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1 Introduction

The object of these notes is to discuss briey some classi�cation procedures in general
relativity theory. The geometrical objects to be classi�ed here are: (i) bivectors, (ii) the
Weyl tensor, (iii) symmetric second order tensors and (iv) the space-time connection.
Topics (i) and (ii) will be mentioned only briey since they are well-known. Topic (iii)
will be dealt with in more detail since it has a number of useful applications. Topic (iv)
which will be described in terms of the holonomy group of space-time is, mathematically,
little more than classifying the subgroups of the Lorentz group and is perhaps of less
interest. However in a number of problems recently it has proved useful and deserves
some consideration.

Throughout these notes a standard notation is used, (M;g) denotes our space-time
with Lorentz metric g of signature (� + ++), round and square brackets denotes the
usual symmetrisation and skew-symmetrisation of indices, a semicolon denotes a covari-
ant derivative and a comma a partial derivative. The Riemann, Ricci, Weyl and energy-
momentum tensors are denoted by Ra

bcd, Rab(� Rc
acb), Cabcd and Tab and the Ricci scalar

by
R = Rabg

ab.
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2 The Classi�cation of General Second Order Ten-

sors

Let p 2M and let Sab be a second order covariant tensor at p. The fact that S is a tensor
means that it makes sense to ask for the eigenvectors and eigenvalues of S, that is, to ask
for a vector k at p and a real number � such that

Sabk
b = �ka(= �gabk

b) (1)

Note that it makes sense because the answer would be independent of the coordinate
system used in (1). One should also note that in general it matters over which index of
S the contraction in (1) is performed. Here the second index is chosen. Actually since
we will only consider the cases when S is either symmetric or skew-symmetric this will
hardly matter in practice, there just being a sign change if S is skew.

The problem in solving (1), that is, �nding the eigenvectors and corresponding eigen-
values, is that since g is of Lorentz signature the problem is not posed in the usual form
dealt with in the standard algebra texts. One can rectify this by simply rewriting (1) in
the form

Sa
bk

b = �ka(= ��abk
b) (2)

The �ab rather than the gab on the R.H.S. of (2) casts the problem into the standard
form. However, we pay a price for this because the tensor Sa

b will have no sensible sym-
metric or skew-symmetric property even if the original Sab did. Further, the eigenvalues
� in (1) or (2) may be real or complex. Thus the possibilities for solving (1) are to either
(i) work with (2) and su�er the attendant problems but where at least the problem is in
standard form or (ii) to work with (1) and try to develop a new technique in order to
determine the algebraic structure or (iii) �nd an alternative representation of S for which
classi�cation techniques exist. We will explore these possibilities in these notes.

3 Preliminary Remarks

At p 2M we can introduce two types of tetrad bases for the tangent space TpM to M at
p. A (pseudo-) orthonormal tetrad (t; x; y; z) satis�es �tata = xaxa = yaya = zaza = 1
and a real null tetrad (`; n; x; y) satis�es `a`a = nana = 0 `ana = xaxa = yaya = 1 with
all other inner products of tetrad members zero in both cases. We can also introduce a
complex null tetrad (`; n; m; �m) at p where, ` and n are as in the real null tetrad case
and m and (its conjugate) �m are de�ned from the real null tetrad by

p
2m = x + iy,p

2 �m = x � iy. Thus m and �m are complex null vectors and the only non vanishing
inner products amongst `, n, m, �m are `ana = 1 ma �ma = 1. The following completeness
relations then hold at p

gab = 2`(anb) + xaxb + yayb = 2`(anb) + 2m(a �mb) = �tatb + xaxb + yayb + zazb (3)
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It will be convenient to know the set of changes of one real null tetrad (` ; n; x; y)
to another such tetrad (`0; n0; x0; y0) for which the direction of ` is preserved, that is,
`0 = A` (A 2 R; A > 0). This condition on ` together with the orthogonality relations on
(`0; n0; x0; y0) for it also to be a real null tetrad means that this set of tetrad transformations
(which is just a particular subgroup of the Lorentz group and will be set into proper
context later) is given by

`0 = A`

x0 = �x� �y �A
p
2(� + ��)` (4)

y0 = �x+ �y +A
p
2(�� � �)`

n0 = A�1n+
p
2(x� �y)�A(2 + �2)`

where A, �, �, , � 2 R with A > 0 and �2+�2 = 1. Thus there are 4 free parameters in
(4). These transformations can be more simply expressed in terms of the corresponding
complex null tetrad change (`; n;m; �m) ! (`0; n0; m0; �m0) again with the direction of `
preserved, `0 = A` (A 2 R; A > 0)

`0 = A`

m0 = ei�(m�A �B`) (5)

n0 = A�1n +Bm+ �B �m�AB �B`

where A; � 2 R; A > 0; B 2 C { again 4 free parameters. In what follows, these tetrad
changes will be used to replace a real (or complex) null tetrad with another in order to
simplify the expression for a certain tensor expressed in such a tetrad.

