see, for example, [57]) n = 3, N1 = N2 = N3 = 1, m = 6,
A1 = A2 = A3 = 1=4, A4 = A5 = A6 = �1=2, A0 = A7 = A8 = A9 = 0, and

u
(�)
i = 4��i ; u

(3+�)
i = 2(1 � ��i ); (3.4.3)

� = 1; 2; 3. In this case 0 =
Pn
i=1 x

i , the minisuperspace metric (3.2.14) is Gij = �ij � 1
and the potential (3.2.17) reads

V = Vmix � 1

4
(e4x

1
+ e4x

2
+ e4x

3 � 2e2x
1+2x2 � 2e2x

2+2x3 � 2e2x
1+2x3): (3.4.4)

In the z -coordinates (3.2.30), (3.2.31) we have for 3-vectors (3.2.35)

u1 =
4p
6
(1; 1;�

p
3); u2 =

4p
6
(1; 1;+

p
3); u3 =

4p
6
(1;�2; 0); (3.4.5)

u4 =
1

2
(u1 + u2); u5 =

1

2
(u1 + u3); u6 =

1

2
(u2 + u3); (3.4.6)

and, consequently,

(u�)2 = 8; (u3+�)2 = 0; (3.4.7)

� = 1; 2; 3. Thus the conditions (3.3.3), (3.3.4) are satis�ed. The components with
� = 4; 5; 6 do not survive in the approaching to the singularity . For the vectors (3.3.28)
we have

~v1 = (1;�p3); ~v2 = (1;+
p
3); ~v3 = (�2; 0); (3.4.8)

i.e. a triangle from Fig. 4 (see also [60]). In this case the circle S1 is illuminated by sources
at points ~vi , i = 1; 2; 3, but not strongly illuminated. In agreement with Proposition the
billiard B has �nite volume, but �B is not compact.
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3.5. Discussions

We have obtained the "billiard representation" for the asymptotic cosmological model
[37] and proved the geometrical criterion for the �niteness of the billiard volume and the
compactness of the billiard (Proposition 1, Sec. 3.3). This criterion may be used as a
rather e�ective (and universal) tool for the selection of the cosmological models with a
stochastic behavior near the singularity.

For an "isotropic" component: p(�)i = (1 � h)�(�) , i = 1; : : : ; n, with h 6= 0 we have
(u(�))2 = h2(D � 1)=(2 �D) < 0 and, hence, this component may be neglected near the
singularity. Only "anisotropic" components with (u(�))2 > 0 take part in the formation
of billiard walls near the singularity. According to the topological bound (3.3.40) [69] the
stochastic behavior near the singularity in the considered model may occur only if the
number of components with (u(�))2 > 0 is not less than the minisuperspace dimension.

We also note that here, like in the Bianchi-IX case [58,59], the considered reduction
scheme uses a special time gauge (or parametrization of time). As it was pointed in [60]
one should be careful in the interpretations of the results of computer experiments for
other choices of time.
Restrictions on parameters. Here we discuss the physical sense of the restrictions
on parameters of the model (3.3.3) and (3.3.4). The condition (3.3.3) means that the
densities of the "anisotropic" components with (u(�))2 > 0 should be positive. Using
(3.2.8) and (3.2.36) we rewrite the restriction (3.3.4) in the equivalent form

nX
i=1

Ni
�(�) � p

(�)
i

�(�)
> 0; (3.5.1)

(�(�) 6= 0) � = 1; : : : ;m (for curvature and �-terms (3.3.4) is satis�ed). For

�(�) > 0; p
(�)
i < �(�); (3.5.2)

� = 1; : : : ;m, i = 1; : : : ; n, (3.5.1) is satis�ed identically.
Remark 2. It may be shown that the condition (3.3.4) may be weakened by the following
one

u�0 > 0; if (u�)2 � 0: (3.5.3)

In this case there exists a certain generalization of the set B(u�) from (3.3.27) for arbitrary
u�0 ((u�)2 > 0). The Proposition 1 (Sec. 3.3) should be modi�ed by including into
consideration the sources at in�nity (for u�0 = 0) and "anti-sources" (for u�0 < 0). For
"anti-source" the shadowed domain coincides with the illuminated domain for the usual
source (with u�0 > 0). In this case we deal with the kinematics of tachyons. (We may
also consider a covariant and slightly more general condition instead of (3.5.3)

signu�0 = "; for all (u�)2 � 0; " = �1:) (3.5.4)

We note that for the component � 2 �+ with u�0 < 0 or, equivalently,
Pn
i=1 u

(�)
i < 0, the

relation (3.4.37) should be substituted by

nX
i=1

u
(�)
i �1 < 0 (3.5.5)
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4. Dynamics of Inhomogeneities of Metric in the Vicinity of a
Singularity in Multidimensional Cosmology

4.1. Introduction

As is well known a number of uni�ed theories predict that dimension of the Universe
exceeds that of we normally experience at a macroscopic level [23]. It is assumed that
presently additional dimensions are hidden, for they are compacti�ed to the Planckian
size, and they do not display themselves in macroscopic and even in microscopic processes.
However, the situation must be changed as we come back with time to the very beginning
of the evolution of our Universe. Standard cosmological models predict the existence of
a singular point at the very beginning and, therefore, the universe size could approach
to the Planckian scale. Thus, in the early universe the additional dimensions, if exist,
must not be di�erent from ordinary dimensions and should be taken into account. More-
over, one could expect that the existence of additional dimensions may drastically change
properties of the singularity and even remove it. The main aim of this section is to con-
struct a general solution of multidimensional Einstein equations near a singularity and to
investigate properties of inhomogeneities.

The way to construct a general solution with singularity was indicated �rst by Belinsky
et al.in Ref. [57] for D = 4, where D is the dimension of a spacetime. Dynamics of
metric at a particular point of space was shown to resemble the behaviour of the well
studied "mixmaster" (or of the type-IX) homogeneous model and the last one has a
complex stochastic nature [57,74]. Subsequent utilizing of that construction has been
done in Ref.[53] where the so-called scalar-vector-tensor theory (or the case D = 5) was
considered and the main feature of the mixmaster model, i.e. the complex oscillatory
regime was shown to be also present in the 5-dimensional case.

An investigation of inhomogeneities of metric based on the general solutions has been
considered �rst in Ref. [75]. The case of the scalar-tensor theory (or D = 4+ scalar �elds)
was considered and it turned out that the oscillatory regime leads to the fractioning of the
coordinate scale � of the inhomogeneities of Kasner exponents (� � �02�N , where N is
the number of elapsed Kasner epochs and �0 is the initial scale of inhomogeneities). How-
ever, the methods by means of which the properties and statistics of the inhomogeneities
were investigated turned out to be unapplicable for general case (i.e. for the absence of
scalar �elds as well as for the expanding universe). This problem has been solved recently
in Ref. [61]. In this paper we generalize the results obtained in Ref. [61] to the case of
arbitrary number of dimensions D .

As it was mentioned above the main features of the dynamics of an inhomogeneous
gravitational �eld nearby the singularity in 4-dimensional case may be summarized as
follows:
1. Locally dynamics of metric functions resembles the behaviour of the most general
homogeneous "mixmaster" model [57], which has stochastic behaviour [74]. Just the
stochastic behaviour leads to a monotonic decrease of the coordinate scale of the metric
inhomogeneities [61,75].
2. In the vicinity of a singularity a scalar �eld is the only kind of matter e�ecting the
dynamics of metric [53].
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These facts may be simply understood under the following qualitative estimates (that
is con�rmed by subsequent consideration). As is well known in cosmology the horizon size
lh is a natural scale measuring a distance from the singularity. Therefore, inhomogeneities
may be divided into the large-scale (liglh ) and small-scale (li � lh ) ones. The horison size
varies with time as lh � t (where t is the time in synchronous reference system) whereas
the characteristic spatial dimension of the inhomogeneity may be estimated as li � t� (as
t! 0). In a linear theory for an isotropic background the exponent � may be expressed
via the state equation of matter as � = 2�

3(p+�)
and what is important � < 1. Thus, it is

clear that an arbitrary inhomogeneous �eld becomes large-scale in the su�cient closeness
to the singularity. Since the inhomogeneities are large-scale there are no e�ects connected
with propagating of gravitational waves etc, and this would mean that inhomogeneities
become passive. Consequently, dynamics of the �eld may be approximately described by
the most general homogeneous model depending parametrically upon the spatial coor-
dinates. Note, however, that the homogeneous model would appear to be in a general
non-diagonal form.

The second fact may be understood in the same way. As it was shown in Ref. [76]
the gravitational part of the Einstein equations at the singular point varies with time, in
the leading order, as R�

� � t�2 whereas the matter has the order T �� � t�2k , where k
depends upon the state equation as k = �+p

2� . Thus, one can see that for the equation
of state satisfying the inequality p < � we have k < 1 and only for the limiting case
p = � (k = 1) the both sides turn out to be of the same order. We note that in the
vicinity of a singularity scalar �elds give just this equation of state.

As it is well known (see for example Ref.[21,37,53,77,78]) additional dimensions may
be treated in ordinary gravity as a set of nonminimally coupled scalar and vector �elds.
Therefore, one could expect that the main contribution to dynamics in the vicinity of a
singularity would be given by those dynamical functions which are connected with scalar
�elds, whereas other functions would play a passive role.

Thus, one could expect that in multidimensional cosmology local behaviour of the
metric functions (at a particular point of space) will be described by a most general ho-
mogeneous model. Here, it is necessary to recall the important property of the mixmaster
universe that is the stochastic behaviour. The problem of stochasticity of homogeneous
multidimensional cosmological models has been investigated in a number of papers [18,54].
In particular, in Refs. [54] the result was obtained that chaos is absent in the spaces whose
dimension D � 11, since in this case the last stage of a cosmological collapse is described
by a minimally-coupled scalar �eld [53]. Therefore it seems to be su�cient to consider
the Einstein equation of D < 10 dimensions with the scalar �eld matter source.

Thus, here we consider the D -dimensional Einstein equations with the matter source
given by a minimally-coupled scalar �eld. Using generalized Kasner variables we divide
the dynamical functions connected with physical degrees of freedom into two parts. One
part has a simple behaviour while the other is described by a billiard on an appropriate
Lobachevsky space. In dimensions D < 11 the billiard has a �nite volume and shows
stochastic properties. This stochasticity causes the degree of inhomogeneity of the part
of dynamical functions and leads to the formation of spatial chaos. The presence of a
scalar �eld results in the fact that lengths of trajectories on the billiard take �nite values.
This destroys the chaotic properties which, however, are restored in the limit when the
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ADM energy density for the scalar �eld turns out to be small as compared with that of
the gravitational variables.

4.2. Generalized Kasner Solution, Generalized Kasner Variables

We consider the theory in canonical formulation. Basic variables are the Riemann metric
components g�� with signature (+;�; :::;�) and a scalar �eld � speci�ed on the n-
manifold S , and its conjugate momentum ��� =

p
g(K�� � g��K) and �� , where

� = 1; :::; n and K�� is the extrinsic curvature of S . For the sake of simplicity we shall
consider S to be compact i.e. @S = 0. The action has in Planck units the following form

I =
Z
S
(�ij @gij

@t
+��

@�

@t
�NH0 �N�H

�)dnxdt; (4.2.1)

where

H0 =
1p
g
f��

��
�
� � 1

n�1(�
�
�)

2 + 1
2
�2
� + g(W (�)�R) g ; (4.2.2)

H� = �2���
j� + g��@����; (4.2.3)

here

W (�) =
1

2
f g��@��@��+ V (�) g : (4.2.4)

A generalized Kasner solution is realized under the following assumption
p
gT � (��

�;��)gV = g(W �R); (4.2.5)

where
p
gT denotes the �rst three terms in (4.2.2). Then, using (4.2.1) one can �nd the

following solution of the multidimensional Einstein equations

ds2 = dt2 �
n�1X
a=0

tsala� ; l
a
�dx

�dx� (4.2.6)

where la� , sa are functions of space coordinates. Kasner exponents sa satisfy the identitiesP
sa =

P
s2a+ q

2 = 1, and run the domain �n�2
n
� sa � 1 (here q2 = (n�1)2

2

�2
�

(���)
2 ). Since,

as it was shown in Ref.[53,57] the generalized Kasner solution takes a substantial portion
of the evolution of metric it is convenient to introduce a Kasner-like parametrization of the
dynamical variables [61]. We consider the following representation for metric components
and their conjugate momenta

g�� =
X
a

exp fqag la�la� ; (4.2.7)

��
� =

X
a

paL
�
a l
a
� ; (4.2.8)

here L�a l
b
� = �ba (a; b = 0; :::; (n� 1)), and the vectors la� contain only n(n� 1) arbitrary

functions of spatial coordinates. Further parametrization may be taken in the following
form

la� = Ua
b S

b
�; U

a
b 2 SO(n); Sa� = �a� +Ra

� (4.2.9)
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where Ra
� denotes a triangle matrix (Ra

� = 0 as a � �). Substituting (4.2.7) - (4.2.9)
into (4.2.1) one gets the following expression for the action functional

I =
Z
S
(pa

@qa

@t
+ T �a

@Ra
�

@t
+��

@�

@t
�NH0 �N�H

�)dnxdt; (4.2.10)

here T �a = 2
P
b pbL

�
b U

b
a and the Hamiltonian constraint takes the form

H0 =
1p
g
fP p2a � 1

n�1(
P
pa)2 +

1
2
�2
� + V g : (4.2.11)

In the case of n = 3 the functions Ra
� are connected purely with transformations of a

coordinate system and may be removed by solving momentum constraints H� = 0. In the
multidimensional case the functions Ra

� contain n(n�3)
2

dynamical functions as well. Now
it is easy to see that the choice of Kasner-like parametrization simpli�es the procedure
of the constructing of the generalized Kasner solution. Indeed, if we now neglect the
potential term in (4.2.10) and put N� = 0 we �nd that Hamiltonian does not depend on
the scale functions and other dynamical variables contained in Kasner vectors introduced
by expressions (4.2.7) (4.2.8).

4.3. The asymptotic model in the vicinity of a cosmological singularity

As it is well known, [53], [57], the Kasner regime (4.2.6) turns out to be unstable in
a general case. This happens due to the violation of the condition (4.2.5) because the
potential V contains increasing terms which lead to replacement of Kasner regimes. To
�nd out the law of replacement it is more convenient to use an asymptotic expression for
the potential [61], [55]. For this aim we put the potential in the following form

V =
kX

A=1

�Ag
uA ; (4.3.1)

here �A is a set of functions of all dynamical variables and of their derivatives and uA
are linear functions of the anisotropy parameters Qa =

qaP
q
(uA = uA(Q)). Assuming the

�niteness of the functions � and considering the limit g ! 0 we �nd that the potential
V may be modeled by potential walls

guA ! �1[uA(Q)] =

(
+1; uA < 0;
0; uA > 0

(4.3.2)

Thus, putting N� = 0 we can remove the passive dynamical function T �a , R
a
� from the

action (4.2.10) and get the reduced dynamical system

I =
Z
S

n
pa

@qa

@t
+��

@�
@t
� �

nP
p2 � 1

n�1(
P
p)2 + 1

2�
2
� + U(Q)

oo
dnxdt; (4.3.3)

here � is expressed via the lapse function as � = Np
g
. In harmonic variables the action

(4.3.3) takes the form formally coincided with the action for a relativistic particle

I =
Z
S
fPr @zr@t � �

0

(P 2
i + U � P 2

0 ) g dnxdt; (4.3.4)
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here r = 0; :::; n, i = 1; :::; n, qa = Aa
jz
j + z0 (j = 1; :::; n� 1), zn =

q
n(n�1)

2
� and the

constant matrix Aa
j obeys the following conditionsX

a

Aa
j = 0;

X
a

Aa
jA

a
k = n(n� 1)�jk (4.3.5)

and can be expressed in the following form

Aa
j =

vuutn(n� 1)

j(j � 1)
(�aj � j�aj );

where �aj =

(
1; j > a
0; j � a

.

Since the timelike variable z0 varies during the evolution as z0 � ln g the positions of
potential walls turn out to be moving. It is more convenient to �x the positions of walls.
This may be done by using the so-called Misner-Chitre like variables [55] (~y = yj )

z0 = �e�� 1 + y2

1 � y2 ; ~z = �2e
�� ~y

1� y2
; y =j ~y j< 1: (4.3.6)

Using these variables one can �nd the following expressions for the anisotropy parameters

Qa(y) =
1

n

n
1 +

2Aaj y
j

1+y2

o
; (4.3.7)

which are now independent of timelike variable � . From (4.3.7) one can �nd the range of
the anisotropy functions �n�2

n
� Qa � 1.

Choosing as a time variable the quantity � (i.e. in the gauge N = n(n�1)
2

p
g exp(�2� )=P 0 )

we put the action (4.3.4) into the ADM form

I =
Z
S
f ~P @

@�
~y + P n @

@�
zn � P 0(P; y) g dnxd�; (4.3.8)

where the quantity

P 0(P; y) = (�2(~y; ~P ) + V [y] + (P n)2e�2�)1=2; (4.3.9)

plays the role of the ADM Hamiltonian density and

�2 =
1

4
(1� y2)2 ~P 2: (4.3.10)

The part of the con�guration space connected with the variables ~y is a realization of
the (n � 1) -dimensional Lobachevsky space [64] and the potential V cuts a part of it.
Thus, locally (at a particular point of S ) the action (4.3.9) describes a billiard on the
Lobachevsky space. The positions of walls which form the boundary of the billiard are
determined, due to (4.3.1) by the inequalities

�abc = 1 +Qa �Qb �Qc � 0; a 6= b 6= c (4.3.11)
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and the total number of walls is n(n�1)(n�2)
2 . Using the matrix (4.3.5) one can �nd that

the walls are formed by spheres determined by the equations

�abc =
n � 1

n(1 + y2)
f (~y + ~Babc)2 + 1�B2

abc g ; ~Babc =
1

n� 1
( ~Aa � ~Ab � ~Ac); (4.3.12)

here for arbitrary a; b; c we have B2 = 1+ 2n
n�1 . In a general case n points of the billiard

having the coordinates ~Pa =
1

n�1
~Aa lie on the absolute (at in�nity of the Lobachevsky

space). The trajectories which end with these points correspond to the set of Kasner
exponent (0; � � � 0; 1). When n = 9 there appear additional isolated points Sab lying on the

absolute. The coordinates of these points are given by the vectors ~Sabc =
1
12
( ~Aa+ ~Ab+ ~Ac),

a 6= b 6= c (see appendix). In the case of n � 10 in addition to the points Pa and Sabc
there appear open accessible domains on the absolute (see appendix of Refs. [54] where
has been used another approach) and the volume of the billiard becomes in�nite. If on
the contrary n < 10, the volume of the billiard is �nite and the billiard turns out to be a
mixing one. We give two simplest examples for illustration of the billiards on �g.5. The
case n = 3 on �g.5a coincides with the well-known "mixmaster" model and on �g.5b we
illustrate the case of n = 4 considered in Ref.[53].

4.4. Dynamics of inhomogeneities

The system (4.3.8) has the form of the direct product of "homogeneous" local systems.
Each local system in (4.3.8) has two variables � and P n as integrals of motion. The solu-
tion of this local system for remaining functions represents a geodesic ow on a manifold
with negative curvature. As it is well known the geodesic ow on a manifold with neg-
ative curvature is characterized by exponential instability [64]. This means that during
the motion along a geodesic the normal deviations grow no slower than the exponential
of the traversed path � ' �0e

s ), where the traversed path is determined by the expression

s =
Z �

�0
dl =

Z �

�0

2 j @y
@�
j

(1� y2)
d� =

1

2
ln j P

0 � �

P 0 + �
j��0 : (4.4.1)

This instability leads to the stochastic nature of the corresponding geodesic ow. The sys-
tem possesses the mixing property [65] and an invariant measure induced by the Liouviulle
one

d�(y; P ) = const�(E � �)dn�1ydn�1P; (4.4.2)

where E is a constant. Integrating this expression over � we �nd

d�(y; s) = const
dn�1ydn�2s
(1� y2)n

; (4.4.3)

where ~s =
~P
�
, jsj = 1.

Since the inhomogeneous system (4.3.8) is the direct product of "homogeneous" sys-
tems one can simply describe its behaviour as in ref [61]. In particular, the scale of the
inhomogeneity decreases as

�i � (
@y

@x
)�1 � �0i exp(�s) (4.4.4)
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and after su�ciently large time (s(� )!1) the dynamical functions ~y(x), ~P (x) become
a random functions of the spatial coordinates. In order to calculate di�erent mean values
one can use the following n-point distribution functions [61]

�x1���;xn(y1; � � � ; yn;m1 � � � ;mn) =<
nY
i=1

�(yi � y(xi))�(mi �m(xi)) >; (4.4.5)

where the angular brackets can denote the averaging out either over an initial distribution
or over a certain coordinate volume �V >> (�0i )

3 . The mixing results in the relaxation
of initial functions (4.4.5) to the limiting ones which have the form of the direct product of
measures (4.4.3): d� =

Q
i d�i . Thus, asymptotic expressions for averages and correlating

functions have the form

< ~y(x) >=< ~P (x) >= 0; < yk(x); yl(x
0) >=< yk; yl > �(x; x0); (4.4.6)

for jx� x0jg�0i exp(�s).
Here it is necessary to point out a role of the scalar �eld in dynamics and statistical

properties of inhomogeneities. As may be easily seen from (4.4.1) in the absence of a
scalar �eld (i.e. P n = 0) the transversed path coincides with the duration of motion (we
have s = �� = � � �0 instead of (4.4.1)). Thus, the e�ect of scalar �elds is displayed in
the replacement of the dependence for transversed path of time variable and, therefore,
in the replacement of the rate of increasing of the inhomogeneities. This replacement
does not change qualitatively the evolution of the universe in the case of cosmological
expansion. But in the case of the contracting universe the situation changes drastically.
Indeed, in the limit � ! �1 from (4.4.1) we �nd that the transversed path s takes a
limited value s0 and therefore the increasing of inhomogeneities turns out to be �nite.
One of consequences of such behaviour is the fact that at the singularity the functions ~y
and ~P take constant values. In other words in the presence of scalar �elds a cosmological
collapse ends with a stable Kasner-like regime (4.2.6). This fact may be seen in the other
way. Indeed, in the limit � ! �1 the scalar �eld gives the leading contribution in ADM
Hamiltonian (4.3.9) and P 0 does not depend on gravitational variables at all.

The �niteness of the transversed path s(� ) leads, generally speaking, to the destruction
of the mixing properties [65], since for establishment of the invariant measure it is nec-
essary to satisfy the condition s0 !1. Evidently, this condition requires the smallness
of the energy density for scalar �eld as compared with the ADM energy of gravitational
�eld (the last term in (4.3.9) in comparison with the �rst ones). Indeed, in this case s0 is
determined by the expression s0 = � ln Pne�0

2� , which follows from (4.4.1), and as P n ! 0
one get s0 !1 (i.e. s can have arbitrary large values).

Thus, in the case of cosmological contraction one may speak of the mixing and, there-
fore, of establishment of the invariant statistical distribution just only for those spatial
domains which have su�ciently small energy density of the scalar �eld.

4.5. Estimates and concluding remarks

In this manner the large-scale structure of the space in the vicinity of singularity acquires
a quasi-isotropic nature. A distribution of inhomogeneities is determined by the set of
functions of spatial coordinates �(x), ��(x) and Ra

� which conserve during the evolution
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a primordial degree of inhomogeneity of the space. The scale of inhomogeneity of other
functions grows as � � �0e

�s(�) . In this section we give some estimates clarifying the
behaviour of the inhomogeneities. For simplicity we consider the case when the scalar
�eld is absent.

To �nd the estimate for the inhomogeneity growth in a synchronous time t (dt =
Nd� ) we put y = 0. Then for variation of the variable � one may �nd the following
estimate

p
g � exp(�n

2
e��) � P 0t, (here the point t = 0 corresponds to the singularity).

According to (4.4.4) the dependence of the coordinate scale of inhomogeneity upon the
time t takes the form

� � �0 ln(1=g0)= ln(1=g)

in the case of contracting (g ! 0) and

� � �0 ln(1=g)= ln(1=g0)

in the case of the expanding universe.
A rapid generation of the more and more small scales leads to the formation of spatial

chaos in metric functions and so the large-scale structure acquires a quasi-isotropic nature.
Speeds of the scale growing (Hubble constants) for di�erent directions turn out to be equal
after averaging over a spatial domains having the size � �0 . Indeed, using (4.3.7) one
may �nd the expressions for averages < Qa >= 1=n.

Besides, it is necessary to mention one more characteristic feature of the oscillatory
regime in the inhomogeneous case. This is the formation of a cellular structure in the scale
functions Qa during the evolution which demonstrate explicitely the stochastic process
of development of inhomogeneities. Indeed, let us consider some region of coordinate

space �V . Two functions ~y(x) de�ne the map of that region on some square � 2 K
(see �g.1c). During the evolution the size of the square � grows ' es(�) and � covers
the domain of the billiard K many times. Each covering determines its own preimage in
�V . In this manner the initial coordinate volume is splitted up in "cells" �V =

S
i�Vi .

In the every cell the vector ~y(x) takes almost all admissible values ~y 2 K and that of

the functions Qa(Qa 2 [Qmin; 1] where Qmin = � (n�1)2�(n+1)
n(n+1) . To illustrate this process

let us consider the case n = 3. In this case it is convenient to use the Poincar�e model
of the Lobachevsky plane on the upper complex half-plane H = fW = U + iV; V � 0g
(see �g.5c). The line V = 0 is called the absolute and its points lie at in�nity. Geodesics
in H are given by semi-circles with centers on the absolute, or by rays perpendicular to
the absolute. The billiard constitutes the region K 2 H , bounded by geodesics triangle
@K = [jW j = 1; U = �1]. The area of the billiard is equal to � . The motion can be
continued to the whole plane H . For this aim one needs to reect the domain of the
billiard with respect to one of the boundary walls and make iteration of such procedure.
In this way the Lobachevsky plane will be covered by a set of domains Kn each of which
is connected with the region of the billiard K by a one-to-one mapping. During the
evolution an arbitrary initial square �0 begins to grow and covers the more and more
number of the domains Kn (see �g.5c). Such cellular structure turns out to be depending
on time and the number of cells increases as N � N0e

s(�) . However, the situation will be
changed if we consider a contracting space �lled with a scalar �eld. Then the evolution of
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this structure in the limit g ! 0 ends, because the functions Qa become independent of
time, and on the �nal stage of the collapse one would have a real cellular structure [75].

In spite of the isotropic nature of the spatial distribution of the �eld the large lo-
cal anisotropy displays itself in the anomalous dependence of spatial lengths upon time
variable for vectors and curves. Indeed, a moment of scale function < gMQa > (where
M > 0) decreases in the asymptotic g ! 0 as the Laplace integral

R 1
Qmin

gMQa�(Qa)dQa ,
where �(Qa) is the distribution which follows from (4.4.3). The main contribution in this
integral is given by the point Q = Qmin and Q = Qmin and in the case of n > 3 in the
limit (Q�Qmin)! 0 one can �nd �(Q) � C(Q�Qmin)n�1 , where C is a constant and
we obtain the estimate

< gMQa >� gMQmin

(M ln 1=g)n�1
: (4.5.1)

This expression shows that for n > 3 average lengths even increase while approaching the
singularity. The case n = 3 must be considered separately. In this case we have Qmin = 0
and the explicit form of the distribution function �(Qa), as it follows from (4.4.3), is

�(Q) =
2

�
(Q(1�Q))�1=2(1 + 3Q)�1: (4.5.2)

As Q� 1 one has �(Qa) � 2
�
(Qa)�1=2 and, thus, in the limit g ! 0 we get the estimate

< gMQa >� (M ln(1=g))�1=2: (4.5.3)

In conclusion we briey repeat the main results. The general ihomogeneous solution of
D -dimensional Einstein equations with any matter sources satisfying the inequality � � p
near the cosmological singularity is constructed. It is shown that near the singularity
a local behavior of metric functions ( at a particular point of the coordinate space) is
described by a billiard on the (D � 1)-dimensional Lobachevsky space. In the case of
D < 11 the billiard has a �nite volume and consequently a mixing one. The rate of
growth of inhomogeneities of metric is obtained. Statistical properties of inhomogeneities
are described by the invariant measure. It is shown that a minimally-coupled scalar �eld
leads, in general, to the distruction of stochastic properties of the inhomogeneous model.
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Appendix

Here we show that the billiards in the dimensions exceeding n = 9 become in�nite. Let
us introduce a new set of variables connected with the old ones as ~x = 2~y

1+y2
. Within

these variables the absolute of the Lobachevsky space keeps the old position jx2j = 1 and
the walls become planes (see (4.3.7), (4.3.12)). Furthermore, it will be more convenient
to select a region on the Lobachevsky space on which the anisotropy parameters are in
the increasing order Q0 � Q1 � � � � � Qn�2 � Qn�1 and which is restricted by the only
wall (see (4.3.11)) �(~x) = �1;n�2;n�1 . This region is formed by the vectors of the type
~x = �n�1i=1 u

i~ei , where the parameters 0 � ui � 1 and the set of basic vectors is given
by: ~ei =

1
n+1

Pn�1
a=i

~Aa for i � n � 2, ~en�2 = 1
2(n�1)(

~An�2 + ~An�1) and ~en�1 = 1
n�1

~An�1 .
They are normalized so that �(~ei) = 0. It is easy to �nd that the wall causes the
restrictions on the parameters ui :

P
ui � 1. The Euclidian norms of the basic vectors

are e2i =
i(n�i)(n�1)

(n+i)2
for i � n�2; e2n�2 =

n�2
2(n�1) and jen�1j = 1 (here we used the following

property of ~Aa :
Pn�1
k=1 A

a
kA

b
k = n(n � 1)�ab � (n � 1)). Now, it is easy to �nd that for

n < 9 all basic vectors except ~en�1 have norms less than unity and we have j~xj � 1
(equality is achieved only when ~x = ~en�1 ). In the case n = 9 we get e23 = e28 = 1, all
the other vectors have norms less than unity and we have the similar situation as above
(i.e., jxj = 1 only when ~x = ~e3 and ~x = ~e8). In the case n > 9 a number of basic vectors

have norms exceeding unity, e.g., ~ei for i =
h
n
3

i
+ 1 or i =

h
n
3

i
+ 1, where

h
n
3

i
denotes

the entire part of the number n
3 . This means that the wall in these directions lies outside

the absolute of the Lobachevsky space and there appears an open accessible domain. In
other words, the trajectories do not meet any obstacle in these directions and run to the
in�nity. This proves the statement made in Sec. 4.3.
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5. Multidimensional Cosmology and the Time Variation of G:
a Dynamical System Approach [79]

5.1. Introduction

Multidimensional cosmology has since long ago attracted the attention of cosmologists,
who were stimulated initially mainly by the Kaluza-Klein theory [80-81] and more recently
by superstrings models [23]. The idea that the Universe we live in can be represented as a
4-dimensional hypersurface imbedded in a (4+n)-spacetimemanifold has actually di�erent
versions. In particular, we could mention the one put forward by Wesson, who has devel-
oped an embedding scheme in which the Friedmann-Robertson-Walker-Lemaitre cosmol-
ogy can be entirely obtained in a rather simple and elegant way from (4+1)-dimensional
Ricci-at spacetimes [82-83]. Further generalization of this theory to arbitrary dimen-
sionality with applications to multidimensional cosmology and lower dimensional gravity
was later carried out by Rippl et al [84]. General multidimensional and multicomponent
schemes were studied in [21] (see also refs. therein).

In addition to the role multidimensional theories might play in providing a theoretical
framework in which the most fundamental laws of physics appear to be uni�ed, another
motivation may come from a conjecture - originally proposed by Dirac [85] - regarding
the time variation of the Newtonian gravitational constant G. Indeed, this idea, which
was to be taken seriously by superstrings theory and recent inationary models, is also
present in the context of multidimensional cosmological models where G is considered
not as a fundamental constant of Nature, but as a cosmological function depending on
the geometry of an `internal space' [12,50,86].

Among the several attempts to construct gravity theories with varying G is Brans-
Dicke theory, where the strength of the gravitational force is determined by a scalar �eld
[87,88]. Here we �nd again the same idea underlying the connection between higher
dimensions and time variation of G, as it can be shown that n-dimensional Kaluza-Klein
models reduce to Brans-Dicke vacuum models for w = 0. Other theories with scalar �eld
(especially conformal) see in [50].

In this section we consider, as in [21], a (4+n)-spacetime manifold de�ned by the
topological product M4+n = R�M3

k�Kn , where M3
k is a 3-dimensional space of constant

curvature (i.e.,M3
k = S3; R3; L3 according to k = +1; 0;�1, respectively), and Kn is a

n-dimensional Ricci-at manifold. We assume also that this spacetime is generated by a
(4+n)-dimensional multicomponent perfect uid.

Now, it turns out that the �eld equations for the special case k = 0 may be reduced to
an autonomous homogeneous system of the second order. This system contains some free
parameters, one of them being n (the dimensionality of the internal space) and the others
come from the equations of state of the multicomponent-uid. However, by restricting
ourselves to 'dust-like' matter, we are left with n as the only parameter of the system.
Then, we construct the phase diagram of the system to obtain a general picture of the
solutions. As a by-product of the analysis we also obtain analytical solutions of the
equations for arbitrary values of n (see also [14]).
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5.2. The �eld equations

The gravitational �eld equations in a (4+n)-dimensional gravity are postulated to be

(4+n)R�� = �2
 
(4+n)T�� � g�� T

(n+ 2)

!
; (5.2.1)

where all the geometric quantities are de�ned in (4 + n) dimensions and �2 is the gener-
alized Einstein constant [21]. We take the metric tensor to be given by the line element

ds2 = dt2 �R2(t)(3)gij(x
k)dxidxj � b2(t)(n)gpq(y

r)dypdyq; (5.2.2)

where i; j; k = 1; 2; 3; p; q; r = 4; :::; n+3; (3)gij ,
(n)gpq , R(t) and b(t) are, respectively, the

metrics and scale factors for (3)Mk and Kn . The (4+n)�dimensional energy-momentum
tensor for a multicomponent perfect uid is taken to be

T �� = diag(%(t);�p3(t)�ij;�pn(t)�mn ) (5.2.3)

From (5.2.2) and (5.2.3) the Einstein equations become:

3
�R

R
+ n

�b

b
=

�2

n+ 2
(�(n+ 1)%� 3p3 � npn) ; (5.2.4)

2k

R2
+

�R

R
+ n

_b

b

_R

R
+ 2

_R2

R2
=

�2

n+ 2
(%+ (n� 1)p3 � npn) (5.2.5)

�b

b
+ (n � 1)

_b

b2

2

+ 3
_R

R

_b

b
=

�2

n+ 2
(%� 3p3 + 2pn) (5.2.6)

At this point it is worthwhile mentioning the way by which higher dimensional gravity
theories of this type can be naturally related to their 4-dimensional counterparts with
varying G [21]. This is simply done by integrating the (4+n)-dimensional energy density
over the Kn compact space and equating the result to (4)%(t), thereby de�ning the energy
density in 4-dimensional spacetime:

(4)%(t) =
Z
Kn

dyn
q

(n)gbn(t)%(t) = %(t)bn(t); (5.2.7)

where
q

(n)g is the determinant of (n)gpq . It is convenient to `normalize' the scale factor

b(t) by imposing the condition
R
Kn

q
(n)gdyn = 1. Thus, in order to get the equations of

the 4-dimensional gravity we put

8�G(t)
h
(4)%(t)

i
= �2%(t): (5.2.8)

This procedure leads us to the de�nition of an e�ective gravitational `constant' G(t) given
by 8�G(t) = �2b�n(t). In this way the time variation of G is directly related to the time
variation of the internal space scale factor b(t) by

_G

G
= �n

_b

b
(5.2.9)

Clearly for n = 0 the Friedmann cosmology in ordinary 4-dimensional spacetime is re-
covered.
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5.3. The dynamical system and the phase portraits

In this section we let M3
k = R3 and assume that the multicomponent uid satis�es the

equations of state p3 = pn = 0, i.e., we assume that matter behaves as a (n + 4)-

dimensional `dust'. Then, letting x = 3 _R
R

and y =
_b
b
the equations (5.2.4-6) become

_x+
x2

3
+ n _y + _y2 = �n+ 1

n+ 2
�2% (5.3.1)

_x+ x2 +Nxy =
3�2%

n+ 2
(5.3.2)

and

_y + ny2 + xy =
�2%

n+ 2
: (5.3.3)

Eliminating % from these equations results in

_x =
1

2(n+ 2)

h
�2(n+ 1)x2 + 2n(1 � n)xy + 3n(n � 1)y2

i
(5.3.4)

and

_y =
1

2(n+ 2)

"
2x2

3
� 4xy � n(n + 5)y2

#
(5.3.5)

De�ned1 in this way x can be interpreted as a measure of the usual cosmological
expansion of the 4-dimensional observable Universe, while y is a measure of the time
variation of the gravitational constant G or, equivalently, the expansion of the compact
space Kn (see eq.(5.2.9)). The above system of equations represents a homogeneous
autonomous dynamical system of the second-order. To carry out an analysis of this
system we �rst note that, as the system is homogeneous, the origin of the phase space
x = y = 0 corresponds to an equilibrium point (in fact , an isolated equilibrium point )
[89]. Physically, this point represents nothing else but the at Minkowski spacetime of
General Relativity, with % = 0.

In order to construct the phase diagram of a homogeneous dynamical system we �rst
determine the invariant rays of the system [89] by introducing the polar coordinates in
the phase plane: x = r cos �; y = r sin �: In these coordinates a general homogeneous
dynamical system of order m of the form

_x = Xm(x; y); _y = Ym(x; y)

is transformed into
_r = rmZ(�); _� = rm�1N(�);

where the functions Z(�) and N(�) are given by

Z(�) = Ym(cos �; sin �) sin � +Xm(cos �; sin �) cos � (5.3.6)

1It is possible, of course, to absorb the factor 1
2(n+2) de�ning a new time d� = 2(n+ 2)dt . However,

nothing is gained by this in terms of simplicity.
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N(�) = Ym(cos �; sin �) cos � �Xm(cos �; sin �) sin �: (5.3.7)

Then, the invariant rays of the system are obtainded by solving the equation N(�) = 0.
Clearly, in the phase plane they will be depicted as straight semi-lines starting from the
origin and it is not di�cult to see that if they do exist then they are automatically solutions
of the dynamical system [89]. In our case m = 2 and a straightforward calculation leads
to

Z(�) =
1

2(n+ 2)

h
�n(n+ 5) sin3 � + (3n2 � 3n� 4) sin2 � cos �

+ (2n� 2n2 +
2

3
) sin � cos2 � � 2(n+ 1) cos3 �

i
(5.3.8)

N(�) =
1

2(n+ 2)

h
�3n(n � 1) sin3 � + n(n � 7) sin2 � cos �

+ 2(n� 1) cos2 � sin � +
2

3
cos3 �

i
: (5.3.9)

Here let us make some comments. First, we should point out that the dynamical system
(5.3.4-5) is not de�ned for n = 0, since in this case we would not have equation (5.2.6).
If n = 1, then the solutions of the equation N(�) = 0 yield six invariant rays which
correspond to the angles �i = ��

2 and arctan(�1
3), with i = 1; :::; 6. For an arbitrary

n > 1 we can put the equation (5.3.9) in the following factorized form:

N(�) =
cos3 �

2n + 4

�
(
1

3
� a)[3n(n� 1)a2 + 6na + 2]

�
(5.3.10)

where we have de�ned a = tan � . Then, for n > 1 we have again six invariant rays, now
corresponding to the angles �i = arctan ai , with

a0 =
1

3
; a� =

1

n� 1

0@�1�
s
1

3
(1 +

2

n
)

1A
See �gs. 6 and 7. The knowledge of the invariant rays as well as the analytic expressions for
the functions N(�) and Z(�) allow us to draw separately the following phase diagrams
for the two cases n = 1 and n > 1 (for details see appendix). These diagrams show
the behaviour of all solutions of the equations (5.3.4-5) which make up our dynamical
system. Each curve corresponds to a speci�c cosmological model satisfying the �eld
equations (5.3.4-5), the origin representing the Minkowski spacetimeM . In order to know
the behaviour of the solutions at the in�nity we employed a method due to Poincare',
consisting of projecting the phase plane onto a plane circle [93]. In this compacti�ed
phase plane the points at in�nity correspond to points located in the border of the circle.
The directions of the invariant rays are not a�ected by the transformation (see appendix
5.8).
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5.4. The physical picture

Let us begin our analysis considering n > 1, and leave the comments on the case n = 1 to
the end of this section. In �gure 6 we have a typical diagram for arbitrary n > 1. First we
note that the invariant rays divide up the phase plane in six topologically distinct regions
(or sectors) A,B,...,F. Each of these regions contains an in�nite number of solutions which
represent cosmological models with di�erent physical properties. The arrows in the curves
are to be interpreted as the time evolution of the corresponding models.
Since there is no closed curve in the phase plane we can conclude that all models are
singular ( the expansion parameter x tends to in�nity either in the past or in the future),
some of them starting from a big-bang (x ! +1)while others collapsing to a big-crunch
(x! �1). In this sense the solutions represented by the invariant rays exhibit the same
behaviour. It would be rather tedious to describe exhaustively the time evolution of the
models corresponding to all the curves of the phase diagram. So, we will pick up some
illustrative cases, although the complete informations about all solutions are provided by
the phase portrait.

