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$Overview

• Introduction: theoretical themes for a complete MHD description of laboratory and

astrophysical plasmas, static versus stationary plasmas;

• Spectral theory of stationary plasmas: Frieman–Rotenberg formalism for waves

and instabilities, non-selfadjointness and complex eigenvalues, implications of the

Doppler shift for the continuous spectra;

• Kelvin–Helmholtz instability of streaming plasmas: gravitating plasma with an

interface where the velocity changes discontinuously, influence of the magnetic field;

• Magneto-rotational instability of rotating plasmas: derivation of the dispersion

equation, growth rates of instabilities, application to accretion disks.
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$Theoretical themes

• We have encountered:

– Central concept of magnetic flux tubes ⇒ Cylindrical plasmas, 1D: f(r)
[ book: Chap. 9 ]

– Astrophysical flows (winds, disks, jets) ⇒ Plasmas with background flow

[ this lecture, future Volume 2 ]

– Magnetic confinement for fusion (tokamak) ⇒ Toroidal plasmas, 2D: f(r, ϑ)
[ next lecture, future Volume 2 ]

– Explosive phenomena due to reconnection ⇒ Dissipative MHD

[ future Volume 2 ]

– All plasma dynamics (e.g. space weather) ⇒ Computational MHD

[ future Volume 2 ]

– Dynamos, transonic flows, shocks, turbulence ⇒ Nonlinear MHD

[ future Volume 2 ]

• MHD with background flow is the most urgent topic (also for fusion since divertors

and neutral beam injection cause significant flows in tokamaks).

⇒ From static (v = 0) to stationary (v "= 0) plasmas!
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(Static versus stationary plasmas

• Starting point is the set of nonlinear ideal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

ρ(
∂v

∂t
+ v ·∇v) + ∇p − j × B − ρg = 0 , j = ∇× B , (2)

∂p

∂t
+ v ·∇p + γp∇ · v = 0 , (3)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 , (4)

with gravitational acceleration g = −∇Φgr due to external gravity field Φgr.

• Recall the simplicity of static equilibria (∂/∂t = 0 ,v = 0),

∇p = j × B + ρg , j = ∇× B , ∇ · B = 0 , (5)

with perturbations described by self-adjoint operator F with real eigenvalues ω2:

F(ξ) = ρ
∂2ξ

∂t2
⇒ F(ξ̂) = −ρω2ξ̂ . (6)

• Can one construct a similar powerful scheme for stationary plasmas (v "= 0)?
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(Stationary equilibria

• Basic nonlinear ideal MHD equations for stationary equilibria (∂/∂t = 0):

∇ · (ρv) = 0 , (7)

ρv ·∇v + ∇p = j × B + ρg , j = ∇× B , (8)

v ·∇p + γp∇ · v = 0 , (9)

∇× (v × B) = 0 , ∇ · B = 0 . (10)

⇒ None of them trivially satisfied now (except for simple geometries)!

• For plane gravitating plasma slab, equilibrium unchanged w.r.t. static case:

(p + 1
2B

2)′ = −ρg ( ′ ≡ d/dx ) . (11)

• For cylindrical plasma, the equilibrium is changed significantly by the centrifugal
acceleration, − v ·∇v = (v2

θ/r)er :

(p + 1
2B

2)′ =
1

r
(ρv2

θ − B2
θ) − ρΦ′

gr ( ′ ≡ d/dr ) . (12)

⇒ Modifications for plane and cylindrical stationary flows quite different:

translations and rotations are physically different phenomena.
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(Frieman–Rotenberg formalism [Rev. Mod. Phys. 32, 898 (1960)]

Spectral theory for general stationary equilibria (no further simplifying assumptions):

 (r  , t )!!!!!!!! 0

stationary flow

perturbed flow

  r  , t0

  r  ,t  = 00

  r

• First, construct displacement vector ξ
connecting perturbed flow at position r
with unperturbed flow at position r0:

r(r0, t) = r0 + ξ(r0, t) . (13)

• In terms of the coordinates (r0, t), the

equilibrium ρ0, v0, p0, B0 (r0) is time-

independent, satisfies Eqs. (7)–(10).

