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Chapter 7: Waves /instab. in inhomogeneous plasmas
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	Overview

• Hydrodynamics of the solar interior: radiative equilibrium model of the Sun,
convection zone; [ book: Sec. 7.1 ]

• Hydrodynamic waves & instabilities of a gravitating slab: HD wave equation,
convective instabilities, gravito-acoustic waves, helioseismology; [ book: Sec. 7.2 ]

• MHD wave equation for a gravitating magnetized plasma slab: derivation MHD
wave equation for gravitating slab, gravito-MHD waves; [ book: Sec. 7.3 ]

• Continuous spectrum and spectral structure: singular differential equations,
Alfvén and slow continua, oscillation theorems; [ book: Sec. 7.4 ]

• Gravitational instabilities of plasmas with magnetic shea r: energy principle for
gravitating slab, interchange instabilities in sheared/shearless magnetic fields.

[ book: Sec. 7.5 ]
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	Structure of the Sun

Standard Solar model:

• R⊙ = 7.0 × 108 m, M⊙ = 2.0 × 1030 kg.

• Solar luminosity (total power output):

L⊙ = 3.86 × 1026 W

⇒ heat flux at 1 AU ( = 1.5 × 1011 m ):

L⊙
4π × (1 AU)2

= 1.36 kW m−2 (solar constant).

core

convection zone

R0.25 R

0.71 R

radiative zone

• Produced by p-p fusion reactions in the core:

4 p → He4 + 2 e+ + 2 νe (0.5 MeV) + 2 γ (26.2 MeV) .

• Energy γ radiation transported through radiative zone ( 0.25R⊙ ≤ r ≤ 0.713R⊙)
outward. Takes millions of years per photon, wavelengths shift to visible light.

• Radiative transport exceeded by convection in convection zone ( 0.71R⊙ ≤ r ≤ R⊙).
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Radiative equilibrium model

HD (≡ MHD with B = 0 ) equations:
Dρ

Dt
+ ρ∇ · v = 0 , (1)

ρ
Dv

Dt
+ ∇p− ρg = 0 , where g = −GM(r)

r2
er ,

dM

dr
= 4πr2ρ , (2)

ρ
De

Dt
+ p∇ · v = ∇ · [λ∇(kT ) ] + ρε , where e ≡ 1

γ − 1

p

ρ
. (3)

New: a) radiative transport governed by thermal conduction coefficient λ(r),

λ = λ(ρ, T ) = (16σ/(3k)T 3/(κρ) , with opacity κ = κ(ρ, T ) . (4)

b) thermonuclear energy production per unit mass ε(r):

ε = ε(X, ρ, T ) = 0.25 ρX2(106/T )2/3 exp{−33.8 (106/T )1/3} . (5)

c) equation of state mimicking particle species by mean molecular weight µ(r):

p ≈ 1 + Zc
A

ρkT

mp
⇒ p =

1

µ

ρkT

mp
, where µ = µ(ρ, T ) . (6)

Mixture H+ (µ= 1
2), He++ (µ= 4

3), heavier ions (µ ≈ 2): µ ≈ (2X + 3
4Y + 1

2Z)−1 .
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Static equilibrium (v = 0 , ∂/∂t = 0 )

• Hydrostatic equilibrium:

dp

dr
= −G ρM

r2
,

dM

dr
= 4πr2ρ ,

(

ρ =
mp

k

µp

T

)

. (7)

• Radiative equilibrium:

1

r2

d

dr

[

r2λ
d

dr
(kT )

]

= −ρε , exploiting local luminosity L

⇒ dT

dr
= − 3

64πσ

κρL

r2T 3
,

dL

dr
= 4π r2ρε . (8)

ODEs (7)–(8) are complete when supplemented with µ(ρ, T ) , κ(ρ, T ) , and ε(ρ, T )
obtained from microscopic data on abundances, ionization, scattering, etc.

• Boundary conditions:

p(R⊙) ≈ 0 , M(0) = 0 , T (R⊙) ≈ 0 , L(0) = 0 . (9)

⇒ Provides realistic solutions, where values p(0) and (0) correspond to thermonuclear
burn, but assumption of hydrostatic equilibrium up to the solar su rface is wrong!
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Solution (Foukal, Solar Astrophysics, 1990):

Obtained with modified BC at r = 0.713R⊙: − dT

dr
= −

(

dT

dr

)

isentr.

, (10)

since convection zone is convectively unstable!
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	Convection zone
• In outer layers of the Sun, cooling is so strong that absolute value of temperature

gradient exceeds threshold given by Schwarzschild criterion for convective stability.

• Strong mixing in convection zone, µ ≈ const, so that equation of state becomes

p = RρT , with gas constant R ≡ (k/mp)µ
−1 (11)

⇒ −T ′ =
1

R
( p

ρ2
ρ′ − 1

ρ
p′
)

[

=
1

R
( p

ρ2
ρ′ + g

)

, using equil. p′ = −ρg
]

. (12)

• Neutrally stable motions only if fluid is isentropic:

S ≡ pρ−γ = const ⇒ −(T ′)isentr. = − 1

R
γ − 1

γ

1

ρ
p′

[

=
1

R
γ − 1

γ
g

]

. (13)

• Convective instability when actual temperature gradient −T ′ exceeds this value,
i.e. when Schwarzschild criterion for convective stability ,

− T ′ ≤ −(T ′)isentr. ⇒ ρ′ − ρ

γp
p′ ≤ 0

[

⇒ ρ′g +
ρ2g2

γp
≤ 0

]

, (14)

violated. ⇒ Recover criterion for gravitational stability [in square brackets]:
Convective and gravitational (Rayleigh–Taylor) instabilities are the same!
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HD wave equation

• Gravity waves unstable if Schwarzschild criterion for convective instability is violated.

⇒ Consider more general solar oscillations, neglecting B and spherical geometry:

Gravito-acoustic waves in planar stratification (depend on vertical coord. x).