At p the set of second order symmetric tensors is a 10-dimensional vector space which
can be spanned by the 10 basis symmetric tensors (expressed in terms of a real null tetrad
(`,n; x; y) at p) given by

`a`b; nanb; 2`(anb); xaxb; yayb; 2x(ayb);

2`(axb); 2`(ayb); 2n(axb); 2n(ayb): (6)

Similarly, at p, the set of bivectors at p is a 6-dimensional vector space which can be
spanned by the 6 basis bivectors (expressed in terms of a real null tetrad at p) given by

2`[anb]; 2x[ayb]; 2`[axb]; 2`[ayb]; 2n[axb]; 2n[ayb]: (7)

Thus any second order symmetric tensor at p can be written as a linear combination
of the basis members (6) and any bivector at p can be written as a linear combination of
the members (7).

Now let Fab be a (real) bivector at p 2 M and let
�

F ab denote its dual. Then we can

construct a complex bivector
+

F ab= Fab + i
�

F ab called the complex self dual of Fab. It has

the property that (
+

F ab)� = �i +

F ab. Conversely any complex bivector Pab at p satisfying
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the self dual condition
�

P ab= �iPab can be written as Pab = Fab+ i
�

F ab for a real bivector
Fab. Now the set of all complex bivectors at p forms a 6-dimensional complex (or a 12-
dimensional real) vector space. However the set of all complex self dual bivectors at p is a
3-dimensional complex (or a 6-dimensional real) vector space. Noting that the 1st and 2nd
real bivectors in (7) form a dual pair as do the 3rd and 4th (with a minus sign inserted in
front of the 4th) and the 5th and 6th we can de�ne a basis for the 3-dimensional complex
vector space of self dual complex bivectors by

Vab = 2`[a �mb] Mab = 2`[anb] + 2 �m[amb] Uab = 2n[amb]: (8)

that is,
p
2Vab = `[axb]+ i`[axb]

� = `[axb]� i`[ayb], etc. In (8) the basis bivectors V , M and
U have been built from a complex null tetrad. When that complex null tetrad is changed
under the scheme (5) the corresponding complex bivectors V , M and U change according
to

V 0

ab = Ae�i�Vab

M 0

ab = 2A �BVab +Mab (9)

U 0

ab = A �B2ei�Vab + �Bei�Mab +A�1ei�Uab

4 The Classi�cation of 2-spaces in TpM

The set of 2-dimensional subspaces (2-spaces) of TpM can be classi�ed according as they
contain no null directions (in which case they are called spacelike) exactly one null direction
(in which case they are called null) or exactly two null directions (in which case they are
called timelike). It is easy to show that there are no other possibilities. For example, let
(`; n; x; y) be a real null tetrad at p and if u and v are any two independent vectors at p
let (u; v) denote the 2-space that they span (ie determine) at p. Then (x; y) is spacelike,
(`; n) is timelike and (`; x), (`; y), (n; x) and (n; y) are null.

Now given a 2-space at p the set of vectors which are orthogonal to each member of
this 2-space is also a 2-space called its orthogonal complement. Thus (x; y) and (`; n)
are orthogonal complements as are (`; x) and (`; y) and also (n; x) and (n; y). Note
that the orthogonal complement of a spacelike 2-space is timelike and vice-versa and the
orthogonal complement of a null 2-space is null (and they contain the same null direction).

It is then easy to show that every member of a spacelike 2-space is a spacelike vector
and that it can be spanned by an orthogonal pair of spacelike vectors. Also a null 2-space
contains a null vector, say `, and all its multiples and all its other members are spacelike
and orthogonal to `. It can thus be spanned by vectors ` and x with `a`a = `axa = 0,
xaxa = 1. A timelike 2-space contains timelike, spacelike and null members and can be
spanned by independent null vectors, say ` and n, normalised so that `ana = 1.

5 The Classi�cation of Bivectors

Let p 2M and Fab a bivector at p. Regarding Fab as a skew matrix, its rank is therefore
an even number 0,2 or 4. If it is 0 then Fab = 0. Suppose then that the rank of Fab is 2.
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Then there exists a 2-space U � TpM such that if k 2 U then Fabk
b = 0. If U is spacelike

and spanned by orthogonal unit vectors x and y, one completes them to a null tetrad
(`; n; x; y) and expands Fab at p in terms of the basis (7)

Fab = 2�`[anb] + 2�x[ayb] + 2`[axb] + 2�`[ayb] + 2�n[axb] + 2�n[ayb]: (10)

for �; �; ; �; �; � 2 R. The conditions Fabx
b = Faby

b = 0 in (10) then show that � =  =
� = � = � = 0 and so

Fab = 2�`[anb]