• Gradient ∇ = (∇r0) ·∇0 = ∇(r − ξ) ·∇0 ≈ ∇0 − (∇0ξ) ·∇0 , (14)

and Lagrangian time derivative D

Dt
≡ ∂

∂t

∣∣∣
r0

+ v0 ·∇0 , (15)

yield expression for the velocity:

v(r0 + ξ) ≡ Dr

Dt
=

Dr0

Dt
+

Dξ)

Dt
= v0 + v0 ·∇0ξ +

∂ξ

∂t
. (16)
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(Frieman–Rotenberg formalism (cont’d)

• Linearization of Eqs. (1), (3), (4) gives perturbed quantities in terms of ξ alone:

ρ ≈ ρ0 − ρ0∇0 · ξ , (17)

p ≈ p0 − γp0∇0 · ξ , (18)

B ≈ B0 + B0 ·∇0ξ − B0∇0 · ξ , (19)

where we will now drop the superscripts 0 (since they are tagged on everything).

• Inserting these into Eq. (2) yields the spectral equation for stationary equilibria:

ρ
∂2ξ

∂t2
+ 2ρv ·∇∂ξ

∂t
− F(ξ) = 0 , (20)

F ≡ Fstatic + ∇ · [ρ(v ·∇v)ξ − ρvv ·∇ξ] , (21)

Fstatic ≡ −∇π − B × (∇× Q) + (∇× B) × Q + (∇Φ)∇ · (ρξ) .

• For normal modes, ξ ∼ exp(−iωt), a quadratic eigenvalue problem is obtained:

F(ξ) + 2iρωv ·∇ξ + ρω2ξ = 0 , (22)

where the operator F is non-selfadjoint and the eigenvalues ω are complex!
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(Spectral equation for plane slab

• For the plane slab model of Chapter 7, extended with a plane shear flow field,

B = By(x)ey + Bz(x)ez , ρ = ρ(x) , p = p(x) ,

v = vy(x)ey + vz(x)ez , (23)

the equilibrium is unchanged and the two new terms in F yield: v · ∇v = 0 and

−∇ · (ρvv ·∇ξ) = −ρ(v ·∇)2ξ , so that the eigenvalue problem (22) becomes:

Fstatic(ξ) = −ρ(ω + iv ·∇)2 ξ ≡ −ρω̃2 ξ . (24)

• Hence, the equations for the static slab remain valid with the following replacement:

ω → ω̃(x) ≡ ω − k0 · v(x) , (25)

where ω̃(x) is the local Doppler shifted frequency observed in a local frame co-

moving with the plasma layer at the vertical position x.

• Since ω̃ depends on x, eigenvalues of discrete modes will be shifted by some

average of the local Doppler shifts across the layer. If a static equilibrium is unstable

(eigenvalue ω on positive imaginary axis), for the corresponding equilibrium with flow

that eigenvalue moves into the complex plane and becomes an overstable mode.
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(HD continua for plane shear flow

• How are the MHD waves affected by background flow of the plasma?

First, consider continuous spectrum in the HD case for plane slab geometry,

inhomogeneous fluid with horizontal flow:

v = vy(x)ey + vz(x)ez .

• Lagrangian time derivative:

(Df/dt)1 ≡ (∂f/∂t + v ·∇f)1 = −i ω̃f1 + f0
′v1x , ω̃ ≡ ω − k0 · v ,

ω̃(x) : frequency observed in local frame co-moving with fluid layer at position x.

• Singularities when ω̃ = 0 somewhere in the fluid ⇒ HD flow continuum {Ω0(x)},

consisting of the zeros of the local Doppler shifted frequency

ω̃ ≡ ω − Ω0 , Ω0 ≡ −iv ·∇ = k0 · v ,

on the interval x1 ≤ x ≤ x2 . These singularities have been the subject of extensive

investigations in the hydrodynamics literature.

