Toroidal plasmas: Overview

Toroidal plasmas |

( Overview |

1. Equilibrium
(a) Context (Alfvén wave dynamics, statement of the equilibrium problem)
(b) Cylindrical equilibrium (rotational transform)
(c) Toroidal equilibrium (Grad—Shafranov equation, scaling)

(d) Mapping for stability (straight field line coordinates)

2. Waves and instabiities
(a) Toroidal wave equation
(b) Field line resonances and ballooning modes
(c) Numerical stability (ideal and resistive)

(d) MHD spectroscopy of tokamaks



Toroidal plasmas: 1. Equilibrium (1)

[ Context: plasma dynamics |

time scale tokamak corona

very fast 1075 107°s = Kinetic waves & instab.
fast 107 %5 10s = MHD waves & instab.
slow 10735 10%s = Equilibrium

very slow  1s 101 s = Transport

= MHD range is the most robust part

e MHD equilibrium & stability absolute requirements for fusion in tokamaks.

e MHD spectroscopy: diagnostics of laboratory as well as astrophysical plasmas.
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[ Alfvén wave dynamics |

e Alfvén waves are point perturbations propagating along the magnetic field lines
(Friedrich’s diagram).
= Alfvén waves ‘sample’ the whole magnetic configuration (global problem!).

e The Alfvén frequency vanishes for B -V ~ k) = 0.

= Stability hinges on the smallness of the B - V operator, so that the equilibrium
should be known extremely accurately to produce the required balancing of large
terms in numerical stability codes.

[ Statement of the equilibrium problem |

e To determine the magnetic confinement topology (field lines, magnetic surfaces,
curvatures, etc.) of the ‘most boring’ case of plasma dynamics.

= Static equilibrium (v = 0) = absence of dynamics!



Toroidal plasmas:

Equilibrium (3)

Nonlinear MHD equations |

Conservation of Mass:

9p _

ot = -V (pV),

Conservation of Momentum:

0
p(§+v-V)v:—Vp+(V><B)><B,

Conservation of Entropy:

Conservation of Magnetic Flux:

—

0
(5 +V-V)p=-wV-v,
%—]?ZVX(VXB), V-B=0.

p(r,t), v(r,t), p(r,t), B(r,t).
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 Static equilibrium equations |

e MHD equations with 9/0t =0 an vy =0:

jxB=Vp (pressure balance), (1)
j=V xB (Ampére’s law) , (2)
V-B=0 (THE law of magnetic fields) . (3)
e BC
n-B=0 (atprescribed boundary) . (4)

= Nonlinear problem with an enormous amount of freedom:
— distribution of pressure and magnetic field,
— shape of the boundary.

= Different alternatives for fusion experiments:

— pinches (1960) = tokamaks/stellarators (1990) = future devices (20207?).
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[ Cylinder symmetry |

e Rotation/translation symmetry: 0/00 =0, 0/02=0 = B,=0, j,=0.

e Profiles: p(r) arbitrary, p(r), By(r), B.(r) restricted by equilibrium:

dp . .
== = 998, — .8 2
dr JoD J=Dg d 1 59 B@
= —(p+iBY) =_2 5

70 = _WB,Za )z = ?%(TBQ
so that two of these profiles are arbitrary !

e [or tokamaks, total pressure dominated by contribution of magnetic pressure:
2po
6E§8<<1 = P=p+iB’~ ;B (6)

Numbers:

B=3T = P=36x10" N/ m? = 360 metric tons = 36 atm (on the coils)!

=003 = p=1latm (internally, and to be increased for future reactor)!
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[ Cylindrical equilibria |

Typical equilibrium profiles for:

6—pinch z-pinch
@ ., ®
Z BZ
) 0
p
T r r
a a

Ig \
r r

p+ 1B: = const p+ 1Bj = const — /(Bg/r) dr
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[ Rotational transform (periodic cylinder) |
e Definition: _ rbB. _ 2mr*B,

(cyl = — - (7)

RoBy Ryl
e |f rational: B N _ number of toroidal revolutions (8)
eyl = 31 ~ number of poloidal @/Ol utions /
ZT[RO
B
0 2TIr

Cylindrical safety factor (g < 1)