• Equilibrium of plane slab with constant external gravity field g = (−g, 0, 0) :

∇p0 = ρ0g ⇒ p′0(x) = −ρ0(x)g . (15)

• Linearize HD equations: ∂ρ1

∂t
+ v1 · ∇ρ0 + ρ0∇ · v1 = 0 , (16)

ρ0
∂v1

∂t
+ ∇p1 − ρ1g = 0 , (17)

∂p1

∂t
+ v1 · ∇p0 + γp0∇ · v1 = 0 . (18)

• With v1 = ∂ξ/∂t ⇒ Wave equation for gravito-acoustic waves in plane slab:

ρ
∂2ξ

∂t2
−∇(γp∇ · ξ) − ρ∇(g · ξ) + ρg∇ · ξ = 0 . (19)
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• Normal mode solutions ξ(r, t) = ξ̂(x) ei(kyy+kzz−ωt) ⇒ matrix EVP:












ρω2 +
d

dx
γp

d

dx
iky
( d

dx
γp + ρg

)

ikz
( d

dx
γp + ρg

)

iky
(

γp
d

dx
− ρg

)

ρω2 − k2
yγp −kykzγp

ikz
(

γp
d

dx
− ρg

)

−kykzγp ρω2 − k2
zγp

























ξ̂x

ξ̂y

ξ̂z













= 0 . (20)

• Rotate coordinate system so that kz = 0 ⇒ ρω2ξ̂z = 0 , express ξ̂y in ξ̂′x and ξ̂x,

and insert in first component of Eq. (20) ⇒ Second order ODE for ξ̂x:

d

dx

(

γp ρω2

ρω2 − k2
0γp

dξ̂x
dx

)

+

[

ρω2 − k2
0ρ

2g2

ρω2 − k2
0γp

−
( k2

0γp ρg

ρω2 − k2
0γp

)′
]

ξ̂x = 0 . (21)

• Imposing rigid boundary conditions,

ξ̂x(x=0) = ξ̂x(x=a) = 0 , (22)

where x = 0 corresponds to center and x = a to surface of the Sun, is OK as long
as modes are sufficiently localized (cavity modes).
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	Convective instabilities

• Since time-scales gravitational instabilities much longer than time-scales acoustic
oscillations, assume ρ |ω2| ≪ k2

0γp . Wave equation (21) simplifies to

d

dx

(ρω2

k2
0

dξ̂x
dx

)

− ρ(ω2 −N 2) ξ̂x = 0 , (23)

with Brunt–Väisäläa frequency:

N 2 ≡ −g
(1

ρ
ρ′ − 1

γp
p′
)

[

= −1

ρ

(

ρ′g +
ρ2g2

γp

)

]

. (24)

• Assuming rapid spatially oscillatory modes ξ̂x(x) ∼ exp(iqx), with qa ≫ 1 , gives
estimate for the eigenfrequencies of local instabilities:

ω2 ≈ ωc
2 ≡ k2

0

k2
0 + q2

N 2(x) . (25)

⇒ System locally unstable in range of x where N 2 < 0, which is nothing else but
the Schwarzschild criterion. ⇒ Convective instabilities grow as exp(

√
−ωc

2 t) .
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	Gravito-acoustic waves
• Exponentially stratified medium with constant sound speed:

ρ = ρ0e
−αx , p = p0e

−αx ⇒ c2 =
γp

ρ
=
γp0

ρ0
= const . (26)

p′ = −αp = −ρg ⇒ α =
ρg

p
=
ρ0g

p0
=
γg

c2
= const . (27)

Spectral equation (21) reduces to

c2ω2

ω2 − k2
0c

2

d

dx

(

e−αx
dξ̂x
dx

)

+

(

ω2 − k2
0g

2

ω2 − k2
0c

2
+ α

k2
0c

2g

ω2 − k2
0c

2

)

e−αx ξ̂x = 0.

(28)

• Squared Brunt–Väisäläa frequency simplifies to

N 2 = αg − g2

c2
= (γ − 1)

g2

c2
> 0 ⇒ only stable waves. (29)

Eq. (28) transforms to

d2ξ̂x
dx2

− α
dξ̂x
dx

+
ω4 − k2

0c
2 ω2 + k2

0c
2N 2

c2 ω2
ξ̂x = 0 , (30)

which is a differential equation with constant coefficients: solution is trivial.
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• Solutions:

ξ̂x = Ce(1
2α±iq)x , q ≡

√

−1

4
α2 +

ω4 − k2
0c

2 ω2 + k2
0c

2N 2

c2 ω2
. (31)

Expression under square root positive for oscillatory solutions satisfying BCs (22)
with quantized q :

qa = nπ (n = 1, 2, . . .) . (32)

• Dispersion equation of gravito-acoustic waves from inversion of Eq. (31) for q :

ω4 − (k2
0 + q2 + 1

4α
2)c2ω2 + k2

0c
2N 2 = 0 , (33)

with solutions

ω2
p,g = 1

2k
2
effc

2



 1 ±
√

1 − 4k2
0N

2

k4
effc

2



 , k2
eff ≡ k2

0 + q2 + 1
4α

2 , (34)

where keff is the effective total ‘wave number’ and k0 is the horizontal wave number.

– Branch with + sign: acoustic waves or p-modes (pressure driven);

– Branch with − sign: gravity waves or g-modes (gravity driven).
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Dispersion diagram p- and g-modes

• Frequencies p-modes increase monotonically, clustering at ∞: ω2
p(q

2) ↑ ω2
P = ∞.

Frequencies g-modes decrease monotonically, clustering at 0 : ω2
g(q

2) ↓ ω2
G = 0.
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Helioseismology

• Power spectrum of solar oscillations, from Doppler velocity measurements in light
integrated over solar disk (Christensen-Dalsgaard, Stellar Oscillations, 1989):

⇒ Powerful tool for probing the interior of the sun!
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• Done by comparison with theoretically
calculated spectrum for standard solar
model (of course, spherical geometry)
(Christensen-Dalsgaard, 1989).

