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Flow: Waves and instabilities in stationary plasmas |

[ Overview )

Introduction: theoretical themes for a complete MHD description of laboratory and
astrophysical plasmas, static versus stationary plasmas;

Spectral theory of stationary plasmas: Frieman—Rotenberg formalism for waves
and instabilities, non-selfadjointness and complex eigenvalues, implications of the
Doppler shift for the continuous spectra;

Kelvin—-Helmholtz instability of streaming plasmas: gravitating plasma with an
interface where the velocity changes discontinuously, influence of the magnetic field;

Magneto-rotational instability of rotating plasmas: derivation of the dispersion
equation, growth rates of instabilities, application to accretion disks.
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[ Theoretical themes )

e \We have encountered:

Central concept of magnetic flux tubes =- Cylindrical plasmas, 1D: f(r)
[ book: Chap. 9]

Astrophysical flows (winds, disks, jets) = Plasmas with background flow
[ this lecture, future Volume 2]

Magnetic confinement for fusion (tokamak) =- Toroidal plasmas, 2D: f(r, )
[ next lecture, future Volume 2]

Explosive phenomena due to reconnection =- Dissipative MHD
[ future Volume 2]

All plasma dynamics (e.g. space weather) = Computational MHD
[ future Volume 2]

Dynamos, transonic flows, shocks, turbulence =- Nonlinear MHD
[ future Volume 2]

e MHD with background flow is the most urgent topic (also for fusion since divertors
and neutral beam injection cause significant flows in tokamaks).

= From static (v = 0) to stationary (v # () plasmas!



Waves and instabilities in stationary plasmas: Introduction (2) F-3

( Static versus stationary plasmas |

Starting point is the set of nonlinear ideal MHD equations:

%+v-(pv):o, (1)

p(g—erv-Vv)Jer—ij—pg:O, j=V xB, (2)

%+v-vp+vpvv=0, (3)

%—]?—VX(VXB>:O, V-B=0, 4)
with gravitational acceleration g = —V &,, due to external gravity field ®,,.

Recall the simplicity of static equilibria (0/0t = 0,v = 0),

Vp=jxB+pg, j=VxB, V-B=0, (5)

with perturbations described by self-adjoint operator F with real eigenvalues w’:
¢ ; Y

F(&) = o = F(&) = —pw€. (6)

Can one construct a similar powerful scheme for stationary plasmas (v # 0)?
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[ Stationary equilibria |

e Basic nonlinear ideal MHD equations for stationary equilibria (0/0t = 0):

V- (pv)=0, (7)
ov-Vv+Vp=jxB+pg, j=V x B, (8)
v-Vp+9wV - -v=0, 9)
Vx(vxB)=0, V-B=0. (10)

= None of them trivially satisfied now (except for simple geometries)!

e For plane gravitating plasma slab, equilibrium unchanged w.r.t. static case:

(p+3BY) =—pg ('=d/dr). (11)
e For cylindrical plasma, the equilibrium is changed significantly by the centrifugal
acceleration, — v - Vv = (v3/7)e,:
1
r
= Modifications for plane and cylindrical stationary flows quite different:
translations and rotations are physically different phenomena.

(p+5B°) ==(pvg — By) — p®y,,  ('=d/dr). (12)
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[Frieman—Rotenberg formalism] [Rev. Mod. Phys. 32, 898 (1960)]

Spectral theory for general stationary equilibria (no further simplifying assumptions):

perturbed flow

E (ro,t)

. First, construct displacement vector &
stationary flow

connecting perturbed flow at position r
with unperturbed flow at position rV:

r(r’,t) =1’ + £(r' t). (13)

e Interms of the coordinates (1", ¢), the
equilibrium p°, v¥, p’, BY (1) is time-

r,t=0 independent, satisfies Egs. (7)—(10).

e Gradient V=V V=Vr-¢ V=V - (V%) VvV, (14)

and Lagrangian time derivative D 0 0 w0
= =__ : 15
Dt t 0 vV ’ ( )

yield expression for the velocity:
Dr Dr’ D) 0&
0 _ 0 0 0

= _ — : — . 16
v(r’ + &) on Dt+Dt vV 4+ Vv V£+at (16)
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( Frieman—Rotenberg formalism (cont'd) )

Linearization of Egs. (1), (3), (4) gives perturbed quantities in terms of £ alone:

p~ p'—p'V'- €, (17)
p~p =’V g, (18)
B~ B'+B"- V¢-—B'V'. ¢, (19)

where we will now drop the superscripts " (since they are tagged on everything).