Rational field line (¢ = 3/2)
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[ Rotational transform (cont'd) |

e Perturbation on magnetic surface:
DD Grlr) e, (9)
m n

with poloidal angle ¥ = 6, toroidal angle ¢ = z/ Ry, toroidal mode number n = k Ry .

e Parallel gradient operator:
B'Verk-Ber(m—FRQ)fr. (10)

—> Rational field lines with resonant perturbations crucial for instabilities:

(11)

m (_ poloidal mode number)
eyl =773, toroidal mode number /

e Orders of magnitude for periodic cylinder representing toroidal tokamak:
EECL/R()<<1, B@/BONE, BZ/BONl — qclel. (12)

e Pressure effects, represented by 3 = 2p,/ Bg ~ € < 1, are not properly described
by cylindrical approximation = require genuine toroidal theory!
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[ Toroidal equilibrium |

Conseguences of axisymmetry:
e \ector potential:
V-B=0 = B=VxA. (13)

e Poloidal magnetic flux (renormalized with factor 27) through area bounded by the
magnetic axis (where ¥ = () and circle of radius R:

__//B ndS — — }[A dl = /Agodgp:—RA@. (14)

A, 10V 10 19U

az—‘ﬁa—z Bz ==\ = 5ar-

e W is a convenient label (kind of radial coordinate) for the magnetic surfaces spanned
by B and j, whereas Vp is orthogonal to them.

— Bp= (15)

e \When the Poisson bracket of a function F' and W vanishes, then F'is a flux function:
OF oV  OF oV

= . F U = _
(V)= e (VEXVY) = a5 22— 57 5%

—0 = F=F(). (16)
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[ Derivation Grad—Shafranov equation |

(1) Divergence equation (3) and Ampere’s law (2)
= poloidal field and current derivable from stream functions V(R, Z) and I (R, Z):

1 0(RBr) 0By | O | O
B- - _ Bp—_ -9 g _1O¥ 4
v R or oz ) T Bi=—gaz Br=gars 40
. . Y | | o1

(2) Poloidal and toroidal components of Ampere’s law (2)
= expressions for poloidal current stream function / and toroidal current j,
0B, . 1 )(RB,)
JR = Q&> JZ—
07 "R OR

_ 0B. O0Bp 0 ([ 10V 0% .
Rj, =R (6}% — 8Z> R@ (Eﬁ) ik = AU (quasi-Lapl.). (20)

= [ =RB,, (19)
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(3) Toroidal and poloidal components of pressure balance equation (1))
= [ and p are flux functions (functions of W) and related to 7,

op . . 1 (0I0VY OOV
%2‘71%32—]231%:}%2 (6ZﬁR_6R3Z>:O = [=1(V), (21)
0 . . g (
o —izB,~ 3.5~ (-1 - % ) Gk p= (V).
. = . (22)
0 - - I 7 ) '
a—gzjsoBR—]RBsoz(_RQ_}%>gZ \—%—%zp/.
(4) From Eqgs. (37) and (22)
= equilibrium described by Grad—Shafranov equation:
. O (10V\ 0*W .
[A\PE] R@ (E@>+ﬁ:_]]/_R2p/ [:R]go]’ (23)

elliptic nonlinear PDE that has to satisfy the BC

U = const (on the plasma cross-section) . (24)
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[ Geometry |
Z
A A
C
ﬁ% > R > X
\\/ 1 5 |1
6 — k/
Ro
<~a—|<g—
Cross-sectional shape poloidal x-y plane.
e Cartesian coordinates: = (R — Ry)/a, y=2Z/a, (25)

e Inverse aspect ratio: e=a/Ry (<1 inasymptotic expansions). (26)
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[ Scaling |
(1) Unit flux label (W, is total poloidal flux through plasma):
Yp=V/¥; = 0<¢ <1, (27)
and dimensionless inverse flux:
o =a’By/V,; (related to edge safety factor: q; ~ a). (28)
(2) Dimensionless unit p2rofiles and amplitudes A and B:
B% 11 + %f’] = _AT(), ro)y=1, I(1)=0, (29)
S‘—;Op’ = —lABI(y), 10)=1, I(1)=0.
(3) The Grad—Shafranov equation then becomes:
Yoo + Wy — (14 €x) " by = A[T() + Ba(L + gex)I(y)], (30)
with BCs: Y =1 at plasma boundary C' (r = f(9)), (31)
Y =1, =1, =0 at magnetic axis (z =9, y = 0). (32)