• Orders of magnitude :

τ ∼ 5 min ⇒ ν ∼ 3 mHz

ṽr < 1km/s ≈ 5 × 10−4R⊙/5 min

⇒ linear theory OK!

• p-modes of low order l penetrate deep
in the Sun, high l modes are localized
on outside. g-modes are cavity modes
trapped deeper than convection zone
and, hence, quite difficult to observe.

• Frequencies deduced from the Doppler
shifts of spectral lines agree with calcu-
lated ones for p-modes to within 0.1%!
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Systematics of helioseismology

Solar Model:

X(r) , Y (r) , Z(r)

T (r) , ρ(r) , L(r)

Extensions:

Ω(r, θ) – diff. rotation

B(r, θ) – magn. field

f(t) – stellar evolution

ρ(r) , T (r)
Spectral Code:

ξ̂(r)Y m
l (θ, φ) eiωt

( p & g modes)
{ωl,n}theory

Observations:

Doppler shifts of

spectral lines
{ωl,n}observ.

- -

-

-

6

?

�

• Similar activities:

– MHD spectroscopy for laboratory fusion plasmas (Goedbloed et al., 1993),

– Sunspot seismology (Bogdan and Braun, 1995),

– Magneto-seismology of accretion disks (Keppens et al., 2002).
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Gravitating magnetized plasma slab

• Next step is addition of magnetic field (not spherical geometry since B does not fit!):

ex

e⊥ e
//

y

z

x

B (x) 

ϕ

ba

x = x2

 g
1x = x

• Equilibrium (in between two bounding plates):

B = By(x) ey +Bz(x) ez , ρ = ρ(x) , p = p(x) . (35)

j = ∇× B = −B′
z(x) ey +B′

y(x) ez , (36)

g = −∇Φ = −ĝex ⇒ (p + 1
2
B2)′ = −ρĝ . (37)

⇒ Generic 1D model for inhomogeneous plasmas.
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• Starting point is the general MHD spectral equation:

F(ξ) ≡ −∇π−B×(∇×Q)+(∇×B)×Q+∇Φ∇·(ρξ) = ρ
∂2ξ

∂t2
= −ρω2ξ , (38)

where π = −γp∇ · ξ − ξ · ∇p , Q = ∇× (ξ × B) . (39)

Aside:
• Recall homogeneous plasmas (Chap. 5) with plane wave solutions ξ̂(k) exp(ik · r):

ρ−1F(ξ̂) =
[

− (k · b)2 I − (b2 + c2)kk + k · b (kb + bk)
]

· ξ̂ = −ω2ξ̂ . (40)

In components:






− k2
x(b

2 + c2) − k2
zb

2 −kxky(b2 + c2) −kxkzc2
− kxky(b

2 + c2) −k2
y(b

2 + c2) − k2
zb

2 −kykzc2
− kxkzc

2 −kykzc2 −k2
zc

2













ξx

ξy

ξz






= −ω2







ξx

ξy

ξz






.

(41)
Corresponds to Eq. (5.35) [book (5.52)] with ky 6= 0 : Coordinate system rotated to
distinguish between kx (becomes differential operator in inhomogeneous systems)
and ky (remains number).
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• Dispersion diagram ω2(kx) exhibits relevant asymptotics for kx → ∞:

a ω 2

k   x
(n)

ω 2
f0

1 2 3 4 5 6 71234567 0

ω2
s0

•••••• • • • • •••

•
• • • • •

• • • • •
• • • •

Aω 2•

•

•
•

•
• • •

•
•

•
•••

ω 2
S

b

ω 2
S

Alfvén

fast

slow

ω 2

Aω 2

∞

Yields the essential spectrum:

ω2
F ≡ lim

kx→∞
ω2
f ≈ lim

kx→∞
k2
x(b

2 + c2) = ∞ , (fast cluster point) (42)

ω2
A ≡ lim

kx→∞
ω2
a = ω2

a = k2
‖b

2 , (Alfvén infinitely degenerate) (43)

ω2
S ≡ lim

kx→∞
ω2
s = k2

‖
b2c2

b2 + c2
. (slow cluster point) (44)

End aside
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Back to inhomogeneous plasmas:

• Fourier harmonics ξ̂(x; ky, kz) exp [i(kyy + kzz)], keep differential operators d/dx.

• Field line projection in normal, perpendicular, and parallel directions:

ex ≡ ∇x , e⊥(x) ≡ (B/B) × ex , e‖(x) ≡ B/B , (45)

∂x ≡ d/dx ,

∇ = ex∂x + i e⊥ g + i e‖ f , g(x) ≡ −ie⊥ · ∇ = (kyBz − kzBy)/B , (46)

f(x) ≡ −ie‖ · ∇ = (kyBy + kzBz)/B ,

ξ = ξ ex − iη e⊥ − iζ e‖ . (47)

MHD spectral equation (38) + extensive algebra! ⇒ Vector formulation of EVP:

















d

dx
(γp +B2)

d

dx
− f 2B2 d

dx
g(γp +B2) + gρĝ

d

dx
fγp + fρĝ

− g(γp + B2)
d

dx
+ gρĝ −g2(γp +B2) − f 2B2 −gfγp

− fγp
d

dx
+ fρĝ −f g γp −f 2γp



































ξ

η

ζ



















= −ρω2



















ξ

η

ζ



















. (48)
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• Eliminate perpendicular and parallel components η and ζ :

η = g
[(b2 + c2)ω2 − f 2b2c2] ξ′ − ĝ ω2 ξ

D
,

(49)
ζ = f

c2(ω2 − f 2b2) ξ′ − ĝ (ω2 − k2
0b

2) ξ

D
.