Inserting these into Eq. (2) yields the spectral equation for stationary equilibria:

0°¢ %3
Pop T20V Vo = F(§) =0, (20)
F = Fiatic + V- [p(v-VV)€ — pvv - VE], (21)
Fsatic = Vi —B x (Vx Q)+ (VxB)xQ+ (VD) V- (pf).

For normal modes, £ ~ exp(—iwt), a quadratic eigenvalue problem is obtained:

F(&) + 2ipwv - V& + puw’é =0, (22)

where the operator F is non-selfadjoint and the eigenvalues w are complex!
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[ Spectral equation for plane slab |

e Forthe plane slab model of Chapter 7, extended with a plane shear flow field,
B = B,(v)e,+ B.(x)e., p=plz), p=plx),
v =1v,(x)e, +v.(r)e., (23)

the equilibrium is unchanged and the two new terms in F yield: v - Vv = 0 and
—V - (pvv - V&) = —p(v - V)?£, so that the eigenvalue problem (22) becomes:

Fstatic(£> — _P(W +1v - V)2 £ = —chd2 £ . (24)
e Hence, the equations for the static slab remain valid with the following replacement:
w — wx)=w-—ky-v(z), (25)

where w(x) is the local Doppler shifted frequency observed in a local frame co-
moving with the plasma layer at the vertical position x.

e Since w depends on x, eigenvalues of discrete modes will be shifted by some
average of the local Doppler shifts across the layer. If a static equilibrium is unstable
(eigenvalue w on positive imaginary axis), for the corresponding equilibrium with flow
that eigenvalue moves into the complex plane and becomes an overstable mode.
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(HD continua for plane shear flow |

How are the MHD waves affected by background flow of the plasma?

First, consider continuous spectrum in the HD case for plane slab geometry,
inhomogeneous fluid with horizontal flow:

v =v,(r)e, +v.(z)e..
Lagrangian time derivative:
(Df/dt)y = (0f /ot +v -V )i = =0fi+ fil'vi,, ©=w—-ko-v,
w(x) : frequency observed in local frame co-moving with fluid layer at position .

Singularities when w = (0 somewhere in the fluid = HD flow continuum {<)y(x)},
consisting of the zeros of the local Doppler shifted frequency

w=w-—, Qy=—-1v-V=Kko-Vv,

on the interval 1 < z < 5. These singularities have been the subject of extensive
investigations in the hydrodynamics literature.

[Lin 1955, Case 1960, Drazin and Reid, Hydrodynamic Stability (Cambridge, 2004)]
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[ MHD continua for plane shear flow |

Forward (+) / backward (—) Alfvén and slow continua, and fast cluster points:

sz@oiwA, wa=F/\/p, F=-1B-V=ky-B,
TP :
Of =0+ ws, Wwg=,/———=F , Qy=—-1v-V=kq- v,
0 T Wsg S \/vaFBQ /P 0 0
Q%E:l:oo.

The flow contribution to the MHD continua creates the following ordering of the local
frequencies (which are all real) in the co-moving frame:

Op < Q7 <O <O <Oy <O < Q5 < QY < Q) <Qp <O

The discrete spectra are monotonic along the real w-axis outside these frequencies.
In the limit B — 0, the Alfvén and slow continua collapse into the flow continuum,
Qj — (), ng — () (whereas Q]j_,i remains at +£00) .

Vice versa, the flow continuum is absorbed by the four MHD continua when B = 0:
Contrary to statements in the literature, there is no separate flow continuum in MHD.