= For given 9, constants A and B eigenvalues to be determined together with ).
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[ Equilibrium solver: parameters |

Input Solver Output
range pol. flux Ay (=1)
shift magn.axis d
plasma cross sect. C: f(0) A - q1 q on edge
inv. aspect ratio a — Wz, y) —
~ toroidal current | [T'(%) B = |ef, (B)/e| average G/¢
pressure gradient (%)
inverse pol. flux a

Independent (boxed) parameters and profiles in numerical equilibrium solver.
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Equilibrium (15)

1-16

 Straight field line coordinates |

"/

0

Construction of the angle v from 6

20 211

gx 2T

These permit simple representation of
parallal gradient operator. They require
a coordinate inversion:

Y = (T, yj) x = (i, V;)

U = d(x;, yj) y = y(¥i, 79]') '
All quantities in the stability analysis are
transformed to 1, v, ¢ coordinates, i.e.
normal field line curvature ~,,, geodesic
curvature 4, toroidal current j., etc.
These involve second derivatives with
respect to 1 so that equilibrium solutions
need to be surprisingly accurate for a re-
liable stability analysis.
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[ Uncertainty |

06
Smoothing experimental data to obtain

05 | - equilibrium profiles for stability studies:

. e inaccurate experimental data

0.3 |- or

pressure [1 05 Pa]

e neglecting essential 3D deviations

02 - . (magnetic islands) from axisymm.?

01

0.0

R [m]

Electron pressure profile obtained by LIDAR diagnostic at JET (dashed with diamonds)
and reconstructed pressure profile by means of an equilibrium solver (drawn).
[Huysmans et al., Phys. Fluids B5, 1545 (1993)].
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[ Toroidal wave equation |

e Linearise MHD equations:

flr.t) = fo(,9) + fi(, 9)e' =", (33)
where n is the toroidal mode number.

e EXxploit projection based on magnetic surfaces and field lines, involving field line triad

n=Vy/[Vy|, m=bxn, b=B/B. (34)
= Gradient operator:

D = (RB) 'n-V =0y~ (912/92) 0y,

G = —-iBxV¢-V=-ilJ"'9—nB;, (35)

F =-B-V = J 1 (—i0y +nq) .

= Displacement vector:

' en Zz=l¢p. (36)

1
X =RB,E€ - Y = —
pem, RB, B
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e This gives the toroidal wave equation (Goedbloed, Phys. Fluids 18, 1258 (1975)):

A A Ais X B X
Ao Az Ass Y | =—pw?| BV |, (37)
Azr Aszp A3z Z Bas Z
where
A1 = D(yp+ B*)D' — FRQBQF -k, Az = —FypD?,
Yp + 32 B okt 1 Bk, 1
= DG —0y + B = —FvypG—
Az = DypF, Ass = —FypF,
vp + B* ; Sphzt Bk, 1
= — GD' - 2B(—=0 B =
A1 B ( 0 B, +n R ), 11 RQBZ% ;
Aoy = L copGt — Ba—aB BFRQB]%FB By = R*B?
2="7 TP B B2 B2 ; 22 = Do
1
Az = —=Gypl, Bss = B”.

B
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[ Further directions |

e Continuous spectra (local to magnetic surfaces):

= take limit D — oc.

e Ballooning modes (local to field lines):

= more subtle limit to isolate pressure driven instabilities.

e Mercier criterion (local to magnetic surfaces):

= contained in ballooning procedure, also pressure driven modes.

e Numerical work (global waves and instabilities):

= exploiting quadratic forms (Galerkin method).
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[ Alfvén and slow continuum modes |

e Magnetic surface resonances (limit D — o0):

1 vp + B?
— | G————Y FZ\. 38
p— 7 5 +pFZ | (38)

Substituting into second and third component of Eq. (17) leads to a system of two
differential equations for Y and Z where the normal derivative no longer appears.