To begin with let us consider the solution represented by the invariant ray depicted
in �gure 61 as the semi-line I+ . This curve clearly describes a universe starting from
a big-bang (x = +1) and evolving towards the Minkowski spacetime (depicted in the
diagram as the �xed point M located at the origin) . Since y > 0 along this trajectory
we see that as time goes by the gravitational constant G decreases. This is in agreement
with the known hypothesis formulated by Dirac who, postulated, inspired on a di�erent
reasoning ( the large numbers conjecture), that Newtonian gravitational constant should
decrease as the Universe expands [85].

Analogously, the same analysis shows us that the invariant ray II+ corresponds to an
expanding universe starting from a big-bang and tending to Minkowski spacetime. Since
y is negative in this anti-Dirac universe the gravitational constant G increases with the
cosmic time.

The invariant rays I+ and II+ encloses an in�nite class of solutions all lying within
the region A. A typical solution of this class describes an expanding and singular universe
undergoing a transition from an increasing G (anti-Dirac ) to an decreasing G era ( Dirac
phase).

A quite di�erent situation arises when one examines the solution corresponding to
the invariant ray III+ . Here we observe an initially static universe (x = 0) entering an
expansion regime during which the gravitational constant increases with time.
At this point it is interesting to note that one might look alternatively at the dynamics
of the models corresponding to II+ and III+ as describing the usual cosmic expansion
taking place in ordinary 4-dimensionality (here expressed by the variable x) followed by
a contraction of the internal n-dimensional space ( represented here by y ). The sector
B, which is delimited by II+ and III+ , contains only solutions which do not approach
Minkowski spacetime, neither in the future nor in the past. On the other hand, the solu-
tions lying in sector F all tend to M and start their trajectories as contracting universes,
slowing down before enter an expanding era. In this class of models the gravitational
constant is an ever decreasing function of the cosmic time.

We shall not carry out a detailed analysis of the solutions lying in sectors D and
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E as these describe only contracting universes, ipso facto not being physically relevant.
(As we shall see later, in section 5.6, sector E as well as sector B both represent classes
of solutions with negative energy density.) In sector C a typical universe comes from
Minkowski spacetime in the past and has a contracting era followed by further expansion.

In the case n = 1 (see �gure 7) the physical picture is very similar. However, now as
two of the invariant rays, namely III+ and III� lie exactly on the y-axis they represent
vacuum at solutions with a time-varying G.( In fact, an identical con�guration has
been already found in the context of Brans-Dicke theory by Romero-Barros [90]). An
alternative way to look at these solutions is to consider them as a topological product of
a static Minkowski spacetime by a time-dependent (expanding or contracting) compact
internal space.

5.5. Exact solutions of the �eld equations

Often the knowledge of the invariant rays present in a homogeneous dynamical system is
helpful in obtaining exact analytical solutions of the system. In that case the problem of
�nding the solutions corresponding to the invariant rays reduces to solving an algebraic
equation of one order higher as the system itself. In our particular case we will have to
solve a cubic polynomial equation, the roots of which are nothing more than the already
known tangents ai of the arcs de�ned by the invariant rays. Let us express the equations
of the invariant rays simply by y = ax, where clearly a generically denotes ai . Now,
putting this into the equations (5.3.4-5) we get

_x =
x2

2(n+ 2)

h
�2(n+ 1) + 2n(1 � n)a+ 3n(n � 1)a2

i
(5.5.1)

_y = a _x =
x2

2(n+ 2)

�
2

3
� 4a� n(n+ 5)a2

�
(5.5.2)

The condition for (5.5.1) and (5.5.2) to be consistent is the algebraic equation

3n(n� 1)a3 + n(7� n)a2 + 2(1� n)a� 2

3
= 0 (5.5.3)

which is, in fact, equivalent to eq.(5.3.9). Again, we have to consider the two cases a)
n > 1 and b) n = 1:

a) If n > 1 then the roots of (5.5.3) are given by

a0 = 1=3; a� =
1

n� 1

24�1 �
s
1

3
(1 +

2

n
)

35
Now, going back to equation (5.3.4) and putting y = ax, with a = a0; a� , we get
respectively:

_x = x2 (5.5.4)
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where  = 0; � and

0 = �(n+ 3)

6
(5.5.5)

� = �(1 + na�) (5.5.6)

These last equations can be immediately integrated to give R(t) and b(t).Then, corre-
sponding to the three values of a = a0; a� we have respectively (after suitable coordinate
transformations):

R(t) � t
� 1
30 = R0t

2
n+3 (5.5.7)

b(t) � [R(t)]3a0 = b0t
2

n+3 (5.5.8)

R(t) � t
�1
3� = R0t

�1
3(1+na�) (5.5.9)

b(t) � [R(t)]3a� = b0t
a�

1+na� (5.5.10)

where R0 and b0 are constants (see also 12).
b) If n = 1 then the equation (5.5.3) has two solutions, namely, a = �1

3 . Naturally,
these solutions correspond to the invariant rays de�ned by �i = arctan�1

3
in section 5.3.

The third solution, corresponding to the other invariant rays, �i = ��
2 can be obtained

directly from the dynamical system (eqs.(5.3.4-5)) just putting n = 1 and x = 0. This
procedure leads us back to the static solution referred earlier in section 5.4:

R(t) = constant; (5.5.11)

b(t) = b0t (5.5.12)

The other solutions are:

R(t) = R0t
1
3 (5.5.13)

b(t) = b0t
1
3 (5.5.14)

R(t) = R0t
1
3 (5.5.15)

b(t) = b0t
� 1
3 : (5.5.16)

We conclude this section by noting that equations (5.5.7-16) actually represent six distinct
pair of solutions R(t), b(t) , each being singular at t = 0. Indeed, after integrating
(5.5.4) we obtain (apart from a constant of integration which can be further eliminated
by a coordinate transformation)

x = � 1

t
; (5.5.17)

which,in fact, has to be understood as representing di�erent solutions (for the same  )
according to t 2 (�1; 0) or t 2 (0;+1). In the phase diagrams these twofold degeneracy
is reected by the presence of distinct solutions ( including the equilibrium point M ) all
lying on the same line y = ax . Finally, we should mention that if n = 0 in (5.5.7) we
recover Friedmann's solution for a dust �lled universe.
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5.6. The energy density

So far we have not been concerned with the energy density predicted by the models. A
brief look into the �eld equations shows us that % must be given by

% =
1

6�2

h
2x2 + 3n(n � 1)y2 + 6nxy

i
: (5.6.1)

If n > 1 the above equation however can be put into the factorized form :

% =
1

6�2
(y � a+x)(y � a�x); (5.6.2)

with a� as de�ned in section 5.5. This last equation allows us to draw the following
conclusions:

i) For n > 1 we verify that the solutions lying on the invariant rays corresponding to
a� are vacuum solutions.

ii) All solutions lying on the sector B and F are non-physical (in the sense that they
have negative energy, which classically is forbidden). Incidentally, these are the only
solutions which never tend to Minkowski spacetime neither in the past nor in the future.

iii) Solutions lying on the invariant ray corresponding to a0 have positive energy den-
sity for arbitrary value of n > 1. This can be easily veri�ed by computing % for this case
as we have % = x2

36�2 [2n
2 + n+ 12].

All the properties mentioned above are ilustrated in �gure 8. 2

For n = 1 the same procedure leads to the picture displayed by �g. 9.

5.7. Conclusions

The idea that the Newtonian constant of gravitation G could indeed vary with time on
a cosmic scale, which seems to have ocurred �rst to Dirac, in 1938, is far from being
supported by current experimental data. Recent results [91] based on solar-system exper-

iments tend to indicate an upper limit given by
��� _G=G��� < 10�12 to any possible variation

of G. Yet even this rather stringent condition has not prevented cosmologists to speculate
and investigate what theoretical consequences would such hypothesis lead to (for a list of
references on past and recent works see [12,21,50,86,92]). Among other attempts to insert
G in gravity theories as a scalar �eld (e.g. , Brans-Dicke-Jordan theories ), is the multi-
dimensional cosmology approach [21] which was described in section 5.2. The fact that
in this scheme the �eld equations plus some symmetry assumptions may be tractable by
mathematical techniques of dynamical system theory led us to obtain a whole spectrum

2One could argue that it is not exactly % , but (4)% the physical quantity which would be actually
measured. However, from equation (5.2.7) we see that all that has been said in this section of % is also
true for (4)% .
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of cosmic con�gurations where the matter of the Universe is regarded as a multicompo-
nent perfect uid in higher dimensions. It turns out that in this scheme some solutions
exhibit a non-physical behaviour (at least from a classical standpoint). However, other
solutions seem not to be in contradiction with generally accepted and standard models of
the Universe, as they manifest properties such as cosmic expansion and the existence of an
initial singularity. Also, in some of these expanding solutions the gravitational constant
G decreases with time, a property which may justify calling them Dirac universes ( we
detect the presence of anti-Dirac models as well ). Evidently, it was not our aim here
to provide a quantitative discussion of the solutions, even of the more physically relevant
ones, trying to square them in the context of present observational and experimental data.
Rather, our interest in this paper was actually to call the attention of theorists for the
extremely rich scenario which arises when one allows for higher dimensionality and the
varying gravitational constant hypothesis.

5.8. Appendix

In order to construct the phase diagrams corresponding to the �gures 6 and 7 all we need
is to calculate the values of the functions N l(�), and Z(�) at � = �i , where �i is an
invariant ray and the superscript l refers to the �rst non-vanishing derivative evaluated
at �i [89]. Since the system is quadratic the phase portraits are symmetric by plane
reections ( x ! �x, y ! �y ), although the time orientation of the curves must be
reversed in this operation. Such property means we only need carrying out our analysis
in the neighbourhood of just three of the six invariant rays. Then, let us summarize the
results which come from straightforward calculations.

For both cases n > 1 and n = 1, we obtain the following:
l = 1, N1(�1) < 0, N1(�2) < 0, N1(�3) > 0, Z(�1) < 0, Z(�2) < 0, and Z(�3) > 0;

where for the case n > 1 the invariant rays are: �1 = arctan 1
3 , �2 = arctan a+ , �3 =

arctan a� , whereas for the case n = 1, �1 = arctan+1
3 , �2 = arctan�1

3 and �3 = ��
2 .

With these results we can classify for arbitrary values of n the invariant rays �1 and �2
as being of type (� ), while �3 is of type (�) [89]. From this classi�cation we are led to
the diagrams displayed in �gs. 6 and 7.

To carry out the Poincare' compacti�cation of phase plane we perform the transfor-
mations of variables u = y

x
and z = 1

x
. Then, starting from the equations (5.5.1) and

(5.5.2), we end up with the dynamical system:

du

d�
=

1

2(n + 2)

�
(
1

3
� u)

�
3n(n � 1)u2 + 6nu+ 2

��
(5.8.1)

du

d�
=

z

2(n + 2)

h
2(n + 1) + 2n(n � 1)u + 3n(1 � n)u2

i
; (5.8.2)

where zd� = dt. The equilibrium points of the dynamical system in the plane uz are:
(1=3; 0); (u�; 0), with u� = a� . A simple analysis of the topological character of these
points reveals that they correspond to a saddle-point and two nodes (unstable and stable),
respectively [93].
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6. Bulk Viscosity and Entropy Production in Multidimensional
Integrable Cosmology

6.1. Introduction

Up till now we studied di�erent properties of multidimensional cosmology using the matter
source of multidimensional Einstein equations in the form of the perfect uid [37-38].
But, of course, more realistic may be the model which incorporates some viscosity e�ects.
Within 4-dimensional cosmology the viscous Universe was considered by a number of
authors from quite di�erent points of view. Without carrying of a detailed review of
the subject (extensive review was given by Gron [94]), we mention some main trens in
cosmology with viscous uid as a source.

First, Misner [95] considered neutrino viscosity as a mechanism for reducing the
anisotropy in the Early Universe. Stewart [96] and Collins and Stewart [97] proved that
it is possible only if initial anisotropies are small enough. Another series of papers was
started by Weinberg [98] which concerns the production of entropy in the viscous Universe.
Both isotropization and production of entropy during lepton era in models of Bianchi types
I,V were considered by Klimek [99]. Caderni and Fabbri [100] calculated coe�cients of
shear and bulk viscosity in plasma and lepton eras within the model of Bianchi type I. The
next trend is connected with obtaining of singularity free viscous solutions. The �rst non-
singular solution was obtained by Murphy [101] within at Friedman-Robertson-Walker
model with uid possessing a bulk viscosity. Murphy supposed that the coe�cient of a
bulk viscosity is proportional to the density of a uid. However, Belinsky and Khalatnikov
[102,103] showed that this solution corresponds to the very peculiar choice of parameters
and is unstable with respect to the anisotropy perturbations. Other nonsingular solutions
with bulk viscosity were obtained by Novello and Ara�ujo [104], Romero [105], Oliveira
and Salim [106].

In this section we study the multidimensional cosmological model with a chain of Ricci-
at spaces for the source in the form of a uid possessing bulk viscosity. In section 6.2 we
describe the model and get basic equations. For their integration we develop some vector
formalism proposed in our previous papers. In section 6.3 we summarize thermodynamics
in multidimensional cosmology and obtain the formula for the rate of change of entropy.
In section 6.4 we integrate equations of motion for special set of parameters in the �rst
and second equations of state. Exact solutions are presented in the Kasner-like form and
their properties are studied.

6.2. The model

As in previous sections we consider here a multidimensional cosmological model with the
metric (1.1.1) de�ned on the D -dimensional manifold (1.1.2). We consider only Ricci-at
spaces M1; : : : ;Mn , i.e.

Rnili[g
(i)] = 0; ni; li = 1; : : : ; Ni: (6.2.1)
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It is easy to obtain in the usual way the following non-zero components of the Ricci-
tensor for the metric (1.1.1)

R0
0 = e�2(t)

 
nX
i=1

Ni( _x
i)2 + �0 � _ _0

!
; (6.2.2)

Rmi

ki
= e�2(t)

�
�xi + ( _0 � _) _xi

�
�mi

ki
; (6.2.3)

where we denoted 0 =
Pn
i=1Nix

i . Indices mi and ki run over from D � Pn
j=iNj to

D �Pn
j=iNj +Ni for i = 1; : : : ; n (D = 1 +

Pn
i=1Ni = dimM).

We take the energy-momentum tensor for a viscous uid in the standard form (without
shear)

TAB = �uAuB + (p� ��)PA
B ; (6.2.4)

where � and p are the uid density and the pressure, respectively, � is the bulk viscosity
coe�cient. Vector uA is the D -dimensional velocity of a uid and PA

B = �AB + uAuB is
the projector on the (D � 1)-dimensional space orthogonal to uA . By � we denote the
scalar expansion � = uA;A .

We impose the comoving observer condition for the D -dimensional velocity: uA =
�A0 e

�(t) . Then

(uAuB) = diag(�1; 0; : : : ; 0); (6.2.5)

(PA
B ) = diag(0; 1; : : : ; 1); (6.2.6)

� = _0e
�(t): (6.2.7)

Let us remark that the function (t) in (1.1.1) determines a time gauge for the comoving
observer. We have the harmonic time gauge for (t) = 0 and the proper time gauge for
(t) = 0. Harmonic time t and proper time � are connected by d� = exp[0]dt.

We admit that the pressure and the bulk viscosity term in (6.2.4) are anisotropic with
respect to the whole space M1 � : : : �Mn . Such an admission leads to the following
generalization of the expression (6.2.4)

(TAB ) = diag(��; (p1 � ��1)�
m1
k1
; : : : ; (pn � ��n)�

mn

kn
); (6.2.8)

where pi and �i are the pressure and the bulk viscosity coe�cient in the space Mi .
Furthermore, we suppose that the barotropic equations of state holds

pi = (1� hi)�(t); (6.2.9)

where hi=const for i = 1; : : : ; n.
It is easy to show that the equation of motion 5MT

M
0 = 0 for the viscous uid with

the tensor (6.2.8) looks as follows

_�+
nX
i=1

Ni _x
i(�+ pi � �i�) = 0: (6.2.10)
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The Einstein equations RA
B � 1

2�
A
BR = �2TAB (�2 is gravitational constant) may be

written as RA
B = �2(TAB � T

D�2�
A
B). Further, we employ the equation R0

0 � 1
2
�00R = �2T 0

0

and the equations Rmi

ki
= �2(Tmi

ki
� T

D�2�
mi

ki
). Using (6.2.2), (6.2.3) and (6.2.8) we get

nX
i=1

Ni( _x
i)2 � _20 = �2�2e2�; (6.2.11)

�xi + ( _0 � _) _xi = �2
" 
�hi +

Pn
k=1Nkhk
D � 2

!
�e2 +

 
��i +

Pn
k=1Nk�k
D � 2

!
_0e



#
: (6.2.12)

To develop the integration procedure for the equations of motion (6.2.11),(6.2.12) we
introduce the n-dimensional real vector space Rn . By e1; : : : ; en we denote the canonical
basis in Rn , i.e. e1 = (1; 0; : : : ; 0) etc.

Let < :; : > be a symmetric bilinear form de�ned on Rn , such that

< ei; ej >= �ijNj �NiNj � Gij : (6.2.13)

In our previous papers this form was introduced as a minisuperspace metric for the cos-
mological models. It was shown that it is a nongenerate form with the pseudo-Euclidean
signature (�;+; : : : ;+). So, for vectors a = a1e1 + : : :+ anen and b = b1e1 + : : :+ bnen
we have

< a; b >=
nX

i;j=1

Gija
ibj: (6.2.14)

The form < a; b > may be also written as

< a; b >=
nX
i=1

aib
i =

nX
i=1

aibi =
nX

i;j=1

Gijaibj; (6.2.15)

if we introduce the covariant components of vectors by

ai =
nX
j=1

Gija
j: (6.2.16)

By Gij = �ij=Ni + 1=(2 �D) we denote components of a matrix inverse to (Gij).
We call a vector y 2 Rn time-like, space-like or isotropic, if < y; y > takes negative,

positive or null values, respectively. Vectors y and z are called orthogonal if < y; z >= 0.
In our model the following vectors are used

x = x1e1 + : : :+ xnen; (6.2.17)

u = u1e1 + : : :+ unen; ui = hi �
Pn
k=1Nkhk
D � 2

; ui = Nihi (6.2.18)

� = �1e1 + : : :+ �nen; �i = �i �
Pn
k=1Nk�k
D � 2

; �i = Ni�i: (6.2.19)
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If hi = 1 for i = 1; : : : ; n, we have dust in the whole space (pi = 0, see (6.2.9)). The
vector (6.2.18) corresponding to dust in the whole space is denoted by ud . We note that

(ud)i = Ni; uid =
�1

D � 2
; < ud; ud >= �D � 1

D � 2
; < ud; x >= 0: (6.2.20)

Thus, using (6.2.14), (6.2.17)-(6.2.19) we obtain the Einstein equations in the form

< _x; _x >= �2�2e2�; (6.2.21)

�x+ (< ud; _x > � _) _x = ��2
�
�e2u+ < ud; _x > e�

�
: (6.2.22)

The equation of motion (6.2.10) can be written as

_�+ � < 2ud � u; _x > �e� < ud; _x >< �; _x >= 0: (6.2.23)

Excluding the density � from (6.2.22) by (6.2.21) we get the following equation

�x+ (< ud; _x > � _) _x =
1

2
< _x; _x > u� �2 < ud; _x > e�: (6.2.24)

To integrate (6.2.24) we need a second equation of state for the bulk viscosity co-
e�cients �i . To obtain an exact solution in a 4-dimensional at Friedman-Robertson-
Walker model with bulk viscosity Murphy [101] used the second equation of state of the
form � =const�. Belinsky and Khalatnikov [107] studied the qualitative behavior of this
model with a more general equation: � = ��� , where �; �=const. It is easy to show that
for this model on manifold R�M3

1 for (t) = 0 the set of equations (6.2.23),(6.2.24) may
be written as

3H2 = �2�; (6.2.25)

_H =
�

2
3�+1H2�+1 +

3

2
(h� 2)H2; (6.2.26)

where H is the Hubble parameter of the 3-dimensional Ricci-at manifold M3
1 , i.e. H =

_x1 . The set of equations (6.2.25)-(6.2.26) coincides with the one obtained by Belinsky
and Khalatnikov [107]. It is easy to see that equation (6.2.26) for H is always integrable
by quadrature. In the simplest case with � = 1 we get the exact solution obtained by
Murphy [101]. Other solutions for special parameters � and h and a solution for arbitrary
� and h were also obtained (see [94] for details).

For multidimensional cosmological model with manifold M = R�M1�: : :�Mn the set
of equations (6.2.21)-(6.2.22) is more complicated. Obviously , we have the set of nonlinear
di�erential equations (6.2.24) for scale factors exp[xi] of the spacesM1; : : : ;Mn . If we
adopt Belinsky and Khalatnikov's condition: � � �� , then rather complicated equations
arise. In particular, for � = 1 Appel and Ricatti equations appear. Chakraborty and
Nandy [108] within a 5-dimensional model with manifold R � M3

1 � S1
2 avoided this

di�culty by imposing an additional constraint for the scale factors: exp[x2] = � exp[!x1],
�; � =const.
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Here, with no loss of generality, we consider an integration of the set of equations
(6.2.22) for another second equation of state.We suppose that the bulk viscosity coe�cient
�i corresponding to the space Mi is proportional to exp[�0], i.e.
�i � [scale factor of M1]

�dimM1 � : : : � [scale factor of Mn]
�dimMn: (6.2.27)

Physically, the assumption (6.2.27) means that the expansion of the spaces M1; : : : ;Mn

is accompanied by a decreasing of the bulk viscosity e�ect.
Let us notice that the metric dependence of the bulk viscosity coe�cient was also

considered by other authors. Lukacs [109] integrated the homogeneous and isotropic 4-
dimensional model with a viscous dust for such second equation of state: � = const[scale factor]�1 .
Curvature-dependent bulk viscosity was studied in a multidimensional cosmology by Wolf
[110]. Recently Motta and Tomimura [111] studied a 4-dimensional inhomogeneous cos-
mology with some metric dependence of the bulk viscosity coe�cient.

6.3. Thermodynamics of viscous uid in multidimensional Universe

We �rst summarize thermodynamics in multidimensional cosmology on the manifold M =
R �M1 � : : :�Mn following papers [112,113]. The �rst law of thermodynamics can be
written as follows

TdS = d(�V ) + V
nX
i=1

pi
dVi
Vi
; (6.3.1)

where Vi is any uid volume in the space Mi , V is a uid volume in the whole space:
V = V1 � : : : � Vn and S is an entropy in the volume V . We suppose the conservation law
for the baryon particle number NB in volume V . Then, for entropy per baryon s = S=Nb

and baryon number density n = Nb=V we obtain from (6.3.1)

nT _s = _�+ �
nX
i=1

Ni _x
i +

nX
i=1

piNi _x
i; (6.3.2)

We remind that exp[xi] is the scale factor of the space Mi of the dimension Ni .
For the perfect uid (�i = 0) comparing (6.3.2) and equation of motion (6.2.10) we

get the conservation of entropy :s =const and by the barotropic equations of state (6.2.9)
the integral of motion

� exp[
nX
i=1

(2 � hi)Nix
i] = const: (6.3.3)

Temperature of the perfect uid can be obtained in such a way [113]. From (6.3.2) we
have

(
d�

dxi
)s;xj = ��Ni � piNi = (hi � 2)Ni�; j 6= i: (6.3.4)

Then

� = K(s) exp[
nX
i=1

(hi � 2)Nix
i]; (6.3.5)
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where K(s) is an unknown function of the entropy s. By inverting (6.3.5) we get

s = s(� exp[
nX
i=1

(2� hi)Nix
i]): (6.3.6)

Substituting (6.3.6) for s in (6.3.2), we obtain

nT
ds

d(� exp[(2� hi)Nixi])
= exp[

nX
i=1

(hi � 2)Nix
i]: (6.3.7)

For the perfect uid we have ds=d(� exp[2� hi)Nix
i]) = B = const (see (6.3.3)), then

nT =
1

B
exp[

nX
i=1

(hi � 2)Nix
i] =

1

B
exp[< u� 2ud; x >]: (6.3.8)

Now we consider the uid with a bulk viscosity. Comparing (6.2.10) and (6.3.2) we
obtain

nT _s = �
nX
i=1

Ni�i _x
i: (6.3.9)

Using (6.2.7),(6.2.14),(6.2.17)and (6.2.19) we get

_s =
_0e

�

nT

nX
i=1

Ni�i _x
i =

e�

nT
< ud; _x >< �; _x > : (6.3.10)

This formula gives the rate of change of entropy per baryon in multidimensional cosmology
on the manifold M = R�M1� : : :�Mn with anisotropic bulk viscosity. The production
of entropy in the model can be calculated if the temperature of a uid is known. Further,
we suppose that the temperature is given by the perfect uid formula (6.3.8). Then we
get

_s = B exp[< 2ud � u; x > �] < ud; _x >< �; _x > : (6.3.11)

6.4. Exact solutions

In this section we consider only the model with identical pressures and identical bulk
viscosity coe�cients in each space Mi , i.e.

pi = (1� h)� or u = hud; (6.4.1)

�i =
�0
�2
e�0 or � =

�0
�2
e�0ud; i = 1; : : : ; n; (6.4.2)

where �0 and h are constants. Here we suppose that

h > 0; �0 > 0: (6.4.3)

Then, the set of equations (6.2.24) in the harmonic time gauge ( = 0 ) looks as follows

�x =
h

2
< _x; _x > ud � �0 < ud; _x > ud: (6.4.4)
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(We remind that 0 =< ud; x >.) To integrate (6.4.4) we use the following decomposition
of the vector x

x =< ud; x >
ud

< ud; ud >
+

nX
i=2

< e0i; x > e0i: (6.4.5)

The vectors ud; e02; : : : ; e
0
n form an orthogonal basis in Rn , i.e.

< ud; e
0
i >= 0; < e0i; e

0
j >= �ij; i; j = 2; : : : ; n: (6.4.6)

We notice that in this basis any vector ei can not be time-like or isotropic because the
vector ud is time-like. The set of equations (6.4.4) may be written as

< ud; �x >=< ud; ud >

"
h

2

 
< ud; _x >2

< ud; ud >
+

nX
i=2

< e0i; _x >
2

!
� �0 < ud; _x >

#
; (6.4.7)

< e0i; �x >= 0; i = 2; : : : ; n: (6.4.8)

Integration of (6.4.8) leads to the results

< e0i; x >= pit+ qi; i = 2; : : : ; n; (6.4.9)

where pi and qi are arbitrary constants. To present the scale factors exp[xi] in a Kasner-
like form, we introduce the vectors �; � 2 Rn

� = p2e02 + : : :+ pne0n � �1e1 + : : :+ �nen; (6.4.10)

� = q2e02 + : : :+ qne0n � �1e1 + : : :+ �nen: (6.4.11)

We remind that the vectors e1; : : : ; en form the canonical basis in Rn . The coordinates
�i and �i are the Kasner-like parameters. Integration of (6.4.7) results in

< ud; x >= �1

h
ln[Cf2] +

�0
h
< ud; ud > t; (6.4.12)

where C > 0 is an integration constant.
Using (6.4.5),(6.4.9)-(6.4.12) we obtain the exact solution in the Kasner-like form

ex
i

= (Cf2)�
1

h(D�1) exp[(�i � �0
h(D � 2)

)t+ �i]: (6.4.13)

The Kasner-like parameters obey the relations

< �; ud >=
nX
i=1

�iNi = 0; < �; ud >=
nX
i=1

�iNi = 0; (6.4.14)

< �;� >=
nX
i=1

(�i)2Ni =
nX
j=2

(pj)2: (6.4.15)

Using (6.2.21) we obtain the density

� =
a2+ < �;� >

2�2
(Cf2)

2
h exp[

2a2h

�0
t]

 
F +

a�p< �;� >p
a2+ < �;� >

! 
F +

a+
p
< �;� >p

a2+ < �;� >

!
:(6.4.16)
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For the functions f and F in (6.4.12),(6.4.13) and (6.4.16) we have the following variants

f = sinh[Ah(t� t0)=2]; F = coth[Ah(t� t0)=2]; C > 0; (6.4.17)

f = cosh[Ah(t� t0)=2]; F = tanh[Ah(t� t0)=2]; C > 0; (6.4.18)

f = exp[Ah(t� t0)=2]; F = 1; C = exp[��0(D � 1)

D � 2
t0]; (6.4.19)

f = exp[�Ah(t� t0)=2]; F = �1; C = exp[��0(D � 1)

D � 2
t0]: (6.4.20)

Constants A and a are such that

a =
�0
h

s
D � 1

D � 2
; A =

D � 1

D � 2

s
�20
h2

+
D � 2

D � 1
< �;� > (6.4.21)

Using (6.3.11) we obtain the rate of change of entropy per baryon in this model

_s =
B

�2
�0Cf

2 exp[�0
D � 1

D � 2
t]

 
�0
h

D � 1

D � 2
+AF

!
: (6.4.22)

Let us consider the properties of this model. Further we consider only solutions with

< �;� >> 0: (6.4.23)

Condition < �;� >= 0 means that all Kasner-like parameters are zero, then the identical
dynamics follows for all spaces M1; : : : ;Mn . Such solutions in the framework of multi-
dimensional cosmology are out of interest. Indeed, the observable distinction between
external and internal dimensions demands the stage of various dynamics for the external
and internal spaces. In this connection the solutions with expansion of the 3-dimensional
external space and simultaneous contraction of the internal space (or spaces) are mostly
attractive.

Also we suppose the weak energy condition for the solutions obtained, i.e. �(� ) � 0 for
any proper time � . It is not hard to prove that only solutions with f = exp[Ah(t� t0)=2]
and f = sinh[Ah(t�t0)=2] satisfy the weak energy condition under the condition (6.4.23).

We �rst consider the properties of the solution with f = exp[Ah(t � t0)=2]. In the
proper time � it can be written as follows

ex
i(�) = e

~�i
�
�0 � �

T0

�1=(D�1)�T0�i
; � < �0; (6.4.24)

�(� ) =
�0T0
�2h

1

(�0 � � )2
; (6.4.25)

where �0 is arbitrary constant and parameters ~�i obey the relations (6.4.14). For constant
T0 we have

1

T0
=
D � 1

D � 2
(
�0
h
+

s
�20
h2

+
D � 2

D � 1
< �;� >): (6.4.26)

The formula (6.4.22) for the rate of change of entropy per baryon is easily integrable
in this case

s(� ) = s(�1) +
B�0
�2T0h

�
T0

�0 � �

�h
: (6.4.27)
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It is evident from (6.4.25) that this solution is singular at the �nal point of evolution
� = �0 , because �(� )! +1 as � ! �0 � 0. We also notice that �(� )! 0 as � ! �1,
so this solution can be interpreted as that describing creation of matter in the Universe.

The entropy per baryon s(� ) under the conditions (6.4.3) is monotonically increasing
to in�nity function on the interval (�1; �0). Existence of the solutions with similar
unbounded production of entropy at the �nal stage of evolution within 4-dimensional
viscous models of Bianchi types I,IX with the second equation of state � = ��� was proved
by Belinsky and Khalatnikov [107]. Such solutions can be considered in connection with
the problem of extremely large entropy per baryon in the present Universe. Indeed, it is
evident that such solutions (multidimensional or not) are applicable up to some proper
time �c . From the time �c other equations of state are valid, then the evolution of the
Universe is described by another model. However, it is possible that on reaching the time
�c the entropy per baryon (6.4.27) is large enough (see �g.10).

It is also worth noticing, that this solution describes contraction of at least one space
of M1; : : : ;Mn . Indeed, due to the relations (6.4.14) at least one of the Kasner-like pa-
rameters is nonpositive, so the corresponding scale factor monotonically decreases on the
interval (�1; �0).This process can be interpreted as contraction of the internal space (or
spaces) to the Planck scale (10�33cm:). In fact the unbounded production of entropy
arises due to the necessary contraction of part of the spaces, which we interpret as inter-
nal. Moreover, it can be shown that for some set of Kasner-like parameters the solution
describes expansion of one part of spaces and simultaneous contraction of the other part.

Let us consider this property for a simplest model on the manifold R�R3�T d , where
R3 is a 3-dimensional at external space and T d is an internal space having the shape of
d-dimensional torus. The exact solution (6.4.24) gives

ex
1(�) = e

~�1
�
�0 � �

T0

�1=(d+3)�T0�1
; (6.4.28)

ex
2(�) = exp[�3

d
~�1]
�
�0 � �
T0

�1=(d+3)+ 3
d
T0�

1

; (6.4.29)

where

1

T0
=
d + 3

d + 2

0@�0
h
+

s
�20
h2

+ 3
d + 2

d
(�1)2

1A ; (6.4.30)

�0 , ~�1 and �1 are arbitrary constants. If �1 > 0 then the internal space monotonically
contracts. It is not di�cult to show that under the condition

(d+ 3)(d � 1)

d
�1 > 2

�0
h

(6.4.31)

we obtain the monotonic expansion of the external space on the interval (�1; �0) (see
�g. 11). This condition can be satis�ed for d � 2.

Let us suppose that the solution (6.4.28),(6.4.29) describes the evolution of the mul-
tidimensional Universe on the time interval (�0 � T0; �c). Also we put s(�1) = 0 in
(6.4.27). Then under the condition of expansion of the external space (6.4.31) we obtain 

exp[x2(�0 � T0)]

exp[x2(�c)]

!hd
>

s(�c)

s(�0 � T0)
; (6.4.32)
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i.e. if the internal space T d contracts on the time interval (�0�T0; �c) in K times then the
entropy per baryon increases on this interval less then in Khd times. Thus, there exists
the upper limit for the production of entropy provided the expansion of the external
space. This limit depends on the �nal sizes of the internal space T d and can be removed
to in�nity as d! +1.

The exact solution (6.4.13),(6.4.16) with f = sinh[Ah(t � t0)] under the condition
(6.4.23) satis�es the weak energy condition for any t 2 (t0;+1) and this interval corre-
sponds to the proper time interval (�1; �0). It follows from (6.4.13),(6.4.16) that this
solution and that with f = exp[Ah(t� t0)=2] have identical behavior near the singularity
point � = �0 . So, they have the same main properties. We only note, that for 2=h > 1 we
have �(� )! 0 as � !�1, then this solution also can be interpreted as that describing
creation of matter.
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7. Inationary Solutions in Multidimensional Cosmology with
Perfect Fluid

7.1. The model

It is of interest to study also inationary solutions in multidimensional cosmology which
[119-120]. We consider a cosmological model describing the evolution of n Ricci-at spaces
in the presence of the 1-component perfect-uid matter [37] and a homogeneous massless
minimally coupled scalar �eld. The metric of the model and the manifold are taken as
(1.1.1-2)

We take the �eld equations in the following form:

RM
N � 1

2
�MN R = �2TMN ; (7.1.1)

2' = 0; (7.1.2)

where �2 is the gravitational constant, ' = '(t) is scalar �eld, 2 is the d'Alembert op-
erator for the metric (1.1.1) and the energy-momentum tensor is adopted in the following
form

TMN = T
M(pf)
N + T

M(�)
N ; (7.1.3)

(T
M(pf)
N ) = diag(��; p1�m1

k1
; : : : ; pn�

mn

kn ); (7.1.4)

T
M(�)
N = @M'@N'� 1

2
�MN (@')2: (7.1.5)

We put pressures of the perfect uid in all spaces to be proportional to the density

pi(t) = (1 � ui
Ni

)�(t); (7.1.6)

where ui = const, i = 1; : : : ; n.
We impose also the following restriction on the vector u = (ui) 2 Rn

< u; u >�< 0: (7.1.7)

Here bilinear form < :; : >�: Rn �Rn ! R is de�ned by the relation

< u; v >�= Gijuivj; (7.1.8)

u; v 2 Rn , where

Gij =
�ij

Ni
+

1

2�D
(7.1.9)

are components of the matrix inverse to the matrix of the minisuperspace metric [8,9]

Gij = Ni�ij �NiNj: (7.1.10)

In (7.1.9) D = 1 +
Pn
i=1Ni is the dimension of the manifold M (1.1.2).
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7.2. Classical solutions

We get the following non-exceptional solutions of the �eld equations (7.1.1-2) [121]

g = �(Qn
i=1(ai(� ))

2Ni�ui )d� 
 d� +
Pn
i=1 a

2
i (� )g

(i); (7.2.1)

ai(� ) = Ai[sinh(r�=T )=r]2u
i=<u;u>� [tanh(r�=2T )=r]�

i

; (7.2.2)

exp(�'(� )) = A'[tanh(r�=2T )=r]�' ; (7.2.3)

�2�(� ) = A
Qn
i=1(ai(� ))

ui�2Ni ; (7.2.4)

i = 1; : : : ; n; where r =
q
A=jAj, T = (1

2
jA < u; u >� j)�1=2 . Ai; A' > 0 are constants

and the parameters �i; �' satisfy the relations

nX
i=1

ui�
i = 0;

nX
i;j=1

Gij�
i�j + (�')

2 = �4= < u; u >� : (7.2.5)

Here � > 0 for A > 0 and 0 < � < �T for A < 0.
For positive energy density (A > 0), see (7.2.4), we have a family of exceptional

solutions with the constant real scalar �eld [37]

g = �(Qn
i=1(ai(� ))

2Ni�ui)d� 
 d� +
Pn
i=1 a

2
i (� )g

(i); (7.2.6)

ai(� ) = �Ai exp[�2ui�=(T < u; u >�)]; (7.2.7)

'(� ) = const; (7.2.8)

and �(� ) is de�ned by (7.2.4). Here �Ai > 0 (i = 1; : : : ; n) are constants, and T is de�ned
as in (7.2.1-4).

We note that for A > 0 the solution (7.2.7) with the sign 00+00 is an attractor for the
solutions (7.2.2).

Inationary solutions. First we consider the case

< u(�) � u; u >� 6= 0; (7.2.9)

where u
(�)
i = 2Ni correspond to the cosmological term. The solution (7.2.6), (7.2.7) in

synchronous time parametruization reads as

g = �dts 
 dts +
Pn
i=1 ai(ts)g

(i); (7.2.10)

ai(ts) = Ait
�i

s ; (7.2.11)

�2� = �2<u;u>�
<u(�)�u;u>2

� t
2
s
: (7.2.12)

where

�i = 2ui= < u(�) � u; u >� : (7.2.13)

i = 1; : : : ; n. Thus, formulas (7.2.10)-(7.2.13) and ' = const describe exceptional solu-
tions for the case (7.2.9). We call these solutions as the power-law inationary solutions.