 
� 2 R
� 6= 0

!
(11)

Similarly if U is timelike and spanned by null vectors ` and n (scaled so that `ana = 1)
a similar argument shows that

Fab = 2�x[ayb]

 
� 2 R
� 6= 0

!
(12)

and if U is null and spanned by a null vector ` and a unit spacelike vector y (so that
`aya = 0) then

Fab = 2`[axb]

 
 2 R
 6= 0

!
(13)

There are no other possibilities if rank Fab = 2 and in each of the above rank 2 cases
F can always be written in the form Fab = paqb � qapb and then F is called simple. Note
that the vectors p and q are not uniquely determined by F . However, the 2-space spanned
by the vectors p and q in any (simple) form for F is well de�ned and is called the blade
of F . Simple bivectors are then classi�ed as spacelike, timelike or null according as their

blade is a spacelike, timelike or null 2-space. Further, it is easy to show that the dual
�

F
of a simple bivector F is also simple and its blade is the orthogonal complement of the
blade of F . Thus the dual of a spacelike (simple) bivector is timelike and vice versa and
the dual of a null bivector is null. As an example note that the bivectors in (7) are all
simple and are, respectively, timelike, spacelike, null, null, null and null.

If F is a null bivector then it takes a form like (13) and `, which is the only null
direction in its blade, is called the principal null direction of F. It follows in this case

that
�

F/ 2`[ayb] and ` is also the principal null direction of
�

F . If F is timelike then it
takes a form like (11) and then ` and n are called the principal null directions of F. If
F is spacelike then although its blade contains no null directions, it uniquely determines
its (timelike) orthogonal complement (ie the blade of its dual). The two principal null
directions of its dual are then called the principal null directions of F. Thus if F takes a
form like (12) its principal null directions are ` and n.

Now suppose the rank of Fab is 4. First construct the corresponding self-dual (complex)
bivector Fab and expand in terms of the basis (8)

+

F ab= �Vab + �Mab + Uab

�
�; �;  2 C

�
(14)
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The idea is to show that by changing the basis in (14) (i.e. by changing the null tetrad
(`; n;m; �m) according to (5) and hence the basis (8) according to (9)) we can make � and
 equal to zero in (14). After making the change (5) and hence (9) we get

+

F 0

ab = �V 0

ab + �M 0

ab + U 0

ab

= �(Ae�i�Vab) + �(2A �BVab +Mab)

+ (A �B2ei�Vab + �Bei�Mab +A�1ei�Uab)

so

+

F 0

ab = (�Ae�i� + 2�A �B + A �B2ei�)Vab

+ (� +  �Bei�)Mab + (A�1ei�)Uab (15)

Now � ,� and  are given by (14) and we have the freedom to choose A, � and B in
(5) and (9) (and clearly one of �, � and  must be non-zero otherwise we would have
Fab = 0). First, �x A and � and choose B so that the coe�cient of Vab in (15) vanishes.

In this new tetrad
+

F 0

ab has no coe�cient of Vab (and by switching ` and n we can think of

this as
+

F 0

ab having no coe�cient of Uab). So we can choose the tetrad so that (dropping
primes)

+

F ab= �Vab + �Mab (16)

Now in (16) we must have � 6= 0 otherwise, by taking real parts we would get Fab

simple and hence of rank 2 { a contradiction. Using (16), we repeat the tetrad change (5)
and (9) and (15) becomes

+

F 0

ab= (�Ae�i� + 2�A �B)Vab + �Mab (17)

and we choose B so that �Ae�i� +2�A �B = 0. Then (dropping primes again)
+
F ab= �Mab

and taking real parts we recover Fab in the form

Fab = 2a`[anb] + 2bx[ayb] (18)

where � = a � ib, a; b 2 R. In other words, if Fab has rank 4 it can be written (as in
(18)) as the sum of two simple bivector one spacelike and one timelike (in fact they are
duals). Then when Fab has rank 4 (i.e. Fab not simple) it is not hard to show that the
two 2-spaces (x; y) and (`, n) represented by (18) are uniquely determined by Fab.

This completes the classi�cation of bivectors. It can be summarised as follows:

Case I Fab = 0:

Case II Fab rank 2 (, Fab simple) and either Fab spacelike, timelike,

null { canonical forms(11); (12); (13)

Case III Fab rank 4 (Fab non-simple) { canonical form (18):



{ 7 { CBPF-MO-001/93

Remarks

(i) Since the rank of Fab is even then the existence of one vector ka(6= 0) such that
Fabk

b = 0 implies that Fab is simple (if Fab 6= 0).