[Lin 1955, Case 1960, Drazin and Reid, Hydrodynamic Stability (Cambridge, 2004)]
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(MHD continua for plane shear flow

• Forward (+) / backward (−) Alfvén and slow continua, and fast cluster points:

Ω±
A ≡ Ω0 ± ωA , ωA ≡ F/

√
ρ , F ≡ −iB ·∇ = k0 · B ,

Ω±
S ≡ Ω0 ± ωS , ωS ≡

√
γp

γp + B2
F/

√
ρ , Ω0 ≡ −iv ·∇ = k0 · v ,

Ω±
F ≡ ±∞ .

• The flow contribution to the MHD continua creates the following ordering of the local

frequencies (which are all real) in the co-moving frame:

Ω−
F ≤ Ω−

f0 ≤ Ω−
A ≤ Ω−

s0 ≤ Ω−
S ≤ Ω0 ≤ Ω+

S ≤ Ω+
s0 ≤ Ω+

A ≤ Ω+
f0 ≤ Ω+

F .

• The discrete spectra are monotonic along the real ω-axis outside these frequencies.

• In the limit B → 0, the Alfvén and slow continua collapse into the flow continuum,

Ω±
A → Ω0 , Ω±

S → Ω0 (whereas Ω±
F remains at ±∞) .

Vice versa, the flow continuum is absorbed by the four MHD continua when B "= 0:

Contrary to statements in the literature, there is no separate flow continuum in MHD.

[Goedbloed, Beliën, van der Holst, Keppens, Phys. Plasmas 11, 4332 (2004)]
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(HD & MHD spectra along the real axis

• HD spectrum of stationary plane fluid flow:

non-monotonic

Sturmian

anti-Sturmian

continuum

backward / forward 
g modes

backward p 
modes

forward 
p modes
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• MHD spectrum of stationary plane plasma flow:
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(Kelvin–Helmholtz instability: equilibrium

• Extend Rayleigh–Taylor instability of plasma–vacuum interface (sheets 6-36 – 6-42)

to plasma–plasma interface with two different velocities (see figure on 6-36):

Rayleigh–Taylor + Kelvin–Helmholtz!

• Upper layer (0 < x ≤ a):

ρ = const , v = (0, vy, vz) = const , B = (0, By, Bz) = const ,

p′ = −ρg ⇒ p = p0 − ρgx (p0 ≥ ρga) . (26)

Lower layer ( − b ≤ x < 0):

ρ̂ = const , v̂ = (0, v̂y, v̂z) = const , B̂ = (0, B̂y, B̂z) = const ,

p̂′ = −ρ̂g ⇒ p̂ = p̂0 − ρ̂gx . (27)

• Jumps at the interface (x = 0):

p0 + 1
2B

2
0 = p̂0 + 1

2B̂
2
0 (pressure balance) , (28)

j( = n × [[B]] = ex × (B − B̂) (surface current) ,
(29)

ω( = n × [[v]] = ex × (v − v̂) (surface vorticity) .
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(Kelvin–Helmholtz instability: normal modes

• Now (in contrast to energy principle analysis of 6-36 – 6-42), normal mode analysis:

ξ ∼ exp [i(kyy + kzz − ωt)] .

• For incompressible plasma, taking limit c2 ≡ γp/ρ → ∞ of Eq. (50) on sheet 7-20,

with plane flow, replacing ω → ω̃ (Eq. (25) of sheet F-7), basic ODE becomes:

d

dx

[
ρ(ω̃2 − ω2

A)
dξ

dx

]
− k2

0

[
ρ(ω̃2 − ω2

A) + ρ′g
]

ξ = 0 . (30)

Doppler shifted freq. ω̃ ≡ ω − Ω0 , Ω0 ≡ k0 · v; Alfvén freq. ωA ≡ k0 · B/
√

ρ0 .