• Substitute in 1st component ⇒ 2nd order ODE formulation EVP [cf. HD Eq. (21)]:

d

dx

N

D

dξ

dx
+

[

ρ(ω2 − f 2b2) + ρ′ĝ − k2
0ρĝ

2 ω
2 − f 2b2

D
−
{

ρĝ
ω2(ω2 − f 2b2)

D

}′ ]

ξ = 0,

(50)

with singular factors

N = N(x;ω2) ≡ ρ(ω2 − f 2b2)
[

(b2 + c2)ω2 − f 2b2c2
]

,
(51)

D = D(x;ω2) ≡ ω4 − k2
0(b

2 + c2)ω2 + k2
0f

2b2c2 .

Model I boundary conditions:

ξ(x1) = ξ(x2) = 0 . (52)

• This completes formulation EVP, remains: study singularities + explicit solutions!
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Singular frequencies

• ODE (50) describes all gravito-magnetohydrodynamic modes of a gravitating mag-
netized plasma slab with arbitrary equilibrium profiles.

• Factor in front of highest derivative is crucial for local behavior:

N

D
= ρ(b2 + c2)

[ω2 − ω2
A(x) ] [ω2 − ω2

S(x) ]

[ω2 − ω2
s0(x) ] [ω2 − ω2

f0(x) ]
. (53)

Alfvén and slow magnetosonic singularities (continuous spectra) for N → 0 :

ω2
A(x) ≡ f 2b2 ≡ F 2/ρ , ω2

S(x) ≡ f 2 b2c2

b2 + c2
≡ γp

γp +B2
ω2
A(x) . (54)

Slow and fast turning point frequencies (apparent singularities) for D → 0 :

ω2
s0,f0(x) ≡ 1

2k
2
0(b

2 + c2)
[

1 ±
√

1 − 4f 2b2c2

k2
0(b

2 + c2)2
]

. (55)

• Function F (x) ≡ −iB · ∇ = k0 · B : gradient operator parallel to magnetic field
(important in stability studies!).
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	Gravito-MHD waves
• Again, exponentially stratified medium with constant sound and Alfvén speed:

ρ = ρ0e
−αx, p = p0e

−αx, B = B0e
−1

2αxez ⇒ c2 =
γp0

ρ0
, b2 =

B2
0

ρ0
. (56)

All singularities squeezed into constants, spectral equation (50) reduces to:

N0

ρ0D0

d

dx

(

e−αx
dξ

dx

)

+

[

ω2 − f 2b2 − k2
0ĝ

2 ω
2 − f 2b2

D0

−αĝ + αĝ
ω2(ω2 − f 2b2)

D0

]

e−αx ξ = 0 . (57)

• As in HD, solved by ξ = Cexp[(1
2
α± iq)x], with quantized vertical ‘wave number’

q ≡
√

−1

4
α2 +

ρ0

N0

[

(ω2 − f 2b2)(D0 + k2
0c

2N 2
B) + αĝ g2b2ω2

]

= n
π

a
, (58)

where Brunt–Väisäläa frequency now contains magnetic contribution:

N 2
B = αĝ − ĝ2

c2
=

(γ − 1)β − 1

1 + β

ĝ2

c2
, α =

ρ0ĝ

p0 + 1
2
B2

0

, β =
2p2

0

B2
0

, (59)

so that instability (N 2
B < 0) occurs for 0 ≤ β < (γ − 1)−1 .



Waves/instab. inhomogeneous plasmas: MHD wave equation (8) 7-23

• Dispersion equation of gravito-MHD waves follows from inversion of Eq. (58) for q :

(ω2 − f 2b2)[ω4 − k2
eff(b2 + c2)ω2 + k2

efff
2b2c2 + k2

0c
2N 2

B ] + αĝ g2b2ω2 = 0 . (60)

• Cubic equation easily solved for Parallel propagation ( k0 ‖ B ⇒ f = k0 , g = 0 ):

ω2
1 = k2

0b
2 , ω2

2,3 = 1
2
k2

eff(b2 + c2)



 1 ±
√

1 − 4k2
0c

2(k2
effb

2 +N 2
B)

k4
eff(b2 + c2)2



 . (61)

‘Unaffected’ Alfvén waves and two gravitationally modified magnetosonic waves.
Solution with − sign corresponds to Parker instability.

• Perpendicular propagation ( k0 ⊥ B ⇒ f = 0 , g = k0 ):

ω2
1 = 0 , ω2

2,3 = 1
2
k2

eff(b2 + c2)



 1 ±
√

1 − 4k2
0N

2
m

k4
eff(b2 + c2)



 , (62)

with magnetically modified Brunt–Väisäläa frequency:

N 2
m = αĝ − ĝ2

b2 + c2
=

(γ − 1)β + 1

1 + β

ĝ2

b2 + c2
(

> 0 !
)

. (63)

Unusual: more stable than parallel propagation! (Note that ω2
1 is marginal.)
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Dispersion diagram for oblique gravito-MHD modes

• Note differences with homogeneous plasma:

ω2 ↑ ω2
F ≡ ∞ (fast) , ω2 ↓ ω2

A (Alfvén) , ω2 ↑ ω2
S (slow, with unstable n = 0, 1, 2 ).
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Rayleigh–Taylor instability in diffuse plasma

• Start from MHD wave equation (50). Keep inhomogeneity (no tricks with exponential
profiles!), but simplify by assuming incompressibility:

c2 ≡ γp

ρ
→ ∞ , so that

{

N → ρc2(ω2 − ω2
A)2

D → −k2
0c

2(ω2 − ω2
A)

⇒ N

D
→ − ρ

k2
0

(ω2 − ω2
A) .