(ii) If Fab satis�es Fabk
b =

�

F ab k
b = 0 then Fab is necessarily null and ka is the (unique

up to scaling) principle null direction of Fab (and
�

F ab).

(iii) Any bivector (simple or non-simple) which is not null is usually called non-null.

The eigenvector structure of these bivector types is easily described in terms of a real
null tetrad (`, n; x; y).

1. Fab spacelike

Canonical form Fab = xayb � yaxb

The eigenvectors are `a (eigenvalue 0)
na (eigenvalue 0)
xa + iya (eigenvalue i)
xa � iya (eigenvalue �i)

2. Fab timelike

Canonical form Fab = `anb � na`b

The eigenvectors are `a (eigenvalue 1)
na (eigenvalue �1)
xa (eigenvalue 0)
ya (eigenvalue 0)

3. Fab null

Canonical form Fab = `axb � xa`b

The eigenvectors are `a (eigenvalue 0)
ya (eigenvalue 0)

4. Fab non-simple

Canonical form Fab = 2a`[anb] � 2bx[ayb]

The eigenvector are `a (eigenvalue a)
na (eigenvalue �a)
xa + iya (eigenvalue bi)
xa � iya (eigenvalue �bi)



{ 8 { CBPF-MO-001/93

The Segre types here are:

Fab spacelike | f(11)z�zg
Fab timelike | f11(11)g
Fab null | f(31)g
Fab non-simple | f11 z�zg

6 The Petrov Classi�cation of the Weyl Tensor

The Weyl tensor Cabcd, because of its symmetries, can be represented as a 6�6 symmetric
matrixCAB according to the block index scheme 1$ 23, 2$ 31, 3$ 12, 4$ 10, 5$ 20,
6$ 30. One can then classify the Weyl tensor by looking for eigenbivectors of Cabcd, that
is, solutions for Fab and � of the equation

CabcdF
cd = �Fab (19)

which is like �nding eigen-6 vectors of CAB, that is, solutions for FA and � of the equation
CABF

B = �FA (where block indices are raised and lowered with the \bivector metric"
gAB $ Gabcd = gacgbd � gadgbc). The resulting possible Segre types are just the Petrov
canonical types. However a simple approach is made possible by the Weyl symmetry
Cc

abc = 0 This means that we can write CAB as

CAB =

 
A B
BT �A

! 
A symmetric
A and B tracefree

!

and so we can describe C by the 3 � 3 real matrices A and B or by the complex 3 � 3
matrix D = A + iB. There are three possible Jordan forms for the matrix D over C,
namely

0
B@ � 0 0

0 � 0
0 0 

1
CA

0
B@ � 1 0

0 � 0
0 0 �2�

1
CA

0
B@ 0 1 0

0 0 1
0 0 0

1
CA

Segre f111g Segre f21g Segre f3g
Petrov Type I Petrov Type II Petrov Type III

where the tracefree condition on A and B (and hence on D) is used. The Segre and Petrov
types are indicated. The Petrov type I has a subcase type D (where � = �) and the type
II has a subcase type N (where � = 0). They are

0
B@ � 0 0

0 � 0
0 0 �2�

1
CA

0
B@ 0 1 0

0 0 0
0 0 0

1
CA

Segre f11)1g (Segre f21)g
Petrov Type D Petrov Type N
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A particularly important role is played by null eigenbivectors and by their principal
null directions. In fact they lead to an alternative and very useful version of the Petrov
classi�cation. This classi�cation is essentially the work of L. Bel and is referred to as the

Bel criteria. First de�ne the complex self dual Weyl tensor
+

Cabcd by

+

Cabcd= Cabcd + i
�

Cabcd (20)

Here
�

Cabcd is the dual of Cabcd (and it does not matter whether the right or left dual is
taken since, for the Weyl tensor, they are equal). If Cabcd 6= 0 then the Bel criteria are as
follows

(i) Cabcd is (Petrov) type N ,+

Cabcd k
d = 0 for some vector k. The vector k is necessarily

null and unique up to a scaling and is called the repeated principal null direction of
Cabcd.

(ii) Given that condition (i) does not hold then Cabcd is type III ,+

Cabcd k
akc = 0 for

some vector k. The vector k is null and unique up to a scaling and is called the
repeated principal null direction of Cabcd.

(iii) Given that (i) and (ii) do not hold the Cabcd is of type II,
+
Cabcd k

akc = �kbkd has a
unique (up to a scaling) solution for k with � 2 C, � 6= 0. The vector k is necessarily
null and is called the repeated principal null direction of Cabcd.

(iv) The typeD characterisation is as above for type II except that now there are required
two independent (necessarily null) vectors k satisfying the condition given there and
are each referred to as repeated principal null directions.

(v) Otherwise the Petrov type is I and there are exactly 4 distinct null directions k
satisfying

k[eCa]bc[dkf ]k
bkc = 0 (21)

and called principal null directions of the Weyl tensor.