• In this case, all equilibrium quantities constant so that ODEs simplify to equations

with constant coefficients:

ξ′′ − k2
0ξ = 0 , BC ξ(a) = 0 ⇒ ξ = C sinh [k0(a − x)] , (31)

ξ̂′′ − k2
0 ξ̂ = 0 , BC ξ̂(−b) = 0 ⇒ ξ̂ = Ĉ sinh [k0(x + b)] . (32)

⇒ Surface modes (cusp-shaped eigenfunctions). This part is trivial: all physical

intricacies reside in the BCs at x = 0 determining the eigenvalues.
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(Kelvin–Helmholtz instability: interface conditions

• Now (in contrast to energy principle analysis of 6-36 – 6-42), need both interface
conditions (model II∗ BCs), to determine relative amplitude Ĉ/C and eigenvalue ω :

– First interface condition (continuity of normal velocity):

[[n · ξ]] = 0 ⇒ ξ(0) = ξ̂(0) = 0 ⇒ C = Ĉ . (33)

– Second interface condition (pressure balance):

[[ Π + n · ξ n ·∇(p + 1
2B

2) ]] = 0 , Π ≡ −γp∇ · ξ − ξ ·∇p + B · Q , (34)

where γp∇ · ξ is undetermined. Determine Π from expression for compressible

plasmas, Book, Eq. (7.99), with ω replaced by ω̃ and taking limit γ → ∞:

Π ≡ −Ñ

D̃
ξ′ + ρg

ω̃2(ω̃2 − ω2
A)

D̃
ξ → ρ

k2
0

(ω̃2 − ω2
A)ξ′ . (35)

• Dividing the second by the first interface condition then gives
[[

ρ

k2
0

(ω̃2 − ω2
A)

ξ′

ξ
− ρg

]]
= 0 ⇒ eigenvalue ω . (36)



Waves and instabilities in stationary plasmas: Kelvin–Helmholtz instability (4) F-14
%
&

'
(Kelvin–Helmholtz instability: dispersion equation

• Inserting solutions (31) and (32) for ξ and ξ̂ yields the dispersion equation:

− ρ
[
(ω − Ω0)

2 − ω2
A

]
coth(k0a)− k0ρg = ρ̂

[
(ω − Ω̂0)

2 − ω̂2
A

]
coth(k0b)− k0ρ̂g .

(37)

Describes magnetic field line bending (Alfvén), gravity (RT), velocity difference (KH).

• Approximations for long wavelengths (k0x 0 1): coth k0x ≈ (k0x)−1,

short wavelengths (k0x 1 1): coth k0x ≈ 1.

• Solutions for short wavelengths (walls effectively at ∞ and −∞):

ω =
ρΩ0 + ρ̂Ω̂0

ρ + ρ̂
±

√

−ρρ̂(Ω0 − Ω̂0)2

(ρ + ρ̂)2
+

ρω2
A + ρ̂ω̂2

A

ρ + ρ̂
− k0(ρ − ρ̂)g

ρ + ρ̂
. (38)

⇒ Stable (square root real) if

(k0 · B)2 + (k0 · B̂)2 >
ρρ̂

ρ + ρ̂
[k0 · (v − v̂)]2 + k0(ρ − ρ̂)g . (39)

magnetic shear K–H drive R–T drive
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(Kelvin–Helmholtz instability: generic transitions

• Pure KH instability (B = B̂ = 0, g = 0, k0 ‖ v ‖ v̂):

ω = k0

[
ρv + ρ̂v̂

ρ + ρ̂
± i

√
ρρ̂

ρ + ρ̂
|v − v̂|

]
. (40)

⇒ Degeneracy of Doppler mode ω = k0v lifted by v "= v̂.

• Doppler shifted RT instability (B = B̂ = 0, v = v̂, k0 ‖ v):

ω = k0v ± i

√
k0(ρ − ρ̂)g

ρ + ρ̂
. (41)

⇒ Degeneracy of Doppler mode ω = k0v lifted by ρ "= ρ̂.

• Hence, generic transitions to instability for (a) static, and (b) stationary plasmas:

"
(a)

"
(b)

Exp. growth: through origin Overstability: through real axis
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(Kelvin–Helmholtz instability: generalizations

• Of course, the assumption of two homogeneous plasma layers with a velocity differ-

ence at the interface (made to make the analysis tractable for a relevant instability)

evades the basic problems of diffuse plasma flows: continuous spectra, cluster

points, and eigenvalues on unknown paths in the complex ω plane.