• Similarly, terms in Eq. (50) with finite numerators but infiniteD vanish, resulting in the
much simpler MHD wave equation for incompressible gravitating plasma sl ab:

d

dx

[

ρ(ω2 − ω2
A)
dξ

dx

]

− k2
0

[

ρ(ω2 − ω2
A) + ρ′ĝ

]

ξ = 0 , ω2
A ≡ k2

‖B
2/ρ ,

of course with the usual BCs ξ(0) = ξ(a) = 0 .

• Tangential components in the limit c2 → ∞ simplify to

η → − g

k2
0

ξ′ , ζ → − f

k2
0

ξ′
(

recall: g ≡ k⊥ , f ≡ k‖
)

,

where only one component is needed since the other follows from incompressibility:

∇ · ξ = ξ′ + gη + fζ = 0
(

but c2∇ · ξ is finite!
)

.
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• Simplify even further, but keep essential inhomogeneity of the density:

B2 = B2
0 , ρ = ρ0 + ρ′0x , with B2

0 , ρ0 , ρ
′
0 = const .

• Of course, the equilibrium equation (37), (p + 1
2B

2)′ = −ρĝ, must be satisfied.
Integration yields the pressure profile, but this result is not needed since p(x) does
not appear in the wave equation (peculiarity of incompressibility).

• Now exploit scale-independence: Proper scaling of the equations should result in
an eigenvalue problem that is essentially independent of the thickness a of the slab,
the magnitude B0 of the magnetic field, and the density ρ0 of the plasma:

x̄ ≡ x/a , k̄0 ≡ k0a , k̄‖ ≡ k0a cosϑ , ω̄2 ≡ ω2ρ0a
2/B2

0 .

Also introduce dimensionless parameters for density gradient and gravity:

σ ≡ ρ′0a/ρ0 , τ ≡ ρ0ĝa/B
2
0

(

B–V freq. N̄B ≡ −στ
)

.

• The wave equation then becomes:

d

dx̄

[

(

(1 + σx̄) ω̄2 − k̄2
0 cos2 ϑ

) dξ

dx̄

]

− k̄2
0

[

(1 + σx̄) ω̄2 − k̄2
0 cos2 ϑ + στ

]

ξ = 0 ,

to be solved on a unit interval 0 ≤ x̄ ≤ 1 , with BCs ξ(0) = ξ(1) = 0 , so that the
scaled eigenvalues depend on four parameters: ω̄2 = ω̄2(k̄2

0, cos2 ϑ; σ, τ ) .
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• Formalise the problem so that it will be easier to generalise and also to implement
numerically. Of course, we also drop the bars now:

d

dx

[

P (x;ω2)
dξ

dx

]

−Q(x;ω2) ξ = 0 , ξ(0) = ξ(1) = 0 ,

where

P ≡ −(1 + σx)ω2 + k2
0 cos2 ϑ , Q ≡ k2

0 (P − στ ) .

• Very efficient numerical routines exist to integrate a system of n nonlinear first order
differential equations y′i = y′i(y1, y2, . . . yn, t) , i = 1, 2, . . . n . Hence, transform
the above 2nd order ODE into a system of two (n = 2) 1st order (linear) ODEs by
defining an auxiliary variable ψ ≡ Pξ′:

ξ′ = ψ/P , y′1 = y2/P ,⇒
ψ′ = Qξ , y′2 = Qy1 .

• Not accidentally, the independent variable in the numerical routines is called t : such
problems come from initial value problems, yi(0) = ci, with known constants ci.
However, we have a boundary value problem, y1(0) = y1(1) = 0, with unknown
eigenvalue ω2 !
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• Hence turn the BVP into an IVP: guess a value for ω2, insert that in the functions
P (x;ω2) and Q(x;ω2), integrate the 1st order system from x = 0 to x = 1 starting
with the initial values

ξ(0) ≡ y1(0) = 0 ,

ξ′(0) ≡ y2(0)/P (0) = 1 ,

and find the solution ξ(x) ≡ y1(x). In general, that solution will not satisfy the BC
ξ(1) ≡ y1(1) = 0. ⇒ Guess a new value for ω2 that is closer to satisfying the BC.
This method is called the shooting method.

• The shooting method requires an algorithm for iterating on the eigenvalue parameter
such that the solution ξ(x) approaches the correct BV at x = 1. Such algorithm is
provided by the oscillation theorem (Goedbloed and Sakanaka, 1974): the number
of zeros of the solution of the MHD wave equation is monotonic in the parameter ω2.

• The oscillation theorem holds with an important physical proviso: P (x;ω2) should
not vanish or go to ∞ on 0 ≤ x ≤ 1 ⇒ singularities are to be excluded.

• When does that happen? When ω2 = ω2
A(x) ≡ k2

‖B
2/ρ(x) = 0 somewhere: the

continuous spectrum ω2
A(0) ≥ ω2 ≥ ω2

A(1) is to be avoided.
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• We are now in an excellent shape to start solving the problem. One piece is still
missing: suppose we wish to investigate instability, how negative should the initial
guess for ω2 be: −∞? That would be awkward. It would be nice if we had an
estimate of the largest growth rate that can be expected.

• Recall the second approach to stability, the one with quadratic forms. Rather than
going back to the general expressions, construct one from the 2nd order ODE by
multiplying with ξ and integrating over the interval:

∫ 1

0

[

ξ(Pξ′)′ −Qξ2
]

dx = [Pξξ′]
1
0 −

∫ 1

0

(Pξ′2 +Qξ2) dx = 0 .

Since the boundary term vanishes for eigenfunctions, and P should be positive
everywhere, Q must be negative in at least some region. Inserting the linear density
profile, this gives a perfect estimate of the range of eigenvalues to be expected.