The solution is a self-similar one.
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Now we consider the case

< u(�) � u; u >�= 0: (7.2.14)

In this case

�2� = const (7.2.15)

and

ai(ts) = �Ai exp[� uip� < u; u >�

ts
T0
]; (7.2.16)

where

T0 = (2�2�)�1=2: (7.2.17)

The relations (7.2.10), (7.2.15)-(7.2.17) and ' = const describe the exponential-type
ination for the case (7.2.14). In the special case u = u(�) (cosmological constant case)
this solution was considered in [48].

The corresponding quantum solutions were considered in [121]. Applying the argu-
ments considered in [67] one may show that the ground state wave function

	
(HH)
0 = I0

�p
2jAj
q

exp(qz0)
�
; A < 0; (7.2.18)

J0
�p

2A
q

exp(qz0)
�
; A > 0; (7.2.19)

satis�es the Hartle-Hawking boundary condition. Here 2q =
p� < u; u >� and exp(qz0) =Qn

i=1 a
ui=2
i is quasivolume.

7.3. Some Examples

Let us consider the isotropic case when pressures in all spaces are equal. Then

ui = hNi =
h

2
u
(�)
i ; (7.3..1)

pi = (1 � h)� = p (7.3..2)

For this case

< u; u >� = �h D � 1

D � 2
< 0 (7.3..3)

if h 6= 0 or p 6= � :

The cosmological constant corresponds to h = 2, and the dust-like matter to h = 1.
Then,

ui = Gijuj = h=(2 �D) ; (7.3..4)

�i = 2=h(D � 1) = �



CBPF-MO-002/95 73

We see that for h > 0 (or p < �) we have according to (7.2.11) the isotropic expansion
and for h < 0 (p > �) the isotropic contraction. We may calculate also for this isotropic
case

< u(�) � u; u >�=
1

4
(2 � h) < u(�); u(�) >� ; (7.3..5)

which for h = 2 is equal to zero.
Accordingly, we have the power-law (in general) and the exponential law (h = 2)

inations here as well.
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8. Integrable Weyl Geometry in Multidimensional Cosmology.
Numerical Investigation [122]

8.1. Introduction

The multidimensional gravitation theories are very attractive in the context of the uni�-
cation of fundamental interactions. Moreover, several modern theories require space-time
to have more than four dimensions [23,123-128]. The nonobservability of additional di-
mensions in such theories needs an explanation. Among di�erent possible ways of such
explanation the hypothesis about dynamical contraction of internal manifold during ex-
pansion of the universe is very popular. This idea is realized in many exact cosmological
solution of multidimensional Einstein's equations [21,129-139]. As a rule such models
require additional �elds and do not avoid initial big bang singularity. The introduction of
additional �elds in multidimensional gravitation theories destroy their pure geometrical
character and require an additional motivation [126]. Such motivation may be done in
the framework of some generalizations of Riemannian geometry. In four dimensional case
such generalization in several cases leads to removing of cosmological big bang singularity
[140-142]. That is why the uni�cation of generalized geometric structures and multidi-
mensional gravity seems to be very attractive. Unfortunately, only in several papers the
multidimensional gravitation theory and cosmology are considered in the scope of some
generalization of Riemannian geometry [143-145].

One of the simplest generalization of the Riemannian geometry is the integrable Weyl
geometry with the connection components

��� =
e��� � 1

2

�
!��

�
 + !�

�
� � g�!

�
�
; (8.1.1)

where e��� are the Christo�el symbols, !� = !;� , ! is a scalar �eld, ��� are the Kroneker
symbols, g�� is a metric tensor; the small Greek indices take values from 0 to n � 1, n
is a dimension of space-time. The Ricci tensor and the curvature scalar of the connection
(1) are equal to

R�� = eR�� +
n� 2

2
!�k� +

1

2
g�� e2! +

n � 2

4

�
!�!� � g��!�!�

�
; (8.1.2)

R = eR+ (n � 1) e2! � (n� 1)(n� 2)

4
!�!�; (8.1.3)

where the tildes denote the quantities calculated in the connection e��� , two parallel
vertical bars and e2 denote the covariant derivative and the d'Alembert operator of this
connection. It is necessary to note that the integrable Weyl space-time is also conformally-
Riemannian, since there is a conformal transformation of metric tensor g�� which maps
the Riemannian space-time into integrable Weyl space-time. As the integrable Weyl
space-time is de�ned by the pair (g��; !) the gravitation theory in this space-time does
not coincide with Einsteinian general relativity because the �eld ! must be contained
in the Lagrangian independently from g�� and cannot be excluded by the conformal
transformation.
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Some features of the Einsteinian cosmological models with scalar �elds were recently
considered by several authors [21,129,131,137,139,145-150] both in 4-dimensional and
in (4+d)-dimensional space-times. The cosmological models in four-dimensional Weyl-
integrable space-time were recently considered by Novello et al. in [140], where the ex-
istence of nonsingular open cosmological models was shown. The appearance of Weyl
geometry in multidimensional cosmology was discussed also in [144].

In this paper we consider the inuence of Weyl geometry on the evolution of Friedman-
Robertson-Walker (FRW) cosmological models in multidimensional gravitation theory. As
usually the space-time is assumed to have the structure of direct product M4�V d of four-
dimensional FRW space-timeM4 and d-dimensional interior space V d that is supposed to
be d-sphere Sd or d-torus T d . The metric of space-time is supposed to be block-diagonal

ds2 = dt2 � a2(t)

 
dr2

1� kr2
+ r2d
2

!
� egabduadub; (8.1.4)

where k = +1, 0, �1 for closed, plane and open models, d
2 is a line element on two-
sphere, ua , a = 1; :::; d, and ~g�� are the coordinates and metric tensor of the interior space
V d . Once we consider only spatially homogeneous FRW cosmologies, it is natural to make
the Weyl scalar �eld ! to be a function of cosmic time t only: ! = !(t). We consider both
vacuum case and non vacuum case with the additional scalar �eld ' with non minimal
coupling. The 4-dimensional case will be briey considered also for completeness. The
existence of the conformal map between Riemannian and integrable Weyl space-times may
be used for generation of exact solutions from the known solutions of general relativity.
Such approach admits obtaining only the particular solutions. Therefore to demonstrate
general qualitative behavior of the models we solve the system of cosmological equations
numerically with initial values given at t = 0 and satisfying the constraint equation. For
that purpose we use adaptive numerical methods with automatic choice of integration
step and with the sti�ness checking. The geometrical units where G = c = 1 are used in
what follows.

8.2. Integrable Weyl cosmology in vacuum

Following [140] we shall consider the vacuum cosmological models in the gravitation theory
with the Lagrangian

L = R + �!�!
� (8.2.1)

where R is de�ned by (8.1.3) and � = const. After excluding the total derivatives of the
scalar �eld Lagrangian (8.2.1) takes the form

L = eR � (n� 1)(n� 2) � 4�

4
!�!� (8.2.2)

So, the theory di�ers from the Einstein theory with the massless scalar �eld by the
coe�cient before the square of the scalar �eld gradient and has di�erent geodesic lines.
Note also that due to the de�nition of the Weyl connection (8.1.1) the scalar �eld !
cannot be renormalized and hence the coe�cient � before !�!� cannot be put to �1 as
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it may be done in the pure Einstein theory with massless scalar �eld. Variation of (8.2.2)
with respect to the pair (g��; !) of independent variables yields the equations

eR�� � 1

2
g�� eR � (n � 1)(n � 2)� 4�

4

�
!�!� � 1

2
g��!

�!�

�
= 0; (8.2.3)

and

e2! = 0 (8.2.4)

The equations (8.2.3-4), coincide with the Einstein equations for the massless scalar
�eld, whose solutions for the FRW cosmological models were investigated both in four-
dimensional [148] and multidimensional cases [78]. By this reason here we only summarize
briey the main results.

8.2.1 Four-dimensional case. As the scalar �eld ! is a function on t only, equation
(8.2.4) yields the �rst integral

_! =


a3
(8.2.5)

where overdot denotes time di�erentiation and  = const is the integration constant.
Due to (8.2.5) equations (8.2.3) take the form

_a2 + k � �2

12a4
= 0 (8.2.6)

and

2a�a+ _a2 + k +
�2

4a4
= 0 (8.2.7)

where � = (3 � 2�). As it is easy to see from (8.2.6), only singular and static solution
of equations (8.2.6-7) exist if � > 0. For negative values of � solution exists only for the
open models. In this case a(t) � a0 = (� � 3)2=12 and so the cosmological singularity is
absent. The qualitative behavior of scale factor a(t) for negative � is shown in �gure 12
and its features are discussed in detail in [140].

8.2.2. Multidimensional case. In the multidimensional case the behavior of the model
depends not only on the parameter � , as in the previous case, but on the structure of the
interior space also. For simplicity only 5- and 6-dimensional models will be considered in
the following. We consider these two cases separately. The main qualitative features of
models in general n-dimensional (n > 6) case are the same as in 5- and 6-dimensions.

8.2.2.1. 5-dimensional models. In 5-dimensions space-time interval (8.1.4) reads

ds2 = dt2 � a2(t)

 
dr2

1� kr2
+ r2d
2

!
� s2(t)du2 (8.2.8)

where u 2 S1 is the interior space coordinate. Assuming, as above, a scalar �eld ! to
be a function of the cosmological time only, the �rst integral of equation (8.2.4) takes the
form

_! =
1

a3(t)s(t)
; (8.2.9)
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where 1 = const. Due to (8.2.8-9) equations (8.2.3) become after simpli�cation

3
_a

a

_s

s
+ 3

�
_a

a

�2
+
3k

a2
� 21(3� �)

2a6s2
= 0; (8.2.10)

�a

a
+ 2

�
_a

a

�2
+

_a

a

_s

s
+
k

a2
= 0; (8.2.11)

and

�s

s
+ 3

_a

a

_s

s
= 0 (8.2.12)

The last equation has the �rst integral

_s =
2
a3

(8.2.13)

where 2 = const. It is easy to see that analogous to the four-dimensional case the
nonsingular solutions of equations (15), (17) exist only for the open models (k = �1).
In this case for t < 0 the scale factor of 3-space a(t) decreases monotonically from
in�nity to its minimal value a0 and then grows to in�nity at t > 0, while the Weyl �eld
!(t) and the scale factor of interior space evolve monotonous from !� = limt!�1 !(t)
and s� = limt!�1 s(t) to s+ = limt!1 s(t), where a0 , !� and s� are de�ned by the
integration constants and may have arbitrary values. Note that if 2 < 0 than the
constants s� and s+ satisfy the condition s� > s+ and so the standard dimensional
reduction scenario is realized. The typical shape of the functions a(t) and s(t) are shown
in the �gures (13.a,b).

The �gure (13a) shows that unlike the 4-dimensional case the evolution of 3-space in
5-dimensional model is time-asymmetric. This asymmetry appears because the equation
(8.2.11) depends not only on _s(t) but also on the time-asymmetric interior space scale
factor s(t).

8.2.2.2. 6-dimensional models. In 6-dimensional case we consider two types of topo-
logical structures for the interior space: the 2-sphere S2 and 2-dimensional torus T 2 .
Therefore, the space-time metric (8.1.4) may have one of two forms

ds2 = dt2 � a2(t)

 
dr2

1� kr2
+ r2d
2

!
� s2(t)

 
du2

1� u2
+ u2dv2

!
(8.2.14)

or

ds2 = dt2 � a2(t)

 
dr2

1� kr2
+ r2d
2

!
� s21(t)du2 � s22(t)dv

2; (8.2.15)

where fu; vg are the coordinates on S2 or T 2 respectively. First integrals of equation
(8.2.4) take the form

_! =
q1
a3s2

; (8.2.16)

for metric (8.2.14) and

_! =
q2

a3s1s2
; (8.2.17)
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for metric (8.2.15).
Equations (8.2.3) for the metric (8.2.14) after simpli�cation take the form

�a

a
+ 2

�
_a

a

�2
+ 2

_a

a

_s

s
+
2k

a2
= 0; (8.2.18)

�s

s
+
�
_s

s

�2
+ 3

_a

a

_s

s
+

1

s2
= 0; (8.2.19)

and the constraint equation

3
_a

a

�
_a

a
+ 2

_s

s

�
+
3k

a2
+

1

s2
� q1 (5� �)

2a6s4
= 0: (8.2.20)

The �rst two equations are dynamical and the last is the constraint.
It is easy to see that only singular solutions of equations (8.2.18-20) exist: the scale

factor s(t) of the interior space evolves from zero at t = t0 to its maximal value smax and
return to zero at t = t1 > t0 . The behavior of a(t) depends on the sign of k . Namely,
if k = +1 then the qualitative evolution of a(t) is the same as the evolution of s(t). If
k = 0 than a(t) increase from zero at t = t0 to in�nity at t = t1 or decrease from in�nity
to zero; the unstable solutions with a(t) = const are also exist. Finally, if k = �1 then
a(t) evolves from in�nity at t = t0 to its minimum amin and then grows to in�nity at
t = t1 .

For the metric (8.2.15) equations (8.2.3) after simpli�cation read

�a

a
+

_a

a

�
_s1
s1

+
_s2
s2

�
+ 2

�
_a

a

�2
+
2k

a2
= 0; (8.2.21)

�s1
s1

+ 3
_a

a

_s1
s1

+
_s1
s1

_s2
s2

= 0; (8.2.22)

�s2
s2

+ 3
_a

a

_s2
s2

+
_s1
s1

_s2
s2

= 0; (8.2.23)

and the constraint equation

3
_a

a

�
_a

a
+

_s1
s1

+
_s2
s2

�
+

_s1
s1

_s2
s2

+
3k

a2
� q22 (5 � �)

2a6s21s
2
2

= 0: (8.2.24)

As in 4- and 5-dimensional cases the nonsingular solutions of the equations (8.2.21-24)
exist only for the open models (k = �1). Analogously to 5-dimensional case the scale
factor of 3-space a(t) in these models decreases monotonously from in�nity to its minimal
value a0 and then grows to in�nity at t ! +1, while the scale factors si(t), i = 1, 2,
of interior space changes monotonously from si� = limt!�1 si(t) to si+ = limt!1 si(t).
The necessary condition for the realization of the dimensional reduction scenario in this
case are de�ned by the following inequalities

3

a20
+
q22(5 � �)
2a60s10s20

> 0; (8.2.25)

and

_s1(0) < 0; _s2(0) < 0 (8.2.26)

It is necessary to note that inequality (8.2.25) is the necessary condition for _s1 and _s2 to
be of the same sign. The time behavior of scale factors a(t), s1(t) and s2(t) in this case
is qualitatively the same as in 5-dimensional case (Figure 13).
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8.3. Integrable Weyl cosmology in theory with non minimal scalar �eld

In this section we consider cosmological models in gravitation theories with Lagrangian

L = R

 
1 +

1

2(n� 1)
'2

!
+ �!�!� + �'�'�; (8.3.1)

where R is de�ned by (8.1.3), ' is a real scalar �eld, � = �1 and � = const as above.
In the limiting case ' = const Lagrangian (8.3.1) coincides with (8.2.1) while in another
limiting case ! = const it coincides with the Lagrangian for the conformal-invariant scalar
�eld.

The substitution of (8.1.3) into (8.3.1) gives after simpli�cation

L = eR 1 + '2

2(n� 1)

!
�''�!��(n� 1)(n � 2)� 4�

4
!�!��(n� 2)

8
'2!�!�+�'

�'�;(8.3.2)

where the total derivatives of the scalar �elds are omitted.
Variation of (8.3.2) with respect to independent variables g�� , ! and ' yields the

equations� eR�� � 1

2
g�� eR�

 
1 +

'2

2(n � 1)

!
� (n� 1)(n� 2)� 4�

4
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!�!� � 1

2
g��!

�!�

�
�
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2
' (';� !;� +';� !;� )� n � 2

8
'2
�
!;� !;� �1

2
g��!

�!�

�
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'
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�
g�� e2'� ';�k�

�
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';� ';�

�
� � 1

n � 1

�
+ g��'

�'�

�
1

n� 1
� �

2

�
= 0; (8.3.3) 

(n � 1)(n � 2)� 4�

2
+
n� 2

4
'2

! e2! � ' e2'� ';� ';
nu= 0; (8.3.4)

and

� e2'� �e2! +
1

n� 1
eR� n� 2

4
!;� !;�

�
' = 0; (8.3.5)

Equation (8.3.5) shows that non-Riemannian nature of space-time geometry in the
considered model leads to the e�ective mass generation for the scalar �eld '.

8.3.1. Four-dimensional models. In four-dimensional case the equations (8.3.3)-(8.3.5)
consist of the constraint equation 
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2
_'2 � 1

2
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8
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4
_!2 = 0; (8.3.6)

and three dynamical equations 
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and

� �'� '�! + 2'
�a

a
+ 3

_a

a
(� _'� ' _!) + 1

2
' _!2 + 2'

�
_a

a

�2
+
2k

a2
' = 0: (8.3.9)

The coe�cients before �a=a, �! and �' in the equations (8.3.7)-(8.3.9) depend both
on the parameters � , � and on the scalar �eld '. The determinant of the matrix of
coe�cients before �a=a, �! and �' is equal to

d =
�
�
2 � 2

3

�
'4 +

�
2� + 4�

3 � 2��
3 � 4

�
'2 + 6� � 4�� .

The points where d = 0 are the singular points of the system (8.3.7)-(8.3.9). These
points are not described by the system (8.3.6)-(8.3.9) because for �xed � and � equation
d = const de�nes not more than four �xed values of ' and the system (8.3.6)-(8.3.9)
reduces to the �rst order system. Therefore the initial value of the �eld ' must be from
the open set d 6= 0.

For � equation d = 0 divide the half-plane (�; '2), in three regions that will be denoted
as A, B and C , while for � = �1 there are only two regions A and B (�gure 14a,b).
The behavior of the model depends on the region where the point (�; '2

0) is situated.
Numerical investigation of equations (8.3.1)-(8.3.3) shows that for the closed (k =

1) and at (k = 0) cosmological models only singular solutions exist for any initial
conditions. For the open models (k = �1) if the pair (�; '2

0) de�nes the point in the
region B (both for � = 1 and � = �1) or C (for � = 1) than only singular solutions
of the equations (8.3.7)-(8.3.9) exist. If the pair (�; '2

0) de�nes the point in the region
A then solutions may be both regular and singular. The numerical investigation does
not permit to �nd the exact conditions of regularity, but it shows that both regular and
singular solutions are stable against �nite perturbations of the initial conditions. The
typical qualitative behavior of the universe scale factor a(t), Weyl �eld ! and the matter
scalar �eld ' are shown in �gure 15a-c.

The universe scale factor a(t) in the typical nonsingular solution evolves from in�nity
at t = �1 to its minimal value a0 = a(0) and then grows to in�nity at t ! 1
(�gure 15a). Both scalar �elds, the Weyl �eld ! and the �eld ' evolves between two
limiting values: from !� = limt!�1 !(t) and '� = limt!�1 ' to !+ = limt!1 !(t)
and '+ = limt!1 '(t). The di�erence in the evolution of these �elds is that the �eld !
evolves monotonously (�gure 15b) while the �eld ' near t = 0 (i. e. near the minimum
of a(t)) may have several intermediate extrema with one absolute maximum if � = 1
(�gure 15c) or absolute minimum if � = �1. As '(t) for big jtj tends asymptotically to
constants, the model evolves asymptotically as an empty Weyl cosmological model that is
considered in section 8.2.1. It is necessary to note also that the evolution of the universe
scale factor a(t) has a small time-asymmetry in comparison with the case of the empty
space. This asymmetry is a result of non symmetrical evolution of the matter �eld '
because the �eld equations (8.3.7)-(8.3.9) contain both ' and _'.

8.3.2. 5-dimensional models. In 5-dimensional case equations (8.3.3)-(8.3.5) after
simpli�cation become
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and
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The equation (8.3.1) is the constraint that must be satis�ed by the initial conditions
and the equations (8.3.11-14) are the dynamical. The determinant of the matrix of the
coe�cients before �a=a, �s=s, �! and �' in the dynamical equations (8.3.11-14) is equal to

d =
�

9
256
� � 3

32

�
'6 +

�
27
32
� + 1

8
� � 3

32
�� � 3

2

�
'4 +

�
27
4
� + � � 3

2
�� � 6

�
'2 + 18� � 6�� .

The qualitative features of function d(�; �; ') are the same as in 4-dimensional case:
for � = 1 equation d = 0 divides the half-plane (�; '2 > 0) in three regions that are
denoted as A, B and C , while for � = �1 there are only two regions A and B (�gure
16a,b). The behavior of the model depends on the region where the point (�; '2

0) is
situated.

Numerical investigation of equations (8.3.10-14) shows that as well as in the previous
4-dimensional case only singular solutions exist at any initial conditions for the closed
(k = 1) and at (k = 0) cosmological models. For the open models (k = �1) if the
pair (�; '2

0) de�nes the point in the region B (both for � = 1 and � = �1) or C (for
� = 1) than only singular solutions of the equations (8.3.10-14) exist, while if the pair
(�; '2

0) de�nes the point in the region A than the solution may be both regular and
singular. The regularity of solutions depends on the constants of integration that may be
considered as the initial conditions at t = 0. It was found that the regularity of solutions
depends mainly on the signs of _s(0), _!(0) and _'(0). Their possible combinations that
give nonsingular solutions of equations (8.3.11-14) are represented in table 2. The last
column of this table shows the general direction of the interior space evolution by means
of the signs of the di�erence � = s+ � s� , where s� = limt!�1 s(t).
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Table 2.
Conditions of the solutions regularity and the direction of s(t) evolution

sign _s(0) sign _!(0) sign _'(0) sign(s+ � s�)
-1 -1 0 -1
-1 +1 0 -1
-1 -1 +1 -1
-1 +1 -1 -1
0 +1 0 -1
0 -1 0 +1
+1 +1 -1 +1
+1 -1 0 +1
+1 +1 0 +1
+1 -1 +1 +1

The typical behavior of the nonsingular solution of the equations (8.3.11-14) for � = 1
is shown at the �gures 17a-d for the case � � 0, i. e. for the contracting interior space.

In general nonsingular solution the radius of the universe changes monotonously from
in�nity at t = �1 to minimal value a0 and then grows to in�nity (�gure 17a), while the
radius of the internal space starts from s� = limt!�1 s(t), passes through several (one or
two) intermediate extrema, that are situated near minimum of a(t) and may be absent
in some cases, and then changes to s+ = limt!1 s(t) (�gure 17b). Note that s+ and s�
may be of the same or di�erent order. The �eld ' evolves analogously to 4-dimensional
case (�gure 17c). Note that the extremal points of the functions a(t), s(t) and '(t) do
not coincide with each other in general case and the function a(t) is time asymmetrical
especially near its minimum. Finally the Weyl �eld ! changes monotonously between
two limiting values: !� = limt!�1 !(t) and !+ = limt!1 !(t) (�gure 17d). In the case
� = �1 the model evolves as above but the extremal points of the �eld ' change type:
minimum becomes maximum and vice versa.

8.4. Concluding remarks

We have considered the qualitative evolution of multidimensional cosmological models
based on the integrable Weyl geometry both in vacuum space-time and in the presence
of nonminimal scalar �eld. The existence of nonsingular solutions of �eld equations for
open cosmological models that realized the dimensional reduction scenario was demon-
strated. It was shown that in multidimensional case the evolution of the scale factor of
the universe a(t) becomes time-asymmetric unlike the four-dimensional case. We have
shown also that all nonsingular cosmological models considered above have some common
features. In particular the evolution of the universe scale factor (radius) a(t) for big jtj
is asymptotically linear. Further in all nonsingular models Weyl scalar �eld !(t) as well
as the matter �eld '(t) in the models with nonminimal coupling tend asymptotically
to constants. So the models tend to the pure Einsteinian models of the corresponding
dimensions and the change of the collapse era into expansion one may be considered as
a cosmological phase transition induced by the transition of scalar �elds !(t) and '(t)
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from one stationary state ! = !� and ' = '� into another stationary state ! = !+
and ' = '+ . At the late stages of the universe evolution the �elds !(t) and '(t) are
unobservable.

There are several qualitative di�erences between the vacuum models and the models
with nonminimal scalar �eld. First of all in vacuum models the existence of cosmological
singularity depends only on the parameters of the theory while in the case of nonmini-
mal scalar �eld it depends on the initial conditions also. Secondly, in the models with
nonminimal scalar �eld the evolution of the internal space scale factor s(t) may be non-
monotonous. In the typical scenario one of the limiting values of s(t) at t = �1 is
much smaller than another but in several models both limiting values of internal radius
s(t) may be arbitrary small and it become �nite only near minimum of the universe scale
factor a(t).

We have discussed here only the models with the one- or two- dimensional interior
space because if interior space has dimension d � 3 and direct product topology of torus
on several spheres then the models have the same qualitative features as considered above.
In particular, the nonsingular solutions exist only for toroidal interior space topology.

The models considered above show that the real geometrical structure of space-time
may have a non-Riemaniann nature but the universe may evolve in such a way that its non-
Riemaniann nature is essential only near t = 0 and become unobservable at late stages
of the evolution. Therefore, the consideration of generalized geometrical structures in
multidimensional cosmology may be of a considerable interest. In particular, the models
considered above may be generalized in the following manner. First of all, both Weyl
scalar �eld !(t) and matter �eld '(t) may be massive and have nonlinear potential.
Secondly, the possible inuence of the cosmological term � must be considered also. At
last, the term R'2=2(n � 1) in the lagrangian (8.3.1) may have negative sign. One may
suppose that in this case nonsingular solutions of the �eld equations may be obtained
not only for open models, but for closed and at models also. These possibilities will be
considered elsewhere.
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9. Exact Solutions in Integrable Weyl Geometry in Multidimen-
sional Cosmology [152-153]

9.1. Introduction

Here we continue to study multidimensional models in integrable Weyl geometry started
in section 8. We stress that the gravitational �eld in a Weyl-integrable space-time (WIST)
is determined by the tensor gAB and the scalar ! , just as in scalar-tensor theories (STT)
of gravity. The di�erence between these two cases is determined by Eq. (8.1.1). Namely,
both in STT and in WIST there is a conformal gauge in which test particles move along
geodesics; however, inWIST, unlike STT, even in this frame the motion in general depends
on both the metric and the scalar �eld. Thus, a gravitation theory on the basis of WIST
is in general not a special case of STT due to a nonminimal coupling between the matter
and the scalar �eld.

However, �eld equations in STT and WIST-based theories in many cases coincide, in
particular, for all vacuum space-times.

The description of cosmological models in STT is often reduced to that of Einsteinian
cosmologies with scalar �elds. The latter were considered by many authors [21,50] in both
4-dimensional and (4+d)-dimensional space-times.

In this section we consider the evolution of multidimensional cosmological models
based on integrable Weyl geometry with �nding exact solutions for some simplest cases of
empty spaces. The main characteristic features of the solutions are illustrated graphically.
Keeping in mind the possible applications of the results to the description of quantum
stages of the universe evolution we also consider WIST with the Euclidean signature.

9.2. Model

As is the case with STT, the gravitational �eld Lagrangian may in general contain various
invariant combinations of gAB and ! . Let us restrict ourselves to Lagrangians which are
(a) linear in the scalar curvature and (b) quadratic in !A . Then the general form of the
Lagrangian satisfying (a) and (b) is

L = A(!)R +B(!)!A!A � 2�(!) + Lm (9.2.1)

where R is the Weyl scalar curvature corresponding to the connection (8.1.1), A; B and
� are arbitrary functions and Lm is the nongravitational matter Lagrangian.

Using the expression (8.1.2) for R in terms of the Riemannian curvature eR corre-
sponding to the metric gAB , the conformal mapping well-known in STT [154], modi�ed
for D dimensions [78,152]:

gMN = A�2=(D�2)gMN : (9.2.2)

and omitting a total divergence, we obtain the following form of the Lagrangian:

L = A(!)R + F (!)gAB!A!B +A�D=(D�2)[�2�(!) + Lm] (9.2.3)

where

F (!) =
1

A(!)2

�
A(!)B(!)� (D�1)A(!)

�
A! +

D�2
4

�
+
D�1
D�2A

2
!

�
: (9.2.4)
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Let us consider vacuum cosmological models with the following structure of the space-
time WD :

WD = R�M1 � : : :�Mn; dimMi = Ni; (9.2.5)

where the subspaces Mi are assumed to be maximally symmetric. The component R
corresponds to the time � ; besides, we assume ! = !(� ). Thus, the e�ective Riemannian
metric is written in the form

ds2 = gABdx
AdxB = e2(�)d� 2 �

nX
i=1

e2�i(�)ds2i (9.2.6)

where ds2i are � -independent metrics of the Ni -dimensional spaces of constant curvatures
Ki ; with no loss of generality one can put Ki = 0; �1.

Making use of the freedom to choose the time coordinate � , let us introduce the
harmonic time by putting

 =
nX
i=1

Ni�i: (9.2.7)

Then the Ricci tensor for gAB has the following nonzero components:

R
�

� = e�2
�
� � _2 +

nX
i=1

Ni
_�2i
�
;

R
mi

ni
= �mi

ni

h
e�2 ��i + (Ni�1)Kie

�2�i
i

(9.2.8)

where the indices mi; ni belong to the subspace Mi .
The �eld equations take an especially simple form under the additional condition

� � 0:

RMN + F (!)!M!N = 0; (9.2.9)

2rM [F (!)!
M ]� F!!

M!M = 0: (9.2.10)

9.3. Solutions

They can be integrated completely under one of the above assumptions: (i) if all the
subspaces Mi are Ricci-at and (ii) if one of Mi (for instance, M1 ) is a space of nonzero
constant curvature (K1 ). Indeed, putting Ki = 0 (i > 1), we obtain:

(F _!2): = 0 ) F _!2 = S = const; (9.3.1)
��i = 0 ) �i = �i0 + hi�; i > 1; (9.3.2)

� � ��1 = �K1d
2e2�2�1 (9.3.3)

where d+1 = N1 = dimM1 . The equation (9.3.3) leads to di�erent results for di�erent
K1 : for K1 = 0 (case (i)) Eq. (9.3.2) may be regarded to include i = 1; for K1 6= 0 (case
(ii)) we get:

e�1� =
d

k
cosh k�; k > 0 (K1 = +1); (9.3.4)

e�1� = d � s(k; � ) �
8><>:

(d=k) sinh k�; k > 0;
d � �; k = 0;
(d=k) sin k�; k < 0;

(K1 = �1) (9.3.5)
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where k = const and another integration constant is elimintaed by a particular choice of
the origin of � . Lastly, a combination of components of (9.2.9) representing the temporal
component of the Einstein equations (the initial data equation) leads to the following
relation among the integration constants:� nX

i=1

Nihi

�2
�

nX
i=1

Nih
2
i = S; K1 = 0; (9.3.6)

d+1

d
k2sign k =

1

d

� nX
i=2

Nihi

�2
+

nX
i=2

Nih
2
i + S; K1 6= 0: (9.3.7)

Thus, the set of equations (9.2.9-10) has been integrated in quadratures.
As the original functions A(!) and B(!) and hence F (!) are arbitrary, it is di�cult

to describe the physical properties of the models in a general form. Therefore, here we
would like to restrict ourselves to some simple special cases.

Thus, we will assume A � 1 while B(!) remains arbitrary, so that the metrics gAB
and gAB coincide.

9.4. Special Cases

As the �rst step consider 4-dimensional homogeneous isotropic cosmologies. For this
purpose we must put n = 1; d = 2; �1 � �(� ). The condition that � is a harmonic
coordinate takes the form  = 3� and for the scale factor we get:

e2� = a2(� ) =

8><>:
1=2s(k; � ); K1 = 1;
ek� ; K1 = 0;
1=2 cosh k�; K1 = �1;

(9.4.1)

where s(k; � ) is de�ned by (9.3.5) and the physical time is determined by the integral
t = � R e(�)d� . The constant k is connected with the \scalar charge" S according to
(9.3.6), (9.3.7) where one should substitute hi = 0 (i > 1) and h1 = k=2:

2S =

(
3k2sign k; K1 = �1;
3k2; K1 = 0:

(9.4.2)

It is easy to obtain that in the case of a spherical world (K1 = 1) the values � = �1
correspond to �nite times t1 and t2 at which a = 0 (the initial and �nal singularities).
For a at world (K1 = 0) at k 6= 0 and a hyperbolic one (K1 = �1) at k > 0 an initial or
�nal singularity is observed at in�nite � . In the special case K1 = �1, k = 0 we obtain
the Milne vacuum model which is known to describe a domain in at space-time (in this
case S = 0, so that the scalar �eld is trivial).

Lastly, in the case K1 = �1, k < 0 we see that the limits � ! 0, �=jkj correspond to
t! �1; the scale factor a(t) decreases in an asymptotically linear manner in the remote
past (t! �1), reaches a minimum at � = �=2jkj and grows in an asymptotically linear
manner at t!1 while the scalar �eld ! changes monotonically from one limiting value
!� at t!�1 to another limiting value !+ at t! +1. The model is time-symmetric
with respect to the maximum contraction instant. The tipical shape of the function a(t)
for this case is shown in Fig. 18.
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By (9.4.2) a necessary condition for the existence of nonsingular solutions is the re-
striction F < 0 on the function (9.2.4), (as in this case S < 0), or, in terms of the initial
function B(!): B < 3=2.

These results con�rm those of Ref. [140].
Consider now the metric gAB for n = 2: let a(t) � e�1(�) be the scale factor of the

ordinary physical space (N1 = 3), while b(t) � e�2(�) that of the internal space (N2 = N ).
In the case K1 = 0 (spatially at models) we obtain:

ds2 = e2(3h1+Nh2)�d� 2 � e2h1�ds21 � e2h2�ds22 (9.4.3)

where with no loss of generality the scales in M1 and M2 are chosen so that �10 = �20 = 0.
Herewith

6(h1 +Nh2=2)
2 = N(N + 1=2) + S (9.4.4)

In the special case 3h1 + Nh2 = 0 the time coordinate � is synchronous, in other
words, physical. The metric (9.4.3) is nonsingular at �nite � and describes an exponential
expansion (ination) of one of the spaces (e.g., the physical one, M1 ) and a simultaneous
exponential contraction of the other, M2 , since h1 and h2 have di�erent signs. However,
by (9.4.4) and (9.3.1)

S = F _!2 = �h21(2N + 1)=N < 0: (9.4.5)

So, a necessary condition for the existence of the special solution (9.4.3) is the restriction

B(!) < (D � 1)(D � 2)=4; (9.4.6)

more general than B < 3=2 for the 4-dimensional case.
In the more general case 3h1 + Nh2 = H 6= 0 a transition to the physical time

dt = eH�d� leads to the metric

ds2 = dt2 � t2h1=Hds21 � t2h2=Hds22 (9.4.7)

which is singular at t = 0 if at least one of the constants h1 or h2 is nonzero. At
h1 = h2 = 0 the metric is static and (9.4.5) implies that either _! = 0 (the solution is
trivial), or F � 0, a special choice of B such that !(�) has no dynamics.

For a spherical world (K1 = 1) the metric is

ds2 =
e�Nh�

2 cosh k�

�
d� 2

4 cosh2 k�
� ds21

�
� e2h�ds22 (9.4.8)

where ds21 is the line element on a unit sphere. A consideration like that as for K1 = 1
leads to the following conclusions:

(a) The model behavior is classi�ed by the values of the constant h = h2 as compared
with k > 0. The physical time t = � R e(�)d� varies either within a �nite segment
[t1; t2] (if jNhj < 3k ), or within a semi-in�nite range (if jNhj � 3k ).

(b) At any �nite boundary of the range of t at least one of the scale factors a(t) or b(t)
vanishes, i.e., a singularity takes place.
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(c) At t! �1 either a! 0; b!1, or conversely, a!1; b! 0.

The value S = �F _!2 is determined at K1 = �1 from

3k2sign k = N(N + 2)h2 + 2S: (9.4.9)

For hyperbolic models (K1 = �1) the metric has the form

ds2 =
e�Nh�

2s(k; � )

�
d� 2

4s2(k; � )
� ds21

�
� e2h�ds22 (9.4.10)

(the same as (9.4.8) but the function cosh k� is replaced by s(k; � ) de�ned in (9.3.5).
Preserving generality, let us assume � > 0.

The model behavior may be briey described as follows:

(a) At k > 0; Nh � �3k or k = 0; h < 0 the physical time t = � R e(�)d� ranges from
�1 to +1. The factor b(t) = eh� varies from a �nite value at � = 0 (t = �1) to
zero at � ! 1 (t ! 1). The factor a(t) describes a power-law contraction from
in�nity (at t! �1) to a regular minimum and an in�nite (in general, power-law)
expansion at t!1. There is no singularity at �nite t.

(b) At k � 0; Nh > 3k the model is singular at �nite t corresponding to � ! 1. In
the special case h = k = 0 we come again to the Milne model supplemented with
the space M2 with a constant scale factor.

(c) At k < 0 the time t ranges again from �1 to +1. The factor a(t) behaves as it did
in item (a), however, its variation at t!�1 is linear (but in general with unequal
slopes at the two asymptotics). The factor b(t) changes monotonically between two
�nite boundary values. The typical time dependence of the scale factors a(t) and
b(t) in this case is shown in Fig. 19.

It is necessary to note that, unlike the 4-dimensional models, the nonsingular multi-
dimensional ones with h 6= 0 exhibit a time-asymmetric behavior of a(t).

It is seen in a straightforward way that in all the nonsingular models the requirement
(9.4.6) is imposed on B(!), which, as it could be formulated in general relativity, means
the negative scalar �eld energy density.

Some properties of the above models have been discovered in numerical calculations
for a number of special cases with D = 5 and D = 6 ([125] and section 8).

9.5. Euclidean Solutions

Keeping in mind possible applications of our models to quantum stages of the universe
evolution, let us continue them to the Euclidean sector. For this purpose let us replace
the metric (9.2.6) by a slightly more general one

ds2 = gABdx
AdxB = e2(�)d� 2 +

nX
i=1

"ie
2�i(�)ds2i (9.5.1)

where "i = �1. Then in Eqs.(9.2.8) and consequently in the �eld equations the only
change is that Ki are replaced by "iKi . If we put, as before, Ki = 0 for i � 2, the
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equations depend only on "1K1 . That means that the evolution of the Lorentzian open
model (K1 = �1, "1 = �1) coincides with that of the Euclidean closed model (K1 =
1; "1 = 1) and vice versa, and the evolution of models with a at 3-space (K1 = 0)
does not depend on the metric signature. In particular, the nonsingular Lorentzian model
with an open 3-space, whose exterior and interior scale factors are shown in Figs. 19a,b,
corresponds to the Euclidean four-dimensional wormhole S3 � R1 .

In conclusion, we have seen that many of the multidimensional Weyl cosmologies
with at additional spaces are nonsingular: there are special at-space models with eter-
nally increasing or decreasing scale factors (such models are absent in 4 dimensions) and
there are more general hyperbolic models with a cosmological bounce (generalizing the
4-dimensional ones [140]) which realize the dimensional reduction scenario. It has been
shown that in the multidimensional case the evolution of the scale factor of the universe
a(t) becomes time-asymmetric, unlike the 4-dimensional case. In particular the evolution
of a(t) for big jtj is asymptotically linear.



Chapter 2

Multidimensional Gravity. Spherical

and Axial Symmetry Cases

1. The Birkho� Theorem in Multidimensional Gravity [155]

1.1. Introduction

The original Birkho� theorem [156] states that in general relativity (GR) the spherically
symmetric vacuum �eld is static and is thus reduced to the Schwarzschild solution. From
a wider viewpoint, the theorem indicates a case when the �eld equations induce, under
certain circumstances, an additional �eld system symmetry that was not postulated at the
outset. The theorem is closely related to the quadrupole nature of the gravitational �eld
in GR, more precisely, to the absence of monopole gravitational waves. Thus theorems
of this sort are able not only to simplify the treatment of certain physically relevant
situations but also to provide their better understanding.