7 The Classi�cation of Second Order Symmetric Ten-

sors

Now return to section 2 and assume the tensor Sab to be symmetric. So we have equation
(2) with Sab = Sba. This equation is, at p 2M

Sa
bk

b = �ka (22)

and, as it stands, contains no reference to the signature of the metric. However, we have
the \consistency condition" that the resulting tensor is symmetric

gacS
c
b = gbcS

c
a (23)
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In other words if no metric with Lorentz signature at p can be found to satisfy (23)
for a particular algebraic type for Sa

b then that algebraic type is impossible for S in a
space-time. This technique reveals one method of �nding the possible algebraic types for
S[1]. First suppose that all the eigenvalues of S are real (we will deal with the case of
complex eigenvalues later). Then the possible Jordan forms for the matrix Sa

b are

0
BBB@

�1 0 0 0
0 �2 0 0
0 0 �3 0
0 0 0 �4

1
CCCA

0
BBB@

�1 1 0 0
0 �1 0 0
0 0 �2 0
0 0 0 �3

1
CCCA

0
BBB@

�1 1 0 0
0 �1 1 0
0 0 �1 0
0 0 0 �2

1
CCCA

Segre f1111g Segre f211g Segre f31g

0
BBB@

�1 1 0 0
0 �1 0 0
0 0 �2 1
0 0 0 �2

1
CCCA

0
BBB@

�1 1 0 0
0 �1 1 0
0 0 �1 1
0 0 0 �1

1
CCCA

Segre f22g Segre f4g

In each case one checks the consistency with (23) and it turns out that for Segre types
f22g and f4g the only solutions of (23) have det gab > 0 and hence they are inconsistent
with Lorentz signature. The other Segre types f1111gf211g and f31g turn out to be
consistent. If the eigenvalues of S are not all real then it turns out [1,2] that S must
have two real and two complex (i.e. a conjugate pair of) eigenvalues and this is indicated
by a \Segre" symbol fz�z11g. Thus the only possibilities for S are f1111g, f211g, f31g,
fz�z11g.

It is straightforward to work out canonical forms for each of these types at p 2M in
terms of a real null tetrad at p.

Segre type f1; 111g
Here a real null tetrad (`,n; x; y) at p can be chosen such that

Sab = 2�1`(anb) + �2(`a`b + nanb) + �3xaxb + �4yayb (24)

Here Sa
b is diagonisable over R and 4 independent eigenvectors and corresponding

eigenvalues are represented by the timelike vector `a � na (eigenvalue �1 � �2) and the
spacelike vectors `a + na(�1 + �2), x

a(�3) and ya(�4). These eigenvectors are mutually
orthogonal and �1, �2, �3, �4 2 R.
Segre type f211g

Here one can choose a real null tetrad (`, n; x; y) at p so that

Sab = 2�1`(anb) � `a`b + �2xaxb + �3yayb (25)

Here the eigenvectors (and corresponding eigenvalues) can be represented by `a (with
eigenvalue �1) xa(�2) and ya(�3) and are mutually orthogonal and �1, �2, �3 2 R.
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Segre type f31g
Here one can choose a real null tetrad (`,n; x; y) at p so that

Sab = 2�1`(anb) + 2`(axb) + �1xaxb + �2yayb (26)

Here the eigenvectors can be represented as `a (with eigenvalue �1) and ya (�2) and
are orthogonal, and �1; �2 2 R.
Segre type fz�z11g

Here one can choose a real null tetrad (`; n; x; y) at p so that

Sab = 2�1`(anb) + �2(`a`b � nanb) + �3xaxb + �4yayb (27)

The eigenvectors can be represented by the complex conjugate pair `a � ina (with re-
spective eigenvalues �1�i�2) and the real eigenvectors xa(�3) and ya(�4), �1; �2; �3; �4 2
R.

The equations (24), (25), (26), (27) are thus canonical forms for the four possible
algebraic forms for Sab. An alternative form for the diagonisable case (24) is

Sab = (�2 � �1)tatb + (�1 + �2)zazb + �3xaxb + �4yayb (28)

where a pseudo-orthornormal tetrad (t; z; x; y) is used and which is related to (`; n; x; y)
by
p
2ta = `a � na and

p
2za = `a + na. In this form the eigenvectors (and corresponding

eigenvalues) can be represented by ta(�1 � �2), za(�1 + �2), xa(�3) and ya(�4).

Notes on the classi�cation [1,2,3]

(i) The type f1111g is the only type that admits a timelike eigenvector. The correspond-
ing eigenvalue is usually separated from the spacelike eigenvalues by a comma i.e.
f1; 111g.