DIX ~ —

e = Modes localised about single magnetic surface:
£, 10, 0) = —i6(Y — o) [n(I)m + ¢(9)b]e"?, (39)

with the two tangential components
n=¢§ -w=—-1RB)Y , (=€ -b=—-iBZ7,

which satisfy a system of two ODEs (repeated on next page):

Q11 12 ny _ N
(0421 0422> (C) _'OWZ<C>°
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[ Alfvén and slow continuum modes (cont'd) |

e Tangential components satisfy a system of two ODEs (Goedbloed, 1975):

Q11 012 ny\ _ Ui
(o o) ()=~ (2) @

where
B R’B> B 4~pB? 1 2vpB?
= F Ly 2 = 1—F
“W=TRB," B 'RB, p+Br  MEEppm
. 2vpB? 1 1 ~pB* 1
= — F— = —F F—.
=T B =B, B B

e Two coupled ODEs = Toroidal Alfv én and slow continuum modes
e Cylindrical limit (¢ — 0):
wa = (m+ng) Be/(ry/p),  na~ 8(r —14),
ws =/ w/(p + B wa, (s~ 0(r—rs). (42)
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[ Continuous spectrum |

Numerical solution (Poedts et al, PPCF 34, 1397 (1992)), continua with gaps:

| K r
H x/
X x
x
% X
3 2 3% x X
) X
X X
X
X
X

(8]
—
wn
P PETTOGRDEMe S M MRO( MPCIROGS TR S 3

Im{A)
o

In those gaps: Toroidal Alfv én Eigenmodes (TAES).
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T-24

[ Alfvén and slow ballooning modes |

Magnetic field line resonances: Reconcile field line localisation with poloidal and
toroidal periodicity by ballooning transformation to extended poloidal angle —oco <

Y < oo (Connor, Hastie, Taylor, Proc. Roy. Soc. A365, 1 (1999)).
Ballooning modes are WKB solutions on extended domain:

E(W,9, ) = &1, 0) "),
where n > 1. Eikonal:
S=¢—q(d—1).
Renormalise local wave number k;, = nVS:

k=k,/n=VS=Fkn+k,m,

kn = —RB) [q () = Yo) — (912/g22)q]

k?T — _B/<RBP>7

Project on new orthogonal triad e =k, /k, ,d,b:
=> new components u, v,  of vector &.

(42)

(43)

(44)
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[Alfvén and slow ballooning modes (cont’d)]

e Ballooning modes are perpendicularto k| , u = ie - £ = 0, i.e. are described by
two components,

(0, 9) ~ =i [8(1,9)d + (¢, 9)b], (45)
e which satisfy a system of two ODEs (Dewar & Glasser, Phys. Fluids 26, 3038 (1983)):

Q1 Q12 v o [ U
- > | = x 46
(0421 0422)<C> o~ <C) )
B.-k*_-B 4fypB2 B 1 ~ 2ypB?
W= F—F= 4 T 2o A z‘—F—
N 1 - 2fyp32 N 1 -~ vaQ -1
= —F— = —fF— F— 47
R - RS- PR =gl Tty 40

e Two coupled ODEs = Toroidal Alfv én and slow ballooning modes

e Ballooning mode analysis in tokamaks: instabilities at high beta driven by the pres-
sure gradient p’ and the curvature of the field lines.
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[ Two directions in local analysis |

e Stability of tokamaks: ballooning term x4 p’ &~ k; p’ dominates
(instability searches out the worst conditions for confinement).

e Alfvén wave heating: ballooning term x4 p" unimportant
(excitation forces stable waves of a fixed frequency onto the system).

[ Mercier criterion |

e Derived by Mercier, Nucl. Fusion 1, 47 (1960), generalisation of Suydam criterion.
(New interpretion: condition for clustering of ballooning solutions for ¥ — 00.)

e The following expression is obtained:
1 ’ B2
/ / /
[77(] — Ip fRQBZJdﬁ] +p %RQBQJCM
p p

Ky ) 1
I7 : 4
X IQ%RBdeﬁJF %RQB]%JCM] > () (48)
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Global analysis (necessarily numerical):

(Ideal MHD )

e |deal MHD codes: ERATO, PEST, ...