[Goedbloed, Belién, van der Holst, Keppens, Phys. Plasmas 11, 4332 (2004)]
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F-10

(HD & MHD spectra along the real axis |

HD spectrum of stationary plane fluid flow:
mmmm cONtinuum

1 non-monotonic

—  Sturmian
<— anti-Sturmian

backward p backward / forward forward
modes g modes p modes
(Qg)
QF 2 QF
X s %
- +
Q; Qo
(=) 0 ()
MHD spectrum of stationary plane plasma flow:
backward forward
— BN — -
fast Alfvén slow slow Alfvén fast
i _ (Qg)
QF QA Qg Qd Qn ot
A# S—»_% — —»_4— = —»_%S—»-k = —»X
- - + +
Qo Qso Qq Qg0 Qo ()
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[ Kelvin—Helmholtz instability: equilibrium )

e Extend Rayleigh—Taylor instability of plasma—vacuum interface (sheets 6-36 —6-42)
to plasma—plasma interface with two different velocities (see figure on 6-36):
Rayleigh—Taylor + Kelvin—Helmholtz!

e Upper layer (0 < x < a):

p=const, v=(0,v,,v,)=const, B=(0,B,,B.)=const,

p'=-pg = p=po—pgr (po>pga). (26)

Lower layer ( — b < z < 0):

p=const, Vv =(0,0,10,) = const, B = (0, By, BZ) = const,
p'=—pg = D=po—pgT. (27)
e Jumps at the interface (z = 0):

po+iBE = po+ B3 (pressure balance) , (28)

j=nx[B]=e, x (B - 13) (surface current) ,
(29)
w'=nx|v]=e, X (v—-v) (surface vorticity) .
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( Kelvin—Helmholtz instability: normal modes |

Now (in contrast to energy principle analysis of 6-36 —6-42), normal mode analysis:

£ ~exp li(kyy + k.2 — wt)].

For incompressible plasma, taking limit ¢ = vp/p — oo of Eq. (50) on sheet 7-20,
with plane flow, replacing w — w (Eqg. (25) of sheet F-7), basic ODE becomes:

d | d
@[p(MQ_wA)di] — kg [p(@* = wd) +pg] £=0. (30)

Doppler shifted freq. w = w — (), 2y = ko - v; Alfvénfreq. wa =ko- B/ /po .

In this case, all equilibrium quantities constant so that ODEs simplify to equations
with constant coefficients:

"_ k26 =0, BC &(a) =0 = & = C'sinh [ky(a — )], (3D
e k(Q)f —0, BC f(—b) =0 = &=Csinh ko(x +b)]. (32)

— Surface modes (cusp-shaped eigenfunctions). This part is trivial: all physical
intricacies reside in the BCs at x = 0 determining the eigenvalues.
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[ Kelvin—Helmholtz instability: interface conditions |

Now (in contrast to energy principle analysis of 6-36 —6-42), need both interface
conditions (model II* BCs), to determine relative amplitude C'/C' and eigenvalue w:

— First interface condition (continuity of normal velocity):

m-&=0 = £0)=£0)=0 = C=C. (33)
— Second interface condition (pressure balance):
[T+n-én-V(p+3B°)]=0, T=—pV-£€-6-Vp+B-Q, (34

where vpV - £ is undetermined. Determine II from expression for compressible
plasmas, Book, Eq. (7.99), with w replaced by w and taking limit v — oo:

i\ D22 — w?)

D
Dividing the second by the first interface condition then gives

N
=540 § — kz<w2—wi>€'. (35)

/
|L’:2 (@& — wi)% — pgﬂ =(0 = eigenvalue w. (36)
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[ Kelvin—Helmholtz instability: dispersion equation |

e Inserting solutions (31) and (32) for £ and § yields the dispersion equation:

—p [(w = Q)* — w7 | coth(koa) — kopg = p [(w — )% — @7 | coth(kob) — kopg -
(37)
Describes magnetic field line bending (Alfvén), gravity (RT), velocity difference (KH).

e Approximations for long wavelengths (kyz < 1): coth kox ~ (kox) ™!,
short wavelengths (kgx > 1): coth kyx =~ 1.

e Solutions for short wavelengths (walls effectively at co and —o0):

wﬁﬂoﬂmyt¢_M“%QW+P@3HMi_%@ﬁM.