(ii) Eigenvalue degeneracy is usually indicated by enclosing the \equal" eigenvalues inside
round brackets. For example, in (24), if �1 � �2 = �1 + �2(, �2 = 0) we would
write f(1; 1)11g and if �3 = �4 we would write f1; 1(11)g. If Sab has type f(1; 111)g
then Sab / gab.

(iii) The types f211g; f31g and their degeneracies have unique eigendirections (spanned
by ` in (25) and (26)). There are no (real) null eigendirections in type fz�z11g
or fz�z(11)g, none in types f1; 111g, f1; 1(11)g and f1; (111)g, exactly 2 in types
f(1; 1)11g and f(1; 1)(11)g and in�nitely many in types f(1; 11)1g and f(1; 111)g.

(iv) It should be stressed that for this (and the other classi�cations discussed so far) that
the classi�cation applies to the tensor S at the point p and will, in general, vary as
p changes in M .

There is an alternative approach to �nding the canonical forms for Sab which does not
involve the theory of Jordan forms (in fact there are several). One writes Sab as a linear
combination of the basis symmetric tensors (6) and considers whether a null eigenvector
is or is not admitted. One then simpli�es the tetrad (`, n; x; y) gradually by means of the
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\null rotations" (4) to achieve the canonical forms (24)-(27). However one really needs
to know that these canonical forms are distinct in the sense that one cannot transform
one into another by tetrad rotations. This is, perhaps, best done by showing that they
correspond to di�erent Segre types. The details are in [1,2].

8 Alternative Approaches

There are several alternative approaches to the problem of classifying second order sym-
metric tensors at a point in space-time. Churchill suggested many years ago [4] that
one might consider the invariant 2-spaces associated with the matrix Sa

b (rather than
eigenvectors which are the invariant 1-spaces of this matrix). A convenient way to
study this problem is, starting from Sab, to de�ne the corresponding tracefree tensor
~Sab = Sab � 1=4(Scdg

cd)gab and then the tensor Sabcd where [5,6]

Sabcd = ~Sa[cgd]b + ~Sb[dgc]a (29)

and �nally the tensor
+

Sabcd= Sabcd + iS
�

abcd (right dual!). The tensor
+

Sabcd is clearly

uniquely determined by ~Sab and conversely
+
Sabcd uniquely determines ~Sab since ~Sab =

+
S c

acb.

The invariant 2-spaces of S are closely related to the eigenbivectors of
+

Sabcd and the

classi�cation of
+

Sabcd by eigenbivectors then recovers the original classi�cation of Sab

(more precisely of ~Sab).
Other approaches to the problem involve a spinor approach based on equation (29) [7].

Also one can consider a \projective" type of classi�cation based either on the tensor Sab

or the tensor Sabcd [1,5] or by direct techniques from algebraic geometry and the theory
of quadric surfaces [6,7].

It is remarked that the method mentioned in the �rst paragraph of this section and

based on equation (29) leads to the idea of Bel-type criteria for
+

Sabcd [8]. It is also
noted that one of the �rst complete solutions to this classi�cation problem was given by
Plebanski [15].

9 Physical Applications

In this section the symmetric tensor Sab will be taken to be the energy-momentum tensor
Tab, and it should be noted that the Ricci tensor and the energy-momentum tensor will
have the same Segre type, including degeneracies, because of Einstein's equations Rab �
1=2Rgab = kTab.

(a) Energy conditions
If one imposes the dominant energy conditions Tabuaub � 0 and T a

bu
b non-spacelike for

each timelike vector ua at p 2 M , then Tab is forbidden from having either the Segre
type f31g or fz�z11g or their degeneracies at p and restricts the other two types by the
eigenvalue inequalities [1,3]

�1 � 0; �2 � 0; �1 � �2 � �3 � �2 � �1; �1 � �2 � �4 � �2 � �1
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for type f1; 111g or its degeneracies, and

�1 � 0; �1 � �2 � ��1; �1 � �3 � ��1

together with positive in (25) for type f211g or its degeneracies.
(b) Perfect uids
Here we have pressure p, density �, uid ow vector ua (uaua = �1) and

Tab = (p+ �)uaub + pgab (30)

The eigenvectors and eigenvalues are ua(��) and any vector orthogonal to ua (eigen-
value p). Hence we have Segre type f1; (111)g (one can recover the form (28) from (30)
by using the third completeness relation in (3)). The energy conditions give � � p � ��
(c) Null Einstein-Maxwell �elds
Here the Maxwell tensor Fab is a null bivector of the form (13) where `a is the \radiation"
(null) direction. The energy-momentum tensor at p 2M is of the form

Tab =
2

k
(FacF

c
b �

1

4
FcdF

dcgab) = v`a`b (31)

for v 2 R; v > 0. From (25) the Segre type is f(211)g with all eigenvalues zero and the
energy conditions are satis�ed since v > 0.