• Here is the exercise: Find a numerical library routine for solving a system of ODEs
and a convenient plotting library. Using these tools, compute a number of the lowest
eigenvalues of the discrete spectrum of modes of the incompressible plane plasma
layer with linear density profile and constant magnetic field for relevant values of the
parameters, i.e. in a range where Rayleigh–Taylor instabilities occur. Discuss the
different effects that occur. Note that finding the relevant parameters belongs to the
exercise (that is precisely what a physicist should do when formulating a problem).
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• A solution (k2
0 = 10 , ϑ = 1

4
π, σ = 1, τ = 10):

Spectrum:

n = 1 2 3

0 (1)ω    2A (0)ω    2A

ω    2
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Singularities

• We obtained insight in MHD spectrum for exponential equilibrium, with constant
‘singular’ frequencies (N = 0, D = 0), but evaded two important difficult problems:
– Singular frequencies depend on x ⇒ continuous spectrum,
– Magnetic field is not uni-directional ⇒ magnetic shear.

• A problem reduced to a non-singular 2nd order ODE may be considered solved,
because one can obtain the answers numerically to any relevant degree of accuracy.
For example, consider numerical solution by shooting of the ODE

d

dx

[

P (x;ω2)
dξ

dx

]

−Q(x;ω2) ξ = 0 , with BCs ξ(x1) = ξ(x2) = 0 . (64)

(1) Specify equilibrium ρ, p, By, Bz(x), satisfying (p + 1
2B

2)′ = −ρĝ, and choose a
particular value ω2 = ω2(0) ⇒ P (x;ω2) and Q(x;ω2) known;
(2) Solve Eq. (64) by means of standard library routine, starting from left BC and
stepping towards right end of interval [x1, x2];
(3) Since right BC will not be satisfied, choose new value ω2 = ω2(1), using oscillation
theorem (see below), that brings solution closer to satisfying BC in next iteration.

• Shooting works if ODE is non-singular: Problem left is treatment of the singularities.
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• Three kinds of singularity:

x1 x2
x0

{ ω   } 2
A

ω   2
A

x

ω   2

{ ω   } 2
A

ω   2
A

x

ω   2

x1 x2
x0

(b)(a) (c)

{ ω   } 2
A

ω   2
A

x

x1 x2
x0

0

Case (a): If ω2
A(x) is monotonic, any ω2 in the range ω2

A(x1) ≤ ω2 ≤ ω2
A(x2) leads

to a singular point x1 ≤ x0 ≤ x2, where the Alfvén factor may be expanded:

ω2 − ω2
A ≈ −(ω2

A
′
)0 (x− x0) ⇒ P ∼ x− x0 . (65)

This range yields continuous spectrum {ω2
A} of Alfvén modes

(

{ω2
S} of slow modes

)

.

• Proof : Since P ∼ s ≡ x− x0 singularity gives logarithmic contributions, try solution

ξ = [A1u + C1(u ln |s| + v)]H(−s) + [A2u + C2(u ln |s| + v)]H(s) , (66)

with u(x) and v(x) regular, and constants A1,2 and C1,2 to be determined by BCs.
By substitution into ODE (64), using H ′(s) = δ(s) and sδ(s) = 0, one finds:

A1 6= A2 (small solution may jump) , C1 = C2 (large solution ‘continuous’) .

⇒ With 3 constants one can always satisfy 2 BCs for any ω2 ∈ {ω2
A(x)}; QED.



Waves/instab. inhomogeneous plasmas: Continuous spectrum (3) 7-27

• Associated ‘singular ‘eigenfuctions’ have their most important component in the
tangential direction (schematic):

x

x 1 x 2

xA,S

a ξ A,S

xA,S

x

x 1 x 2

η   
A ζ   S,

b

(a) normal and (b) tangential components of improper Alfvén and slow continuum
modes: Alfvén modes dominantly perpendicular, slow modes dominantly parallel.

• Physical significance of these singularities: Solution of IVP by means of Laplace
transform, where ω is assumed complex and continuation is obtained by deforming
Laplace contour around singularity, yields damping of MHD waves, analogous to
Landau damping of plasma oscillations for the Vlasov equation (Sec. 2.3). [Velocity
variable v of Vlasov problem corresponds to spatial coordinate x of MHD problem.]

• This damping can be described as phase mixing of highly localized shear flows.
⇒ Alfvén wave heating is one of the mechanisms proposed for coronal heating,
and also investigated for heating in tokamaks (e.g. in TCA-BR, São Paulo).
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Schematic structure of the MHD spectrum

• Quadratic N = 0 singularities (7-26, cases (b) & (c)) may produce clusterpoints of
the discrete spectrum at the tips of the continua.

• D = 0 singularities are only apparent ones: coefficients of expansion around such
‘singularity’ produce cancellation of terms such that solution is completely regular.
Frequencies {ω2

s0,f0(x)} act as separators of the different parts of the spectrum:

x   x x

non-monotonic
Sturmian
anti-Sturmian

continuum

x   x  x x  x   x
0

ω    2
x   x  x x  x   x x    

slow Alfvén fast

{    } ω    2
s0 {    } ω    2

f0

x    

{    } ω    2
S A{    } ω    2

F ω     2
 = ∞

• Oscillation theorem: Outside {ω2
A,S}, {ω2

s0,f0}, the discrete spectrum is monotonic
in number of nodes of eigenfunctions (either Sturmian or anti-Sturmian).
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Energy principle for gravitating plasma slab

Start from general expression for potential energy:

W = 1
2

∫

[

γp |∇ · ξ|2 + |Q|2 + (ξ · ∇p)∇ · ξ∗ + j · ξ∗ ×Q− (ξ∗ · ∇Φ)∇ · (ρξ)
]

dV .