- - - - (38)
p+p (p+p)? p+p p+p
— Stable (square root real) if
(ko-B)’ + (ko B > 2 ko (v =) P4 kolp—p)g. (39)

p+p
magnetic shear K—H drive R-T drive
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[ Kelvin—Helmholtz instability: generic transitions |

e Pure KH instability (B=B =0,¢9=0,ko || v
W = /f()

V):
F”+@Hﬂvp3w—@q. (40)
p+p " pEp

= Degeneracy of Doppler mode w = kyv lifted by v # 0.
e Doppler shifted RT instability (B =B =0, v = v, kg | v):

w—kovii\/k()(pmg. (41)

p+p

= Degeneracy of Doppler mode w = kyv lifted by p # p.

e Hence, generic transitions to instability for (a) static, and (b) stationary plasmas:

(@)

_

.

@

— o

S
1

B

(b) ;
% @)

Exp. growth: through origin Overstability: through real axis
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[ Kelvin—Helmholtz instability: generalizations |

Of course, the assumption of two homogeneous plasma layers with a velocity differ-
ence at the interface (made to make the analysis tractable for a relevant instability)
evades the basic problems of diffuse plasma flows: continuous spectra, cluster
points, and eigenvalues on unknown paths in the complex w plane.

= Further progress only by linear computational methods: finite differences and
finite elements, spectral methods, linear system solvers, etc.

Instabilities always grow towards amplitudes that necessitate consideration of the
nonlinear evolution: coupling of linear modes, nonlinear saturation, and turbulence
appear: see simulation of Rayleigh—Taylor instability with Versatile Advection Code,
where secondary Kelvin—Helmholtz instabilities develop (sheet 6-42).

= Further progress only by nonlinear computational methods: implicit and semi-
implicit time stepping, finite volume methods, shock-capturing methods, etc.
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 Magneto-rotational instability |

Example of cylindrical flow. Original references:

— Velikhov, Soviet Phys.—JETP Lett. 36, 995 (1959);
— Chandrasekhar, Proc. Nat. Acad. Sci. USA 46, 253 (1960).

Applied to accretion disks by Balbus and Hawley, Astrophys. J. 376, 214 (1991).

Problem: how can accretion on Young Stellar Object (mass Mx ~ M) or Active
Galactic nucleus (mass Mx ~ 10° M) occur at all on a reasonable time scale?

— Without dissipation impossible, because disk would conserve angular momentum;
some form of viscosity needed to transfer angular momentum to larger distances.
— However, ordinary molecular viscosity much too small to produce sizeable transfer,
and for turbulent increase (small-scale instabilities) no HD candidates were found.

— It is generally assumed that the resolution of this problem involves MHD instability:
the magneto-rotational instability (MRI).

Simplify the axi-symmetric (2D) representation of the disk (see sheet 4-9) even further
by neglecting vertical variations so that a cylindrical (1D) slice is obtained.

[One should object: but that is no disk at all anymore! Yet, this is how plasma-
astrophysicists grapple with the problem of anomalous (turbulent) transport.]
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[ MRI: cylindrical representation |

e Generalization of Hain—Lust equation, Book, Eq. (9.31), to cylindrical flow with

normal modes £ ~ exp [i(m9 +ky — wt)] ’

again yields second order ODE for radial component of the plasma displacement:
d [ N dy S Vi W\’
dr[rpdr]+[ +D+(D>]x o X=TE (42)