(d) Non-null Einstein-Maxwell �elds
Here the Maxwell tensor is non-null and so takes the form (11), (12), or (18) and so

Tab = � (2`(anb) � xaxb � yayb) (32)

for � 2 R, � < 0. The Segre type is f(1; 1)(11)g with eigenvalues � and �� and the
energy conditions are satis�ed since � < 0.

(e) General uid space-times
Here the energy-momentum tensor is

Tab = (p � �� + �)uaub + (p � ��)gab � 2��ab + 2u(aqb) (33)

where ua is the uid ow vector, uaua = �1, energy density � with respect to ua, dynamic
viscosity �, bulk viscosity �, isotropic pressure p, shear tensor �ab(= �ba), expansion � and
heat ow vector qa. Also uaqa = 0, �abub = 0 and �a

a = 0. Here the situation requires a
more detailed analysis which can be found in [3,9].

(f) Perfect uid and null Einstein-Maxwell �eld combined
Here one has [3,9]

Tab = (p+ �)uaub + pgab + v`a`b (34)

and the Segre type is f1; 1(11)g
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(g) Perfect uid and non-null Einstein-Maxwell �eld combined
Here one has [3,9]

Tab = (p + �)uaub + pgab + �(2`(anb) � xaxb � yayb) (35)

If `a; na and ua are coplanar the Segre type is f1; 1(11)g and otherwise it is f1; 111g.
(h) Static space-times
Here M must admit a timelike hypersurface orthogonal Killing vector �eld X which then
turns out to be a (timelike) eigenvector of Tab [10]. It follows that Tab has Segre type
f1; 111g or some degeneracy of this type [2].

There are many other physical applications of this classi�cation including a description
of a complete set of algebraic Rainich conditions, applications to the \inheritance of
symmetries" problem, geodesic deviation and scattering problems, \peeling" problems
(see appendix) and the algebraic degeneracies produced in Tab at points inM where there
is a Killing, homothetic or a�ne isotropy. More details and references can be found in
[3]. Again it should be stressed that the classi�cation applies to Tab at some point p 2M
and the Segre type will, is general, change as p changes.

10 Holonomy and the Classi�cation of Connections

in Space-Time

Let p 2 M and for a �xed k; 1 � k � 1 let Ck(p) denote the set of all piecewise Ck

closed curves starting and ending at p. Each c 2 Ck(p) gives rise by means of parallel
transport along c, using the unique symmetric Levi-Civita connnection � associated with
the space-time metric g, to an isomorphism of the tangent space TpM to M at p onto
itself. If, for c 2 Ck(p), f(c) denotes the associated isomorphism of TpM then, using a
standard notation, f(c�1) = f(c)�1 and f(c1 � c2) = f(c1) � f(c2)(c1; c2 2 Ck(p)) and
it follows that the set of isomorphisms of TpM arising from all members of Ck(p) is a
subgroup of the Lorentz group L. This subgroup is called the k-holonomy group of M at p.
Since M is connected it is necessarily path connected and it follows that the k-holonomy
groups at distinct points of M are isomorphic (in fact, conjugate) to each other. Thus
it makes sense to speak of the k-holonomy group of M . Finally it can be shown that
the k-holonomy group of M is independent of k (1 � k � 1) and so one speaks of the
holonomy group � of M .

It can be shown that ifM is simply connected then the holonomy group � is connected
and hence a connected Lie subgroup of the proper Lorentz group L0(L0 is the component
of the identity of L). Since there is a one-to-one correspondence between connected
subgroups of a Lie group G and the subalgebras of the Lie algebra of G it follows that
if one wishes to classify simply connected space-times by their holonomy group, it is
su�cient to classify the subalgebras of the Lie algebra A of L0 and then to see which
of them give (connected) subgroups of L which can actually be a holonomy group of
some (simply connected) space-time. [Alternatively one could drop the simply connected
restriction and concentrate on the restricted holonomy group (rather than the holonomy
group) where the curves c are homotopic to zero [11]]. If we represent L by



{ 15 { CBPF-MO-001/93

Table 1:

Type Subalgebra Con Rec Constant Tensors
R2 ` ^ n x; y `; n gab, xaxb, yayb, x(ayb)
R3 ` ^ x `; y { gab, `a`b, yayb `(ayb)
R4 x ^ y `; n { gab, `a`b, nanb, `(anb)
R5 ` ^ n+ �(x ^ y)
R6 ` ^ n; ` ^ x y ` gab, yayb
R7 ` ^ n,x ^ y { `; n gab, `(anb)
R8 ` ^ x,` ^ y ` { gab, `a`b
R9 ` ^ n,` ^ x,` ^ y { ` gab
R10 ` ^ n,` ^ x, n ^ x y { gab; yayb
R11 ` ^ x,` ^ y, x ^ y ` { gab; `a`b
R12 ` ^ x, ` ^ y, ` ^ n+ �(x ^ y) { ` gab
R13 x ^ y, x ^ z, y ^ z u { gab; uaub
R14 ` ^ n, x ^ y, ` ^ x, ` ^ y { ` gab
R15 A { { gab