[ corrected from the book (p.366)! ]

• Evaluate compressibility and magnetic field perturbation for gravitating slab:

∇ · ξ = ξ′ + gη + fζ , (67)

Qx = ifB ξ , Qy = −(Byξ)
′ + kzB η , Qz = −(Bzξ)

′ − kyB η . (68)

• Insert and work out:

W = 1
2

∫ [

f 2B2

k2
0

ξ′
2
+
(

f 2B2 − ρ′ĝ − ρ2ĝ2

γp

)

ξ2

+B2
(

k0η +
g

k0
ξ′
)2

+ γp
(

∇ · ξ − ρĝ

γp
ξ
)2
]

dV . (69)

• Minimization with respect to the tangential variables is trivial:

η = − g

k2
0

ξ′ , and ∇ · ξ =
ρĝ

γp
ξ ⇒ ζ = − f

k2
0

ξ′ +
ρĝ

γpf
ξ . (70)

so that only first two terms of W remain ⇒ standard minimization problem!



Waves/instab. inhomogeneous plasmas: Gravitational instabilities (2) 7-30

• Recall: Standard quadratic form W = 1
2

∫ x2

x1
(P0ξ

′2 +Q0ξ
2) dx is minimised

by solution of the Euler-Lagrange equation d
dx

(

P0
d
dx
ξ
)

−Q0 ξ = 0 ,

subject to the boundary conditions ξ(x1) = ξ(x2) = 0 .

• Here, the Euler-Lagrange equation,

d

dx

(

F 2

k2
0

dξ

dx

)

−
(

F 2 − ρ′ĝ − ρ2ĝ2

γp

)

ξ = 0 , F ≡ fB ≡ −iB · ∇ , (71)

is just the marginal wave equation (Eq. (50) with ω2 = 0 ).

• Note: In contrast to the spectral equation (50), the marginal equation (71) contains
no eigenvalue so that BVP ( ξ(x1) = 0 ànd ξ(x2) = 0 ) cannot be solved in general.
All one can do is ‘shoot’ once: Start from the left, satisfying left BC, integrate to the
right, and check whether or not more zeros are encountered on the interval (x1, x2).
From this fact alone, one can draw proper conclusion with respect to stability.

• Next, proper treatment of singularities: When F = 0 somewhere on (x1, x2) , Alfvén
and slow continua fold over (7-26, case (c)) and reach the origin, limω2→0 N/D =
F 2/k2

0 → 0 , and the Euler-Lagrange equation for stability becomes singular.
Hence, two cases:
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A. Absence of singularities (F 6= 0 for x1 ≤ x ≤ x2 ).

Relatively straightforward:

• Insert solution of EL equation back into W , and integrate by parts:

W = 1
2

∫ x2

x1
[P0 ξ

′2 + ξ (P0ξ
′)′] dx = 1

2[P0 ξ ξ
′]x2

x1
.

If (x1, x2) larger than distance between two consecutive
zeros of the EL solution, split the interval and construct
composite trial function of left and right EL solutions:

W = 1
2

(

P0 ξ(ξ
′
a − ξ′b)

)∣

∣

x=x0
< 0 ⇒ unstable !

ξa ξb

x1
x0 x2

x

If (x1, x2) smaller than distance between consecutive zeros ⇒ stable.

• Hence, Newcomb’s first theorem (1960, derived for cylinder):

(1) If the ‘solution’ ξ0 of the marginal Euler-Lagrange equation (71) that satisfies the
left boundary condition ξ0(x1) = 0 has another zero on the interval (x1, x2), then
a trial function ξ1 can be constructed (the composite function shown) that satisfies
both boundary conditions and the energy W (ξ1) < 0 ⇒ System is unstable;

(2) If ξ0 has no other zeros on the interval, that construction fails and W (ξ1) ≥ 0 for
all trial functions ⇒ System is stable.
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• Connection with the spectral problem:

‘Shooting’ method to get instability growth rates.

Special case of solving for discrete eigenvalues

outside ranges of ω2
A(x), ω2

S(x), ω2
s0(x), ω2

f0(x) :

Guess initial value ω2 = ω2(i), solve from the left,

keep adjusting ω2 until right BC is also satisfied.

Works because discrete spectrum is monotonic.

ω2(2)

x

x1

ξ
ω2(1)

x2

•
 ω2(0)

• Oscillation theorem for MHD spectrum (Goedbloed & Sakanaka, 1974):
If x1 and x2 are consecutive zeros of ξ1 satisfying MHD wave equation (50) for ω2

1,
then solutions ξ2 of MHD wave equation for ω2

2 oscillate faster than ξ1 if ω2
2 > ω2

1

and N/D > 0 (Sturmian), and slower if N/D < 0 (anti-Sturmian).
[May be proved by means of self-adjointness property of force operator.]

• Consequence: Unstable discrete modes are always Sturmian because N/D < 0
for ω2 < 0 . Hence, numerically solving instability eigenvalue problem (growth rates
and eigenfunctions) is not much more complicated than solving for marginal stability.
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B. Presence of singularities (F ≡ k0 · B(x0) = 0 for some x1 ≤ x0 ≤ x2 ).

Physical meaning:

• Horizontal wavevector k0 ⊥ B , so that perturbations do not disturb magnetic field:
Magnetic energy of Alfvén wave perturbations vanishes there because field lines are
not bent. At these positions, driving forces of instability are minimally counterbal-
anced by magnetic tensions so that instabilities tend to localize there.

• By magnetic shear (F ′ 6= 0), this region of minimal field line bending can be limited.
(Recall shear stabilization of Rayleigh–Taylor instability of interface plasmas, where
magnetic shear was entirely localized to surface layer.)