After Birkho� the theorem was extended to spherical systems with a nonzero cos-
mological constant �, the Maxwell or Born-Infeld electromagnetic �elds [157-158] and
others), scalar �elds and � 6= 0 in GR [159] and some scalar-tensor theories of grav-
ity [160]. In Ref. [161] the theorem was extended to planarly and pseudospherically
symmetric Einstein-Maxwell �elds.

Another approach was suggested in Refs. [162-163]: the study was aimed at �nding
out general conditions under which the staticity theorem could be proved. This allowed all
the previously found cases of GR and scalar-tensor theories when the extended Birkho�
theorem is valid, to be included, along with many new ones. The theorem was generalized
in two respects: to include more types of space-time symmetry (e.g., planar, cylindrical
and pseudoplanar) and more kinds of matter (scalar �elds, gauge �elds, perfect uid,
etc.).

Here we would like to extend the approach of [162-163] to multidimensional gravity.
One may recall that most modern uni�cation theories incorporate more than four dimen-
sions (e.g., that of superstrings [23]); on the other hand, some studies are undertaken
in (2+1) and even (1+1) dimensions where certain hard problems simplify and admit a
deeper insight. The low energy limit of many theories, actually embracing an enormous
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range of energy scales, is reduced to the multidimensional Einstein equations

GB
A � RB

A � �BAR
C
C=2 = �TBA ; (1.1.1)

where RB
A is the D -dimensional Ricci tensor and TBA is the matter energy-momentum

tensor (EMT). We will assume the validity of (1.1.1) for some dimension D and some
kind of matter and �nd certain general conditions under which these �eld equations make
the system symmetry increase. The consideration essentially follows the lines of [162-
163]. In Section 1.2 the extended Birkho� theorem is proved for multidimensional GR.
In Section 1.3 its di�erent special cases are discussed and Section 1.4 contains some
remarks, in particular, on situations excluded by the requirements of the theorem; its
further extension to multidimensional scalar-tensor theories is presented.

1.2. THEOREM

Consider a D -dimensional Riemannian or pseudo-Riemannian space with the structure

V D =M2 � V1 � V2 � : : :� Vn; dimVi = Ni; n = 1; 2; : : : (1.2.1)

where M2 is an arbitrary two-dimensional subspace parametrized by the coordinates u
and v and Vi are subspaces of arbitrary dimension (Ni ) and signature whose metric
depends on u and v only via conformal (scale) factors. Thus with no further loss of
generality the D -dimensional metric may be written in the form

ds2D = �ue
2�du2 + �ve

2dv2 +
nX
i=1

e2�ids2i (1.2.2)

where �u = �1; �v = �1; �; �i and  are functions of u and v and ds2i are the u-
and v -independent metrics of the subspaces. It is meant that M2 along with one (two-
dimensional) or two (one-dimensional) subspaces Vi form the conventional physical space-
time while the rest Vi correspond to extra (internal) dimensions. For greater generality
we would not like to �x the signs �u and �v .

Before formulating the theorem let us introduce the quantity

�(u; v) �
nX
i=1

Ni�i(u; v): (1.2.3)

and present the nonzero Ricci tensor components for the metric (1.2.2):

Ru
u = 2u +2v�+ �ue

�2�(�00 � �0�0 +
nX
i=1

�
02
i ) + �ve

�2 _� _�; (1.2.4)

Rv
v = 2u +2v�+ �ue

�2� 0�0 + �ve
�2(��� _ _�+

nX
i=1

_�2i ); (1.2.5)

Rmi
ni

= e�2�iR
mi

ni
+ �mi

ni
[(2u +2v)�i + �ue

�2��0i�
0 + �ve

�2 _�i _�]; (1.2.6)

Ruv = _�0 � 0 _�� _��0 +
nX
i=1

_�i�
0
i (1.2.7)
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where primes and dots stand for partial derivatives @u and @v , respectively, and

2u = e���@u(e��@u); 2v = e���@v(e��@v); (1.2.8)

The indices mi and ni belong to the subspace Vi ; the Ricci tensors Rmi
ni

correspond to
the metrics ds2i and do not depend on u and v .

Theorem 1. Let there be a Riemannian space V D (1.2.1) with metric (1.2.2) obeying
the Einstein equations (1.1.1). If

(A) there is a domain � in M2 where

sign (�;A�;A) = �u; (1.2.9)

(B) each �i(u; v) in � is functionally related to � (certain relations Fi(�; �i) = 0 are
valid);

(C) in an orthogonal coordinate frame where � = �(u) (its existence is guaranteed by
(1.2.9)) the EMT component Tuv � 0 and there is a combination

T vv + const � T uu (1.2.10)

independent of v and  ,

then there is an orthogonal coordinate frame (u; v) in � such that the metric (1.2.2) is
v -independent.

Proof. Let us choose an orthogonal coordinate frame where � = �(u), which is possible
by Condition A. Then by Condition B all _�i = 0. By Condition C the mixed EMT
component Tuv = 0 (in the conventional case �u = ��v that means that there is no
energy ow in the frame of reference where � = �(u)), and the corresponding component
of Eqs.(1.1.1) yields _� = 0. Now only  may depend on v . To make the last step and
to obtain  = (u) it is su�cient to �nd a combination of the Einstein equations having
the form 0 = f(u), whence

 = 1(u) + 2(v) (1.2.11)

and 2 may be brought to zero by a coordinate transformation v = v(~v). Observing
(1.2.4-6), one can see that any combination of the form Gu

u + const �Gv
v of the left-hand

sides of (1.1.1) does contain  but only in the term e�2��0 0 . As � 6= const, our problem
is solved when the corresponding combination of TBA does not depend on  and v , exactly
what is required in Condition C. This completes the proof.

The theorem generalizes the results of [162-163] to arbitrary space-time dimension and
signature, including multidimensional Kaluza-Klein-type models with a chain of internal
spaces each with a scale factor of its own, such as considered in, e.g., [78,139,,165,166].
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1.3. SPECIAL CASES

In the following examples, unless otherwise indicated, we will adhere to the conventional
interpretation of the Birkho� theorem, i.e., assume that v is time (�v = 1 and u is a space
variable (�u = �1). Everything may be easily reformulated for coinciding �u and �v . No
assumptions on the signatures of Vi are made since they do not a�ect the conclusions.

In general, the following matter sources satisfy the requirements C of Theorem 1 with
no further restrictions on the structure of V D :

(a) Linear or nonlinear, minimally coupled scalar �elds with the Lagrangian L = ';A';A�
V (') where V (') is an arbitrary function, under the restriction ' = '(u):

2TAB = �ABV (') + �ue
�2�'02diag (1; �1; : : : ; �1); (1.3.1)

here and henceforth positions in \diag " are ordered by the scheme (u; v; : : :).

(b) A massless, minimally coupled scalar �eld (L = ';A';A) under the restriction ' =
'(v): the EMT does not contain ' but only _' = const (the so-called cosmological
scalar �eld):

2TAB = �ve
�2 ! _'2diag (�1; 1; �1; : : : ; �1): (1.3.2)

(c) Abelian gauge �elds (L = �FABFAB; FAB = @AUB � @BUA ) under the restriction
that the vector potential UA has a single nonzero component UK(u), with a �xed
coordinate K 6= v , so that among FAB only FuK = �FKu 6= 0:

T uu = TKK = �F uKFuK; other TAB = �ABF
uKFuK: (1.3.3)

(d) Nonlinear vector �elds with Lagrangians of the form �(I); I = FABFAB , where � is
an arbitrary function, under the same restriction as that in item (c) but with K = v
(an example is the Born-Infeld nonlinear electromagnetic �eld):

T uu = T vv = 2(d�=dI)F uvFuv � �=2; other TAB = ��AB�=2: (1.3.4)

(e) Some kinds of interacting �elds: for instance, the system of an Abelian gauge �eld and
a scalar dilaton �eld (L = ';A';A� e2�'FABFAB; � = const) under the constraints
of items (a) and (c): the EMT structure combines those of (1.3.1) and (1.3.3). As
(1.3.1) is v - and  -independent, evidently the second condition C of Theorem 1
is satis�ed by one of the two combinations T uu � T vv . This is just the interaction
relevant for multidimensional dilatonic black holes [78,166,169].

The same is true if the expression e2�' in the Lagrangian is replaced by any function
of '.

(f) The cosmological term ��AB may be added to the left-hand side of (1.1.1) with no
consequences.
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One can easily �nd other forms of matter, as well as combinations of the above forms
of matter and other ones, for which Theorem 1 holds.

As for the diversity of space-time structures to which the theorem applies, it is also
very wide. In the 4-dimensional case it includes the symmetries mentioned in [162-163],
namely: spherical, planar, pseudospherical, pseudoplanar, cylindrical, toroidal (V D =
M2�S2; M2�R2; M2�L2; M2�R1�R1; M2�R1�S1; M2�S1�S1 , respectively,
where L2 is the Lobachevsky plane). It applies to both conventional (Lorentzian) GR
and its \Euclidean" counterpart, as well as to Kaluza-Klein type models with a chain of
internal spaces with u-dependent scale factors. Moreover, multidimensional extensions
may incorporate generalized spherical and other symmetries in the spirit of Tangherlini
[167], i.e., Sm; Rm or Lm with an arbitrary m > 2 instead of S2; R2; L2 .

For space-times with horizons, such as the black-hole ones, the theorem states the
metric independence on di�erent coordinates in di�erent domains of M2 : thus, in the
conventional Schwarzschild case it �xes the t-independence (staticity) in the R domain
and r -independence (homogeneity) in the T domain. The same applies to multidimen-
sional black holes considered in many papers (e.g., [21,78,165-169]).

Another point of interest is the existence of Abelian gauge �elds of various directions
which satisfy the theorem, see the above item (c). One may recall such evident examples
as Coulomb-like �elds for spherical and other similar symmetries, radial, longitudinal
and azimuthal electric �elds for conventional cylindrically symemtric space-times (and
their magnetic counterparts); however, there are con�gurations with u-dependent vector
potential components directed in extra dimensions, deserving a separate treatment.

1.4. COMMENTS

1.4.1. Condition A of Theorem 1 may be weakened if M2 is a proper Riemannian space
(�u = �v ): instead of (1.2.9), it is su�cient to assume just � 6= const. Indeed, in this case
the orthogonal coordinates u and v may be always chosen so that � = �(u), for instance,
one may put just u = �.

If M2 is pseudo-Riemannian (�u = ��v ), then the gradient of �(u; v) may be either
u-like, or v -like, or null (sign (�;A�;A) = �u; �v; 0, respectively). To extend the theorem
to the case when it is v -like one may just change the notations of the coordinates, u$ v ,
irrespective of which of them is spacelike. So in both cases one can achieve � = �(u).

1.4.2. Cancellation of Condition B of Theorem 1 (possible if n > 1) leads to the existence
of at least two functionally independent unknowns. The situation is most obviously
exempli�ed by the Einstein-Rosen vacuum cylindrical gravitational waves [164] (D =
4; N1 = N2 = 1; v = t, i.e., time).

More generally, extra-dimension scale factors behave like minimally coupled scalar
�elds in 4 dimensions, so possible monopole waves may be eliminated just at the expense
of the additional assumption B. When the latter is removed, these waves may manifest
the instability of static con�gurations (as is the case for many non-black-hole spherically
symmetric multidimensional space-times [21,78,166].

1.4.3. The possibility � = const, excluded in the theorem, looks somewhat exotic in
the spherically symmetric case but is quite natural for, say, planar symmetry. Let us
show that it leads to wave solutions to Eqs. (1.1.1) taking as an example a 4-dimensional
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vacuum space-time with a cosmological constant (TAB = �AB�), possessing spherical or

planar symmetry (D = 4; n = 1; N1 = 2; R
2
2 = R

3
3 = � = +1; 0, respectively). In this

case � = 2�1 and Eqs. (1.1.1) give:

�e�� = �; e�2�(�u�00 + �v ��) = � (1.4.1)

where the coordinates are chosen so that the metric of M2 is conformally at (� =  ).
There are the following variants:

� � = 1; �u = ��v; � > 0. The space-time is formed by a congruence of spheres
of equal radii and the only nontrivial metric coe�cient � obeys a nonlinear wave
equation.

� � = 1; �u = �v; � > 0. The same but the equation is nonlinear, elliptic type.

� � = 0; �u = ��v; � = 0. Linear waves in a planarly symmetric space-time:
� =  = f1(u+ v) + f2(u� v).

� � = 0; �u = �v; � = 0. The only nontrivial metric coe�cient � =  is a harmonic
function of u and v .

1.4.4. Another possibility rejected in Theorem 1 is that �(u; v) has a null gradient in a
pseudo-Riemannian M2 . The condition �;A�;A = 0 in the coordinates such that � = 
leads to _� = ��0 . Let us choose the plus sign (re-de�ning u ! �u if required), so that
� = �(�); � = u+ v .

Consider for instance vacuum planarly symmetric space-times of any dimension D , so
that

V D =M2 �RD�2; � = (D � 2)�; TAB = 0: (1.4.2)

Substituting � = �(�) and � =  for (1.4.2) to Eqs.(1.1.1), we obtain:

� = �1(�) + �2(�); 2�1(�) = ln j� 0j+ �; � = �(�) (1.4.3)

where � = u � v ; �(�) and �2(�) are arbitrary functions. This is a planarly symmetric
vacuum wave solution to Eqs. (1.1.1) for any dimension D .

The examples of items 1.4.3 and 1.4.4 show that in Theorem 1, establishing the su�-
cient conditions for staticity, no condition may be omitted or essentially weakened.

1.4.5. A case of interest is the one when some �i are only u-dependent while others
linearly depend on v , so that _�i = const. If still _� = 0 and the spaces Vi corresponding
to _�i 6= 0 are Ricci-at, then the proof of Theorem 1 may be properly modi�ed to conclude
that all the remaining metric coe�cients are v -independent.

Imagine, e.g., a 4-dimensional, static, spherically symmetric space-time (u = r , radial
coordinate; v = t, time; V1 = S2 , a 2-dimensional sphere) accompanied by internal
Ricci-at spaces of which some are static (in general, r -dependent), others exponentially
expanding ( _�i = const > 0) and still others exponentially contracting ( _�i = const < 0).
The speci�c forms of all functions are to be found from Eqs. (1.1.1) with a relevant
choice of matter. However, as _� = 0, this class of solutions cannot contain those in which
all extra dimensions are contracting. (This certainly does not mean that such solutions
cannot exist at all: they are just not covered by the present treatment.)
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1.4.6. The consideration of Section 1.2 rests on the geometric structure of the space V D ,
including certain symmetry requirements. However, the theorem contains no requirements
to internal symmetries of the subspaces Vi since no constraints on the dependence of R

mi

ni

on the internal coordinates yni have appeared. By Eqs. (1.1.1) this dependence is just
the same as that in the EMT.

However, in most applications, as seen from the examples of Section 1.3, Vi are ei-
ther Ricci-at, or constant curvature spaces: as the EMT is independent of the internal
coordinates, the same is true for Vi . Moreover, when all the diagonal components Tmi

mi

are equal to each other, Eqs.(1.1.1) force the components R
mi

mi
to be equal as well, while

the o�-diagonal components are zero. Thus it is the EMT symmetry that forces Vi to be
constant curvature spaces.

1.4.7. In [162-163] the generalized Birkho� theorem was extended to a broad class of
scalar-tensor theories of gravity in 4 dimensions. The same can be done in the multidi-
mensional case. To do that let us consider in V D with the metric gMN a scalar-tensor
theory described by the Lagrangian

p
gL =

p
g[A(�)R+B(�)�;M�;M � 2�(�) + Lm] (1.4.4)

where g =j det gMN j; A > 0; B and � are any smooth functions of � and the matter
Lagrangian Lm may depend on both gMN and �. The conformal mapping (suggested by
Wagoner [154] for D = 4)

gMN = A�2=(D�2)gMN (1.4.5)

brings (1.4.4) to the form (up to a divergence)

p
gL =

p
g
�
R+

1

A2

�
AB+

D � 1

D � 2

 
dA

d�

!2 �
gMN�;M�;N+A

�D=(D�2)[�2�(�)+Lm]
�
(1.4.6)

where g =j det gMN j and R is the scalar curvature corresponding to gMN . Variation
of (4.6) with respect to gMN yields the Einstein equations with an EMT containing the
contribution of the (possibly nonlinear) scalar �eld � and that of matter coupled to �.
For our purpose it is essential that the latter contribution TMN coincides with the original
EMT (TMN = (�=�gMN)(

p
gLm) up to a �-dependent factor. Consequently, if � = �(u)

and TMN satis�es Condition C of Theorem 1, so does TMN and Theorem 1 is applicable
to the metric gMN . However, now it is � = � + lnA that appears instead of � in the
formulation of the theorem. Therefore Theorem 1 cannot be directly applied to gMN and
its formulation should be properly modi�ed:

Theorem 2. Consider a �eld system with the Lagrangian (1.4.4) in a Riemannian space
V D (1.2.1) with metric (1.2.2). Let there be a domain � in M2 where

(i) all �i and the �eld � are functions of u;

(ii) � = � + lnA 6= const and

(iii) Conditions C of Theorem 1 are valid for the EMT derived from Lm .

Then the coordinate v in � may be chosen so that all gMN are v -independent.
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1.4.8. It would be of interest to try to extend the theorem to multidimensional models
with nonzero o�-diagonal metric components such as gui with i from extra dimensions,
as is the case in the original Kaluza-Klein model. This goes beyond the scope of this
paper, although probably such a generalization does exist since the new e�ective vector
�elds are unlikely to create monopole waves.
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2. Multitemporal generalization of Schwarzschild solution [170]

2.1. Introduction

In [171] the generalization of the Schwarzschild solution to the case of n internal Ricci-at
spaces was obtained.(The case n = 1 was considered earlier in [172].) In [36] this solution
was generalized on O(d + 1)-symmetrical (Tangherlini-like) case. (In [173] the special
case of the solution [3] with n = 2 was considered).

This section is devoted to an interesting special case of the solution [171]. This is the
n-time generalization of the Schwarzschild solution. We note, that the idea of considering
of space-time manifolds with extra time dimensions was discussed earlier by di�erent
authors (see, for example, [174-181). Some revival of the interest in this direction was
inspired recently by string models [178-181].

In sec. 2.2 the multitemporal generalization of the Schwarzschild formula is consid-
ered and corresponding geodesic equations are integrated. In sec. 2.3 the motion of the
relativistic particle in the background of the solution is investigated and a multitemporal
analogue of the Newton's formula is obtained. The sec. 2.4 is devoted to multitempo-
ral generalization of Newton's mechanics and Newton's gravitational law for interacting
objects described by the solution ("multitemporal hedgehogs").

2.2. The metric and geodesic equations

The metric generalizing the Schwarzschild solution to the multitemporal case reads

g = �
nX
i=1

faidti 
 dti + f�bdR 
 dR + f1�bR2d
2; (2.2.1)

where f = 1 � (L=R), L = const, d
2 is the standard metric on 2-dimensional sphere
and the parameters b; ai satisfy the relations

b =
nX
i=1

ai; b2 +
nX
i=1

a2i = 2: (2.2.2)

The metric (2.1) satis�es the Einstein equations (or equivalently RMN [g] = 0) and may
be obtained as a special case of the solution [171] or more general solution [36].

The metrics g(a; L) and g(�a;�L) are equivalent for any set a = (a1; : : : ; an), satis-
fying (2.2.2). This may be easily veri�ed using the following transformation of the radial
variable: R = R� + L. So, without loss of generality we restrict our consideration by the
case L > 0 (the case L = 0 is trivial).

In the case

ai = �ik; (2.2.3)

k 2 f1; :::; ng, the metric (2.2.1) has the following form

g = g
(k)
Sch �

X
i6=k

dti 
 dti; (2.2.4)

i.e. it is a trivial (cylindrical) extension of the Schwarzschild solution with the time tk .
It describes an extended (in times) membrane-like object. Any section of this object by
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hypersurface ti = ti0 = const, i 6= k , is the 4-dimensional black hole, "living" in the time
tk . It may be proved that the solution (2.2.1) has a singularity at R = L for all sets
of parameters (a1; : : : ; an) except n Schwarzschild-like points (2.2.3) (for n = 2 this was
proved in [182]).

We consider the geodesic equations for the metric (2.2.1)

�xM + �MNP [g] _x
N _xP = 0; (2.2.5)

where xM = xM (� ), _xM = dxM=d� and � is some parameter on a curve.
These equations are nothing more than the Lagrange equations for the Lagrangian

L1 =
1

2
gMN(x) _x

M _xN

=
1

2
[f�b( _R)2 + f1�bR2( _�2 + sin2 � _'2)�

nX
i=1

fai( _ti)2]: (2.2.6)

The complete set of integrals of motion for the Lagrange system (2.2.6) is following

fai _ti = "i; (2.2.7)

f1�bR2 _' = j; (2.2.8)

f�b _R2 + f1�bR2 _'2 �
nX
i=1

fai( _ti)2 = 2E = 2L1; (2.2.9)

i = 1; :::; n. Without loss of generality we put here � = �
2
.

Multitemporal horizon. Here we consider the null geodesics. Putting E = 0 in
(2.2.9) we get for a light "moving" to the center

_R = �
vuut nX
i=1

("i)2f b�ai � j2f�1+2bR�2 (2.2.10)

and consequently

ti � ti0 = �
Z R

R0

dx
"i[f(x)]�aiqPn

i=1("
i)2[f(x)]b�ai � j2[f(x)]�1+2bx�2

; (2.2.11)

i = 1; : : : ; n.
Let L > 0, " = ("i) 6= 0 and a = (a1; : : : ; an) satis�es (2.2.2). We say that the

"-horizon takes place for the metric (2.2.1) at R = L if and only if

jjt� t0jj �
nX
i=1

jti � ti0j ! +1; (2.2.12)

as R ! L for all t0 and j . It may be proved [182] that for L > 0 and for non-
Schwarzschild set a the "-horizon for the metric (2.2.1) at R = L is absent for any " 6= 0.
For the Schwarzschild set of parameters (2.2.3) the "-horizon takes place if "k 6= 0, i.e.
light should "move" in tk -direction.
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2.3. Relativistic particle

Let us consider the motion of the relativistic particle in the gravitational �eld, corre-
sponding to the metric (2.2.1). The Lagrangian of the particle is

L2 = �m
q
�gMN(x) _xM _xN ; (2.3.1)

where m is the mass of the particle. The Lagrange equations for (2.3.1) in the proper
time gauge

gMN(x) _x
M _xN = �1 (2.3.2)

coincide with the geodesic equations (2.2.5). In this case (Ei) = (m"i) is the energy
vector and J = mj is the angular momentum. For �xed values of "i the 3-dimensional
part of the equations of motion is generated by the Lagrangian

L� =
m

2
[f1�b�gSch;��(x) _x� _x� +

nX
i=1

("i)2f�ai ]: (2.3.3)

where �gSch is the space section of the Schwarzschild metric.
Now, we restrict our consideration by the non-relativistic motion at large distances:

RgL. In this approximation: ti = "i�;
Pn
i=1("

i)2 = 1: It follows from (2.3.3) that in
the considered approximation we get a non-relativistic particle of mass m, moving in the
potential

V = �m
2

nX
i=1

("i)2
aiL

R
= �Gm("iMij"

j)

R
; (2.3.4)

where G is the gravitational constant and

Mij = ai�ijL=2G; (2.3.5)

are the components of the gravitational mass matrix.
We note, that the relation (2.3.4) may be rewritten as following

V = �Gtr(MMI )

R
(2.3.6)

where MI = (m"i"j) is the inertial mass matrix of the particle. For n = 1 the potential
(2.3.6) coincides with the Newton's one.

Matrix form. The solution (2.2.1) may be also rewritten in the matrix form

g = �[(1� L=R)A]ijd�t
i 
 d�tj

+(1� L=R)�trAdR 
 dR + (1 � L=R)1�trAR2d
2; (2.3.7)

where A is a real symmetrical n � n-matrix satisfying the relation

(trA)2 + tr(A2) = 2: (2.3.8)

Here xA � exp(A lnx) for x > 0. The metric (2.3.7) can be reduced to the metric
(2.2.1) by the diagonalization of the A-matrix: A = ST (ai�ij)S , STS = 1n and the



CBPF-MO-002/95 101

reparametrization of the time variables: Sji �t
i = tj . In this case the gravitational mass

matrix is

(Mij) = (AijL=2G): (2.3.9)

We may also de�ne the gravitational mass tensor as

M =Mijd�t
i 
 d�tj : (2.3.10)

We call the extended (in time) object, corresponding to the solution (2.3.7)-(2.3.8) as
multitemporal Schwarzschild hedgehog. At large distances RgL this object is described
by the matrix analogue of the Newton's potential

�ij = �1

2
LAij=R = �GMij=R: (2.3.11)

Clearly, that this potential for the diagonal case (2.2.1) A = ai�ij is a superposition of
the potentials, corresponding to "pure states": Schwarzschild-like membranes (2.2.4). So,
in the post-Newtonian approximation the Schwarzschild hedgehog is equivalent to the
superposition of black hole membranes (2.2.4), corresponding to di�erent times.

2.4. Multitemporal Newton laws

The solution (2.3.7), (2.3.8) may be also rewritten as following

g = �[(1� jjLjj=R)L=jjLjj]ijdti 
 dtj

+(1� jjLjj=R)�trL=jjLjjdR 
 dR + (1� jjLjj=R)1�(trL=jjLjj)R2d
2; (2.4.1)

where here L = (Lij) 6= 0 is real symmetrical n� n-matrix with the norm

jjLjj �
s
1

2
(trL)2 +

1

2
tr(L2): (2.4.2)

We call matrix L as gravitational length matrix.
Now we consider the interaction between two multitemporal hedgehogs with gravita-

tional length matrices L1 = (L1;ij) and L2 = (L2;ij) located at large distances from each
other

j~xjgjjLjj1; jjLjj2; ~x � ~x1 � ~x2: (2.4.3)

We begin with the simplest case n = 1. In Newton's mechanics the equations of motion
for two point-like masses M1 = L1=2G and M2 = L2=2G with world lines ~x1 = ~x1(t) and
~x2 = ~x2(t) respectively are well-known:

d2~x1
dt2

= �L2
~x

2j~xj3 ; (2.4.4)

d2~x2
dt2

= L1
~x

2j~xj3 ; (2.4.5)
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where ~x is de�ned in (2.4.3). The equations (2.4.4), (2.4.5) may be obtained from the Ein-
stein equations, when the solutions describing the post-Newtonian (2.4.3), non-relativistic
motion

jd~xa
dt
j � 1; (2.4.6)

a = 1; 2, of two black holes are considered.
Our hypothesis is that the generalization of this scheme to the multitemporal case

should lead to the following equations of motion for two non-relativistic hedgehogs with
gravitational length matrices L1 and L2 in the post-Newtonian approximation (2.4.3)

d2~x1
dtidtj

= �L2;ij
~x

2j~xj3 ; (2.4.7)

d2~x2
dtidtj

= L1;ij
~x

2j~xj3 : (2.4.8)

The functions ~xa = ~xa(t1; : : : ; tn), a = 1; 2, describe the world surfaces of two multi-
temporal objects in the considered approximation. The multitemporal analogue of the
non-relativistic condition (2.4.6) reads

jd~xa
dti
j � 1; (2.4.9)

a = 1; 2, i = 1; : : : ; n. De�ning gravitational mass matrices

(Ma;ij) = (La;ij=2G); (2.4.10)

and forces

~Fa;ij =Ma;ij
d2~xa
dtidtj

; (2.4.11)

a = 1; 2, we get

~F1;ij = �GM1;ijM2;ij
~x

j~xj3 ; (2.4.12)

~F1;ij = �~F2;ij; (2.4.13)

i; j = 1; : : : ; n. Relations (2.4.11), (2.4.12) and (2.4.13) are multitemporal analogues
of the Newton's laws , describing the multitemporal "motion" of two interacting non-
relativistic hedgehogs in the post-Newtonian approximation. (The generalization to multi-

hedgehog case is quite transparent.) We note, that for ~F1 = tr(~F1;ij) we get the formula
suggested previously in [183]

~F1 = �Gtr(M1M2)
~x

j~xj3 : (2.4.14)

Scalar-vacuum generalization. The solution (2.2.1) can be easily generalized on a
scalar-vacuum case. In this case the �eld equations corresponding to the action

S =
1

2

Z
dDx

q
jgj(R[g]� @M'@N'g

MN); (2.4.15)
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are satis�ed for the metric (2.2.1) and the scalar �eld

' =
1

2
q ln(1� L

R
) + const; (2.4.16)

with the parameters related as following

b =
nX
i=1

ai; b2 +
nX
i=1

a2i + q2 = 2: (2.4.17)

This solution is a special case of the solution [184] or more general dilatonic-electro-vacuum
solution [182,185-6].

Conclusion

In this paper we considered the multitemporal generalization of the Schwarzschild so-
lution. We integrated the equations of geodesics for the metric and considered the motion
of relativistic particle in the background , corresponding to the metric. We obtained
the modi�cation of Newton's law for interaction of massive non-relativistic particle with
multitemporal hedgehog (i.e extended in time object, described by the solution). We also
suggested multitemporal analogues of Newton's formulas for non-relativistic motion of
interacting hedgehogs. We note, that the main di�erence of the multitemporal (n-time)
case from the ordinary n = 1 case is following: in the space-time with n time coordinates
the gravitational and inertial masses are n � n matrices, and the energy of a relativistic
particle is the n-component vector.
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3. Multitemporal generalization of the Tangherlini solution [182]

3.1. Introduction

In ref. [36] the Tangherlini solution [1,2] (O(d + 1)-symmetric analogue of the Schwarz-
schild solution) was generalized on the case of �n internal Ricci-at spaces. The metric of
this solution is de�ned on the manifold

M =M (2+d) �M1 � : : :�M�n; (3.1.1)

and has the following form

g = �fadt
 dt+ f b�1dR 
 dR (3.1.2)

+f bR2d
2
d +

�nX
i=1

faig(i);

where M (2+d) is (2 + d)-dimensional space-time (d � 2), (Mi; g
(i)) is Ricci-at man-

ifold (g(i) is metric on Mi ), dimMi = Ni , i = 1; : : : ; �n; d
2
d is canonical metric on

d-dimensional sphere Sd ,

f = f(R) = 1�BR1�d; (3.1.3)

b = (1� a�
�nX
i=1

aiNi)=(d � 1); (3.1.4)

B = const, and the parameters a; a1; : : : ; a�n satisfy the relation

(a+
�nX
i=1

aiNi)
2 + (d� 1)(a2 +

�nX
i=1

a2iNi) = d: (3.1.5)

(Here the notations slightly di�er from those of ref. [36]). The metric (3.1.2) with the
relations (3.1.3)-(3.1.5) imposed satis�es the Einstein equations or, equivalently,

RMN [g] = 0: (3.1.6)

Some special cases of the solution (3.1.2)-(3.1.5) were considered earlier in the following
publications: [172,188,189] (d = 2; �n = 1;N1 = 1), [125,190] (d = 2; �n = 2; 3;N1 = : : : =
N�n = 1), [172] (d = 2; �n = 1), [191] ( �n = 1; a = [(1 � (d + N1)�1)=(1 � d�1)]1=2 ;
a1 = �a=(d+N1 � 1)); [173] ( �n = 2, N2 = 1), [171] (d = 2; �n is arbitrary).

It was shown in [36] that in the (2 + d)-dimensional section of the metric (3.1.2) a
horizon exists only in the trivial case: a � 1 = a1 = : : : = an (this proposition was also
suggested in [171]). We also note that the cosmological analogue of the solution [36] was
presented in [19], where the tree-generalizations of the solution were considered. (Such
tree-generalizations may be also constructed for spherically-symmetric case [36]).

In this section we consider an interesting special case of the solution [36]. This is the
n-time generalization of the Tangherlini solution. We note that the idea of the existence
of multidimensional domains with several times in the (multidimensional) Universe was
suggested by Sakharov in [193].
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The section is organized as following. In Sec. 3.2 the metric of the multitemporal solu-
tion is considered. The explicit expression for the Riemann tensor squared, corresponding
to this solution is presented. The proposition concerning the singularity of the solution
at R = L > 0 (L is the parameter) for any set of dimensionless parameters (ai) except
n "tangherlinian" sets is suggested. This proposition is proved for n = 2. In Sec. 3.3
the equations of the geodesics, corresponding to the solution are integrated. The notion
of the multitemporal horizon is introduced. It is proved that for all non-exceptional sets
of ai -parameters the multitemporal horizon is absent. In Sec. 3.4 the motion of the rel-
ativistic particle is considered. The multitemporal O(d + 1)- symmetric analogue of the
Newton's formula for this case is obtained. In multitemporal case the inertial and gravi-
tational masses are de�ned as matrices (or it may be de�ned also as tensors). In Sec. 3.5
the vacuum solution [36] is generalized on the electro-scalar- vacuum case for the model
with exponential scalar-electro-magnetic coupling. Some in�nite-dimensional generaliza-
tions of the solution (including in�nite-temporal and Grassmann-Banach analogues) are
presented.

3.2. The metric

We consider the special case of the solution (3.1.1)-(3.1.5) with �n = n�1 one-dimensional
internal spaces: Mi = R , g(i) = �dti
 dti , i = 1; : : : ; n� 1. Denoting t = tn and a = an
we get from (3.1.2)

g = �
nX
i=1

(1�BR1�d)aidti 
 dti (3.2.1)

+(1�BR1�d)b�1dR 
 dR + (1 �BR1�d)bR2d
2
d;

where

b = (1�
nX
i=1

ai)=(d � 1) (3.2.2)

and the parameters a1; : : : ; an satisfy the relations

(
nX
i=1

ai)
2 + (d � 1)

nX
i=1

a2i = d: (3.2.3)

The metric (3.2.1) with the parameters satisfying (3.2.2) and (3.2.3) is the solution of
the (n+d+1)-dimensional Einstein equations (or, equivalently, of the Ricci-atness eqs.
(3.1.6)).

The solution (3.2.1)-(3.2.3) is multitemporal (n-time) generalization of the Tangherlini
solution [167].

Let E(d; n) be the set of points a = (a1; : : : ; an) 2 Rn , satisfying the relation (3.2.3).
Clearly, that E(d; n) is ellipsoid. We denote the solution (3.2.1), corresponding to a 2
E(d; n), B 2 R by g = g(a;B). An interesting fact is that the metrics g(a;B) and
g(�a;�B) are equivalent (for any a 2 E(d; n) , B 2 R), i.e.
g(�a;�B) = '�g(a;B) (3.2.4)
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for some di�eomorphism '. This di�eomorphism ' = 'B is de�ned by the relations

' : (ti; R�; ��) 7! (ti; R; ��); Rd�1 = Rd�1
� +B: (3.2.5)

Remark 1. An analogous equivalence takes place for the metric (3.1.2).
Due to relation (3.2.4) it is quite su�cient to restrict our consideration by the case

B > 0 (the case B = 0 is trivial).
We introduce the following notations

T1 � (1; 0; : : : ; 0); : : : ; Tn � (0; : : : ; 0; 1); (3.2.6)

T � fT1; : : : ; Tng � E(d; n): (3.2.7)

We call the points (3.2.6) as Tangherlini points and the set (3.2.7) as Tangherlini set. The
metric (3.2.1) for a = Tk has a rather simple form

g(Tk; B) = g
(k)
T �X

i6=k
dti 
 dti; (3.2.8)

where g
(k)
T is the Tangherlini solution with the time variable t = tk , k = 1; :::; n. The

metric (3.2.8) is a trivial (cylindrical) extension of the Tangherlini solution with the time
tk . It describes an extended membrane-like (string-like for n = 2) object. Any section of
this object by hypersurface ti = ti0 = const, i 6= k , is the (2 + d)-dimensional black hole
[167,187], "living" in the time tk .

Singularity. The Riemann tensor squared for the metric (3.2.1) has the following
form

I[g] � RMNPQR
MNPQ = �I[g]=8f2(b�1); (3.2.9)

�I[g] = 16d(d � 1)R�4f�2 � 8d(d � 1)R�2f�1(b
f 0

f
+

2

R
)2

�d(bf
0

f
+

2

R
)4 + 2d[2b

f 00

f
� b(

f 0

f
)2 +

2(b+ 1)

R

f 0

f
]2

+
nX
i=1

f�a4i (
f 0

f
)4 + 2a2i [2

f 00

f
+ (ai � 1� b)(

f 0

f
)2]2g

+[d(b
f 0

f
+

2

R
)2 +

nX
i=1

a2i (
f 0

f
)2]2; (3.2.10)

where f 0 � df=dR and f is de�ned by (3.1.3). We denote L = LB � B1=(d�1) for B > 0.
The relation (3.2.10) may be obtained from the formula presented in the Appendix.

Proposition 1. Let B > 0 and a = (ai) 2 E(d; n) n T , i.e. the set of parameters a is
non-tangherlinian. Then the quadratic invariant (3.2.9) for the metric (3.2.1) g = g(a;B)
is divergent: I[g]!1, as R! L.

Proof. Here we prove the proposition for the case n = 2. (The case n > 2 will be
considered in a separate publication).

From eqs. (3.2.9)-(3.2.10) we get the following asymptotical formula (here n is arbi-
trary)

I[g] =
A

8
[f 0(L)]4[f(R)]�2b�2[1 +O(L�R)]; (3.2.11)
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as R ! L, where

A = A(a) = �db4 + 2db2 + (db2 +
nX
i=1

a2i )
2

+
nX
i=1

[�a4i + 2a2i (ai � 1� b)2]: (3.2.12)

The formula (3.2.11) is valid, when A 6= 0. We note that

(1� r)=(d � 1) � b � (1 + r)=(d � 1); (3.2.13)

where r �
q
dn=(d + n� 1) (see also Remark 2 below). It follows from (3.2.13) that

1 + b > 0 (3.2.14)

and consequently (see (3.2.11)) I[g]!1 as R! L, when

A 6= 0 (3.2.15)

Now, we prove the inequality (3.2.15) for n = 2 and a 2 E(d; n) n T . For n = 2 we have

A =
1

2
d(d + 1)b2 �A; (3.2.16)

where

�A = �(d� 1)(d+ 2)b2 + 8b + 8: (3.2.17)

Using inequalities (3.2.13) it is not di�cult to verify that �A = �A(b) > 0 (see also Remark
3 below). On the other hand (in the case n = 2) b = b(a) = 0 only for the tangherlinian
points a = (0; 1); (1; 0). So, the inequality (3.2.15) takes place for all a 2 E(d; 2) n T
(n = 2). The proposition 1 is proved for n = 2.

Remark 2. In the coordinates

�a1 = (a1 + : : :+ an)=
p
n;

�a2 = (a1 � a2)=
p
2;

�a3 = (a1 + a2 � 2a3)=
p
6; (n > 2) : : :

�an = (a1 + : : :+ an�1 � (n� 1)an)=
q
n(n � 1);

the ellipsoid equation (3.2.3) reads

(n+ d� 1)�a21 + (d� 1)
nX
i=2

�a2i = d: (3.2.18)

The inequalities (3.2.13) can be easily obtained from (3.2.18) and the relation

b = (1�pn�a1)=(d � 1): (3.2.19)
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Remark 3. The inequality �A > 0 may be proved, using (3.2.13) and the following
inequalities

1 +
q
2d=(d + 1) < 5=2 < b+(d� 1);

1�
q
2d=(d + 1) > �1=2 > b�(d� 1);

where b� = [4�
q
8d(d + 1)]=(d� 1)(d + 2) are zeros of the quadratic polynomial �A(b).

Thus for n = 2, a 2 E(d; 2) n T , B > 0 the metric (3.2.1) g = g(a;B) is singular at
R = L.