⇒ Further progress only by linear computational methods: finite differences and

finite elements, spectral methods, linear system solvers, etc.

• Instabilities always grow towards amplitudes that necessitate consideration of the

nonlinear evolution: coupling of linear modes, nonlinear saturation, and turbulence
appear: see simulation of Rayleigh–Taylor instability with Versatile Advection Code,

where secondary Kelvin–Helmholtz instabilities develop (sheet 6-42).

⇒ Further progress only by nonlinear computational methods: implicit and semi-

implicit time stepping, finite volume methods, shock-capturing methods, etc.
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(Magneto-rotational instability

• Example of cylindrical flow. Original references:

– Velikhov, Soviet Phys.–JETP Lett. 36, 995 (1959);

– Chandrasekhar, Proc. Nat. Acad. Sci. USA 46, 253 (1960).

• Applied to accretion disks by Balbus and Hawley, Astrophys. J. 376, 214 (1991).

Problem: how can accretion on Young Stellar Object (mass M∗ ∼ M3) or Active

Galactic nucleus (mass M∗ ∼ 109M3) occur at all on a reasonable time scale?

– Without dissipation impossible, because disk would conserve angular momentum;

some form of viscosity needed to transfer angular momentum to larger distances.

– However, ordinary molecular viscosity much too small to produce sizeable transfer,

and for turbulent increase (small-scale instabilities) no HD candidates were found.

– It is generally assumed that the resolution of this problem involves MHD instability:

the magneto-rotational instability (MRI).

• Simplify the axi-symmetric (2D) representation of the disk (see sheet 4-9) even further

by neglecting vertical variations so that a cylindrical (1D) slice is obtained.

[One should object: but that is no disk at all anymore! Yet, this is how plasma-

astrophysicists grapple with the problem of anomalous (turbulent) transport.]
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(MRI: cylindrical representation

• Generalization of Hain–Lüst equation, Book, Eq. (9.31), to cylindrical flow with

normal modes ξ ∼ exp [i(mθ + kz − ωt)] ,

again yields second order ODE for radial component of the plasma displacement:

d

dr

[
Ñ

rD̃

dχ

dr

]
+

[
Ũ +

Ṽ

D̃
+

(
W̃

D̃

)′ ]
χ = 0 , χ ≡ rξ . (42)

[ Bondeson, Iacono and Bhattacharjee, Phys. Fluids 30, 2167 (1987);

extended with gravity: Keppens, Casse, Goedbloed, Astrophys. J. 569, L121 (2002) ]

• Assumption of small magnetic field,
β ≡ 2p/B2 1 1 , (43)

justifies use of this spectral equation in the incompressible limit:

d

dr

[
ρω̃2 − F 2

m2/r2 + k2

1

r

dχ

dr

]
−

[
1

r
(ρω̃2 − F 2) +

(
B2

θ − ρv2
θ

r2

)′

− ρ′
Φgr

r2

− 4k2(BθF + ρω̃vθ)2

r3(m2/r2 + k2)(ρω̃2 − F 2)
−

(
2m(BθF + ρω̃vθ)

r3(m2/r2 + k2)

)′ ]
χ = 0 . (44)
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(MRI: approximations

&!z

z

r

&!r'

• Gravitational potential of compact object is approximated for cylindrical slice,

Φgr = −GM∗/
√

r2 + z2 ≈ −GM∗/r , (45)

with short wavelengths fitting the disk in the vertical direction:

k ∆z 1 1 . (46)

• Incompressibility is consistent with constant density so that the only gravitational

term, −ρ′Φgr/r2, disappears from the spectral equation. However, Φgr does not

disappear from the equilibrium equation that ρ, p, Bθ, Bz, and vθ have to satisfy,