[ Resistive MHD |

e Resistive MHD codes: NOVA, CASTOR, MARS, ...
e Results CASTOR
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[ Troyon limit |

0.07 01989 /
°1988
0.08] u106
e Theoretical limit for kink & ballooning 0.05
stability :
0.04
I (MA ’ e
8(%) < gr—IA) g gl &
a(m) B (T) 0.03 ‘
e Butexperimental points cross the curve! ‘3%
e Present experimental limit (DIIID) : 0.02
B~ 10%. 001

0080 05 10 15 20 25
[(MA) / B(T)a(m)
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[ Linearised Resistive MHD equations |

e Dissipative MHD : variable £ no longer available since it is based on flux conservation.
= Return to primitive variables of resistive MHD.

e Eigenvalue problem:

Apr= —V - (pvy), (49)
Apvi= =V (pTi+ (p/p) p1) + (V x B) x (V x Ay)
—B X (VxV x A, (50)
ATy = —pvi-V(p/p) —pV - vy
+2n(y—=1)(VxB)-(VxV x Ay, (51)
M= —Bxv;—nV XV XA, (52)

e Basic state represented by 8-vector:

U = [pthle)Al]T7 (53)
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Two Approaches:

[ Conservative

e Ideal MHD with vi = 0&/0t:

F(&) = p% = —pw’€, (54)
where F is self-adjoint and eigenvalues w? are real.
[ Dissipative |
e Resistive MHD with U = [py, v, T}, By]':
L-U:R-%—Ij:)\R-U, (55)

where L is non-Hermitian and A = —iw is complex.
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[ CASTOR & POLLUX Jtokamak)  (coronal loop)
e Resistive eigenvalue problem L - U = AR - U solved by Galerkin method:
/VT-L-UdV:)\/VT-R-UdV. (56)

e FEM (r) and FFT (¢/) discretisation of U and V:

A-x=-)\B- x, (57)

where A and B are large non-Hermitian matrices.

e [orced oscillations (excitation):

(A +iw;B) - x=1, (58)

with driving frequency w, and forcing term f .
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[ CASTOR dicretization |

@ 1 —J> N

1

Pviv,vy TAAA,

1 p
Vi
Vo
| \Y; m
3
Aq M
A, 1
8
A3 m l
Mo
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[ Typical MHD stability study

e ELMsinJET:
Playing with the equilibrium profiles, edge current density 5, (JET # 23336)
= n = 1 free-boundary tearing modes,
= n = 4 pressure-driven modes.
e General philosophy :
Comparing experimental data on instabilities with theoretical results
= MHD Spectroscopy.
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[ Free-boundary tearing mode |

e Flux averaged toroidal current profiles and corresponding growth rates as a function
of the resistivity for the n = 1 free boundary tearing mode.

1.4

1.2 F
1.0 F
0.8 [
<J> C
0.6 F
0.4 [

0.2 [

0.0 C

10°® 10°° 10°
n
e Reconstructed profile (labelled by 1) produces growth rate that is insignificant for the
relevant values of the edge resistivity. Artificial increase of the shoulder on the current
density profile (curve labelled by 3) produces large growth rates with threshold that
could facilitate ELMs by sudden increase of resistivity due to edge cooling.
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Waves and instabiities (18)

Toroidal plasmas:

[ External resistive mode |

4 external resistive mode (JET discharge # 27793).

Poloidal velocities of an n =

Internal n = 4 mode at ¢ = 3 (left), for larger current mode becomes external (right).
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( MHD spectroscopy |

e Computed response to n = 1 field perturbation induced by saddle coils at JET:
TAE (toroidicity Am = 1), EAE (ellipticity Am = 2) and BAE (3 induced):
0.04 i) (] k] [ r 4 13 LR [ ] [ L] [ T Ll [ [ L i [ ¥ ] ¥ ,

L] i v ¥

f EAE ]
E i EAE ]
= 0.03 |- y
& i | EAE ]
g : :
o 0.02 .
0. L -
© o -
@ . -
‘g i | 7
@ 001 ! N
Q.GO [ et W el é TSNS AT [
0.0 1.0 1.5

CRGIAA
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[MHD spectroscopy (cont’d)]

Music of the tokamak!

(SOUND.WAV)

MHD wave signals picked up by an external coil,

with artificial decrease ( 10~?) of the frequency

(sound track Igor Semenov, Moscow)