In the case a 2 T , B > 0 (n is arbitrary) the metric (3.2.1) g = g(a;B) is regular for
R > 0 and

I[g] = B2R�2�2dd2(d2 � 1): (3.2.20)

Remark 4. In this case the metric has form (3.2.8). We remind that the regularity of the
Tangherlini metric for R > 0 may be easily seen using the coordinates

�t = t+
Z
dx'(x)(f(x))�1; �R = R+

Z
dx('(x))�1(f(x))�1; (3.2.21)

where '(x) = (L=x)(d�1)=2 .

3.3. The geodesic equations

We consider the geodesic equations for the metric (3.2.1)

�xM + �MNP [g] _x
N _xP = 0: (3.3.1)

Here and below xM = xM(� ) and _xM = dxM=d� .
These equations are equivalent to the Lagrange equations for the Lagrangian

L =
1

2
gMN(x) _x

M _xN

=
1

2
[f b�1( _R)2 + f bR2�ij(�) _�

i _�j �
nX
i=1

fai( _ti)2]: (3.3.2)

where the function f = f(R) is de�ned in eq. (3.1.3) and

� = d�1 
 d�1 + sin2 �1d�2 
 d�2 + : : :+ sin2 �1 : : : sin2 �d�1d�d 
 d�d (3.3.3)

is standard metric on Sd . Here 0 < �1; : : : ; �d�1 < � , 0 < �d = ' < 2� .
The complete set of integrals of motion for the Lagrange system (3.3.2) is following

fai _ti = "i; (3.3.4)

f bR2 _' = j; (3.3.5)

f b�1( _R)2 + j2f�bR�2 �
nX
i=1

("i)2f�ai = 2EL (3.3.6)
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i = 1; :::; n. We put here �1 = : : : = �d�1 = �
2 . (This may be done for any trajectory by

a suitable choice of coordinate system.) The radial equation

(f b�1 _R): +
j2

2
(f�bR�2)0 � 1

2
( _R)2(f b�1)0 � 1

2

nX
i=1

("i)2(f�ai)0 = 0 (3.3.7)

(here (:)0 = d(:)=dR) is generated by the Lagrangian

LR =
1

2
[f b�1( _R)2 � j2f�bR�2 +

nX
i=1

("i)2f�ai ]: (3.3.8)

We note, that the case 2EL = 2L > 0 in (3.3.6) correspond to a tachion.
Multitemporal horizon. Here we consider the null geodesics. Putting EL = 0 in

(3.3.6) we get for a light "moving" to the center

_R = �
vuut nX
i=1

("i)2f1�b�ai � j2f1�2bR�2 (3.3.9)

and consequently

ti � ti0 = �
Z R

R0

dx
"i[f(x)]�aiqPn

i=1("
i)2[f(x)]1�b�ai � j2[f(x)]1�2bx�2

; (3.3.10)

i = 1; : : : ; n.
De�nition. Let B > 0, " = ("i) 6= 0 and a 2 E = E(d; n). We say that the "-horizon

takes place for the metric g(a;B) at R = L � B1=(d�1) if and only if

jjt� t0jj �
nX
i=1

jti � ti0j ! +1; (3.3.11)

as R! L for all t0 and j .
Proposition 2. Let B > 0, and a 2 E = E(d; n) n T . Then the "-horizon for the

metric g(a;B) at R = L is absent for any " 6= 0.
Proof. We put j = 0. It is su�cient to prove that all integrals in (3.3.10) are

convergent, when R! L . The integrals in (3.3.10) are convergent only if

si = �ai � 1

2
min"(1� b� ai) > �1 (3.3.12)

for all i 2 K" � fjj"j 6= 0g. Here
min"(ui) � minfuiji 2 K"g: (3.3.13)

Indeed, the integrand in the i-th integral in (3.3.10) behaves like "i(L � x)si as x! L.
The set of inequilities (3.3.12) may be rewritten as following

2ai < max"(ai) + 1 + b; (3.3.14)

for all i 2 K" , where max" in de�ned analogously to min" . It can be easily veri�ed that
the set of inequalities (3.3.14) is equivalent to the following inequality

max"(ai) < 1 + b: (3.3.15)
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This inequlity follows from

max(ai) < 1 + b: (3.3.16)

Now we prove (3.3.16) for all a 2 E n T . Let us consider the tangent hypersurface to
the ellipsoid E in the point T1 = (1; 0; : : : ; 0). The equation for this hypersurface has
following form

d(a1 � 1) + a2 + : : :+ an = 0: (3.3.17)

It is clear, that for all a 2 E n T1
d(a1 � 1) + a2 + : : :+ an < 0; (3.3.18)

or, equivalently,

a1 < 1 + b: (3.3.19)

In analogous manner it may be proved that

ai < 1 + b: (3.3.20)

for all a 2 E n Ti , i = 1; :::; n. The inequalities (3.3.20) imply (3.3.16). The proposition
is proved.

Now we consider the case a 2 T . Without loss of generality we put a = T1 =
(1; 0; : : : ; 0). It is not di�cult to verify that in this case the "-horizon takes place only if
"1 6= 0.

3.4. Relativistic particle

Here we consider the motion of the relativistic particle in the gravitational �eld, corre-
sponding to the metric (3.2.1). The Lagrangian of the particle is well-known

L1 = �m
q
�gMN(x) _xM _xN ; (3.4.1)

where m is the mass of the particle ( _xM = dxM=d� ).
The Lagrange equations for (3.4.1) in the proper time gauge

gMN(x) _x
M _xN = �1 (3.4.2)

coincide with the geodesic equations (3.3.1). In this case (Ei) = (m"i) is the energy
vector and J = mj is the angular momentum (see (3.3.4) and (3.3.5)). For �xed values of
"i the (d+1)-dimensional part of the equations of motion is generated by the Lagrangian

L� =
m

2
[f b�gT;��(x) _x

� _x� +
nX
i=1

("i)2f�ai ]; (3.4.3)

where �gT is the space section of the Tangherlini metric.
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Now, we restrict our consideration by the non-relativistic motion at large distances:
RgLB . In this approximation: ti = "i�;

Pn
i=1("

i)2 = 1: It follows from (3.4.3) that in this
approximation we get a non-relativistic particle of mass m, moving in the potential

V = �m
2

nX
i=1

("i)2
aiB

Rd�1 = �G
m("iMij"

j)

Rd�1 ; (3.4.4)

where G is the gravitational constant and

Mij = ai�ijB=2G; (3.4.5)

are the components of the gravitational mass matrix.
It is interesting to note that the relation (3.4.4) may be rewritten as following

V = �Gtr(MMI )

Rd�1 (3.4.6)

where MI = (m"i"j) is the inertial mass matrix of the particle.
The solution (3.2.1) may be also rewritten in the matrix form

g = �[(1�BR1�d)A]ijd�ti 
 d�tj

+(1�BR1�d)b�1dR 
 dR + (1 �BR1�d)bR2d
2
d; (3.4.7)

where A is a real symmetric n� n-matrix satisfying the relation

(trA)2 + (d� 1)tr(A2) = d: (3.4.8)

and

b = (1� trA)=(d� 1): (3.4.9)

Here xA � exp(A lnx) for x > 0. The metric (3.4.7) can be reduced to the metric
(3.2.1) by the diagonalization of the A-matrix: A = ST (ai�ij)S , STS = 1n and the
reparametrization of the time variables: �ti = Sijt

j . In this case the gravitational mass
matrix is

(Mij) = (AijB=2G): (3.4.10)

We may also de�ne the gravitational mass tensor as

M =Mijd�t
i 
 d�tj : (3.4.11)

We call the extended object, corresponding to the solution (3.4.7)-(3.4.9) as multi-
temporal hedgehog. At large distances Rd�1gB this object is described by the matrix
analogue of the Newton's potential

�ij = �1

2
BR1�dAij = �GR1�dMij: (3.4.12)

Clearly that this potential for the diagonal case (3.2.1) A = ai�ij is a superposition of the
potentials, corresponding to "pure" black hole states (3.2.8).
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Remark 5. It is interesting to note that the formula

A = QiR
1�ddti (3.4.13)

describe the multitemporal O(d+ 1)-analogue of the well-known electrostatic solution of
the Maxwell equations. In this case the charge Q = (Qi) is a vector (or we may also
de�ne the charge as the 1-form Qidt

i ).
Remark 6. Let us consider the solution (3.2.1) for n = 2 with a1 > 0 and a2 < 0. In

this case under a suitable choice of the "i -parameters a point R > L, may be a libration
point, i. e. the point of equilibrium. In this case

a1("
1)2 + a2("

2)2[f(R)]a2�a1 = 0 (3.4.14)

and "2 6= 0. An analogous situation takes place for arbitrary n, when there exist positive
and negative ai -th parameters.

3.5. Some generalizations

Here we present some generalizations of the considered above solutions. First, we consider
the model described by the following action

S =
Z
dDx

q
jgjf 1

2�2
R[g]� 1

2�2
@M'@N'g

MN � 1

4
exp(2�')FMNF

MNg; (3.5.1)

where g = gMNdx
M 
 dxN is the metric , F = 1

2
FMNdx

M ^ dxN = dA is the strength
of the electromagnetic �eld and ' is the scalar �eld. Here � is constant. The action
(3.5.1) describes for certain values of parameters � and D a lot of interesting physical
models including standard Kaluza-Klein theory, dimensionally reduced Einstein-Maxwell
theory, supergravity theories (see, for example [197]). We present the spherically-O(d+1)-
symmetric solutions of the �eld equations corresponding to the action (3.5.1) with the
topology (3.1.1). The solution is the following

g = �f (D�3)=A(�)1 f2�' dt
 dt

+ f
�1=A(�)
1 (f�12 f2�' f

2)1=(1�d)[f2du
 du+ d
2
d]

+
�nX
i=1

f
�1=A(�)
1 exp(2Aiu+ 2Di)g

(i); (3.5.2)

F = Qf1du ^ dt; (3.5.3)

exp' = f
(2�D)�=2A(�)
1 f': (3.5.4)

In (3.5.2)-(3.5.4)

f1 = f1(u) = C1(D � 2)=�2Q2A(�) sinh2(
q
C1(u� u1)); (3.5.5)

f2 = f2(u) = C2=(d� 1)2 sinh2(
q
C2(u� u2)); (3.5.6)

f' = f'(u) = exp(Bu+D'); (3.5.7)

f = f(u) = exp[
�nX
i=1

Ni(Aiu+Di)]; (3.5.8)

A(�) = D � 3 + �2(D � 2); (3.5.9)



CBPF-MO-002/95 113

and Q 6= 0, Di , D' , u1 , u2 are constants and the parameters C1 , C2 , B , Ai satisfy the
the relation

C2d

d� 1
=

C1(D � 2)

D � 3 + �2(D � 2)
+B2(1 + �2)

+
1

d� 1
(�B +

�nX
i=1

AiNi)
2 +

�nX
i=1

A2
iNi: (3.5.10)

The solution (3.5.2)-(3.5.10) generalizes the well-known Myers-Perry charged black hole
solution [187] for the model (3.5.1) on the case of �n internal Ricci-at spaces. (We remind
that (Mi; g

(i)) is Ricci-at space of dimension Ni , i = 1; : : : ; �n .) The case d = 2 was
considered previously in [165-166]. Some special cases of this solution were considered
also in [196-197]. For �n = n � 1, Mi = R , g(i) = �dti 
 dti , i = 1; : : : ; n � 1, t = tn

we get from (3.5.2) the multitemporal generalization of the solution [187] for the action
(3.5.1).

In the zero charge case F = 0 we have

g = � exp(2A�1u+ 2D�1)dt
 dt

+ exp[2(1� d)�1
X
�

N�(A�u+D�)]f
1=(d�1)
2 [f2du
 du+ d
2

d]

+
�nX
i=1

exp(2Aiu+ 2Di)g
(i); (3.5.11)

' = Bu+D': (3.5.12)

The integration constants satisfy the relation

C2d

d� 1
=

1

d� 1
(
X
�

A�N�)
2 +

X
�

A2
�N� +B2: (3.5.13)

Hear � = �1; 1; : : : ; n; N�1 = 1.
The solution (3.2.1)-(3.2.3) may be also generalized on the in�nite-time case: n =1.

In this case the following restriction on the parameters ai should be imposed (see also
[19])

1X
i=1

jaij < +1: (3.5.14)

This relation implies
1X
i=1

jaij2 < +1: (3.5.15)

In this case the metric (3.2.1) is correctly de�ned on a proper in�nite-dimensional (Ba-
nach) manifold and satis�es the Einstein equations. We note that an in�nite-dimensional
version of the Einstein gravity was considered earlier by Kalitzin [192].

Remark 7. Another in�nite-dimensional extension of the considered here solution
may be obtained if the �eld of real numbers R is replaced by the even part G0 of the
in�nite-dimensional Grassmann-Banach algebra G = G0 + G1 [198-199]. In this case
all coordinates and the parameters of the solution (3.2.1) are elements of G0 . (The d-
dimensional sphere with the metric on it should be replaced by its trivial G0 -extensions.)
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3.6. Conclusion

In this paper the multitemporal analogue of the Tangherlini solution was considered. It
was shown that in the case of two time directions the solution describes a naked singularity
for any non-trivial (non-tangherlinian) set of parameters. We have integrated the geodesic
equations for the considered solution. It was obtained the multitemporal analogue for the
Newton's formula ( eq. (3.4.6)), describing the interaction between the massive particle
and the multitemporal extended object ("multitemporal hedgehog"), corresponding to
the solution. It was shown that in the multitemporal case the inertial and gravitational
masses are matrices. (It may be de�ned also as tensors). We have also obtained the
generalization of the Myers-Perry charged black hole solution on the case of a chain of
Ricci-at internal spaces (this solution contains the multitemporal analogue as a special
case).

Appendix

Here we present the expression for the tensor Riemann squared (3.2.9) corresponding
to the cosmological metric

g = �B(t)dt
 dt+
nX
i=1

Ai(t)g
(i);

de�ned on the manifold M = R�M1 � : : :�Mn , where g(i) is a metric on the manifold
Mi , dimMi = Ni , i = 1; : : : ; n. By a straightforward calculation the following relation
was obtained

I[g] =
nX
i=1

fA�2
i I[g(i)] +A�3

i B�1 _A2
iR[g

(i)]� 1

8
NiB

�2A�4
i

_A4
i

+
1

4
NiB

�2(2A�1
i

�Ai �B�1 _BA�1
i

_Ai �A�2
i

_A2
i )
2g+ 1

8
B�2[

nX
i=1

Ni(A
�1
i

_Ai)
2]2:
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4. Vacuum Static, Axially Symmetric Fields in D-Dimensional
Gravity

4.1. Introduction

Spherically symmetric static solutions of multidimensional gravity have been considered
by many authors with a goal to study possible observational windows to extra dimensions
[21,77,78]. Among such windows one can name possible variations of fundamental physical
constants [50], deviations from Newton's and Coulomb's laws and modi�ed properties of
black holes and gravitational radiation as compared with the conventional theory.

Another class of multidimensional models, to be discussed in this section, is the class
of axially symmetric models, including spherically symmetric ones as a special case.

Although static, axially symmetric (SAS) con�gurations are a less popular object of
gravitational studies than stationary ones (used for describing �elds due to rotating bod-
ies), their properties are of much interest as well. In many papers such solutions are sought
and studied, see, for instance, [201-203] and references therein. We will study monopole
SAS vacuum con�gurations in multidimensional gravity and �nd some features of inter-
est, in particular, membrane and string type sources of �elds possessing no curvature
singularities.

We consider D -dimensional general relativity and start from the action

S =
Z
dDx

q
Dg(DR+ Lm) (4.1.1)

where Lm is a matter Lagrangian, in a space with the metric

ds2D = g��dx
�dx� + e2�1ds21 (4.1.2)

where Greek indices range from 0 to 3 and �1(x�) is a scale factor of an internal N -
dimensional space with a Ricci-at ds21 independent of x� .

In a 4-dimensional formulation

S =
Z
d4x

q
4ge�

h
R�

� 1
N
� 1

�
���� + Lm

i
(4.1.3)

where � = N�1 and R is the 4-curvature corresponding to g�� .
There are other 4-dimensional formulations of the theory, connected with (4.1.3) by

conformal mappings (conformal gauges). The gauge (4.1.3) corresponds to the original
theory. The so-called Einstein gauge, obtained from (4.1.3) by the conformal mapping

g�� = e�g�� ; (4.1.4)

is more convenient for solving the �eld equations since the curvature enters into the
Lagrangian with a constant factor:

S =
Z
d4x

q
4ge�[R + �0g

������ + e��Lm];

�0 = 1=2 + 1=N: (4.1.5)

where R is the scalar curvature corresponding to g�� . Another important gauge, the
so-called atomic one, in which a test particle moves along geodesics, is de�ned by

g��� = e�=2g�� (4.1.6)
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and is most suitable for interpretaion of measurements, e.g., in the Solar system. However,
for studies of singularities and topology the original metric g�� must be used. For more
detailed discussion of the notion of systems of measurement, closely connected with that of
conformal gauges, see Ref. [50] and, as applied to multidimensional theory, Refs.[21,204-
206].

In what follows we use the Einstein gauge to �nd the metric (4.1.4) for vacuum SAS
con�gurations. So we start from the equations due to (4.1.5) with Lm = 0:

R�� = ��0�;��;� ; (4.1.7)

2� = 0 (4.1.8)

where R�� and 2 are the Ricci tensor and the D'Alembert operator corresponding to
g�� .

Vacuum D -dimensional equations are thus reduced to scalar-vacuum ones in 4 dimen-
sions. Although such SAS con�gurations were repeatedly considered [202,212], it makes
sense to return to them to reveal some new features, in particular, those connected with
higher dimensions.

4.2. Field equations for axial symmetry

The SAS 4-metric in the Einstein gauge (4.1.4) may be written in the Weyl canonical
form [203]

ds2 = e2�dt2 � e�2�[e2�(d�2 + dz2) + �2d�2] (4.2.1)

The �eld equations then can be written as

�� = 0; (4.2.2)

�� = 0; (4.2.3)

�z = �(2���z + �0���z) (4.2.4)

�� = �[�2� � �2z + 1
2�0�

2
� � �2z)] (4.2.5)

where the indices z and � denote the partial derivatives @� and @z , respectively, and �
is the \at" Laplace operator in the cylindrical coordinates:

� = ��1@�(�@�) + @z@z:

The integrability condition for (4.2.4) and (4.2.5) is satis�ed automatically.
Following the example of [202,206], let us seek solutions in the new coordinates (x; y),

connected with � and z by

�2 = L2(x2 + ")(1 � y2); z = Lxy (4.2.6)

where L is a �xed positive constant and " = 0; �1, so that x and y are spherical (" = 0),
prolate spheroidal (" = �1), or oblate spheroidal (" = +1) coordinates, respectively. The
Laplace operator � acquires the form

� = @x(x
2 + ")@x + @y(1� y2)@y: (4.2.7)
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Separating the variables in Eq.(4.2.3), i.e., putting �(x; y) = �(x) (y), one obtains

[(x2 + ")�x]x + �� = 0; (4.2.8)

[(1� y2) y]y � � = 0 (4.2.9)

where � is the separation constant. Solutions to (4.2.9) �nite on the symmetry axis
� = 0 are the Legendre polynomials Pl(y), while � = l(l + 1) with l = 0; 1; 2; : : :. The
corresponding solutions to (4.2.8) are combinations of Legendre functions of the �rst and
second kinds.

Eq.(4.2.2) is solved in a similar way.
This is the way to obtain solutions of arbitrary multipolarity l or even superpositions

of di�erent multipolarities: after writing out the solutions to the linear equations (4.2.3)
and (4.2.2), Eqs. (4.2.4) and (4.2.5) are integrable by quadratures. In what follows,
however, we restrict ourselves to l = 0 (monopole solutions).

4.3. Monopole solutions

The monopole solution to Eq.(4.2.9) may without loss of generality be written in the form

e = [(1 + y)=(1 � y)]c1; c1 = const: (4.3.1)

Regularity at y = �1 then requires c1 = 0, so that � = �(x). Eq.(4.2.8) takes the
form (x2 + ")d�=dx = const. Its integration leads to the following expressions for �(x)
satisfying the asymptotic atness condition:

� =

8>><>>:
�1

2
b ln x+1

x�1 ; " = �1;
�b=x; " = 0;

�b cot�1 x; " = +1:

(4.3.2)

In a similar way �(x) is found:

� =

8><>:
�1

2s ln
x+1
x�1 ; " = �1;

�s=x; " = 0;
�s cot�1 x; " = +1:

(4.3.3)

Integrating (4.2.4) and (4.2.5), one obtains the expressions for �(x; y) satisfying the as-
ymptotic atness condition �(1; y) = 0

e2� =

8><>:
(x2 � 1)K(x2 � y2)�K ; " = �1;
exp[�K(1� y2)=x2]; " = 0;
(x2 + y2)K(x2 + 1)�K ; " = +1

(4.3.4)

with K = 1
2
(2b2 + �0s

2) � 0.
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4.4. General properties of the solutions

The solutions have been found under the boundary condition providing regularity (local
euclidity) at the symmetry axis � = 0, or y = �1.

At spatial in�nity the solutions are asymptotically spherically symmetric. Indeed,
assuming y = cos � where � is the conventional polar angle, the SAS line element (4.2.1)
transformed by (4.2.6), is spherically symmetric under the condition

e2� = (x2 + ")=(x2 + "y2): (4.4.1)

The condition (4.4.1) holds for all the solutions in the limit x ! 1 where they have
Schwarzschild asymptotics. A particular expression for the Schwarzschild mass in terms
of the integration constants is conformal gauge-dependent. Recalling that the mass is
most meaningfully de�ned in the atomic gauge (4.1.6), one can write:

g�tt � 1 � 2GM=r; r � Lx;

GM = (b� s=4)L (4.4.2)

As for the whole space, the condition (4.4.1) is ful�lled under the additional require-
ment

K" = 1
2(2b

2 + �0s
2)" = �1: (4.4.3)

As b and s are real, this condition can hold only for " = �1. Quite naturally, the
solution with " = �1 constrained by (4.4.3) coincides with the well-known generalized
Schwarzschild solution [171] with the (4 +N)-dimensional metric (4.1.2)

ds2D =
�
1� 2k

R

�a0
�
�
1� 2k

R

��a0�Na1h
dR2 +R2

�
1 � 2k

R

�
d
2

i
+
�
1� 2k

R

�a1
ds21;

Na21 + a20 + (a0 +Na1)
2 = 2 (4.4.4)

where the variable R and the integration constants are connected with ours in the fol-
lowing way:

x+ 1 = R=k; Na1 = �s; a0 = b+ s=2; K = L: (4.4.5)

In [21,78] (see also references therein) solutions with a chain of Ricci-at internal spaces,
generalizing [171], are given; still more general spherical solutions with massless gauge
and dilaton �elds are discussed, e.g., in [171,185,186,205-207].

The general solution with " = �1 has a naked singularity at x = 1 in all cases,
except the spherically symmetric one when, in addition, the scalar �eld � is constant
(or the extra dimensions are frozen), in agreement with [78]. The singularity at x = 1
is anisotropic in all cases except (4.4.4): the metric coe�cients behave in di�erent ways
when the singularity is approached from di�erent directions. For some sets of integration
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constants the path to the singularity y = const; � = const; x! 1 has an in�nite length;
however, the explicit conditions of such a behavior are conformal gauge-dependent.

In the case " = 0 the solution generalizes the well-known Curzon vacuum solution of
general relativity [208], extensively studied in a number of papers, see, e.g., Ref.[209] and
references therein. The metric can be written in the form (4.2.1) with

� = �b=x; 2� = �K�2=(L2x4); Lx =
q
�2 + z2: (4.4.6)

In the special case s = 0 our solution coincides with the Curzon one up to a re-de�nition
of constants.

The solution is singular at x = 0 in all cases except s = b = 0 when it reduces to at
space-time. The singularity is anisotropic, such that even the �niteness or in�niteness of
some metric coe�cients can depend on the direction of approach. As shown in [209], in
the Curzon case the true nature of the singularity is revealed in some new coordinates,
allowing one to penetrate beyond x = 0 (in our notation). It turns out that curvature
singularity x = 0 has the shape of a ring and some spatial geodesics can pass through it
to reach a second spatial in�nity on the other side of the ring.

This quasi-wormhole structure is preserved for the present, more general solution,
although the exact conditions when this is the case or, on the contrary, x = 0 is just a
singular center, is conformal gauge-dependent.

A further study of this solution, despite its possible interest, is beyond the scope of
this paper. We will instead pay more attention to the solution with " = +1, which has
no curvature singularity and therefore seems more promising; and although a preferred
conformal gauge does exist (the one in which the original D -dimensional theory is for-
mulated), it is remarkable that the most important features of the con�guration to be
discussed do not depend on conformal factors of the form exp(const� �).

4.5. Membranes, strings and wormholes

The non-existence of a curvature singularity for " = +1 does not necessarily mean that
the space-time is globally regular. Let us study the limit x! 0 in some detail.

The functions �; � and e� are �nite at x = 0.
The curve x = 0; y = 0 as viewed in the coordinates (�; z) lies in the plane z = 0

and forms a ring � = L of �nite length (Fig. 20). In the original conformal gauge (4.1.2)
the ring radius is r0 = L exp(b�=2 + s�=4).

The surface x = 0; y > 0 is a disk bounded by the above ring and parametrized by
the coordinates y and �. Its 2-dimensional metric is

dl2disk = L2e�2���[(1� �2)Kd�2 + �2d�2] (4.5.1)

where � =
p
1 � y2 . This metric is at if and only if K = 0, i.e., when the solution is

trivial. Otherwise the disk is curved but has a regular center at y = 1 (the upper small
black circle in Fig. 20). The limit x! 0 corresponds to approaching the disk from the
half-space z > 0.

Another similar disk, the lower half-space one, corresponds to y < 0. The two disks
are naturally identi�ed when our oblate spheroidal coordinates are used in at space
(obtained here in the case K = 0).
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Figure 20: Axial section of the neighborhood of the ring x = y = 0. The points A and
B , marked by big black circles, belong to the ring, the thick lines connecting them show
the upper and lower disks x = 0; y>

<
0.

A possible identi�cation of points (x = 0; y = y0; � = �0) and (x = 0; y =
�y0; � = �0), where �0 is arbitrary and 0 < y0 � 1, leads to a �nite discontinuity of
the extrinsic curvature of the surfaces identi�ed, or, physically, to a �nite discontinuity of
forces acting on test particles. Such a behavior corresponds to a membrane-like matter
distribution. Thus a source of the global vacuum (or scalar-vacuum) gravitational �eld
may be a membrane bounded by the ring x = y = 0.

There is another possibility, with no �eld discontinuity across the surface x = 0.
Namely, one can continue the (x; y) coordinates to negative x by just replacing in (4.3.2)
and (4.3.3) the function cot�1 x (unde�ned for x < 0) by �=2� tan�1 x, coinciding with
the former at x > 0. This results in the appearance of another \copy" of the 3-space, so
that a particle crossing the regular disk x = 0 along a trajectory with �xed y , threads
a path through the ring and can ultimately get to another at spatial in�nity, with a
di�erent asymptotic value of � and � :

�(+1) = 0; �(�1) = ��b;
�(+1) = 0; �(�1) = ��s; (4.5.2)

The function � is even with respect to x and hence coincides at both asymptotics. We
obtain a wormhole con�guration, nonsymmetric with respect to its \neck" x = 0, having
no curvature discontinuities, except maybe the ring x = y = 0.

It now remains to study the geometry near the ring. To this end let us consider a
section of the ring by an (x; y) surface at �xed � and small x and y . Its 2-dimensional
metric near the point x = y = 0 is

dl2(x;y) = (x2 + y2)K+1(dx2 + dy2): (4.5.3)

This metric is at, as is directly veri�ed by the following transformation: introduce the
polar coordinates r and  (x = r cos , y = r sin ) and further transform them to �
and � by the formulas

r = [(K + 2)�]1=(K+2);  = �=(K + 2): (4.5.4)
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The result is

dl2(x;y) = r2K+2(dr2 + r2d 2) = d�2 + �2d�2 (4.5.5)

Thus we have above all assured that the metric near the ring x=y=0 is locally at.
However, it is locally at on the ring itself only if the proper radius-circumference relation
near the origin (the point A or B in Fig. 20) in (4.5.5) holds, i.e., if � is de�ned on a
segment of length 2� . Let us �nd out the � range.

Given x > 0, the polar angle  is de�ned on the segment [��=2; �=2], hence � 2
[���K�=2; �+K�=2]. Consequently, the local atness condition is ful�lled on the ring
only in the trivial case K = 0. Identifying the points � = �� and returning to the (x; y )
coordinates, we then obtain at space-time provided with oblate spheroidal coordinates
with the single parameter L.

For x > 0; K > 0 there is an excess polar angle, the situation opposite to a top-
of-a-cone singularity. Such singularities are conventionally interpreted as cosmic strings,
although in those objects a de�cient rather than excessive polar angle range is considered.
One can conclude that a possible source of the vacuum or scalar-vacuum gravitational
�eld is a disk membrane bounded by a special kind of string.

In the wormhole case x can have either sign, hence

 2 [��; �] ) � 2 [�(2 +K)�; (2 +K)�]: (4.5.6)

Thus the axially symmetric wormhole solution contains a string-like ring singularity with
a polar angle excess greater than 2� .

The excessive polar angle can have another mathematical meaning. Namely, if the
excess is a multiple of 2� , the singularity behaves like a branching point in a Riemannian
surface of an analytic function of a properly de�ned complex variable. In our case the
variable is � = � + i� and the analytic function is �1=(K+2) . Conformal mappings with
analytic functions represent a natural way of regularizing metrics like (4.5.3); this method
was indeed used in similar situations in [205,206,210,211] where the relevant analytic func-
tion was logarithmic and the branching multiplicity was potentially (without additional
identi�cations) in�nite.

If one postulates that the \string" should behave as a branching point, the integrality
condition (K = integer for (4.5.6)) is a quantization-type condition for the parameters of
the solution. For instance, in the case s = 0, i.e., a purely vacuum con�guration (with
maybe trivial extra dimensions), the mass is determined by GM = bL and K = b2 , so
that, given L is a �xed length, the spectrum of masses has the form GM = L

p
K where

K is a positive integer.

4.6. Concluding remarks

The results described appear from solving the �eld equations for pure vacuum or scalar
vacuum in conventional general relativity as well as multidimensional gravity. One can
conclude that SAS con�gurations can have nontrivial structures; those free of curvature
singularities are in our view of greatest physical interest. Notably the singularities in
SAS solutions are naked, except special spherically symmetric cases (for the vacuum
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case see (4.4.4) for a1 = 0). For general relativity this is a manifestation of the well-
known uniqueness or no-hair theorems; it would be, however, of interest to analyze the
situation in dilaton gravity for which spherically symmetric black-hole and non-black-
hole solutions are known (see, e.g., [205]) and SAS ones are either known [206], or can be
readily obtained, for instance, in D dimensions with Ricci-at internal spaces.

The above solutions can be of interest for describing late stages of gravitational collapse
and/or cosmological dark matter. Their monopole nature probably means that they
cannot decay through gravitational-wave emission.

Other generalizations of the present solutions, which are either known or easily ob-
tainable by the known methods and are yet to be investigated in detail, are those with
pure imaginary, nonminimally coupled and multiple scalar �elds and/or multiple internal
spaces.



Chapter 3

Quantum Multidimensional Models.

Wormholes

1. Multidimensional Classical and QuantumWormholes in Mod-
els with Cosmological Constant

1.1. Introduction

In quantum cosmology instantons, solutions of the classical Einstein equations in Euclid-
ean space, play an important role giving the main contributions to the path integral [1].
Among them classical wormholes are of special interest, because they are connected with
processes changing the topology of the models [51]. We remind that classical wormholes
are usually Riemannian metrics consisting of two large regions joined by a narrow throat
(handle). They exist for special types of matter [51,214] and do not exist for pure grav-
ity. In quantum cosmology it is generally assumed that on Planck scale processes with
topology changes should take place. For this reason Hawking and Page [34] introduced
the notion of quantum wormholes as a quantum extension of the classical wormhole para-
digma. They proposed to regard quantum wormholes as solutions of the Wheeler-DeWitt
(WDW) equation with the following boundary conditions:

(i) the wave function is exponentially damped for large spatial geometry,
(ii) the wave function is regular when the spatial geometry degenerates.
The �rst condition expresses the fact that space-time should be Euclidean at spatial

in�nity. The second condition should reect the fact that space-time is nonsingular when
spatial geometry degenerates. For example, the wave function should not oscillate an
in�nite number of times.

The given approach extends the number of objects which can be treated as wormholes
[226-230].

We believe that for the description of quantum gravitational processes at high ener-
gies the multidimensional approach is more adequate. Modern theories of uni�ed physical
interactions use ideas of hidden (or extra) dimensions. In order to study di�erent phe-
nomena at early stages of the universe one should use these theories or at any rate models
keeping their main characteristics. But more reliable conclusions may be done only on
the basis of exact solutions which are usually obtained in rather simple cases.
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Therefore, at the beginning we consider a cosmological model with n (n > 1) Einstein
spaces containing a massless minimally coupled scalar �eld and a cosmological constant
�. The gauge covariant form of the WDW equation was proposed in [15]. This model
is integrable in the case with only one of the Einstein spaces being not Ricci-at and
vanishing cosmological constant. The general properties of this particular model were
investigated in [20] while classical as well as quantum wormhole solutions were found for
di�erent models in [231-232]. (In [37] particular integrable cases with milticomponent
perfect uid were considered).

The present section is devoted to the case of nonzero cosmological constant. For
the model with one space of positive constant curvature in four dimensional space-time
with cosmological constant and axionic matter (which is equivalent to a free minimally
coupled scalar �eld, see, for example, [51] and the paper by Brown et al. in [219]) classical
wormhole solutions were obtained in [51,233]. In the case of four dimensional space-time
with nontrivial topology IR � S1 � S2 and non-zero cosmological constant this type of
solution exists, too [234].

Here, we investigate the case with at least one of the spaces, say M1 being Ricci-at.
If all the other spaces Mi; i = 2; : : : ; n are also Ricci-at this model is fully integrable in
the classical [19] as well as in the quantum cases [15]. For � < 0 a family of quantum
wormhole solutions with continuous and discrete spectra exist. Classical wormholes can
be found in this case only in the presense of a scalar �eld. In the presence of a scalar
�eld classical wormhole solutions exist also for another particular case with �ne tuning
of the parameters of the model, if � < 0 and all Mi; i = 2; : : : ; n are not Ricci-at and
have the same sign of the curvature. In this case only M1 has a dynamical behaviour
and is considered as our external space. All the other internal spaces Mi; i = 2; : : : ; n
are freezed with �xed scale factors a(0)i which are �ne tuned to values determined by
the cosmological constant. This type of solutions belongs to the class of models with
spontaneous compacti�cation. In the case of models without a cosmological constant and
with only one non-Ricci-at factor space solutions with spontaneous compacti�cation were
also found in [235].

We would like to note that solutions of the WDW equation in four dimensional models
with � 6= 0 and with a conformal scalar �eld were �rst obtained in [236] and [237] respec-
tively (see also [50]). They include possibly the �rst quantum wormhole type solutions in
four dimensions as well as DeWitt's solution for the Friedman universe with dust (1967).
Vacuum quantum cosmological solutions in four dimensions may be found in [38]. The
path integral approach to quantum cosmology [213] for models with cosmological constant
in four and �ve dimensions with nontrivial topology was developed in [239-244].

The section is organized as follows. In section 1.2 the general description of the models
considered is given. In section 1.3 classical and quantum wormholes are obtained for all
spaces being Ricci-at. In section 1.4 classical wormholes are considered in the model
with spontaneous compacti�cation of extra dimensions. Conclusions complete the paper.
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1.2. GENERAL DESCRIPTION OF THE MODEL

The metric of the model

g = �exp[2(� )]d� 
 d� +
nX
i=1

exp[2�i(� )]g(i); (1.2.1)

is de�ned on the manifold

M = IR�M1 � : : :�Mn; (1.2.2)

where the manifold Mi with the metric g(i) is an Einstein space of dimension di , i.e.

Rmini [g
(i)] = �ig(i)mini

; (1.2.3)

i = 1; : : : ; n; n � 2. The total dimension of the space-time M is D = 1 +
Pn
i=1 di .

Here we investigate the general model with cosmological constant � and a homoge-
neous minimally coupled �eld '(t) with a potential U(').

The action of the model is adopted in the following form

S =
1

2

Z
dDx

q
jgjfR[g]� @M'@N'g

MN � 2U(') � 2�g+ SGH ; (1.2.4)

where R[g] is the scalar curvature of the metric g = gMNdx
M 
 dxN and SGH is the

standard Gibbons-Hawking boundary term [245]. The �eld equations, corresponding to
the action (1.2.4), for the cosmological metric (1.2.1) in the harmonic time gauge  �Pn
i=1 di�

i are equivalent to the Lagrange equations, corresponding to the Lagrangian

L =
1

2

nX
i;j=1

(Gij
_�i _�j + _'2)� V; (1.2.5)

with the energy constraint imposed

E =
1

2

nX
i;j=1

(Gij
_�i _�j + _'2) + V = 0: (1.2.6)

Here, the overdot denotes di�erentiation with respect to the harmonic time � . The
components of the minisuperspace metric read

Gij = di�ij � didj (1.2.7)

and the potential is given by

V = V (�; ') = exp(2
nX
i=1

di�
i)

24�1

2

nX
j=1

�je
�2�j + U(') + �

35 ; (1.2.8)

where �i = �idi . If the Mi are spaces of constant curvature, then �i may be normalized
in such a way that �i = kidi(di� 1); ki = �1; 0. We may also consider the generalization
of the model with the potential (1.2.8) modi�ed by the substitution

U(') 7! ~U ('; �): (1.2.9)
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This gives us the possibility to investigate models with an arbitrary scalar �eld potential
~U ('; �) � U(') as well as (for ' =const) models with an arbitrary potential ~U ('; �) �
U(�). E�ective potentials of the form U(�) may have their origin in an ideal uid matter
source. In special cases the general form ~U('; �) of the potential leads us to new integrable
models. An example of this kind of potential will be presented.

With the general potential ~U('; �) the equations of motion are

�di ��i + di
nX
k=1

dk ��
k + e2

Pn

k=1
dk�

k

24(di � 1) �ie
�2�i + di

X
k 6=i

�k e
�2�k

� @
~U

@�i
��2di ~U � 2di�

#
= 0 ; i = 1; : : : ; n; (1.2.10)

�' +
@ ~U

@'
exp

 
2

nX
i=1

di�
i

!
= 0: (1.2.11)

The constraint reads

1

2

0@ nX
i;j=1

Gij
_�i _�j + _'2

1A + V = 0: (1.2.12)

At the quantum level the constraint (1.2.12) is modi�ed into the WDW equation (see
[7])"

1

2

 
Gij @

@�i
@

@�j
+

@2

@�2

!
� V (�; ')

#
	(�; ') = 0; (1.2.13)

where 	 = 	(�; ') is the wave function of the universe, V is the potential (1.2.8) and

Gij =
�ij

di
+

1

2�D
(1.2.14)

are the components of the matrix inverse to the matrix (Gij) (1.2.7). The minisuperspace
metric G = Gijdx

i 
 dxi (1.2.7) was diagonalized in [14,15]

G = �dz0 
 dz0 +
n�1X
i=1

dzi 
 dzi; (1.2.15)

where

z0 = q�1
nX
j=1

dj�
j;

zi = [di=�i�i+1]
1=2

nX
j=i+1

dj(�
j � �i); (1.2.16)

i = 1; : : : ; n� 1, where

q = [(D � 1)=(D � 2)]1=2; �i =
nX
j=i

dj: (1.2.17)

The WDW equation (1.2.13) takes in variables (1.2.16) the following form"
� @

@z0
@

@z0
+

n�1X
i=1

@

@zi
@

@zi
+

@2

@'2
� 2V (z; ')

#
	 = 0: (1.2.18)
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1.3. WORMHOLES FOR RICCI-FLAT SPACES

In this chapter we consider the Ricci-at case (�i = �id
i = 0, i = 1; : : : ; n), with � 6= 0

and U(') = 0. If the Mi are internal spaces they should be compact. This compactness
is a necessary condition also for the Hartle-Hawking boundary condition (see below). The
compactness of Ricci-at spaces may be achieved by appropriate boundary conditions.
The d-dimensional tore is the simplest example.