L = fT 2 GL(4;R) : T 0�T = �g (36)

where \stroke" means \transpose" and � = diag(�1; 1; 1; 1) then the Lie algebra A of L0

(which equals the Lie algebra of L) can be represented by the vector space of matrices
which are skew self adjoint with respect to �, together with the \multiplication" given by
matrix commutation. Roughly speaking we can thus represent A by the 6-dimensional
vector space of bivectors from which L0 can be recovered by exponentiation. [That L0 is
an \exponential" Lie group, i.e. it can be \obtained" by exponentiating its Lie algebra is
special for L0 and not a general result for (connected) Lie groups].

The subalgebras of A are well known and have been conveniently labelled R1 � R15

in [12]. In terms of a null tetrad (`; n; x; y) (or in the case of R13 an orthonormal tetrad
(u; x; y; z)) they are listed in the table. In this table each type is given with its subalgebra,
the independent global covariantly constant vector �elds admitted (under \Con"), the
independent (properly) recurrent global vector �elds admitted (under \Rec") and the
independent global covariantly constant second order symmetric tensors admitted (under
\Constant Tensors"). In the R5 and R12 cases, � 2 R, � 6= 0. However R5 cannot be the
holonomy group of any space-time and hence the line! [11] [Incidentally, a global vector
�eld k on M is called recurrent if ka;b = kaqb for some 1-form qa. It is called properly
recurrent if it cannot be globally scaled so as to be covariantly constant.] All the types in
the table except R5 can be realised as the holonomy group of some space-time [11]. The
trivial (at) case R1 is omitted.

In the table, the types R2; R3; R4; R6; R7; R10; R13 are locally decomposable. The type
R15 is generic in a topological sense and the holonomy groups of the other types can be
described in terms of standard groups [11]. Only the types R8; R14 and R15 can apply to
non-at vacuum space-times [11,12]. A particularly useful application of this classi�cation
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is to the study of a�ne collineations on space-times.

Appendix

A \Peeling" Theorem for Segre Types
A rather nice interpretation of the Petrov types is given by the well known \peeling"

theorem of Sachs and Penrose. They show how in an asymptotic expansion of the (vac-
uum) Riemann tensor for a bounded source the Petrov types \peel o�" in powers of 1=r
along some null ray with a�ne parameter r. A simular calculation can be done for Segre
types at least for the case of an Einstein-Maxwell �eld due to a bounded charge-current
distribution [13]. In this case a similar expansion for the Maxwell electromagnetic tensor
Fab can be written down [14]

Fab =
Nab

r
+
Lab

r2
+
Gab

r3
+
Hab

r4
+O(r�5) (37)

where the expansion is along some null ray with a�ne parameter r, where N is a null
bivector with principal null direction `, L is a bivector satisfying Lab`

b / `a and G and H
are bivectors about which no further information is required. Now compute the energy-
momentum tensor using the �rst (general) equation is (31) to get

Tab =

2

T ab

r2
+

3

T ab

r3
+

4

T ab

r4
+

5

T ab

r5
+O(r�6) (38)

where one �nds that
2

T ab has Segre type f(2111)g with zero eigenvalue,
3

T ab has Segre type

f(31)g with zero eigenvalue,
4

T ab satis�es
4

T ab `
b / `a and

5

T ab satis�es
5

T ab `
a`b = 0. Thus

one has a similar \peeling" of Segre types. The connection between this result and the
above one for the Riemann tensor can be clari�ed by introducing the fourth order tensor
Tabcd associated with Tab through its trace-free part ~Tab = Tab � 1=4T c

c gab

Tabcd = ~Ta[cgd]b + ~Tb[dgc]a (39)

One then �nds from (38) and (39)

Tabcd =

2

T abcd

r2
+

3

T abcd

r3
+

4

T abcd

r4
+

5

T abcd

r5
+O(r�6) (40)

where the
i

T abcd (2 � i � 5) satisfy

2

T abcd `
d = 0

3

T abcd `
d = Pab`c

4

T abcd `
a`c / `b`d `b`c`[e

5

T a]bc[d `f ] = 0
(41)

where Pab is a null bivector with principal null direction `. If one recalls the Sachs-Penrose
peeling theorem and how the individual \peeled o�" types are described using the Bel
criteria, one sees a direct analogy with equations (40) and (41) where the \Bel criteria"
for Tabcd are used [1,8].
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