• Introduce angles ϕ(x) between B and z-axis, and θ between k0 and z-axis:

F ≡ k0 · B = k0B(x) cos[ϕ(x) − θ ] , where ϕ(x0) − θ = ±π/2 . (72)

Expand Euler-Lagrange equation around singularity x = x0 :

ρω2
A ≡ F 2(x) ≈ (F ′2)0 s

2 = k2
0(B

2ϕ′2)0 s
2 , s ≡ x− x0 , (73)

⇒ d

ds

[

s2 (1 + · · ·) dξ
ds

]

−q0 (1+· · ·) ξ = 0 , q0 ≡ −
( ρ′ĝ +

ρ2ĝ2

γp

B2ϕ′2

)

0

. (74)
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Intermezzo on singular differential equations

• Standard theory of regular singularities in the complex plane (s→ z):

N ∼ zl ⇒ ξ′′ +
1

z
p(z) ξ′− 1

z2
q(z) ξ = 0 , p(z) & q(x) analytic: (75)











p(z) ≡ z
P ′

P
= p0 + p1z + · · ·

q(z) ≡ z2 Q

P
= q0 + q1z + · · ·

, where











cont. spectrum:
p0 = 1 , q0 = 0 (l = 1)

marg. stability:
p0 = 2 , q0 6= 0 (l = 2)

. (76)

• Insert Frobenius expansion, ξ = zν
∑∞

n=0 anz
n (index ν may be complex), in Eq. (75)

and balance different powers:

zν−2 : [ν2 + (p0 − 1)ν − q0] a0 = 0 ⇒
{

ν1 = ν2 = 0 (l = 1)

ν1,2 = −1
2 ±

√
1 + 4q0 (l = 2)

,

(77)
zν−1 : [(ν + 1)ν + p0(ν + 1) − q0] a1 = (−νp1 + q1) a0 , etc.

• Index equation for marginal stability (l = 2) discriminates between:

(a) 1 + 4q0 < 0 : indices complex ⇒ local stability criteria,
(78)

(b) 1 + 4q0 > 0 : indices real ⇒ global stability theory.
End intermezzo
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(a) Complex indices ( 1 + 4q0 < 0)

• Quite extreme oscillatory behavior at singularity s = 0 :

ξ1 = s−1/2+iw + s−1/2−iw = 2s−1/2 cos (w ln s) ,
(79)

ξ2 = i(s−1/2+iw − s−1/2−iw) = −2s−1/2 sin (w ln s) ,

where w ≡ 1
2

√

−(1 + 4q0) .

• Oscillation theorem: Marginal solutions ©a oscillate infinitely rapidly (n → ∞) and
their amplitude also blows up when s→ 0 ; Actual instabilities ©b are global (n = 1):

a

ξ

r

x1 x2

b
ξ

r

x2x1

⇒ ω2 = 0 is clusterpoint of un-
stable discrete eigenvalues:

x xxxxx       x     x   x  x xx
n = 1 2 3 4 ....

ω    2
0



Waves/instab. inhomogeneous plasmas: Gravitational instabilities (8) 7-36

• To avoid these instabilities, one should demand that 1 + 4q0 > 0 (real indices). This
leads to necessary stability criterion for interchange modes:

ρ′ĝ +
ρ2ĝ2

γp

(

≡ −ρN 2
B

)

≤ 1
4
B2ϕ′2 . (80)

This is the Schwarzschild criterion, modified by stabilizing shear (RHS).

• Three terms represent driving force of gravitational or Rayleigh–Taylor instability
(heavy fluid on top of a lighter one), modified by adiabatic effects (term with γ), and
stabilized by magnetic shear (RHS): Glass of gravitationally unstable plasma may be
turned upside down without contents dropping out, if magnetic shear is large enough!

• In cylinder geometry, with Fourier modes ei(mθ+kz), similar condition is known as
Suydam’s criterion:

p′ + 1
8rB

2
z

(

µ′

µ

)2

> 0

(

µ ≡ Bθ

rBz

)

. (81)

Violation implies highly localized instabilities close to singular surface ( k+µm = 0 ),
where field lines can be interchanged without appreciable bending. The criterion
provides simple explicit condition that may be tested easily and that, for laboratory
fusion research, suggests measures (increasing shear or lowering pressure gradient)
to improve stability. Toroidal version of this condition: Mercier criterion.
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(a) Real indices ( 1 + 4q0 > 0)

• At the singularity s = 0, the two solutions now behave as

ξs ∼ sνs , νs = −1
2

+ 1
2

√

1 + 4q0 > −1
2

(‘small’ solution) ,
(82)

ξl ∼ sνℓ , νℓ = −1
2 − 1

2

√

1 + 4q0 < −1
2 (large solution) .

Hence, large solution ξℓ always blows up at s = 0 , whereas ‘small’ solution may or
may not blow up depending on whether square root is smaller or larger than 1.

• Just special case of continuous spectrum
(ω2 > 0 ) singularities discussed before:
‘Small’ solution may jump, large solution
should be continuous, so that the singularity
x = xs effectively splits the interval (x1, x2)
in two independent subintervals (x1, xs) and
(xs, x2), with respect to stability! Hence, we
may construct trial functions like shown.

ξa

s

ξb

x

ξ

x0xs x2x1

l

• Energy contribution of ‘small’ solution at xs is negligible: ‘smallness’ counts as zero.
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• Hence, Newcomb’s final theorem:

For specified values of ky and kz such that F ≡ kyBy + kzBz = 0 at some point
x = xs of the interval (x1, x2) , the gravitating plasma slab is stable if, and only if,
(1) the interchange criterion (80) is satisfied at x = xs ; (2) the non-trivial solution
ξL of the Euler-Lagrange equation (71) that is “small” to the left of x = xs does not
vanish in the open interval (x1, xs) ; (3) the non-trivial solution ξR that is “small” to
the right of x = xs does not vanish in the open interval (xs, x2) .

• In principle, this solves all stability problems of the gravitating plasma slab. Of course,
application provides quite a bit more of physical insight!

• However, calculating growth rates with the complete wave equation (50) provides
more information on the instabilities, and it is even simpler since that equation is
non-singular as long as ω2 < 0 .

• Finally, spectral theory of MHD waves and instabilities has significantly advanced our
understanding of the overall connection of these problems. Computational MHD has
contributed separately by providing superior new discretization methods that may be
generalized to arbitrary geometries and applied to extensions of the MHD model.