Classical solutions

In the considered case the Lagrangian (1.2.5) may be written in the following form

L =
1

2

n+1X
I;J=1

GIJ
_�I _�J � �exp(

n+1X
I=1

uI�
I); (1.3.1)

where �n+1 = ', ui = 2di; i = 1; : : : ; n, un+1 = 0 and

(GIJ) =

 
Gij 0
0 1

!
(1.3.2)

(the matrix (Gij) is de�ned in eq. (1.2.7)). We consider the coordinates (zA) = (za; zn =
�n+1 = '), where za , a = 0; : : : ; n� 1, are de�ned in (1.2.16). It is clear that

zA =
n+1X
I=1

V A
I �

I; (1.3.3)

A = 0; : : : ; n, where

�
V A
I

�
=

 
V a
i 0
0 1

!
(1.3.4)

and the matrix (V a
i ) is de�ned in (1.2.16). This introduced matrix diagonalizes the

minisuperspace metric

GIJ =
nX

A;B=0

�ABV
A
I V

B
J ; (1.3.5)

I; J = 1; : : : ; n+ 1 and (�AB) = (�AB) = diag(�1;+1; : : : ;+1).
In the coordinates (1.3.3) the Lagrangian (1.3.1) reads (q is de�ned in (1.2.17))

L =
1

2

nX
A;B=0

�AB _z
A _zB � �exp(2qz0): (1.3.6)

The Lagrange equations for the Lagrangian (1.3.6)

��z0 + 2q�exp(2qz0) = 0; (1.3.7)

�zA = 0; A = 1; : : : ; n; (1.3.8)
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with the energy constraint

E =
1

2

nX
A;B=0

�AB _z
A _zB + �exp(2qz0) = 0 (1.3.9)

can be readily solved. First integrals of (1.3.8) are

_zA = pA; A = 1; : : : ; n; (1.3.10)

where pA are arbitrary constants of integration. Then the constraint (1.3.9) may be
rewritten

�1

2
( _z0)2 + E + �e2qz

0

= 0 (1.3.11)

with

2E =
nX

A=1

(pA)2: (1.3.12)

We obtain the following solution

zA = pA� + qA; A = 1; : : : ; n; (1.3.13)

where pA and qA are constants and

2qz0 = ln[E=f� sinh2(q
p
2E(� � �0))g]; E 6= 0; � > 0; (1.3.14)

= ln[1=f2q2�(� � �0)
2g]; E = 0; � > 0; (1.3.15)

= ln[�E=f�cosh2(q
p
2E(� � �0))g]; E > 0; � < 0; (1.3.16)

Here �0 is an arbitrary constant.

Kasner-like parametrization

First we consider the case E > 0. In this case the relations (1.3.14) and (1.3.16) may be
written in the following form

2qz0 = ln[E=fj�jf2� (q
p
2E(� � �0))g]; (1.3.17)

where � � �=j�j = �1 and

f�(x) � 1

2
(ex � �e�x) = sinhx; � = +1;

= coshx; � = �1: (1.3.18)

We introduce a new time variable by the relation

t =
Tp
�
ln
exp(q

p
2E(� � �0)) +

p
�

exp(q
p
2E (� � �0))�

p
�
; (1.3.19)

where

T � [(D � 2)=2j�j(D � 1)]1=2: (1.3.20)
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It is not di�cult to verify that the following relations take place

sinh(t
p
�=T )=

p
� = 1=f�(q

p
2E(� � �0)); (1.3.21)

tanh(t
p
�=2T )=

p
� = exp(�q

p
2E(� � �0)); (1.3.22)

dt = �Tq
p
2Ed�=f�(q

p
2E(� � �0)): (1.3.23)

Now, we introduce the following dimensionless parameters

��I � �
nX

A=1

�V I
Ap

A=q
p
2E ; (1.3.24)

where ( �V I
A ) = (V A

I )
�1 (see (1.3.3)). It is clear that�

�V I
A

�
=

 
�V i
a 0
0 1

!
(1.3.25)

where ( �V i
a ) = (V a

i )
�1 . The relation (1.3.24) is equivalent to the following relations

��i = �
n�1X
a=1

�V i
ap

a=q
p
2E ; i = 1; : : : ; n; (1.3.26)

��n+1 = �pn=q
p
2E : (1.3.27)

It follows from eq. (1.3.5), that

�V I
A =

n+1X
J=1

nX
B=0

GIJV B
J �BA (1.3.28)

where�
GIJ

�
� (GIJ )

�1 =

 
Gij 0
0 1

!
: (1.3.29)

From (1.2.14) and (1.3.28) we have

�V i
0 = �Gijuj=2q = (q(D � 2))�1; �V n+1

0 = 0: (1.3.30)

Using the relations (1.3.13), (1.3.17), (1.3.21)-(1.3.23), (1.3.24) and (1.3.30) we get the
folowing expressions for the solution of �eld equations

g = �dt
 dt+
nX
i=1

a2i (t)g(i); (1.3.31)

ai(t) = exp(�i(t)) = Ai[sinh(rt=T )=r]
�[tanh(rt=2T )=r]��

i

; (1.3.32)

exp('(t)) = exp(�n+1(t)) = An+1[tanh(rt=2T )=r]
��n+1 ; (1.3.33)

where t > 0; r =
p
� =

q
�=j�j = p�1, � = (D � 1)�1 , Ai 6= 0 are constants, i =

1; : : : ; n, and the parameters ��I satisfy the relations

1

2

n+1X
I=1

uI ��
I =

nX
i=1

di��
i = 0; (1.3.34)

n+1X
I;J=1

GIJ ��
I ��J =

nX
i=1

di(��
i)2 + (��n+1)2 = (D � 2)=(D � 1): (1.3.35)
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The �rst relation (1.3.34) can be easily proved, using the de�nition (1.3.24) and the
following identity (we remind that due to (1.2.16) and (1.3.3) uI = 2qV 0

I )

n+1X
I=1

uI �V
I
A = 2q

n+1X
I=1

V 0
I
�V I
A = 2q�0A = 0 (1.3.36)

for A > 0. The relation (1.3.5) follows immediately from (1.2.7), (1.3.5), (1.3.12), (1.3.24)
and (1.3.34).

Now we consider the case E = 0. In this case for � > 0 there exist also an exceptional
solution with the following scale factors in (1.3.31)

ai(t) = �Ai exp(��t=T ): (1.3.37)

i = 1; : : : ; n, and '(t) =const. (This solution can be readily obtained using the formulas
(1.3.13) and (1.3.15).)

It is interesting to note that for � > 0 the solution (1.3.37) with the sign 00+00 is an
attractor for the solutions (1.3.32), i.e.

ai(t) � �Ai exp(�t=T ); i = 1; : : : ; n; (1.3.38)

and '(t) �const for t! +1. The relation (1.3.38) is the isotropization condition. We
note that the solution (1.3.31)-(1.3.35) with ��n+1 = 0 was considered previously in [48].
The special case of this solution with n = 2 was considered earlier in [248].

The volume scale factor corresponding to (1.3.32) has the form

v =
nY
i=1

adii = (
nY
i=1

Adi
i ) sinh(rt=T )=r (1.3.39)

It oscillates for negative value of cosmological constant and exponentially increases as
t! +1 for positive value. For positive Ai and E the following identity takes place

nY
i=1

Adi
i =

q
E=j�j: (1.3.40)

For small time values we have the following asymptotical relations

ai(t) � cit
�i; exp'(t) � cn+1t

�n+1 (1.3.41)

as t! 0, i = 1; : : : ; n, where

�i = ��i + �; �n+1 = ��n+1; (1.3.42)

are Kasner-like parameters, satisfying (see (1.3.34), (1.3.35)) the relations

nX
i=1

di�i =
nX
i=1

di(�i)
2 + �2n+1 = 1: (1.3.43)

The behaviour of the scale factors near the singularity coincides with that for the case
� = 0 [249,250]. For �n+1 = 0 see also [19].
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We note also that in terms of �i -parameters the solution (1.3.31) - (1.3.35) reads

ai(t) = �Ai[sinh(rt=2T )=r]
�i[cosh(rt=2T )]2���i; (1.3.44)

exp('(t)) = An+1[tanh(rt=2T )=r]
�n+1 : (1.3.45)

Let us apply these solutions to the case of two spaces (n = 2). From (1.3.43) and (1.3.44)
we �nd for the non-exceptional solutions

a1
� = A1[sinh(rt=2T )=r]

��1 [cosh(rt=2T )]�
�
1 ; (1.3.46)

a2
� = A2[sinh(rt=2T )=r]

��2 [cosh(rt=2T )]�
�
2 ; (1.3.47)

where

��1 =
d1 �

p
R

d1(d1 + d2)
; ��2 =

d2 �
p
R

d2(d1 + d2)
; (1.3.48)

and

R = d1d2[(d1 + d2)(1� �23)� 1]: (1.3.49)

Graphically these solutions are presented in Figs. 21-22.
In the Euclidean case after the Wick rotation (t! �it) we get the following instanton

solutions

g = dt
 dt+
nX
i=1

a2i (t)g(i); (1.3.50)

ai(t) = ~Ai[sinh(ts=2T )=s]
�i[cosh(ts=2T )]2���i; (1.3.51)

exp('(t)) = ~An+1[tanh(ts=2T )=s]
�n+1: (1.3.52)

where T is de�ned by (1.3.20), s =
q
��=j�j and the parameters � satisfy the relations

(1.3.43). For � < 0 we have the special solution (E = 0)

ai(t) = �Ai exp(��t=T ): (1.3.53)

We note that for the Euclidean case the scale factors may be obtained from the correspond-
ing Lorentzian ones by the substitution � 7! ��. For n = 3; d1 = d2 = d3 = 1; � > 0
the special case of the solution (1.3.50) - (1.3.52) was considered in [251]. We note that
for � < 0 there are wormhole-like sections of the total metric (1.3.50). This takes place,
for example, if n = 2; �23 � 1 � d�12 ; 1 < d1 < d2 , (see Fig. 22). In this case the scalar
�eld is real in Euclidean region.

Now, we consider the solutions of the �eld equations with complex scalar �eld and
real metric. In this case E; p1; : : : ; pn�1 are real and hence (see (1.3.12)) pn is either real
or pure imaginary. The case of real pn was considered above.

For pure imaginary pn we have three subcases: a) E > 0, b) E = 0, c) E < 0. In
the �rst case a) E > 0 after the reparametrization (1.3.19), (1.3.20) we get the solutions
(1.3.32)-(1.3.35) with an imaginary value of ��n+1 . The cases b) and c): E � 0 take place
only for � > 0.
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Let us consider the case c) E < 0. Here, we have (see (1.3.26), (1.3.27)) imaginary
��k :

��k = i �k; k = 1; : : : ; n; ��n+1 = �n+1: (1.3.54)

The solution may be obtained from (1.3.32)-(1.3.35) substituting (1.3.54) and t=T 7!
t=T + i�2 :

g = �dt
 dt+
nX
i=1

a2i (t)g(i); (1.3.55)

ai(t) = Âi[cosh(t=T )]
�[f(t=2T )]�i; (1.3.56)

'(t) = c+ 2i�n+1 arctan e
�t=T ; (1.3.57)

where c; Âi 6= 0 are constants, i = 1; : : : ; n, � = (D � 1)�1 , T is de�ned in (1.3.20),
� > 0 and the real parameters �I satisfy the relations

nX
i=1

di�i = 0; (1.3.58)

�
nX
i=1

di�
2
i + �2n+1 = (D � 2)=(D � 1): (1.3.59)

Here

f(x) � [tanh(x+ i
�

4
)]i = exp(�2 arctan e�2x) (1.3.60)

is smooth monotonically increasing function bounded by its asymptotics:
e�� < f(x) < 1; f(x) ! 1 as x ! +1 and f(x) ! e�� as x ! �1 (see Fig. 3).
The solution (1.3.55)-(1.3.59) may be also obtained from formulas (1.3.13), (1.3.14). The
relation between the harmonic and the proper times (1.3.21) is modi�ed for our case
E < 0

cosh(t=T ) = 1= sin(q
q
2jEj(� � �0)): (1.3.61)

For the volume scale factor we have

v =
nY
i=1

adii = (
nY
i=1

Âdi
i ) cosh(t=T ): (1.3.62)

The scalar �eld varies '(t) varies from c + i��n+1 to c as t varies from �1 to +1.
The solution (1.3.55)-(1.3.59) is non-singular for t 2 (�1;+1). Any scale factor ai(t)
has a minimum for some t0i and

ai(t) � A�
i exp(�jtj=T ); (1.3.63)

for t!�1.
The Lorentzian solutions considered above have also Euclidean analogues for � < 0

g = dt
 dt+
nX
i=1

a2i (t)g(i); (1.3.64)

ai(t) = Âi[cosh(t=T )]
�[f(t=2T )]�i; (1.3.65)

'(t) = c+ 2i�n+1 arctan e
�t=T ; (1.3.66)
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with the parameters �I satisfying the relations (1.3.58)-(1.3.59). This solution may be
iterpreted as classical Euclidean wormhole solution. An interesting special case of solution
(1.3.64)-(1.3.66) occurs for �i = 0, i = 1; : : : ; n, (this corresponds to pi = 0)

ai(t) = Âi[cosh(t=T )]
�; (1.3.67)

'(t) = c� 2iq�1 arctan e�t=T : (1.3.68)

All scale factors (1.3.67) have a minimum at t = 0 and are symmetric with respect to
time inversion: t 7! �t. We want to stress here that wormhole soluions take place only in
the presence of an imaginary scalar �eld in the Euclidean region. Analytic continuation
of the solutions (1.3.67), (1.3.68) into the Lorentzian region leads to real geometry and
real scalar �eld there.

Quantum wormholes

The model introduced above leads to the WDW equation (1.2.18)

�2Ĥ	 �
"
� @

@z0
@

@z0
+

nX
i=1

@

@zi
@

@zi
� 2� exp(2qz0)

#
	 = 0: (1.3.69)

We are seeking the solution of (1.3.69) in the form

	(z) = exp(i~p~z)�(z0); (1.3.70)

where ~p = (p1; : : : ; pn) is a constant vector (generally from Cn ), ~z = (z1; : : : ; zn�1; zn =
'), ~p~z � Pn

i=1 piz
i and pi =

Pn
j=1 �ijp

j = pi . The substitution of (1.3.70) into (1.3.69)
gives

[�1

2
(
@

@z0
)2 + V0(z

0)]� = E�; (1.3.71)

where E = 1
2~p~p and V0(z

0) = ��e2qz0 . The potential V0(z0) is plotted on �g. 24 and �g.
25 for � > 0 and � < 0 respectively. The clasiically allowed (Lorentzian) and forbidden
(Euclidean) regions are shown there with respect to the energy levels E . Solving (1.3.71),
we get

�(z0) = Bi
p
2E=q(

p�2�q�1eqz0); (1.3.72)

where i
p
2E=q = ij~pj=q; and B = I;K are modi�ed Bessel functions. We note, that

v = exp qz0 =
nY
i=1

adii (1.3.73)

is proportional to the spatial volume of the universe.
The general solution of Eq. (1.3.69) has the following form

	(z) =
X

B=I;K

Z
dn~p CB(~p)e

i~p~zBij~pj=q(
p�2�q�1eqz0); (1.3.74)

where functions CB (B = I;K ) belong to an appropriate class. Similar solutions were
found for the two-component model (n = 2) and � > 0 in [252].
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The solutions (1.3.70) are the eigenstates of the quantum-mechanical operators �̂zi =
�(i=N)@=@zi; i = 1; : : : ; n with the eigenvalues (1=N)pi where N = 1 for the Lorentzian
space-time region and N = i for the Euclidean one.

Due to the well known time problem in quantum cosmology the WDW equation is not
really the Schr�odinger equation. There is no generally accepted procedure to overcome
this problem but for our particular model we can introduce some time coordinate into the
quantum equations in analogy to [20].

We split the WDW operator Ĥ (1.3.69) into two parts

Ĥ = �Ĥ0 + Ĥ1; (1.3.75)

where

Ĥ0 = �1

2

@2

@z02
� �e2qz

0

; (1.3.76)

and

Ĥ1 = �1

2

nX
i=1

@2

@zi2
: (1.3.77)

Then the WDW equation (1.3.69) becomes

Ĥ0	 = Ĥ1	: (1.3.78)

Applying Ĥ1 to the wave function (1.3.70) one gets

Ĥ1	 = E	: (1.3.79)

Now, we take E to be real. Then, equation (1.3.79) shows that E can be treated as the
energy of the subsystem Ĥ1 and equation (1.3.79) becomes the Schr�odinger equation.
From this point of view 	 gives the stationary states of the subsystem described by the
wave equation (in Lorentzian region)

i
@ ~	

@�
= Ĥ1

~	; (1.3.80)

where

~	 = e�iE�	: (1.3.81)

It can be easily seen that the wave equation

i
@ ~	

@�
= Ĥ0

~	 (1.3.82)

is reduced to equation (1.3.71).
In the semiclassical limit for the wave function (1.3.81) equations (1.3.80) and (1.3.82)

are reduced to the classical equations (1.3.10), (1.3.11). Indeed, the wave function (1.3.81)
can be rewritten in the form

~	 = e�iE�eiS1�(z0) (1.3.83)
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with S1 =
Pn
i=1 piz

i . In the semiclassical limit the wave function �(z0) takes the form

�(z0) = C(z0)eiS0 (1.3.84)

with C(z0) being a slowly varying function and S0(z0) being a rapidly varying phase.
Time is de�ned in the semiclassical limit as an a�ne parameter along integral curves

@

@�
=

nX
i=0

@(S0 + S1)

@zi

@

@zi
(1.3.85)

where z0 = �z0; zi = zi; i = 1; : : : ; n; As result we �nd the equations _zi = pi; i =
1; : : : ; n; and these coincide with the classical equations (1.3.10). For this reason we used
the same notation for the constants of integration in (1.3.10) and for the momenta in the
wave function (1.3.70). The velocity along z0 is found to be _z0 = � _z0 = @S0=@z

0 . Using
this relation and putting the wave function (1.3.83), (1.3.84) into equation (1.3.82) we
reproduce the classical equation (1.3.11).

As shown above the parameter E can be interpreted as energy. So we may treat the
state E = 0 as the ground state of the system. The demand of reality of the geometry
leads to real momenta pi (i = 1; : : : ; n � 1) in the Lorentzian region. The scalar �eld
can be real or imaginary there. In the ground state we put all momenta pi (i = 1; : : : ; n)
equal to zero and the ground state wave function reads

	0 = B0

�p�2�qeqz0� : (1.3.86)

It is interesting to note that 	0 is invariant with respect to the rotation group O(n) in
the space of vectors ~z = (z1; : : : ; zn).

In eq. (1.3.86) B0 denotes the Bessel functions of order zero. A particular solution
may be speci�ed by boundary conditions. For example, quantum wormhole boundary
conditions were presented in the Introduction. Among the di�erent types of boundary
conditions for wave functions describing the universe the most popular is the Hartle-
Hawking (HH) boundary condition [213]. According to the HH proposal the ground-state
wave function of the universe 	HH

0 is given by a path integral over all compact Euclidean
geometries and the regular matter �elds:

	
(HH)
0 =

Z
d[g]d[']e�IE ; (1.3.87)

where IE is the Euclidean action. For our model the Euclidean action in harmonic time
gauge and in z-coordinates reads

IE =
1

2

Z �

��
d�

"
�( _z0)2 +

nX
i=1

( _zi)2 + 2�e2qz
0

#
� 1

2

_v

v

�����
��

(1.3.88)

where v denotes the spacial volume (1.3.73) up to a numerical factor. The upper limit �
corresponds to the boundary of the D-dimensional manifold, where the zi (i = 0; : : : ; n)

have values indicated by the arguments of 	(HH)
0 . The lower limit � � corresponds to the

point where the D-dimensional manifold closes in a smooth way. The origin of the second
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term in (1.3.88) was explained in detail, e.g. by Louko [240]. In the semiclassical limit
the wave function is given by

	(HH)
0 � e�I

cl
E ; (1.3.89)

where IclE should be calculated on the classical Euclidean solutions with boundary condi-
tions de�ned by the concrete scheme of geometry closing at � = � � .

Now, we �nd the relationship between the HH wave function (1.3.87), (1.3.89) and
our ground-state wave functions (1.3.86). Let us �rst consider the case of a negative
cosmological constant � < 0. Then, we have the classical Euclidean equations

_z0 = �
q
2j�jeqz0 : (1.3.90)

The spacial volume v may be presented in the form

v = eqz
0
= �

�
q
q
2j�j �

��1
; �1 < � < 0: (1.3.91)

Formula (1.3.91) shows that the geometry closes at the harmonic time � ! �1. It is
easy to see from (1.3.91) that the second term in (1.3.88) contributes nothing to IE . So,
on these classical solutions the Euclidean action IclE reads

IclE =
1

q2
1

�
=
�
q
2j�j
q

eqz
0

(1.3.92)

and we get the semiclassical HH wave function (1.3.89)

	
(HH)
0 � exp

0@
q
2j�j
q

eqz
0

1A = exp

0@
q
2j�j
q

nY
i=1

adii

1A : (1.3.93)

Eqn. (??) shows that (for the class of real Euclidean geometries)

	
(HH)
0 !+1; z0 ! +1: (1.3.94)

This conditions provides us with the possibility to chose a solution of equation (1.3.69)
corresponding to the HH ground state:

	(HH)
0 = I0

0@
q
2j�j
q

eqz
0

1A : (1.3.95)

The vacuum solution (1.3.95) has the asymptotic form

	
(HH)
0 ! exp

0@
q
2j�j
q

eqz
0

1A ; z0 ! +1; (1.3.96)

which coincides with (1.3.93).
A similar procedure can be performed for a positive cosmological constant � > 0 (see,

e.g. [20]). In this case the classical Euclidean equation is�
_v

v

�2
+ 2q2�v2 = 0 (1.3.97)
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and gives an imaginary geometry. This reects the fact that the geometry should be purely
Lorentzian in the case � > 0 for E � 0. The action IclE (1.3.88) is inde�nite in this case.
We can avoid this problem if we perform the analytic continuation v ! iv . After this
continuation the action (1.3.88) is formally reduced to the action in the case � < 0. Again,

it leads to the following asymptotic for the HH wave function: 	
(HH)
0 !+1; v! +1,

which shows that the wave function I0[(
p
2�=q)v] is a solution of eq. corresponding to the

HH ground state for the class of Euclidean solutions considered here. Thus, after analytic
continuation to real values of v the vacuum state corresponding to the HH boundary
condition is

	(HH)
0 = J0

 p
2�

q
v

!
: (1.3.98)

This solution has the asymptotic form

	(HH)
0 ! cos

 p
2�

q
v

!
= cos

 p
2�

q

nY
i=1

adii

!
; v! +1: (1.3.99)

For the Bianchi I universe (n = 3; d1 = d2 = d3 = 1) eq. (1.3.99) is reduced to

	
(HH)
0 � cos

�
2
q
�=3a1a2a3

�
; v! +1: (1.3.100)

Similar results for the Bianchi I universe were obtained earlier in papers by Laamme and
Louko [239-240].

Now, let us turn to quantum wormholes. We restrict our consideration to real values
of pi . This corresponds to real geometries in the Lorentzian region. In this case we have
E � 0.

If � > 0 the wave function 	 (1.3.70) is not exponentially damped when v ! 1,
i.e. the condition (i) for quantum wormholes (see the Introduction) is not satis�ed. It
oscillates and may be interpreted as corresponding to the classical Lorentzian solution.

For � < 0, the wave function (1.3.70) is exponentially damped for large v only, when
B = K in (1.3.72). But in this case the function � oscillates an in�nite number of times,
when v ! 0. So, the condition (ii) is not satis�ed. The wave function describes the
transition between Lorentzian and Euclidean regions.

The functions

	~p(z) = ei~p~zKij~pj=q(
p�2�q�1eqz0); (1.3.101)

may be used for constructing quantum wormhole solutions. Like in [20,231,246] we con-
sider the superpositions of singular solutions

	̂�;~n(z) =
1

�

Z +1

�1
dk	qk~n(z)e

�ik�; (1.3.102)

where � 2 IR, ~n is a unit vector (~n2 = 1) and the quantum number k is connected with
the quantum number E = 1

2 j ~p j2 by the formula 2E = q2k2 . The calculation gives

	̂�;~n(z) = exp[�
p�2�
q

eqz
0
cosh(�� q~z~n)]: (1.3.103)
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It is not di�cult to verify that the formula (1.3.103) leads to solutions of the WDW
equation (1.3.69), satisfying the quantum wormholes boundary conditions.

We also note that the functions

	m;~n = Hm(x
0)Hm(x

1) exp[�(x0)2 + (x1)2

2
]; (1.3.104)

where

x0 = (2=q)1=2(�2�)1=4 exp(qz0=2) cosh(1
2
q~z~n); (1.3.105)

x1 = (2=q)1=2(�2�)1=4 exp(qz0=2) sinh(1
2
q~z~n); (1.3.106)

m = 0; 1; : : : ; are also solutions of the WDW equation with the quantum wormhole
boundary conditions. Solutions of such type were previously considered in [20,34,231].
They are called discrete spectrum quantum wormholes.

It is clear from the equation (1.3.71) and �g. 4 that in the case � < 0 a Lorentzian
region exists as well as an Euclidean one for E > 0. In the case � > 0 only the Lorentzian
region occurs for E � 0 and for E < 0 both of these regions exist (see �g. 25). The
condition E < 0 leads for pure gravity to a complex geometry in the Lorentzian region.
We can avoid this problem by the help of a free scalar �eld, because in this case 2E =Pn�1
i=1 p

2
i + p2n and we can achieve E < 0 for real pi(i = 1; : : : ; n � 1) and imaginary pn ,

i.e. for an imaginary scalar �eld in the Lorentzian region. The wave functions (1.3.70),
(1.3.72) with � > 0 and E < 0 describe the transitions between Euclidean and Lorentzian
regions, i.e. tunneling universes.

1.4. CLASSICAL WORMHOLES, FINE TUNING OF PARAMETERS

Classical wormhole solutions exist in our model also for another interesting case. This
is the case with spontaneous compacti�cation of the internal dimensions. Let the factor
space M1 be our dynamical external space. All the other factor spaces Mi(i = 2; : : : ; n)
are considered as internal and static. They should be compact and the internal dimensions
have the size of order of Planck's length LPL � 10�33 cm. The scale factors of the internal
factor spaces should be constant: ai = e�

i � a(0)i(i = 2; : : : ; n). It is not di�cult to show
that in the case of �ne tuning of the parameters due to

�i
dia2(0)i

=
2�

D � 2
� C0; i = 2; : : : ; n; (1.4.1)

all dynamical equations (1.2.10) are reduced to one for the scale factor a1 = e�
1
and this

equation reads

��1 = �e
2
nP
1

dk�
k
"
�1
d1
e�2�

1 � C0 � 1

d1 � 1

 
1

d1

@ ~U

@�1
+ 2 ~U

!#
: (1.4.2)

The constraint (1.2.12) has form

d1 (d1 � 1) _�1
2
= _'2 � �1e2(d1�1)�1e

2
nP
2

dk�
k

+ e2d1�
1
e
2

nP
2

dk�
k h
2 ~U+
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+C0(d1 � 1)] : (1.4.3)

From the equations (1.4.1) it follows that all internal spaces should be non-Ricci-at
and sign�i = sign�; (i = 2; : : : ; n). We remind here that overdot denotes di�erentiation
with respect to the harmonic time � [15]. The minimally coupled scalar �eld has the
speci�c potential ~U(�; ') = U(') exp [�2Pn

i=1 di�
i]. For this potential it is easy to get

the �rst integral of equation (1.2.11)

_'2 + 2U(') = �2 = const: (1.4.4)

This gives

' = �� + const (1.4.5)

for U(') = 0 and

' = '0 cosm(� � �0) (1.4.6)

for U(') = m2'2

2
, where � = m'0 here.

Let us investigate the model where our external space M1 is Ricci-at, i.e. �1 = 0.
Then we can rewrite the equation (1.4.3) as follows

( _�1)2 = ~�2 + ~�e2d1�
1
; (1.4.7)

where the constants are

~�2 =
�2

d1(d1 � 1)
(1.4.8)

and

~� =
2�

d1 (
Pn
k=1 dk � 1)

nY
k=2

a2dk(0)k: (1.4.9)

It is clear from equation (1.4.7) that the dynamical behavior of the scale factor a1
depends on the signs of �2 and � . If � > 0 and �2 � 0 then a1 expands from zero
to in�nity. For � > 0 and �2 < 0, a1 has the turning point at some minimum and this
case may be realized for an imaginary scalar �eld in the Lorentzian region. For a real
scalar �eld in the Lorentzian region ( i.e. �2 > 0 ) and � < 0 the scale factor a1 expands
from zero to its maximum and after the turning point shrinks again to zero. For the
latter case the solution has a continuation into the Euclidean region with the topology
of a wormhole, that means, two asymptotic regions which are connected with each other
through a throat.

Let us investigate the case with � < 0 in more details. As sign� = sign�i (i =
2; : : : ; n) then for � < 0 the curvatures �i < 0 also. (As a special case the internal spaces
Mi (i = 2; : : : ; n) may be compact spaces of constant negative curvature [247].) The
solution of equation (1.4.7) (the Lorentzian region) has the form

a1(� ) =
h
~�2=j~�j

i1=2d1
[cosh d1~�� ]

�1=d1 ; �1 < � < +1: (1.4.10)
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The synchronous time t and the harmonic time � are connected by the di�erential
equation

e(�)d� = dt; (1.4.11)

where

(� ) =
nX
i=1

di�
i: (1.4.12)

It is not di�cult to get the connection

cosh(d1~�� ) =
�
cos

�q
C0d1 t+ const

���1
: (1.4.13)

With the help of this connection we obtain the expression for the scale factor a1 with
respect to the synchronous time

a1(t) =
h
~�2=j~�j

i1=2d1�
sin

q
C0d1 t

�1=d1
; 0 � t � �p

C0d1
; (1.4.14)

where the constant in (1.4.13) was �xed by condition a(t = 0) = 0. For t ! 0 we have
a1 � t1=d1 . Thus the external space M1 has the behavior of a FRW-universe �lled with
radiation for d1 = 2 and with ultrasti� matter for d1 = 3. The Lorentzian metric (1.2.1)
in synchronous time gauge reads as

g = �dt
 dt+ a21(t)g(1) +
nX
i=2

a2(0)ig(i) (1.4.15)

with a1 given by (1.4.14).
Our next step is to get the wormhole-type solution for M1 in the Euclidean region.

The transition into the Euclidean space is performed by the Wick rotation t!�it. The
exact form of the transformation from the Lorentzian time tL to the Euclidean "time"
tE can be obtained demanding the existence of wormholes being symmetric with respect
to the throat (see Zhuk in [225]). In what follows, for the expression (1.4.14) we should
perform the analytic continuation tL =

�
2
p
C0d1

� itE . This gives us

a1(t) =
h
~�2=j~�j

i1=2d1�
cosh

q
C0d1t

�1=d1
; �1 < t < +1: (1.4.16)

Of course, this formula can be obtained also as a solution to the Euclidean analog of the
equations (1.4.3), (1.4.7) for an imaginary scalar �eld in the Euclidean region. The metric
of the Euclidean region is given by

g = dt
 dt+ a21(t)g(1) +
nX
i=2

a2(0)ig(i); (1.4.17)

where a1(t) is described by (1.4.16). Thus, in Euclidean space we have two asymptotic

regions t! �1 connected through a throat of the size
h
~�2=j~�j

i1=2d1
and this object is a

wormhole by de�nition.
It is clear that the Lorentzian solution (1.4.14) and its Euclidean analog (1.4.16) take

place only in the presence of a real scalar �eld in the Lorentzian region (i.e �2 > 0) or
equivalently an imaginary scalar �eld in the Euclidean region.
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1.5. CONCLUSIONS

In this section we investigated multidimensional cosmological models with n(n > 1) Ein-
stein spaces Mi in the presence of the cosmological constant � and a homogeneous mini-
mally coupled scalar �eld '(t) as a matter source. The problem was to �nd classical and
quantum wormhole solutions. Classical wormholes are solutions of the classical Einstein
equations describing Riemannian metrics with two large regions joined by a throat. Quan-
tum wormholes are solutions of the Wheeler-DeWitt (WDW) equation with the proper
boundary conditions proposed by Hawking and Page [34].

The model was investigated where one of the factor spaces, say M1 , is Ricci-at. In the
case when all other factor spaces Mi; i = 2; : : : ; n; are Ricci-at too, the classical Einstein
as well as the WDW equations are integrable. For a negative cosmological constant � < 0
quantum wormhole solutions were constructed. These solutions exist for pure gravity as
well as for the model with a free minimally coupled scalar �eld. Classical wormhole
solutions exist in the Euclidean region for � < 0 in the presence of an imaginary as well
as real scalar �eld.

Classical wormhole solutions were also obtained in models with spontaneous com-
pacti�cation. In this case the Ricci-at factor space M1 was considered as our external
dynamical space. All other factor spaces Mi; i = 2; : : : ; n are static with constant scale
factors a(0)i = const and all of them are �ne tuned to each other and to the cosmological
constant: �i

dia2(0)i
= �k

dka
2
(0)k

= 2�
D�2 ; i; k = 2; : : : ; n.

As in the previous model, wormhole solutions exist for a negative cosmological constant
� < 0. But there are important di�erences. Firstly, all inner spaces Mi; i = 2; : : : ; n; are
non-Ricci-at and have negative curvature. Secondly, the wormhole solution for the later
case exists only in the presence of an imaginary sclar �eld in the Euclidean region. Thirdly,
it seems hardly to be possible in the case �2; : : : ; �n 6= 0 to integrate the Einstein equations
as well as the WDW equation without the demand of spontaneous compacti�cation with
�ne tuning.

In models with one scale factor having a turning point (at the minimum) the produc-
tion of the Lorentzian space-time is treated as a quantum tunneling process [253] ("birth
from nothing"). The universe appears spontaneously going through the potential barrier
with size equal to the size of the Lorentzian universe at the turning point. In our case
of multidimensional models this kind of interpretation becomes more complicated. It fol-
lows from (1.3.56) that the factor spaces Mi in general reach their minimum expansion
positions at di�erent times. The "birth from nothing" for each factor space takes place
at a di�erent value of time. If the di�erence between these events goes to in�nity the
extra dimensions are in the classically forbidden region forever. This interpretation is
in the spirit of the Rubakov-Shaposhnikov idea [254] stating that extra dimensions are
unobservable because they are hidden from us by a potential barier.
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2. Quantum Multicomponent Model with Perfect Fluid [37]

2.1. Introdution

In this section we shall study the quantum behaviour of the model described in the
section 1 of chapter I and analyse the quantum wormhole solutions of the Wheeler-DeWitt
(WDW) equation.

The WDW equation for the model in harmonic time gauge reads as follows:

(� 1

2�
Gij@i@j + �V )	 = 0; (2.1.1)

where 	 = 	(x) is "the wave function of the Universe", V is the potential (I-1.2.5),
@i = @=@xi and Gij are de�ned in (I-1.2.13). The relation (2.1.1) is a result of a trivial
quantization of the zero energy constraint (I-1.2.16), written in the form �E = 0. Here
� is a fundamental quantum parameter of the theory.

In f -gauge (I-1.2.19) the WDW equation should be written in the conformally covari-
ant form [15] (such form of the WDW equation was discussed earlier by Misner [255])

(� 1

2�
�[e2fG] +

an
�
R[e2fG] + e�2f�V )	f = 0; (2.1.2)

where �[Ĝ] and R[Ĝ] are the Laplace-Beltrami operator and the scalar curvature of Ĝ
respectively, an = (n� 2)=8(n � 1) and

	f = exp[(2� n)f=2]	: (2.1.3)

Without loss of generality we put � = 1 below.

2.2. One-component matter

Here we �nd the quantum analogues of the classical solutions from section I-1.3, i.e. we
integrate the WDW equation

(�1

2
�ab

@

@za
@

@zb
+ VA)	 = 0: (2.2.1)

with the potential (I-1.3.8-10). We note, that the WDW equation for 1-component model
with n Ricci-at spaces was considered previously in [17].

a) u2 < 0. In this case the WDW equation (2.2.1) reads

[
@

@z0
@

@z0
�

n�1X
i=1

@

@zi
@

@zi
+ 2�2A exp(2qz0)]	 = 0: (2.2.2)

We are seeking solutions of (2.2.2) in the following form

	(z) = exp(i~p~z)�(z0); (2.2.3)

where ~p = (p1; : : : ; pn�1) is a constant vector (generally from Cn�1 ), ~z = (z1; : : : ; zn�1); ~p~z �Pn�1
i=1 piz

i . The substitution of (2.2.3) into (2.2.2) gives

[�( @
@z0

)2 � 2�2A exp(2qz0)]� = 2E�; (2.2.4)
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where 2E =
Pn�1
i=1 p

2
i . Solving (2.2.4), we get two linearly independent solutions

�(z0) = B�(
p
�2�2Aq�1eqz0); (2.2.5)

where � = i
p
2E=q = ij~pj=q; and B� = I�;K� is modi�ed Bessel function. We note, that

v = exp qz0 = exp(
1

2
uix

i) =
nY
i=1

a
ui=2
i (2.2.6)

is a natural scale factor for the model (ai = ex
i

).
The general solution of eq. (2.2.2) has the following form

	(z) =
X

B=I;K

Z
dn�1~p CB(~p)	B

~p (z); (2.2.7)

where

	B
~p (z) = ei~p~zBij~pj=q(

p�2�2Aq�1eqz0); (2.2.8)

and functions CB (B = I;K ) belong to an appropriate class of (generalized) functions.
b) u2 > 0. In this case the WDW equation (2.2.1) reads

[� @

@z1
@

@z1
+

@

@z0
@

@z0
�

n�1X
i=2

@

@zi
@

@zi
+ 2�2A exp(2qz1)]	 = 0: (2.2.9)

An analogous consideration in this case gives the general solution (2.2.7) with

	B
~p (z) = ei~p~zBi�(~p)(

p
2�2Aq�1eqz

0
): (2.2.10)

Here ~p = (p0; p2; : : : ; pn�1), ~z = (z0; z2; : : : ; zn�1), �(~p) = i
p
2E=q , and 2E = p20 �Pn�1

i=2 p
2
i .

c) u2 = 0 for u 6= 0 the WDW equation reads

[�4@+@� ++
n�1X
i=1

(
@

@zi
)2 � 2�2A exp(z+)]	 = 0; (2.2.11)

where z� = z0 � z1 , @� = @=@z� . The substitution

	(z) = exp(i~p~z)�(z+; z�); (2.2.12)

with ~p = (p2; : : : ; pn�1), ~z = (z2; : : : ; zn�1) entails

[4@+@� + 2E + 2�2A exp(z+)]� = 0; (2.2.13)

where 2E =
Pn�1
i=2 p

2
i . Introducing new variables u0; u1 , where u0 � u1 = u� and

u+ = 2Ez+ + 2�2A exp(z+); u� = z� (2.2.14)

we get the Klein-Gordon equation for � with m2 = 1

((
@

@u0
)2 � (

@

@u1
)2 + 1)� = 0: (2.2.15)
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It is quite obvious how to write the general solution of (2.2.15).