(p + 1
2B

2)′ =
1

r
(ρv2

θ − B2
θ) − ρΦ′

gr ,

so that stability will still be determined by gravity.
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(MRI: further approximations

• Assume purely vertical and constant magnetic field and purely azimuthal velocity,

Bθ = 0 , vz = 0 ⇒ ωA = kBz/
√

ρ = const , Ω0 = mvθ/r , (47)

and restrict analysis to vertical wave numbers k only,

m = 0 ⇒ Ω0 = 0 ⇒ ω̃ = ω (instability through ω = 0 !) (48)

The spectral equation then simplifies to:

(ω2 − ω2
A)

d

dr

(
1

r

dχ

dr

)
− k2

r

[
ω2 − ω2

A − r

(
v2

θ

r2

)′

−4ω2v2
θ/r

2

ω2 − ω2
A

]
χ = 0 . (49)

• Introducing angular frequency Ω ≡ vθ/r, and epicyclic frequency κ,

κ2 ≡ 1

r3
(r4Ω2)′ = 2rΩΩ′ + 4Ω2 (50)

(∼ deviation from const spec. ang. mom. L ≡ ρrvθ ≡ ρr2Ω , κ2 = 0 ⇒ L′ = 0 ),

the spectral equation becomes:

(ω2 − ω2
A)

d

dr

(
1

r

dχ

dr

)
− k2

r

[
ω2 − ω2

A − κ2 − 4ω2
AΩ2

ω2 − ω2
A

]
χ = 0 . (51)
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(MRI: criteria

• Recall construction of quadratic form (sheet 7-24e):

(Pχ′)
′ − Qχ = 0 ⇒

∫
(Pχ′2 + Qχ2) rdr = 0 . (52)

⇒ For eigenfunctions (oscillatory χ), we should have Q/P < 0 for some r.

• From Eq. (51), this gives the following criteria for instability (ω2 < 0):

(a) MHD (ω2
A "= 0): ω2

A + κ2 − 4Ω2 < 0
(for some range of r) . (53)

(b) HD (ω2
A ≡ 0): κ2 < 0

• For Keplerian rotation (neglecting p and B on equilibrium motion):

1

r
ρv2

θ = ρΦ′
gr = ρ

GM∗
r2

⇒ Ω2 =
GM∗

r3
⇒ κ2 =

GM∗
r3

> 0 . (54)

⇒ In HD limit, opposite of (53)(b) holds, Rayleigh’s circulation criterion is satisfied:
the fluid is stable to axi-symmetric disturbances (m = 0) if κ2 ≥ 0 everywhere.

This explains interest in MHD instabilities as candidates for turbulent increase of the

dissipation processes in accretion disks.
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(MRI: MHD versus HD

• MHD instability criterion in the limit ω2
A → 0 (magnetic field sufficiently small):

κ2 − 4Ω2 ≡ 2rΩΩ′ < 0 . (55)

This is satisfied for Keplerian disks: MRI works for astrophysically relevant cases!

Stabilizing field contribution (ω2
A > 0) should be small enough to maintain this effect.

• Discrepancy of HD and MHD stability results is due to interchange of limits:

HD disk: ω2
A = 0 , ω2 → 0 , MHD disk: ω2 = 0 , ω2

A → 0.

This discrepancy is resolved when the growth rates of the instabilities are considered.

• Instead of numerically solving ODE (51), just consider radially localized modes,

χ ∼ exp(iqr), q∆r 1 1, producing a local dispersion equation:

(k2 + q2)(ω2 − ω2
A)2 − k2κ2(ω2 − ω2

A) − 4k2ω2
AΩ2 = 0 . (56)

Solutions for q2 0 k2:

ω2 = ω2
A + 1

2κ
2 ± 1

2

√
κ4 + 16ω2

AΩ2 ≈
{

κ2 + ω2
A(1 + 4Ω2/κ2)

ω2
A(1 − 4Ω2/κ2)

, (57)

Limit ω2
A → 0 gives: Rayleigh mode (HD), ω2

+ → κ2 > 0 , MRI (MHD), ω2
− → 0 .