[ Bondeson, lacono and Bhattacharjee, Phys. Fluids 30, 2167 (1987);
extended with gravity: Keppens, Casse, Goedbloed, Astrophys. J. 569, L121 (2002) ]

e Assumption of small magnetic field,
B=2p/B*>>1, (43)

justifies use of this spectral equation in the incompressible limit:
0[P F L] L e (Bep)
dr | m?/r? + k? r dr r2
4k*(BoF + plovg)? 2m(ByF + povg)\’
P3(m2 /2 + k2)(pi? — F?) 3 (m2 /2 1 k2) X

r

—0.  (44)
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( MRI: approximations |

Azi ® > I

\J

C 46 = Ar

Gravitational potential of compact object is approximated for cylindrical slice,

Gy, = —GMx/Vr? 4+ 22 = —=GMx/r, (45)
with short wavelengths fitting the disk in the vertical direction:
kAz>1. (46)

Incompressibility is consistent with constant density so that the only gravitational
term, —p/'®,,/r?, disappears from the spectral equation. However, ®,, does not
disappear from the equilibrium equation that p, p, By, B., and vy have to satisfy,

1
(p+3iB%) = ;(pvg — Bj) — p®,,

so that stability will still be determined by gravity.
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[ MRI: further approximations |

e Assume purely vertical and constant magnetic field and purely azimuthal velocity,
By=0, v,=0 = wa=kB./\/p=const, y=mug/r, 47)
and restrict analysis to vertical wave numbers k only,
m=0 = (=0 = w=w (instability through w =0!) (48)
The spectral equation then simplifies to:
2 2\ / 2,2 /.2
(wQ—wi)dii (%Ccll_if) —'Z% [wQ—wi — 7 (%) _iu; iec/u% ] x=0. (49

e Introducing angular frequency €2 = vy /7, and epicyclic frequency «,

/{25

1
—(r'Q?) = 2rQQ) +4Q° (50)
T

(~ deviation from const spec. ang. mom. L = prvy = pr’Q), k2 =0 = L' =0),
the spectral equation becomes:
(w2 2y d (1d_X> kQ[ 2 2 o Awi P

w —wA)J - el e e R x=0. (51
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( MRI: criteria |

e Recall construction of quadratic form (sheet 7-24e):

(Px’)/ —Qx =0 = / (PX/2 - QXQ) rdr = 0. (52)

= For eigenfunctions (oscillatory x), we should have )/ P < 0 for some 7.

e From Eq. (51), this gives the following criteria for instability (w* < 0):

(@) MHD (w% #0):  wi + K> —40* <0
(for somerange of ).  (53)
b)HD (Wi =0): k<0

e For Keplerian rotation (neglecting p and B on equilibrium motion):

9 / 2
vl = pd = = Q2= = k2= >0. (54
T/OUH PEgr = P 2 3 K 3 (54)

= In HD limit, opposite of (53)(b) holds, Rayleigh’s circulation criterion is satisfied:
the fluid is stable to axi-symmetric disturbances (m = 0) if k* > 0 everywhere.

This explains interest in MHD instabilities as candidates for turbulent increase of the
dissipation processes in accretion disks.
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(MRI: MHD versus HD |

e MHD instability criterion in the limit wi — (0 (magnetic field sufficiently small):

k2 — 402 = 2rQ) < 0. (55)

This is satisfied for Keplerian disks: MRI works for astrophysically relevant cases!
Stabilizing field contribution (cu?4 > ()) should be small enough to maintain this effect.

e Discrepancy of HD and MHD stability results is due to interchange of limits:
HD disk: w% =0, w* — 0, MHDdisk: w* =0, w3 — 0.
This discrepancy is resolved when the growth rates of the instabilities are considered.

e Instead of numerically solving ODE (51), just consider radially localized modes,
X ~ exp(igr), ¢Ar > 1, producing a local dispersion equation:

(% 4 ¢*)(w* — w3)? — KR (w* — wh) — 4k%w3 Q% = 0. (56)
Solutions for ¢* < k?:

w* :w§+%/<:2:|:%\//14+ 16w5? ~ {

K2+ wi (1 + 402 /K?)
w3 (1 — 402 /K?) ’

Limit w% — 0 gives: Rayleigh mode (HD), w® — k* > 0, MRI (MHD), w* — 0.

(57)