Quantum wormholes. In the case a) u2 < 0 for A < 0 there exist the so-called
quantum wormhole solutions of the WDW equation [34]. We present here a continuous
spectrum family of these solutions. The wave functions are following

	̂�;~n(z) = exp[�q�1p�2�2Aeqz0 cosh(�� q~z~n)]: (2.2.16)

where � 2 R and ~n is unit vector: (~n)2 = 1 (~n 2 Sn�1 ). These solutions are related with
the solutions (2.2.8) (with B = K ) by the formula

	̂�;~n(z) =
1

�

Z +1

�1
dk	qk~n(z)e

�ik�; (2.2.17)

(such trick was suggested in [246], see also Ref. [20]). The solutions (2.2.16) satisfy the
quantum wormhole boundary conditions (in terms of parameter v (2.2.6): i) the wave
function is exponentially damped for large space geometries (v ! +1); ii)the wave
function is regular when the spatial geometry degenerates (v ! 0).

We also note that the the functions

	m;~n = Hm(x
0)Hm(x

1) exp[�(x0)2 + (x1)2

2
] (2.2.18)

where Hm are Hermite polynomials, m = 0; 1; : : : ;,
xi = (2=q)1=2(�2�2A)1=4 exp(qz0=2)f i(12q~z~n); i = 0; 1;
(f0; f1) = (sinh; cosh) are also solutions of the WDW equation with the quantum

wormhole boundary conditions. (They are called discrete spectrum quantum wormholes.)
We note that the special cases of the solutions (2.2.16), (2.2.18) for ui = 2Ni (�-term
case) and ui = 2Ni � 2�1i (1-curvature case, �1 6= 0) were considered in [48] and [20]
respectively (see section 1).

We also note that for b) u2 > 0 and A > 0 there also exist quantum wormhole
solutions. (In this case z0 should be replaced by z1 in (2.2.16), ~z is de�ned in I-1.3) and
~n belongs to hypersphere.)

2.3. Two spaces with m-component matter

For the model from the subsection 1.3 chapter 1, the WDW equation (2.1.2) in the f -
gauge (I-1.3.43) has the following form (� = 1)

(2
@

V+(z+)@z+
@

V�(z�)@z�
+ 1)	 = 0: (2.3.1)

Indeed, for n = 2 we have �[e2fG] = e�2f�[G] , a2 = 0 and 	f = 	 (see (2.1.3). In
w -variable w = (w0; w1), where w0 � w1 = w� , where w� are de�ned in (I-1.3.45), we
get the Klein-Gordon equation with m2 = 2

[(
@

@w0
)2 � (

@

@w1
)2 + 2]	 = 0: (2.3.2)
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2.4. n-spaces with m component matter

Here we present the solutions of the WDW equation (2.2.1) with the potential (I-1.3.49) ,
i.e. quantum analogues of the classical solutions from section 1.3 chapter 1. are considered.

Repeating all arguments from section 2.2 (case a)),we get the general solution of (2.2.1)

	(z) =
X
�=�

Z
dn�1~pC�(~p)	�

~p(z); (2.4.1)

where

	�
~p(z) = exp(i~p~z)��~p(z

0); (2.4.2)

� = �, and �� = ��~p(z
0) are two linerly independent solutions of the equation

[�( @
@z0

)2 � 2VA(z
0)]� = 2E~p�; (2.4.3)

with the notations for E = E~p , ~p , ~z from section 2.2(a).
We note, that for special values of parameters A(�) and b(�) in the potential (I-1.3.49)

the equation (2.4.3) describes the quantum spin systems [256].
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3. MULTIDIMENSIONALCLASSICAL ANDQUANTUMCOS-
MOLOGY WITH SCALAR FIELD [257]

3.1. Introduction

Here we present the extension of the classical study of the model described in section 1,
chapter I, for the case of one-component perfect uid and minimally coupled scalar �eld
as zn = k' coordinate.

The treatment of classical models is only the necessary �rst step in analyzing the
properties of the "Early Universe" and the last stages of the gravitational collapse in
a multidimensional approach. In quantum multidimensional cosmology we hope to �nd
answers to such questions as the singular state, the "creation of the Universe", the nature
and value of the cosmological constant, some ideas on possible "seeds" of the observable
structure of the Universe, the stability of fundamental constants etc. In the third quanti-
zation scheme the problems of topological changes may be treated thoroughly. It should
be noted that multidimensional schemes may be also used in multicomponent inationary
scenarios [116{117] (see for example [119]).

In Sec.3.2 we integrate the Einstein equations and analyze a class of exceptional (in-
ationary) solutions. (Solutions with n = 2 were considered recently in [119-120]). The
isotropization-like and Kasner-like asymptotical behaviours of the solutions are analyzed.
Some special cases, such as isotropic (when the pressures in all spaces are equal) and
curvature-like ones, are investigated. In the last case there are solutions with so-called
spontaneous and dynamical compacti�cations. The instanton solutions (classical worm-
holes) with an imaginary scalar �eld and negative energy density are also obtained.

In Sec. 3.4 we consider our model at the quantum level (for pioneering papers see
[273-274]). Here we quantize the scale factors and the scalar �eld but treat the perfect
uid as a classical object. Such an approach is quite consistent at least in certain special
situations such as the �-term [48] and curvature [20,231-232] cases.

TheWheeler-DeWitt equation for the model is solved and quantumwormhole solutions
are obtained. The multidimensional quantum wormhole solutions of this section may be
considered to be a natural extension of the corresponding solutions of [20,231] and [48,52]
for the curvature and �-term cases, respectively.

In Sec.3.5 a third quantized cosmology is investigated along the line of [20] and [268]
for the curvature and cosmological constant cases, respectively. Here we are led to the
theory of massless conformally coupled scalar �eld in a conformally at generalized Milne
universe [268]. In- and out-vacua are de�ned and a Planckian spectrum for the out-
universes created (from an in-vacuum) is obtained using standard relations [279,280].
The temperature is shown to depend upon the equation of state. It should be noted that
recently the interest to the third quantized models was stimulated by the papers [281]
(see also [62,282-284] and references therein).

3.2. Classical solutions

The Lagrangian of the system is:

L =
1

2
(Gij _x

i _xj + �2 _'2)� �2A exp(ukx
k) (3.2.1)
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with the energy constraint

E =
1

2
(Gij _x

i _xj + �2 _'2) + �2A exp(ukx
k) = 0: (3.2.2)

In the z variables, it may be rewritten as

L =
1

2
�AB _z

A _zB � �2A exp(2qz0); (3.2.3)

where the indices A;B = 0; : : : ; n. The energy constraint (3.2.2) reads:

E =
1

2
�AB _z

A _zB + �2A exp(2qz0) = 0: (3.2.4)

The Lagrange equations for the Lagrangian (3.2.3)

��z0 + 2qA exp(2qz0) = 0; (3.2.5)

�zB = 0; B = 1; : : : ; n; (3.2.6)

with the energy constraint (3.2.4) can be easily solved. From (3.19) we have

zB = pBt+ qB; (3.2.7)

where pB and qB are constants and B = 1; : : : ; n. The �rst integral of Eq.(3.2.5) reads

�1

2
( _z0)2 +A exp(2qz0) + E = 0: (3.2.8)

Using (3.2.4), (3.2.7) and (3.2.8) we get

E =
1

2

nX
B=1

(pB)2: (3.2.9)

We obtain the following solution to Eqs.(3.2.5), (3.2.8)

exp(�2qz0)
= (A=E) sinh2(q

p
2E (t�t0)); E > 0; A > 0; (3.2.10)

= (A=jEj) sin2(q
q
2jEj(t�t0)); E < 0; A > 0; (3.2.11)

= 2q2A(t� t0)2; E = 0; A > 0; (3.2.12)

= (jAj=E) cosh2(q
p
2E (t�t0)); E > 0; A < 0: (3.2.13)

Here t0 is an arbitrary constant. For real zB (or, equivalently, for real metric and scalar
�eld) we get from (3.2.9) E � 0. The case E < 0 may take place when a pure imaginary
scalar �eld is considered.
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Kasner-Like Parametrization for Non-Exceptional Solutions with a Real Scalar
Field

We �rst consider the real case with E > 0. In this case the relations (3.2.10) and (2.2.13)
may be written in the following form:

exp(�2qz0) = jAj
E f2� (q

p
2E(t� t0)); (3.2.14)

where � � A=jAj = �1 and

f�(x) � 1

2
(ex � �e�x) = sinhx; � = +1;

= cosh x; � = �1: (3.2.15)

We introduce a new time variable by the relation

� =
Tp
�
ln
exp[q

p
2E(t� t0)] +

p
�

exp[q
p
2E(t� t0)]�

p
�

(3.2.16)

= T ln coth[
1

2
q
p
2E(t� t0)]; � = +1; (3.2.17)

= 2T arctan exp[�q
p
2E(t�t0)]; � = �1; (3.2.18)

where

T = T (u;A) � (2q2jAj)�1=2
= (12 jA < u; u >� j)�1=2: (3.2.19)

For � = +1 the variable � = � (t) monotonically decreases from +1 to 0 when t � t0
is varying from 0 to +1. For � = �1 it monotonically decreases from �T to 0 when
t� t0 is varying from �1 to +1.

It is not di�cult to verify that

sinh(�
p
�=T )=

p
� = 1=f�(q

p
2E(t�t0)); (3.2.20)

tanh(�
p
�=2T )=

p
� = exp[�q

p
2E(t�t0)]; (3.2.21)

d� = �qT
p
2Edt=f�(q

p
2E(t�t0)): (3.2.22)

To present the solutions obtained in a more familiar form we now introduce the fol-
lowing dimensionless "Kasner-like" parameters:

�i = �eiâpâ=(q
p
2E); (3.2.23)

�' = �pn=(q
p
2E ): (3.2.24)

Here and henceforth â; b̂ = 1; : : : ; n� 1. From Eqs. (3.2.7) and (3.2.23) we have

xi = �(ui=2q)z0 + eiâ[p
â(t� t0) + �qâ]

= �(ui=4q2)(2qz0)� q
p
2E(t� t0)�

i + i; (3.2.25)

where

i = eiâ�q
â; �qâ = qâ + pât0: (3.2.26)
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Using (3.2.14), (3.2.20), (3.2.21) and (3.2.25), we get for the scale factors:

ai = ex
i

= Ai[sinh(r�=T )=r]
�i [tanh(r�=2T )=r]�

i

(3.2.27)

where r =
p
� and

�i = 2ui= < u; u >�; Ai = (E=jAj)�i=2ei; (3.2.28)

i = 1; : : : ; n. In a similar manner we obtain the expression for the scalar �eld (see (3.2.21),
(3.2.24))

e�' = ez
n

= A'[tanh(r�=2T )=r]
�' (3.2.29)

where A' > 0 is constant.
We de�ne a bilinear symmetric form < :; : >: Rn �Rn ! R by the relation

< �; � >= Gij�
i�j; (3.2.30)

� = (�i), � = (�i) 2 Rn . Using the de�nitions, (3.2.9), (3.2.22), (3.2.24), we obtain the
relations between the Kasner-like parameters

< �; � > +(�')
2 = Gij�

i�j + (�')
2

= 1=q2 = �4= < u; u >�; (3.2.31)

and

ui�
i = e0i e

i
âP

â = �0âP
â = 0; (3.2.32)

where P â = �pâ
q
2=E .

Similarly to (3.2.32), we get uii = 0 and hence (see (3.2.28))

nY
i=1

Aui
i = E=jAj: (3.2.33)

Thus the additional integral of motion E is a certain combination of parameters Ai and
jAj depending on the equation of state.

We also introduce the "quasi-volume" scale factor

v =
nY
i=1

a
ui=2
i = exp(12uix

i); (3.2.34)

where

< u; u >< 0 (3.2.35)

From (3.2.14), (3.2.20), (3.2.33) (see also (3.2.27), (3.2.32)) we have

v =
v0
r
sinh

r�

T
=
q
E=jAj=[f�(q

p
2E(t� t0))]: (3.2.36)
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Here

v0 =
nY
i=1

A
ui=2
i : (3.2.37)

The quasi-volume scale factor oscillates for A < 0 (negative energy density) and expo-
nentially increases as � ! +1 for A > 0 (positive energy density).

From (3.2.19), (3.2.22), (3.2.34), (3.2.36) we get

e20(t)dt
 dt =
� nY
i=1

a2Ni

i

�
f2� (q

p
2E(t�t0))d� 
 d�

2q2ET 2

=
� nY
i=1

a2Ni�ui
i

�
d� 
 d�: (3.2.38)

Thus we get the following solution to the �eld equations:

g = �
� nY
i=1

(ai(� ))
2Ni�ui

�
d� 
 d� +

nX
i=1

a2i (� )g
(i);

(3.2.39)

ai(� ) = Ai

�1
r
sinh

r�

T

�2ui=<u;u>��1
r
tanh

r�

2T

��i
;

(3.2.40)

e�'(�) = A'

�1
r
tanh

r�

2T

��'
; (3.2.41)

�2�(� ) = A
nY
i=1

(ai(� ))
ui�2Ni ; (3.2.42)

i = 1; : : : ; n; where r =
q
A=jAj, T is de�ned in (3.2.19), Ai; A' > 0 are constants, and

the parameters �i; �' satisfy the relations

nX
i=1

ui�
i = 0;

nX
i;j=1

Gij�
i�j + (�')

2 = �4=<u; u>� = 1=q2: (3.2.43)

Here � > 0 for A > 0 and 0 < � < �T for A < 0.
We note that the solution (3.2.39-43) without scalar �eld (�' = 0) was obtained

previously in [47]. For ui = 2Ni (�-term case) the solution was considered in [52] (for
�' = 0 see also [48]), where Euclidean wormholes were constructed.

For small values of � we have the following asymptotic relations

ai(� ) � Ci�
��i; e�'(�) � C'�

�' (3.2.44)

as � ! 0, i = 1; : : : ; n, where Ci; C' are constants and ��i = �i + �i are the new
Kasner-like parameters, satisfying the relations

ui ��
i = 2; Gij

��i ��j + �2' = 0: (3.2.45)
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Exceptional solutions

Now we consider the exceptional real solutions corresponding to E = 0 and A > 0 (see
(3.2.12)). From E = 0 and (3.2.9) we have pB = 0 and hence

zB = qB (3.2.46)

are constant, B = 1; : : : ; n. So, �' = zn = const in this case, we have for xi

xi = �(ui=4q2)(2qz0) + i; i = eiâq
â; (3.2.47)

( â = 1; : : : ; n� 1). Using (3.2.12), (3.2.19) and (3.2.47) for t > t0 , we get

ai = ex
i

= [(t� t0)=T ]��iei; (3.2.48)

i = 1; : : : ; n.
Introducing the new time variable � by

T=(t� t0) = exp[�(� � �0)=T ]; t > t0; (3.2.49)

we obtain

ai(� ) = �Ai exp(��i�=T ); (3.2.50)

where

�Ai = exp(��i�0=T ) exp(i); (3.2.51)

i = 1; : : : ; n.
Similarly to (3.2.32) we get uii = 0 and hence (see (3.2.51))

nY
i=1

�Aui
i = exp(�2�0=T ): (3.2.52)

For the quasi-volume from (3.2.50) and (3.2.52) we get

v =
nY
i=1

a
ui=2
i = exp[�(� � �0)=T ]: (3.2.53)

Thus for A > 0 we have a family of exceptional solutions with a constant real scalar
�eld

g = �
� nY
i=1

(ai(� ))
2Ni�ui

�
d� 
 d� +

nX
i=1

a2i (� )g
(i);

(3.2.54)

ai(� ) = �Ai exp[�2ui�=(T < u; u >�)]; (3.2.55)

'(� ) = const; (3.2.56)

and �(� ) is determined by (3.2.42). Here �Ai > 0 (i = 1; : : : ; n) are constants, and T is
de�ned in (3.2.19).

We note that for A > 0 the solution (3.2.55) with the + sign is an attractor for the
solutions (3.2.40), i.e.,

ai(� ) � �Ai exp(�
i�=T ); '(� ) � const; (3.2.57)

i = 1; : : : ; n, for � ! +1.
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Synchronous-time parametrization

The relations (3.2.55) imply

nY
i=1

a2Ni�ui
i = �P 2 exp[�2(�� � 1)�=T ]; (3.2.58)

where

�P =
nY
i=1

�ANi�ui=2
i ; (3.2.59)

�� =
2Niu

i

< u; u >�
=
< u(�); u >�
< u; u >�

: (3.2.60)

Here and henceforth

u
(�)
i = 2Ni: (3.2.61)

Now we introduce the synchronous time variable ts satisfying the relation

�P 2 exp[�2(�� � 1)�=T ] d� 
 d� = dts 
 dts: (3.2.62)

First we consider the case

�� 6= 1 () < u(�) � u; u >� 6= 0: (3.2.63)

Introducing ts by the formula

ts =
�PT

j�� � 1j exp[�(�� � 1)�=T ] > 0; (3.2.64)

we get for the scale factors

ai = ai(ts) = Ait
�i

s ; (3.2.65)

where

�i = �i=(�� � 1) = 2ui= < u(�)�u; u >� (3.2.66)

and

Ai = �Ai[j��� 1j=( �PT )]�i: (3.2.67)

The parameters �i (3.2.66) satisfy the relation

�i(2Ni � ui) = 2: (3.2.68)

Eqs. (3.2.19), (3.2.59), (3.2.67) and (3.2.68) imply

nY
i=1

Aui�2Ni
i = T 2=(�� � 1)2

= �2<u; u>�=(A<u(�)�u; u>2
�): (3.2.69)
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From (3.2.42), (3.2.65), (3.2.68) and (3.2.69) we get the following formula for the
density:

�2� = �2�(ts) =
�2 < u; u >�

< u(�) � u; u >2� t2s
: (3.2.70)

The metric reads:

g = �dts 
 dts +
nX
i=1

a2i (ts)g
(i); (3.2.71)

where the scale factors are determined by (3.2.65), i = 1; : : : ; n. Thus Eqs. (3.2.42),
(3.2.65), (3.2.70), (3.2.71) and ' = const describe the exceptional solutions for the case
(3.2.63). We call them power-law inationary solutions.

Now let us consider the case

�� = 1 () < u(�) � u; u >�= 0: (3.2.72)

From (3.2.42), (3.2.58) we obtain

�2� = A �P�2 = const: (3.2.73)

Introducing the synchronous time ts = �P � , from (3.67) we get

ai(ts) = �Ai exp[� uip� < u; u >�

ts
T0
]; (3.2.74)

where

T0 = (2�2�)�1=2: (3.2.75)

Eqs. (3.2.71), (3.2.73)-(3.2.75) and ' = const describe the exponential-type ination for
the case (3.2.72).

Let us consider the synchronous time parametrization for the solutions (3.2.39)-
(3.2.43). The synchronous time ts and the � variable are related by

ts = "F (� );
dF

d�
= f(� ); (3.2.76)

where " = �1 and

f(� ) =
nY
i=1

(ai(� ))
Ni�ui=2

= P [sinh(r�=T )=r]���1[tanh(r�=2T )=r]�
iNi ; (3.2.77)

�2�(� )

= AP�2[sinh(r�=T )=r]2�2��[tanh(r�=2T )=r]�2�
iNi;

(3.2.78)

with P =
Qn
i=1A

Ni�ui=2
i and �� de�ned in (3.2.72). From (3.2.78) it follows

f(� ) � B� p�1; � ! +0; (3.2.79)
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where B > 0 is constant and

p = p(�) = �� + �iNi = (�i + �i)Ni: (3.2.80)

Putting " = sign (p), from (3.2.76) and (3.2.79) we get

ts � B1�
p; � ! +0; (3.2.81)

with B1 = B=jpj (here the integration constant in (3.2.76) is properly �xed).

Proposition 1. Let 1=q2 � (�')2 � 0. Then, for all � = (�i) satisfying the relations
(3.2.43), we have p(�) 6= 0 and

i) uiNi < 0 ) p(�) > 0; (3.2.82)

ii) uiNi > 0 ) p(�) < 0: (3.2.83)

Proposition 1 is a special case of a more general Proposition 2 proved in the Appendix:

Proposition 2. Let two vectors u = (ui); v = (vi) 2 Rn satisfy the inequalities <
u; u >�� �4q2 < 0 and < v; v >�< 0. Then uivi =< u; v >� 6= 0 and for all � = (�i)
such as

ui�
i = 0; Gij�

i�j � 1=q2; (3.2.84)

the following relation is valid:

sign (uivi) = �sign ((�i + �i)vi); (3.2.85)

where �i = 2ui= < u; u >� .

For the vector

vi = Ni =
1

2
u
(�)
i (3.2.86)

we have

vi = N i = GijNj =
1

2 �D
(3.2.87)

and hence

< v; v >�= NiN
i = �D � 1

D � 2
< 0: (3.2.88)

Thus Eqs. (3.2.80), (3.2.88) and Proposition 2 imply the Proposition 1.
From (3.2.87) we get

uiN
i =

1

2 �D

nX
i=1

ui: (3.2.89)

Using (3.2.81), (3.2.89) and Proposition 1, we obtain

ts ! +0 as � ! +0; (3.2.90)
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for

(A)
nX
i=1

ui > 0; p(�) > 0 (3.2.91)

and

ts ! +1 as � ! +0; (3.2.92)

for

(B)
nX
i=1

ui < 0; p(�) < 0: (3.2.93)

In the limit � ! +0 we have � � (ts=B1)1=p (see (3.2.81)) and hence (see (3.2.44))

ai(ts) � �Bit
�i

s ; exp(�'(ts)) � �B't
�'
s (3.2.94)

as ts ! +0 in the case A) (3.2.91) and as ts ! +1 in the case B) (3.2.93). Here �Bi; �B'

are constants and

�i = (�i + �i)=p(�); �' = �'=p(�); (3.2.95)

i = 1 : : : n. The parameters �i; �' satisfy the Kasner-like relations

nX
i=1

Ni�
i = 1; (3.2.96)

nX
i=1

Ni(�
i)2 + �2' = 1: (3.2.97)

Eq.(3.2.96) is quite obvious, Eq.(3.2.97) follows from (3.2.96) and the relation

Gij�
i�j + �2' = 0; (3.2.98)

which is readily veri�ed using (3.2.28), (3.2.43) and (3.2.95).
The Kasner-like asymptotical behaviour (3.2.94), (3.2.96), (3.2.97) for the case (A)

agrees with one of the results of [72]: in the case A) the perfect uid components with
< u; u >�< 0 may be neglected near the singularity ts ! +0 and we are led to the
Kasner-like formulas [250] (see also [19]).

Note that for the case n = 2 the following relation is valid:h
b2
u1
N1

� (1 + s)
u2
N2

ih
b1
u2
N2

� (1 + s)
u1
N1

i
= (�s2)(1 + s) < u; u >� (3.2.99)

where bi = 1 � 1=Ni , i = 1; 2 and s =
p
1� b1b2 . This implies the relations for the

light-cone lines (<u; u>� = 0):

l1 : b2(1� �1) = (1 + s)(1� �2); (3.2.100)

l2 : b1(1� �2) = (1 + s)(1� �1); (3.2.101)
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Isotropization-like behaviour

Here we rewrite the attractor behaviour (3.2.57) for the non-exceptional solutions (3.2.39)-
(3.2.43) with A > 0 (as � ! +1) in terms of the synchronous time variable ts . For the
function (3.2.77) we have the following asymptotical behaviour

f(� ) � P [1
2
exp(�=T )]���1 = �B exp[(�� � 1)�=T ]; (3.2.102)

when � ! +1 ( �B = const).
First consider the case �� = 1 (see (3.2.72)). Then f(� ) � �B as � ! +1 and hence

(see (3.2.76))

ts = F (� ) � �B� + C; (3.2.103)

as � ! +1. (Due to uiNi < 0 and Proposition 1, " = sign (p) = +1). The synchronous
time ts monotonically increases from 0 to +1 as � varies from 0 to +1 (see (3.2.81)).

From (3.2.42), (3.2.57) and (3.2.103) for the case �� = 1 we get

ai(ts) � �Ai exp[� uip� < u; u >�

ts
T0
]; (3.2.104)

'(ts) � const; (3.2.105)

�(ts) � �0 (3.2.106)

when ts ! +1, where T0 = (2�2�0)
�1=2 .

Now consider the case �� 6= 1 (see (3.2.63)). Then

F (� ) �
�BT

(�� � 1)
exp[(�� � 1)�=T ] + C; (3.2.107)

where C is a constant.
Consider �rst the subcase �� > 0 or, equivalently, uiN i < 0 (or

Pn
i=1 ui > 0, see

(3.2.89)). We have ts = F (� ), since p > 0 due to (3.2.91) and " = sign (p) = +1). In
this case ts monotonically increases from 0 to T� > 0 for 0 < �� < 1 and to +1 for
�� > 1 as � varies from 0 to +1 (see (3.2.81)). Using (3.2.42), (3.2.57) we get

ai(ts) � Ai(T� � ts)
�i ; (3.2.108)

'(ts) � const; (3.2.109)

�2�(ts) � �2 < u; u >�
< u(�) � u; u >2� (T� � ts)2

: (3.2.110)

as ts ! T� � 0, for �� < 1. For �� > 1 we have an asymptotic behaviour in the limit
ts ! +1 described by the relations

ai(ts) � Ait
�i

s ; (3.2.111)

'(ts) � const; (3.2.112)

�2�(ts) � �2 < u; u >�
< u(�) � u; u >2� t2s

: (3.2.113)

as ts ! +1, where �i is de�ned in (3.2.66).
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Now consider the subcase �� < 0 or, equivalently, uiN i > 0 (or
Pn
i=1 ui < 0, see

(3.2.89)). Recall that p < 0 due to (3.2.93) and " = sign (p) = �1. Then ts = �F (� )
(we put C = 0 in (3.2.107)) and ts monotonically decreases from +1 to 0 as � varies
from 0 to +1 (see (3.2.81)). In this subcase we obtain the asymptotic behaviour in the
limit ts ! +0 described by (3.2.111)-(3.2.113).

Solutions with a pure imaginary scalar �eld

Here we consider solutions to the �eld equations with a complex scalar �eld and a real
metric. In this case E; p1; : : : ; pn�1 are real and hence (see (3.2.18), (3.2.29)) pn is either
real or pure imaginary. The case of real pn was considered above.

For pure imaginary pn we have three subcases: (a) E > 0, (b) E = 0, and (c) E < 0.
In the �rst case (a) after the reparametrization (3.2.16)-(3.2.19) we get the solutions
(3.2.39)-(3.2.43) with an imaginary value of �' . The cases (b) and (c) take place only for
A > 0, i.e., positive energy density (see (3.2.11), (3.2.12)).

In the case E < 0 we have (see (3.2.23), (3.2.24)) imaginary �k :

�k = i�̂k; k = 1; : : : ; n; (3.2.114)

and real �' . The solution is obtained from (3.2.39)-(3.2.43) by substituting (3.2.114) and
�=T 7! �=T + i�

2
:

g = �
h nY
i=1

(ai(� ))
2Ni�ui

i
d� 
 d� +

nX
i=1

a2i (� )g
(i);

(3.2.115)

ai(� ) = Âi[cosh(�=T )]
�i[f(�=2T )]�̂

i

; (3.2.116)

'(� ) = c+ 2i�' arctan exp(��=T ) (3.2.117)

where c; Âi 6= 0 are constants, i = 1; : : : ; n, T is de�ned in (3.2.19), �i are given in
(3.2.28), A > 0 and the real parameters �̂i; �' satisfy the relations

nX
i=1

ui�̂
i = 0;

�
nX

i;j=1

Gij �̂i�̂j + (�')
2 = � 4

< u; u >�
=

1

q2
: (3.2.118)

Here, as in [52],

f(x) � [tanh(x+
i�

4
)]i = exp(�2 arctan e�2x) (3.2.119)

is a smooth monotonically increasing function bounded by its asymptotics: e�� < f(x) <
1; f(x)! 1 as x! +1 and f(x)! e�� as x! �1. The solution (3.2.115)-(3.2.118)
(with � from (3.2.42)) may be also obtained from formulas (3.2.7), (3.2.11). The relation
between the harmonic time and the � variable (3.2.20) for E < 0 is modi�ed:

cosh(�=T ) = 1= sin(q
q
2jEj(t� t0)): (3.2.120)
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For the quasi-volume scale factor we have

v =
nY
i=1

a
ui=2
i =

� nY
i=1

Â
ui=2
i

�
cosh(�=T ): (3.2.121)

The scalar �eld '(t) varies from c+i��' to c as � varies from �1 to +1. The solution
(3.2.115)-(3.2.118) for � 2 (�1;+1) is nonsingular. Any scale factor ai(� ) for some �0i
has a minimum and

ai(� ) � A�
i exp(�

ij� j=T ); (3.2.122)

for � !�1.
The above "Lorentzian" solutions have "Euclidean" analogues for A < 0 as well:

g =
� nY
i=1

(ai(� ))
2Ni�ui

�
d� 
 d� +

nX
i=1

a2i (� )g
(i);

(3.2.123)

ai(� ) = Âi[cosh(�=T )]
�i[f(�=2T )]�̂

i

; (3.2.124)

'(� ) = c+ 2i�' arctan exp(��=T ); (3.2.125)

with the parameters �̂i; �' satisfying the relations (3.2.118). When all spaces (Mi; g
(i))

are Riemannian, this solution may be interpreted as a classical Euclidean wormhole (in-
stanton) solution. Such solutions play a crucial role in quantum gravity.

An interesting special case of the solution (3.2.123)-(3.2.125) occurs for �̂i = 0, i =
1; : : : ; n, (this corresponds to pâ = 0):

ai(� ) = Âi[cosh(�=T )]
�i; (3.2.126)

'(� ) = c� 2iq�1 arctan exp(��=T ): (3.2.127)

All scale factors (3.2.126) have a minimum at � = 0 and are symmetric with respect to
time reversion: � 7! �� . It is necessary to stress that here, as in [52], wormhole solutions
exist only in the presence of an imaginary scalar �eld.

In this subsection we consider some applications of the above formulas, valid for dif-
ferent equations of state in di�erent factor spaces.

The isotropic case

Consider the isotropic case:

ui = hNi () u =
h

2
u(�); pi = (1 � h)�; (3.2.128)

where h 6= 0 is constant. From (3.2.86)-(3.2.88) and (3.2.128) it follows

ui =
h

2 �D; < u; u >�= �h2D � 1

D � 2
< 0; (3.2.129)

and hence

�i = 2ui= < u; u >�=
2

h(D � 1)
= �(h) = �: (3.2.130)
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The solution (3.2.39)-(3.2.43) reads:

g = �(
nY
i=1

(ai(� ))
(2�h)Ni)d� 
 d� +

nX
i=1

a2i (� )g
(i);

(3.2.131)

ai(� ) = Ai[sinh(r�=T )=r]
�(h)[tanh(r�=2T )=r]�

i

;

(3.2.132)

e�'(�) = A'[tanh(r�=2T )=r]
�'; (3.2.133)

�2�(� ) = A
nY
i=1

(ai(� ))
(h�2)Ni

= A
� nY
i=1

A
(h�2)Ni

i

�
[sinh(r�=T )=r]2(h�2)=h; (3.2.134)

i = 1; : : : ; n, where r =
q
A=jAj and

T = jhj�1
" jAj(D � 1)

2(D � 2)

#�1=2
; (3.2.135)

Ai; A' > 0 are constants and the parameters �i; �' satisfy the relations

nX
i=1

Ni�
i = 0;

nX
i=1

Ni(�
i)2 + (�')

2 =
4(D � 2)

h2(D � 1)
: (3.2.136)

A special case of this solution with h = 2 (the �-term case) was considered in [52].
Consider now the exceptional solutions for A > 0. From (3.2.60) and (3.2.129) we

have

�� = �iNi = 2=h;

< u(�) � u; u >� = h(h� 2)
D � 1

D � 2
: (3.2.137)

From (3.2.137) we get: < u(�)�u; u >�= 0 () h = 2 (h 6= 0). The matter in this case
corresponds to a cosmological constant: � = �2� > 0. Eqs. (3.2.74), (3.2.129) imply the
solution of [52] with metric (3.2.71) and

ai(ts) = �Ai exp
�
� ts

p
2�q

(D � 1)(D � 2)

�
(3.2.138)

(' = const), i.e., we here obtain a case of exponential ination.
For h 6= 2 ( () <u(�)�u; u>� 6= 0)

�i =
2ui

<u(�)�u; u>�
=

2

(2 � h)(D � 1)
= �(h) = �:

(3.2.139)
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From (3.2.65), (3.2.70), (3.2.129), (3.2.137) and (3.2.139) we obtain the relations for scale
factors and the density:

ai(ts) = Ait
�(h)
s ; (3.2.140)

�2�(ts) =
2(D � 2)

(h� 2)2(D � 1)t2s
; (3.2.141)

i.e., power law ination. For h < 2 (or p > ��) we have an isotropic expansion of all
scale factors and for h > 2 (or p < ��) an isotropic contraction (see Fig.1).

Kasner-like behaviour.

In the above case
Pn
i=1 ui = h(D � 1) and hence (see (3.2.90)-(3.2.93)) a Kasner-like

behaviour (3.2.94), (3.2.96-97) takes place as (A) ts ! +0, for h > 0 (or p < �), and (B)
ts ! +1, for h < 0 (or p > �).

Isotropization-like behaviour

Using the previous results and (3.2.137), we are led to the following attractor behaviour:

ai(ts) � Ait
�(h)
s ; (3.2.142)

�2�(ts) � 2(D � 2)

(h � 2)2(D � 1)t2s
: (3.2.143)

in the limits ts ! +1, for 0 < h < 2 (or �� < p < �) and ts ! +0, for h < 0 (or
p > �).

Remark 2. For the dust matter case h = 1 (p = 0), � > 0, the solution (3.2.131)-
(3.2.136) has the sinchronous-time representation

g = �dts 
 dts +
nX
i=1

a2i (ts)g
(i);

ai(ts) = �Ait
1=(D�1)+�i=2
s (ts + T1)

1=(D�1)��i=2;

(3.2.144)

e2�'(ts) = A'[ts=(ts + T1)]
�'; (3.2.145)

�2�(ts) = 2(D � 2)=[(D � 1)ts(ts + T1)]; (3.2.146)

i = 1; : : : ; n; where 0 < ts < +1, T1 > 0, �Ai; A' > 0 are constants and the parameters
�i; �' satisfy the relations

nX
i=1

Ni�
i = 0;

nX
i=1

Ni(�
i)2 + (�')

2 =
4(D � 2)

(D � 1)
:

(3.2.147)

A special case of this solution with �' = 0 was considered previously in [14] (for n = 2
and N1 = : : : = Nn = 1 see [6] and [4] respectively.)
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A curvature-like uid component

Consider the perfect uid matter with

ui = 2h(��1i + Ni) = hu
(1)
i (3.2.148)

where h 6= 0 is constant and N1 > 1. For h = 1 this component corresponds to a nonzero
curvature term in the �rst space [15] (see below). A calculation gives

ui = � 2h

N1
�i1; < u; u >�= �4h2b1 < 0; (3.2.149)

where b1 = 1� 1
N1

and

< u; u(�) >� = 2uiNi = �4h;
< u; u(�) � u >� = 4h(�1 + hb1);

�i =
�i1

h(N1 � 1)
: (3.2.150)

Using (3.2.148) and (3.2.150) we get from (3.2.39)-(3.2.43):

g = �(a1(� ))2h
� nY
i=1

(ai(� ))
2Ni(1�h)

�
d� 
 d�

+
nX
i=1

a2i (� )g
(i); (3.2.151)

a1(� ) = A1[sinh(r�=T )=r]
1

h(N1�1) [tanh(r�=2T )=r]�
1
;

(3.2.152)

ai(� ) = Ai[tanh(r�=2T )=r]
�i; i > 1; (3.2.153)

e�'(�) = A'[tanh(r�=2T )=r]
�' ; (3.2.154)

�2�(� ) = A(a1(� ))
�2h

nY
i=1

(ai(� ))
2Ni(h�1); (3.2.155)

i = 1; : : : ; n, where r =
q
A=jAj, T = jhj�1(2jAjb1)�

1
2 , Ai; A' > 0 are constants and the

parameters �i; �' satisfy the relations

�1 =
1

1�N1

nX
i=2

Ni�
i;

� nX
i=2

Ni�
i
�2
+(N1�1)

h nX
i=2

Ni(�
i)2 + (�')

2
i
=N1h

�2:

(3.2.156)

For h 6= h0 � b�11 = N1=(N1� 1) > 1 we have from (3.2.150) < u; u(�)� u >� 6= 0 and
(see (3.2.66))

�i = �i1�(h); �(h) = [N1 + h(1�N1)]
�1: (3.2.157)
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The power-law inationary solution for this case is

g = �dts 
 dts +A2
1t
2�(h)
s g(1) +

nX
i=2

A2
i g

(i); (3.2.158)

' = const; (3.2.159)

�2�(ts) =
b1

2(�1 + hb1)2t2s
: (3.2.160)

The internal space scale factors in this solution are constant (the so-called "spontaneous
compacti�cation"). It is easily shown that the constancy of internal scale factors leads to
the equation of state (3.2.148).

Using the relation �� = h0=h and the analysis carried out in subsection 3.3 we obtain
that the solution (3.2.157)-(3.2.160) is an attractor for non-exceptional solutions with
� > 0 as ts ! T� � 0, for h > h0 ; ts ! +1, for 0 < h < h0 and ts ! +0, for h < 0.
Thus we have also obtained solutions with the "dynamical compacti�cation".

3.3. The 1-curvature case.

Here we apply the relations obtained to a cosmological model described by the action

S =
Z
dDx

q
jgjfR[g]� @M'@N'g

MNg (3.3.1)

with a scalar �eld ' = '(t) and metric (1.2.1) de�ned on the manifold (1.2.2), where
(Mi; g

(i)), i = 2; : : : ; n, are Ricci-at spaces and (M1; g
(1)) is an Einstein space of nonzero

curvature, i.e. Rmn[g(1)] = �1g(1)mn; �
1 6= 0. Here n � 2 and Ni = dimMi . This "1-

curvature model" is equivalent to a special case of the above model (3.2.148) with h = 1
and A = �1

2�
1N1 (see [19]). The solution (3.2.151-6) reads for this case:

g = (a1(� ))
2[�d� 
 d� + g(1)] +

nX
i=2

a2i (� )g
(i);

(3.3.2)

a1(� ) = A1[sinh(r�=T )=r]
1

(N1�1) [tanh(r�=2T )=r]�
1
;

(3.3.3)

ai(� ) = Ai[tanh(r�=2T )=r]
�i; i > 1; (3.3.4)

e�'(�) = A'[tanh(r�=2T )=r]
�' ; (3.3.5)

�2�(� ) = A(a1(� ))
�2 (3.3.6)

i = 1; : : : ; n, where r =
q
��1=j�1j, T = [j�1j(N1�1)]�1=2 , Ai; A' > 0 are constants and

the parameters �i; �' satisfy the relations

�1 =
1

1�N1

nX
i=2

Ni�
i;

1

N1�1
� nX
i=2

Ni�
i
�2
+

nX
i=2

Ni(�
i)2+(�')

2 =
N1

N1�1 :
(3.3.7)
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The power-law inationary solution for the negative curvature case �1 < 0 reads:

g = �dts 
 dts +A2
1t
2
sg

(1) +
nX
i=2

A2
i g

(i); (3.3.8)

' = const; (3.3.9)

where A2
1 = j�1j=(N1 � 1) (see (3.2.69), (3.2.160)). We are led here to the Milne-type

solution recently considered in [266].
There is another parametrization of the solution (3.3.2.-7) in terms of an R variable

related to � -variable as

F = F (R) = 1�
�R0

R

�N1�1
= tanh2

�

2T
; �1 < 0;

(3.3.10)

=
�R0

R

�N1�1 � 1 = tan2
�

2T
; �1 > 0: (3.3.11)

Here R > R0 for �1 < 0 and R < R0 for �1 > 0; R0 = A12
1=(N1�1)

q
(N1 � 1)=j�1j. In

new variables the metric and the scalar �eld may be written as

g = �F b�1dR 
 dR + F bR2A2
1g

(1) +
nX
i=2

F �iA2
i g

(i);

(3.3.12)

e2�' = A2
'F

�'; (3.3.13)

A2
1 = j�1j=(N1 � 1), Ai; A' > 0 are constants and

b = (1�
nX
i=2

Ni�
i)=(N1 � 1) = (N1 � 1)�1 + �1; (3.3.14)

and the parameters �i(i > 1); �' satisfy the relations (3.3.7). A special case of the
solution (3.3.7), (3.3.12-14) with �' = 0 (a constant scalar �eld) was obtained earlier in
[19].

Remark 3. As a special case of the above solution, we get a scalar-vacuum analog of the
spherically-symmetric Tangherlini solution [167] with n Ricci-at internal spaces:

g = �fadt
 dt+ f b�1dR 
 dR

+f bR2d
2
d +

nX
i=1

faiBig
(i); (3.3.15)

e2�' = B'f
a'; (3.3.16)

where d
2
d is the canonical metric on a d-dimensional sphere Sd (d � 2), f = f(R) =

1�BR1�d ; B'; Bi > 0; B are constants and the parameters a; a1; : : : ; an satisfy the rela-
tions

b = (1 � a�
nX
i=1

aiNi)=(d � 1); (3.3.17)

(a+
nX
i=1

aiNi)
2 + (d� 1)(a2 + a2' +

nX
i=1

a2iNi) = d:

(3.3.18)
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For a' = 0 see also [36,182]. In the parametrization of the harmonic-type variable this
solution was presented earlier in [165,182].

Thus, using the above transformations, we can obtain spherically symmetric solutions
from cosmological ones.

3.4. Wheeler-DeWitt equation

Now, having studied the classical multidimensional solutions, we start an investigation of
their quantum analogs. As usual, quantization of the zero-energy constraint (3.2.4) leads
to the Wheeler-DeWitt (WDW) equation in the harmonic time gauge [15,37,52]

2Ĥ	 �
"
@

@z0
@

@z0
�

nX
i=1

@

@zi
@

@zi
+ 2Ae2qz

0

#
	 = 0:

(3.4.1)

We are seeking a solution to (3.4.1) in the form

	(z) = exp(i~p~z)�(z0); (3.4.2)

where ~p = (p1; : : : ; pn) is a constant vector (generally from Cn ), ~z = (z1; : : : ; zn�1; zn =
�'), ~p~z �Pn

i=1 piz
i . Substitution of (3.4.2) into (3.4.1) gives"

�1

2
(
@

@z0
)2 + V0(z

0)

#
� = E�; (3.4.3)

where E = 1
2~p~p and V0(z0) = �Ae2qz0 . Solving (3.4.3), we get

�(z0) = Bi
p
2E=q(

p�2Aq�1eqz0) (3.4.4)

where i
p
2E=q = ij~pj=q; and B = I;K are modi�ed Bessel functions. Note that

v = exp(qz0) =
nY
i=1

a
ui=2
i (3.4.5)

is the "quasivolume" (3.2.34).
The general solution of Eq.(3.4.1) has the following form:

	(z) =
X

B=I;K

Z
dn~p CB(~p)e

i~p~zBij~pj=q(

p�2A
q

eqz
0
)

(3.4.6)

where the functions CB (B = I;K ) belong to an appropriate class. For the �-term case
this solution was considered in [52,48] and for the two-component model (n = 2) and
� > 0 in [95].

In the ground state we put all momenta pa(a = 1; : : : ; n) equal to zero, and the ground
state wave function reads:

	0 = B0

�p�2Aq�1eqz0� : (3.4.7)
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It is to be stressed that the function 	0 is invariant with respect to the rotation group
O(n).

Remark 4. Applying the arguments of [20,46], one can show that the ground state wave
function

	(HH)
0 = I0

0@
q
2jAj
q

exp(qz0)

1A ; A < 0; (3.4.8)

= J0

 p
2A

q
exp(qz0)

!
; A > 0; (3.4.9)

satis�es the Hartle-Hawking boundary condition [213]. Special cases of this formula were
considered in Refs. [20] (the 1-curvature case) and [52] (the �-term case).

From (3.4.3) it follows that in the case A < 0 (negative energy density) a Lorentzian
domain exists as well as a Euclidean one for E > 0. In the case A > 0 only the Lorentzian
domain occurs for E � 0 but for E < 0 both domains exist. The wave functions (3.4.2),
(3.4.4) with A > 0 and E < 0 describe transitions between the Euclidean and Lorentzian
domains, i.e. tunneling universes.

Quantum wormholes

We consider only real values of pi . In this case we have E � 0.
If A > 0, the wave function 	 (3.4.2) is not exponentially damped when v!1, i.e.

the condition (i) for quantum wormholes (see the Introduction) is not satis�ed. The wave
function oscillates and may be interpreted as corresponding to the classical Lorentzian
solution. For A < 0, the wave function (3.4.2) is exponentially damped for large v only,
when B = K in (3.4.4). (Recall that

I�(z) � ezp
2�z

; K�(z) �
r
�

2z
e�z;

for z !1). However, in this case the function � oscillates in�nitely many times when
v ! 0. Thus the condition (ii) is not satis�ed. The wave function describes a transition
between the Lorentzian and Euclidean domains.

The functions

	~p(z) = ei~p~zKij~pj=q(
p�2Aq�1eqz0); (3.4.10)

may be used for constructing quantumwormhole solutions. As in [246,276,52], we consider
superpositions of the singular solutions

	̂�;~n(z) =
1

�

Z +1

�1
dk	qk~n(z)e

�ik�; (3.4.11)

where � 2 R and ~n 2 Sn�1 is a unit vector (~n2 = 1). A calculation gives

	̂�;~n(z) = exp
h
�
p�2A
q

eqz
0
cosh(� � q~z~n)

i
: (3.4.12)
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It is easy to verify that Eq.(3.4.12) leads to solutions of the WDW equation (3.4.1)
satisfying the quantum wormholes boundary conditions.

Note that the functions

	m;~n = Hm(x
0)Hm(x

1) exp[�(x0)2 + (x1)2

2
]; (3.4.13)

where

x0 = (2=q)1=2(�2A)1=4 exp(qz0=2) cosh(1
2
q~z~n); (3.4.14)

x1 = (2=q)1=2(�2A)1=4 exp(qz0=2) sinh(1
2
q~z~n); (3.4.15)

m = 0; 1; : : : ; are also solutions to the WDW equation with the quantum wormhole
boundary conditions. Solutions of such type were previously considered in [83,41,42,46,48].
They are called discrete spectrum quantum wormholes (see [276]) (and may form a basis
in the Hilbert space of the system [277]).

Thus in the case considered quantumwormhole solutions (with respect to quasi-volume
(3.4.5)) exist for matter with a negative density (A < 0).

3.5. A third-quantized model

Another step in studying topological changes in quantum cosmology can be made in
the so-called third quantization approach, where it is meant that the WDW equation is
considered within a second-quantized scheme.

Here we put A > 0, i.e. the matter density is positive. Consider the case of a real
	-�eld as in [268] for simplicity. The WDW equation (3.4.1) corresponds to the action

S =
1

2

Z
dn+1z	Ĥ	: (3.5.1)

Consider two bases of solutions to the WDW equation, f	in(~p);	�
in(~p)g and f	out(~p);	�

out(~p)g
	in(~p) = 	in(~p; z)

=

"
�

2q sinh(�j~pj=q)
#1=2

J�ij~pj=q

 p
2A

q
eqz

0

!
ei~p~z

(2�)n=2
;

(3.5.2)

	out(~p) = 	out(~p; z)

= 1
2

 
�

q

!1=2

H
(2)
ij~pj=q

 p
2A

q
eqz

0

!
ei~p~z

(2�)n=2
: (3.5.3)

where J� and H(2)
� are the Bessel and Hankel functions respectively. These solutions are

normalized by the following conditions

(	in(~p);	in(~p
0)) = (	out(~p);	out(~p

0)) = �
�
~p�~p 0

�
(3.5.4)

where

(	1;	2) = i
Z
dn~z

�
	�
1

$
@0 	2

�
(3.5.5)
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is the charge form (inde�nite scalar product). Here 	1

$
@ 	2 = 	1 @	2 � (@	1)	2 . Due

to the asymptotic behaviour

	in(~p; z) � cin(j~pj) exp(i~p~z � ij~pjz0); v! 0;

(3.5.6)

	out(~p; z) � cout(j~pj)p
v

exp(i~p~z � i

p
2A

q
v); v! +1:

(3.5.7)

where 	in(~p; z) and 	out(~p; z) are negative-frequency modes of "Kasner"- and "Milne"-
types respectively.

The standard quantization procedure [279,280] gives us

	(z) =
Z
dn~p

h
a+in(~p)	

�
in(~p; z) + ain(~p)	in(~p; z)

i
=
Z
dn~p

h
a+out(~p)	

�
out(~p; z) + aout(~p)	out(~p; z)

i
;

(3.5.8)

where the non-trivial commutators are

[ain(~p); a
+
in(~p

0)] = [aout(~p); a
+
out(~p

0)] = �
�
~p� ~p 0

�
: (3.5.9)

The "in" and "out" vacuum states satisfy the relations

ain(~p)j0; in >= aout(~p)j0; out >= 0: (3.5.10)

The modes (3.5.2) and (3.5.3) are related by the Bogoliubov transformation

	in(~p) = �(~p)	out(~p) + �(~p)	�
out(~p); (3.5.11)

�(~p) =

"
exp(�j~pj=q)
2 sinh(�j~pj=q)

#1=2
;

�(~p) =

"
exp(��j~pj=q)
2 sinh(�j~pj=q)

#1=2
: (3.5.12)

The vacua j0; in > and j0; out > are unitarily inequivalent. A standard calculation
[279,280] gives for the number density of \out-Universes" (of \Milne type") contained in
the \in-vacuum" (\Kasner-type" vacuum)

n(~p) = j�(~p)j2 = (exp(2�j~pj=q)� 1)�1 : (3.5.13)

Thus we obtain a Planck distribution of created universes with the temperature

TPl = q=2� =
p� < u; u >�=4�: (3.5.14)

The temperature (3.5.14) depends on the vector u = (ui) (i.e., on the equation of state
of the matter content of the Universe): TPl = TPl(u). For example, we get TPl(u

(�)) =
2TPl(u(dust)). In the Zeldovich matter limit u! 0 we have TPl ! +0.
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Remark 5. In [285] a regularization of propagators (in quantum �eld theory) was intro-
duced using the complex signature matrix

(�ab(w)) = diag(w; 1; : : : ; 1); (3.5.15)

where w 2 C n (�1; 0] is a complex parameter (Wick parameter). Path integrals are
originally de�ned (in covariant manner) for w > 0 (i.e. in Euclidean-like region) and
then analytically continued to negative w . The Minkowsky space limit corresponds to
w = �1 + i0 (in notations of [285] w�1 = �a). The prescription [285] is a natural
realization of Wick's rotation. In [286] analogs of the Bogoliubov-Parasiuk theorems
[278] for a wide class of propagators regularized by the complex metric (3.5.15) were
proved. This formalismmay be applied for third-quantized models of the multidimensional
cosmology. In this case the corresponding path integrals should be analytically continued
from the interval 1 < D < 2 (D is the dimension), where the minisuperspace metric is
Euclidean, to D = D0 � i0, D0 = 1 +

Pn
i=1Ni . We note also that recently J.Greensite

proposed the idea of treating the space-time signature as a dynamical degree of freedom
[287] (see also [288-9]).

3.6. Appendix

Proof of Proposition 2. We introduce the new "diagonalized" variables

�a = eai �
i; ua = eiaui; va = eiavi (3.6.1)

(ua) = (2q;~0) (�a) = (�ieai ) = (q�1;~0) (3.6.2)

and consequently (see (3.2.84))

0 = �iui = �aua = 2q�0 ) (�a) = (0; ~�): (3.6.3)

From the second relation in (3.2.84) we get

Gij�
i�j = �ab�

a�b = ~�2 � 1=q2: (3.6.4)

For the vector (va) = (v0; ~v) we have �v20 + ~v2 = <v; v>� < 0 and hence

jv0j > j~vj; v0 6= 0: (3.6.5)

We also obtain from (3.6.2) and (3.6.5)

< u; v >�= �u0v0 = �2qv0 6= 0: (3.6.6)

Using relations (3.6.2), (3.6.3) and (3.6.5) we get

(�i + �i)vi = (�a + �a)va

= q�1v0 + ~�~v = q�1v0(1 +
q

v0
~�~v): (3.6.7)

Eqs. (3.6.4), (3.6.5) imply the inequality

j q
v0
~�~vj � j~vj

v0
qj~�j � j~vj

v0
< 1: (3.6.8)

From (3.6.6)-(3.6.8) (and q > 0) we obtain the proposed identity (3.3.85). The proposition
is proved.
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4. Quantum Dynamics of Inhomogeneous Kaluza-Klein Cosmo-
logical Models near the Cosmological Singularity [290]

4.1. Introduction

One of the most di�cult problems of modern theoretical physics is the problem of the
cosmological singularity. Singularities follow from the classical theory and, as is widely
accepted, need quantum gravity to provide its exhaustive description. We do not have
any reasonable theory of such a kind yet save, presumably, the superstring theory [23].
And as is known, the last one adds some new features to the existing Einstein gravity. In
particular, the superstring theory predicts the dimension of the universe exceeds that of
we use to experience at a macroscopic level. In the present Universe additional dimensions
are supposed to be compacti�ed to the Planckian size, and display themselves as a set
of ordinary matter �elds. However, close to the singularity one should expect that all
dimensions to play an equal role, and have to be regarded on an equal footing. This
enables us to consider more general than Einstein's one multidimensional theories of
gravity [21,37,257] in order to study the nature and properties of singularitites.

From the classical point of view properties of general inhomogeneous cosmological
Kaluza-Klein models near the singularity were recently considered in Ref. [73] (for more
early investigations of the problem see also Refs.[53,54]). It was shown that the properties
of metric functions near the singularity may be well-described in the framework of asymp-
totic models. In this paper we are considering a quantum description of just those models
and investigate their behavior near the singularity from the quantum point of view. The
main result of this paper is that in the case of n � 9 (n is the number of spatial dimen-
sions) estimates for mean values of scale functions turns out to be of the same order as
in the classical theory. For mean scale factor we get < ai >=< gQi >� cgQmin as g ! 0,
where g is the metric determinant which near the singularity may serve as a time vari-
able, Qmin = �n�3

n+1 is the minimal admissible value of the anisotropy parameters Qi and
c is a slowly varying with g function, including quantum corrections, and di�ering from
the classical one. When considering dimensions exceeding n = 9 the situation changes
drastically. The potential does not restrict the con�guration space and, therefore, we have
no states which would be localized on the space of Qi . If we get ready a localized state
(a wave packet) the width of the packet spreads eventually more and more out and simul-
taneously the center of the wave packet runs to the in�nity of the con�guration space. In
classical theory this signals us that the oscillatory mode becomes unstable and transforms
into a Kasner-like behavior. Therefore, di�erent mean values will depend upon the initial
state crucially.

The section is organized as follows. In Sec.4.2 we use generalized Kasner variables
introduced �rst in Ref. [61] and adapted to the multidimensional models in Ref. [73] to
divide basic variables into two parts. Near the singularity the �rst part has a behavior
like a set of coupled scalar �elds while residual variables behave as a set of vector �elds
and can be neglected in a leading order (in the same manner as it happens for the matter
having an equation of state � > p, where p and � are an energy density and pressure
respectively) [76,73]. The asymptotic model is derived in Sec.4.3. In Sec.4.4 we consider
the quantization of the model. The Wheeler-DeWitt equation turns out to be dependent
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upon the �rst group variables only. We solve this equation in a lattice approximation
of the coordinate manifold. The probability interpretation is introduced by making use
of an explicit selection of a positive frequency sector on the space of solutions to the
Wheeler-DeWitt equation [291]. Such procedure implies an ambiguity and, therefore, the
same ambiguity will be inherently presented in the obtained quantum gravity. In order to
overcome this di�culty we, in Sec.4.5,6, discuss the possibility of the third quantization.
We note that the third quantization seems to be the natural scheme providing a description
of di�erent possible topologies of the universe [51,292]. We use the scheme proposed in
[293] to show that in the course of the evolution the presence of matter, e.g. of an ordinary
scalar �eld, can result in an increasing of quantum topology uctuations and, therefore,
properties of inhomogeneities of the metric may completely be determined by vacuum
uctuations in the third quantized theory. We conclude this paper with some estimates
and speculations in Sec.4.7.

4.2. Generalized Kasner Solution, Generalized Kasner Variables

Aiming to obtain a quantum description of inhomogeneous Kaluza-Klein models we start
with the canonical formulation of multidimensional gravity. In this formulation basic
variables are the spatial Riemannmetric components g�� and the matter source which will
be taken in the form of a scalar �eld � and its conjugate momenta ��� =

p
g(K���g��K)

and �� . These variables are functions speci�ed on the n�manifold S (� = 1; :::; n) and
K�� is the extrinsic curvature of S . For the sake of simplicity we shall consider S to be
compact i.e. @S = 0 (one may consider S to be the n-dimensional sphere though this
will not have any signi�cance for our investigation). The action has the following form in
Planck units (see for example [294])

I =
Z
S
(�ij @gij

@t
+��

@�

@t
�NH0 �N�H

�)dnxdt; (4.2.1)

where

H0 =
1p
g

�
��
��

�
� �

1

n� 1
(��

�)
2 +

1

2
�2
� + g(W (�)�R)

�
; (4.2.2)

H� = �2���
j� + g��@����; (4.2.3)

here

W (�) =
1

2

n
g��@��@��+ V (�)

o
: (4.2.4)

It turns out to be convenient to use the so-called generalized Kasner-like parametrization
of the dynamical variables [61,73]. The metric components and their conjugate momenta
are represented as follows

g�� =
X
a

exp fqag la�la� ; ��
� =

X
a

paL
�
a l
a
� ; (4.2.5)

where L�a l
b
� = �ba (a; b = 0; :::; (n�1)), and the vectors la� contain only n(n�1) arbitrary

functions of spatial coordinates. Further parametrization may be taken in the form [73]

la� = Ua
b S

b
�; Ua

b 2 SO(n); Sa� = �a� +Ra
� (4.2.6)
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where Ra
� denotes a triangle matrix (Ra

� = 0 as a < �:Substituting Eq.(4.2.5), (4.2.6)
into (4.2.1) we �nd the following expression for the action functional

I =
Z
S
(pa

@qa

@t
+ T �a

@Ra
�

@t
+��

@�

@t
�NH0 �N�H

�)dnxdt; (4.2.7)

where T �a = 2
P
b pbL

�
b U

b
a and the Hamiltonian constraint takes the form

H0 =
1p
g

�X
p2a �

1

n� 1
(
X

pa)
2 +

1

2
�2
� + V

�
: (4.2.8)

In the case of n = 3 the functions Ra
� are connected purely with transformations of

a coordinate system and may be removed by resolving momentum constraints H� = 0
[61]. However, in the multidimensional case the functions Ra

� contain n(n�3)
2

dynamical
functions as well.

4.3. Asymptotic model in the case of arbitrary small times

As it was shown, [61,55,73] (see also [294]), in the vicinity of a singularity the potential
term in (4.2.8) can be modeled by potential walls. To this end we represent the potential
in the following form

V =
kX

A=1

�Ag
�A ; (4.3.1)

where �A is a set of functions of all dynamical variables and of their derivatives and �A
is given by the expression

�abc = 1 +Qa �Qb �Qc; b 6= c; (4.3.2)

where Qa are the anisotropy parameters Qa = qaP
q
. Then assuming the �niteness of

the functions �A and considering the limit g ! 0 we �nd that the potential V may be
modeled by potential walls

g�A ! �1[�A(Q)] =

(
+1 ; �A < 0;
0 ; �A > 0

(4.3.3)

Thus, if we put the expressions (4.3.3) into (4.3.8) we �nd that the Hamiltonian constraint
does not depend on the variables Ra

� and its conjugate momenta T �a . Of course this is an
approximation and the real potential reserves a dependence of this group of variables and,
therefore, one should consider the model (4.3.3), (4.2.8) as a �rst step in an approximation
procedure. Then the rest of dynamical variables as well as an ordinary matter sources
with the state equation satisfying the inequality � > p may be accounted in subsequent
steps of the approximation procedure [76].

Now we can remove the rest of dynamical functions T �a , R
a
� from the action (4.2.7)

by putting N� = 0. Then we get the reduced dynamical system

I =
Z
S

(
pa
@qa

@t
+��

@�

@t
� �

�X
p2 � 1

n� 1
(
X

p)2 +
1

2
�2
� + U(Q)

�)
dnxdt; (4.3.4)
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where � is expressed via the lapse function as � = Np
g
.

The con�guration space M of the system (4.3.4) (called also superspace) can be rep-
resented in the form of the direct product M =

Q
x2SMx . Moreover, every local space

Mx is the ordinary n + 1-dimensional pseudo-Euclidean space. Indeed, one can choose
on M a new harmonic set of variables related to the old ones as follows

qa = Aa
j z
j + z0; zn =

s
2

n(n� 1)
�; (4.3.5)

where j = 1; :::; n� 1, a = 0; :::n� 1 and the matrix Aa
j is a constant [73] which obeys

the conditionsX
a

Aa
j = 0;

X
a

Aa
jA

a
k = n(n� 1)�jk ; (4.3.6)

and can be expressed in the explicit form as

Aa
j =

vuutn(n � 1)

j(j + 1)
(�aj � j�aj ); �aj =

(
1 ; j > a ;
0 ; j � a :

: (4.3.7)

Then the action (4.3.4) takes the form formally coincided with the action for a continueous
set of relativistic particles

I =
Z
S

(
Pr
@zr

@t
� �0(P 2

i + U � P 2
0 )

)
dnxdt; (4.3.8)

where r = 0; :::; n, i = 1; :::; n, �
0

= �
n(n�1) and the kinetic term, that determines a

metric on Mx , turns out to be coincided with that of the ordinary at n+1-dimensional
pseudo-Euclidean spacetime manifold.

4.4. Quantization and the probability interpretation

As it was mentioned above the action (4.3.8) resembles the action for a continueous set of
relativistic particles. Therefore, quantization of such a system may be carried out in the
complete analogy with that of relativistic particles [295]. The zero-energy Hamiltonian
constraint leads to the set of the Wheeler-DeWitt equations [273]

(��x + Ux + �Px)	 = 0; x 2 S; (4.4.1)

where 	 is the wave function of the universe, �x denotes a Laplace operator on Mx :
�x =

1p�G@A
p�GGAB@B , GAB is the metric on Mx determined by the interval

��(x)2 =
1

4�0
((�zi(x))2 � (�z0(x))2); (4.4.2)

Px is the curvature scalar of Mx . The value of � should be chosen as � = n�1
4n to provide

a conformal invariance of Eq.(4.4.1) which reects the arbitrariness in the choice of the
lapse function � . Indeed, the transformation

GAB ! eGAB = e�2
GAB; 	! e	 = e
n�1
2 
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transforms the Eq.(4.1) into

(� e�x + e2
Ux +
n� 1

4n
ePx) e	 = 0:

and the theory becomes independent on a particular choice of �.
To solve the equation (4.4.1) we shall consider a lattice approximation. To this end

we shall suppose the existence of a su�ciently small minimal scale of inhomogeneity for
all �elds lmin , so that the coordinates x will take discrete values only. The continueous
limit one obtains tending lmin to zero, though, from the other side, one may think of
the lattice model as of a background model and treat the scales less than lmin as small
perturbations.

The system of equations (4.4.1) turns out to be uncoupled, for each from these equa-
tions contains a set of functions which are speci�ed at a distinct point x of S . We shall
call such sets as x�sets. Therefore, the space H of solutions to this system takes the
form of the tensor product of spaces Hx (H =

Q
x2SHx) as that of M , where Hx is the

space of solutions to a distinct x� equation ( 4.4.1). Accordingly, all x�sets of degrees
of freedom may independently be considered. Therefore, at �rst it will be convenient to
work out the probability interpretation and all the technique on the example of one local
x�set of degrees of freedom and after that to generalize it to the case of all degrees of
freedom.

The space of solutions to the WDW equation for a distinct x-set of degrees
of freedom.

Every local x-equation (4.4.1) admits the conserved current JA(	;	) = i[	�rA	 �
	rA	�] which may be used to determine the inner product in the space Hx

< ' j � >= i
Z
�x
JA(';�)d�

A
x ; (4.4.3)

where �x is an arbitrary space-like surface on Mx and rA denotes a covariant derivative
on x-metric (4.4.2).

To construct a complete set of solutions to the local Eq.(4.4.1) it turns out to be
convenient by making use of the so-called Misner-Chitre like variables [61,73] (~y = yj ,
j = 1; :::; n� 1)

z0 = �e�� 1 + y2

1 � y2 ; ~z = �2e�� ~y

1 � y2
; y =j ~y j� 1: (4.4.4)

In these variables the anisotropy parameters become independent of the timelike variable
�

Qa(y) =
1

n

(
1 +

2Aa
jy
j

1 + y2

)
(4.4.5)

and that of the potential U(Q) in Eq.(4.4.1). The metric (4.4.2) in the new variables
takes the form

��(x)2 =
e�2�

4�0
(
4(�yj)2

(1� y2)2
+ e2�(�zn)2 � (�� )2): (4.4.6)
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For the sake of simplicity we shall use the gauge 4�0e2� = 1 in what follows.
The part of the con�guration space Mx related to the variables ~y is a realization of the

(n�1)-dimensional Lobachevsky space and the potential U cuts a part K of it [54,53,73]

�abc = 1 +Qa �Qb �Qc � 0; a 6= b 6= c (4.4.7)

which in the case n � 9 has a �nite volume. We shall suppose that there is a set of
solutions to the eigenvalue problem for the Laplace - Beltrami operator

(�y + k2J +
(n� 2)2

4
)'J(z) = 0; 'J j@K= 0; (4.4.8)

where the Laplace operator �y is constructed via the metric dl2 = hijdy
idyj = 4(dy)2

(1�y2)2
and J collects all indices numbering the eigenfunctions 'J . In the case of n < 10 the
region K has a �nite volume and J takes discrete values (J = 0; 1; 2; : : :); while for
n � 10 the volume of K is in�nite and the spectrum of the Laplace - Beltrami operator
becomes a continueous one. The functions 'j obey the orthogonality and normalization
relations

('I; 'J ) =
Z
K
'�I (y)'J(y)d�(y) = �IJ ; (4.4.9)

where d�(y) = 1
c

p
hdn�1y = 2n�1

c
dn�1y

(1�y2)n�1 , and c is the volume of K . The completeness
conditions are X

I

'�I (y)'I(y
0) =

� (y � y0)p
h

:

Then a complete orthonormal set
n
up; u

�
p

o
of solutions to x�equation (4.4.1) is consti-

tuted by functions of the form

up = exp(�1

2
� )�p(� )�p (y; z) ; �p (y; z) = (2�)�1=2'J (y) exp(i�zn) (4.4.10)

where p = (J; �). Functions �p(� ) satisfy the equation following from (4.4.1):

d2�p
d� 2

+ !2
p(� )�p = 0; !2

p(� ) = k2J + �2e�2� (4.4.11)

with the normalization condition ��p
d�p
d�
��p d�

�
p

d�
= �i, and are expressed via the Bessel

functions. The initial conditions to Eq.(4.4.11) at a moment �0 are to be taken in the
form �p(�0) =

1p
!p(�0)

, �0p(�0) = �i!p (�0)�p(�0) .
The set of solutions (4.4.10) is orthonormal in the sense of the scalar product (4.4.3),

i.e. they satisfy the relations

< up j uq >= � < u�p j u�q >= �pq; < up j u�q >= 0: (4.4.12)

Thus, an arbitrary solution f to the local Wheeler-DeWitt equation (4.4.1) can be rep-
resented in the form

f =
X
p

A+
p up +A�

p u
�
p; (4.4.13)

where A�
p are arbitrary constants which are to be speci�ed by initial conditions.
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Probability interpretation and the case of all degrees of freedom

Since the norm determined by the scalar product (4.4.3) turns out to be sign-inde�nite
we face up with the di�culty of probability interpretation. The simplest way to de�ne a
positive-de�nite inner product is to separate a submanifold H+

x on the space Hx which
is of "positive frequency". If we suppose A�

p = 0 in (4.4.13), then the normalization
condition for f takes the form

< f j f >=X
p

j A+
p j2= 1; (4.4.14)

and meets no di�culties. Thus, the subspace of physical states H+
x becomes the ordinary

Hilbert space and we can adopt the standard probability interpretation [295].
Now the generalization to the case of all degrees of freedommay be carried out straight-

forwardly. The positive frequency sector H+ in the total space of solutions H we de-
termine as the direct product of positive frequency local submanifolds H+ =

Q
x2SH

+
x .

Thus, the wave function takes the form

	 =
X
[p(x)]

Fp(x)Up(x); Up(x) =
Y
x2S

up(x) (4.4.15)

with the scalar product induced by (4.4.12)

h�j i = X
[p(x)]

B�
p(x)Ap(x) ; (4.4.16)

where � =
P
Bp(x)Up(x) and  =

P
Ap(x)Up(x) are arbitrary vectors from H+ .

Dispite that Eq. (4.4.15) and (4.4.16) give already well de�ned probability interpre-
tation it is necessary to mention that the procedure of the choice of H+

x in the Hx is
not uniquely de�ned. We can use a Bogoliubov transformation to construct a new set of
modes

vp;x =
X
q

n
� (x)pq uq + � (x)pq u

�
q

o
(4.4.17)

where we add the label x to point out the possible dependence on x 2 S and while
� (x)pq 6= 0 di�erent sets of modes (4.4.17) de�ne di�erent submanifolds H+

x . The situ-
ation will be worse still when considering the total space H . Therefore, the probability
interpretation turns out to be crucially dependent upon the particular choice of the physi-
cal sector H+ in H . Here we face with the main inherent di�culty of quantum cosmology
which, apparently, cannot be solved in the framework of the ordinary "one-particle" quan-
tum gravity. To overcome this di�culty it is necessary to use the procedure of second (or
"third") quantization of the wave function of the Universe [51,296,292,297].

4.5. Third quantization

In addition to provide a probability interpretation third quantization has another goal.
This theory allows describe processes connected with topology changes. The simplest
processes of such a kind was widely discussed earlier in connection with wormholes and
baby universes [51] and in the context of a description of a quantum creation of the
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Universe from nothing [21,296,297]. In the present section we use a new approach pointed
out in Refs. [292,293] which generalizes the third quantization and allows to describe
arbitrary topologies of the universe. That generalization follows from the fact that the
system of WDW equations (4.4.1) is uncoupled in the leading order. Therefore, one
may secondly quantize every x-set of degrees of freedom independently from each other.
In quantum gravity this corresponds to the situation when the number of points of the
physically observable space, speci�ed at a particular point of the basic coordinate manifold
S , turns out to be a variable and topology of the physical space may be di�erent from
that of S [292-3] (below we shall follow Ref. [293]).

Let us consider a distinct x�set of the degrees of freedom. While we do not account for
interactions between these sets we can describe quantum states of each set by a local wave
functions 	x . When the third quantization is imposed the wave functions 	x become
�eld operators and can be expanded in the form (4.4.13) (for simplicity we consider 	x

to be a real scalar function):

	x =
X

C(p; x)u(p; x) + C+(p; x)u�(p; x); (4.5.1)

where u(p; x) is the set of modes (4.4.12) and the label x we add to point out the possible
dependence on spatial coordinates. Now we consider the operators C(p; x) and C+(p; x)
to satisfy the standard commutation relations

[C(p; x); C+(q; x0)] = �p;q�(x; x
0): (4.5.2)

The �eld operators 	x act on a Hilbert space of states which has the well known structure
in the Fock representation. The vacuum state is de�ned by the relations C(x; p) j 0 >= 0
(for all x 2 S ), < 0j0 >= 1. Acting by the creation operators C+(p; x) on the vacuum
state we can construct states describing the Universe with arbitrary spatial topologies. In
particular, the states of the type (4.4.15) describing the Universe whose spatial topology
coinsides with the topology of S take the structure

jf >= X
[p(x)]

Fp(x)j1p(x) >; j1p(x) >= 1

Z1

Y
x2S

C+(x; p(x))j0 >; (4.5.3)

where Z is a normalization constant and the wave function (4.4.15) describing the simple-
topology Universe can be found as

< 0j	jf >=< 0j Y
x2S

	xjf >=
X
[p(x)]

Fp(x)Up(x): (4.5.4)

The states describing the Universe with n disconnected spatial components have the
structure

jn >= j1p1(x); :::; 1pn(x) >=
1

Zn

nY
i=1

Y
x2S

C+(x; pi(x))j0 > (4.5.5)

(we recall that in the model under consideration in virtue of the existence of lmin the
coordinates x take discrete values). Besides these states describing simplest topologies
the approach considered allows to construct nontrivial topologies as well. This is due to
the fact that the tensor product in (4.5.3), (4.5.5) may be de�ned either over the whole



CBPF-MO-002/95 177

coordinate manifold S or over part of it D � S . In this manner, taking su�ciently
small pieces Di of the coordinate manifold S we can glue arbitrarily complex physical
spaces. In order to construct the states of such a kind it is convenient to introduce a set
of operators as follows

a(D; p(D)) =
Y
x2D

C(x; p(x)); a+(D; p(D)) =
Y
x2D

C+(x; p(x)): (4.5.6)

These operators have a clear interpretation, e.g. the operator a+(D; p(D)) creates the
whole region D 2 S having the quantum numbers p(D). Thus, in the general case states
of the Universe will be described by vectors of the type

j� >= c0j0 > +
X
I

cIa
+
I j0 > +

X
I;J

cIJa
+
I a

+
J j0 > +:::: (4.5.7)

Now consider an interpretation of the scheme suggested in [293]. Ordinary measure-
ments are usually performed only on a part K of the coordinate manifold S . There are
two possibilities. The �rst one is that an observer measures all of the quantum state of
the region K and, the second, more probable one is when the observer measures only a
part of the state. In the second case the observer considers K as if it were a part of the
ordinary at space. Therefore, the part of the quantum state which will be measured,
appears to be in a mixed state. This means the loss of quantum coherence widely dis-
cussed in Refs. [51]. In order to describe measurements of the second type we de�ne the
following density matrix for the region K

�nm(K) =
1

N(K)
< �ja+(K;n(K))a(K;m(K))j� >; (4.5.8)

where j� > is an arbitrary state vector of the (4.5.7) type and N(K) is a normalization
function which measures the di�erence between the real spatial topology and the coordi-
nate manifold S . If we consider the smallest region K which contains only one point x
of the space S the normalization function N(x) in (4.5.8) will play the role of a "density"
of the physical space. For the states (4.5.3), (4.5.5) we have N(x) = 1 and N(x) = n
respectively. Thus, if A(K) is any observable we �nd < A >= 1

N
Tr(A�).

4.6. Topology uctuations and quantum creation of the Universe from noth-
ing

Since the WDW Eq.(4.4.1) has an explicit "time"-dependent form one could expect the
existence of quantum polarization e�ects (topology uctuation or the so-called spacetime
foam [298-9]). These e�ects can be calculated either by singling out the asymptotic in and
out regions on the con�guration space M for which we can determine positive-frequency
solutions to Eq.(4.4.1) (see for example [297]), or by using the diagonalization of the
Hamiltonian technique [280] by means of calculating depending on time Bogoliubov's
coe�cients. Let us consider solutions (4.4.10) of the arbitrary local x-equation (4.4.1).
The function �p can be decomposed in positive and negative frequency parts

�p =
1p
2!p

(�pe
�i�p + �pe

i�p);
d�p
d�

= �i
r
!p
2
(�pe

�i�p � �pe
i�p); (4.6.1)
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where �p =
R �
�0
!pd� . The functions �p and �p satisfy identity j�pj2�j�pj2 = 1 and de�ne

the depending on time Bogoliubov coe�cients [280]. The depending on time creation and
annihilation operators take the form

b� (x; p) = �p (� )C (x; p) + ��p (� )C
+ (x; p) ;

b+� (x; p) = ��p (� )C
+ (x; p) + �p (� )C (x; p) : (4.6.2)

In terms of these operators the super-Hamiltonian of the �eld 	x (the Hamiltonian den-
sity) becomes diagonal

Ex =
Z
��

��Ad�
A
x =

1

2

X
p

!p (� )
�
b+� (x; p) b� (x; p) + b� (x; p) b

+
� (x; p)

�
; (4.6.3)

where �AB = rA	xrB	x�1
2
GAB

�
rC	xrC	x � (U + �P )	2

x

�
and d��x =

p
Gndn�1ydz ,

Gn is the metric on ��x induced by (4.4.6) . The ground state of the Hamiltonian is de-
ternined by the conditions b� (x; p) j0�i = 0 for all x and p and is also depending on
time. The excitations of (4.6.3) are interpreted as points of physical space having the
coordinate x 2 S .

Now we determine two asymptotic regions as in (� ! �1) and out ( �0 ! +1).
In these regions the functions �p and �p take constant values. Substituting the initial
conditions �p = 1, �p = 0 as �0 ! �1 in (4.4.11), (4.6.1) we �nd that in the out region
the Bogoliubov coe�cients are

�p = (exp(�kJ)=2sh(�kJ ))
1
2 ; �p = (exp(��kJ)=2sh(�kJ ))

1
2 : (4.6.4)

Then, for example, if the initial state of the "superspace"-Hamiltonian (4.6.3) is the
ground state j0ini , in the out region the density matrix (4.5.8) takes form

�pq(K) =
Y
x2K

�p(x)q(x)(x); (4.6.5)

where �(x) is the one-point density matrix

�pq(x) =
1

N(x)
j�pj2�(p; q) = 1

N(x)

1

e2�kJ � 1
�(p; q) ; (4.6.6)

with N (x) being the normalization function N(x) =
P
p

1
e2�kJ�1 . This one-point density

matrix does not depend on spatial coordinates and has the Plankian form with the tem-
perature T = 1

2� and therefore, the density matrix (4.6.5) describes a Universe which in
average turns out to be homogeneous.

4.7. Estimates and concluding remarks

In this manner the Universe appears to be homogeneous just after topology uctuations
are accounted for. If, on the contrary, one does not consider topology uctuations, prop-
erties of inhomogeneities of the metric depend crucially upon the choice of initial data.
Despite this, when n � 9 , near the singularity the behavior of lengths in time shows



CBPF-MO-002/95 179

universal features. This occurs, in the �rst place, due to the fact that the main contru-
bution to the mean scales

D
gQa

E
is given just by those regions of the con�guration space

in which the anisotropy parameters Qa take the minimal values. They are the points Q�
a

= �n�3
n+1

lying on the boundary @K (see, for more detail Ref. [73]). Since at the boundary
the eigenfunctions 'J = 0 , in the neighborhood of @K we have 'J � kJ (Q �Q�) and
the probability density can be estimated as P (Q) � (Q�Q�)n (we recall that in classical
theory we had Pcl (Q) � (Q�Q�)n�2 and the need to average out the scale function
appeared as a result of a stochastic behavor of the metric functions in space and time).
Thus, in the same way as in Ref. [73] for n > 3 in the limit g ! 0 we �nd for moments
of the scale functions (M > 0)

D
gMQa

E
= Ca (M; � )

gMQ�

�
(M ln 1=g�)

n+1 ;

in the case n > 3 and for n = 3 the esimateD
gMQa

E
= Ca (M; � ) (M ln 1=g�)

�5=2

where g� = g (�;Q�) and Ca is a slowlly varying in time function which includes infor-
mation of initial quantum state. Thus, one can see that in quantum theory the average
lengths are also increasing.

In the case of n > 9 the volume of K is in�nite and the eigenfunction (4.4.8) proves to
be non-normalizable and, therefore, we have no states which would be localized on K . If
we get ready a localized state (a wave packet) the width of the packet spreads eventually
more and more out and simultaneously the center of the wave packet runs to the in�nity
of the con�guration space. In classical theory this signals us that the oscillatory mode
becomes unstable and transforms into a Kasner-like behavior. Therefore, di�erent mean
values depend upon the initial state crucially.
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