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Chapter 6: Spectral Theory
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	Overview

• Intuitive approach to stability: two viewpoints for study of stability, linearization
and Lagrangian reduction; [ book: Sec. 6.1 ]

• Force operator formalism: equation of motion, Hilbert space, self-adjointness of
the force operator; [ book: Sec. 6.2 ]

• Quadratic forms and variational principles: expressions for the potential energy,
different variational principles, the energy principle; [ book: Sec. 6.4 ]

• Further spectral issues: returning to the two viewpoints; [ book: Sec. 6.5 ]

• Extension to interface plasmas: boundary conditions, extended variational princi-
ples, Rayleigh–Taylor instability. [ book: Sec. 6.6 ]
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Two viewpoints

• How does one know whether a dynamical system is stable or not?
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• Method: split the non-linear problem in static equilibrium (no flow) and small (linear)
time-dependent perturbations.

• Two approaches: using variational principles involving quadratic forms (e.g. of the
energy), or solving the partial differential equations (related to the forces).
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Aside: nonlinear stability

• Distinct from linear stability, finite amplitude displacements:

(a) system can be linearly stable, nonlinearly unstable;

(b) system can be linearly unstable, nonlinearly stable (e.g. evolving towards
the equilibrium states 1 or 2).

a

1

2

b

• Quite relevant for topic of magnetic confinement, but too complicated at this stage.
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Linearization

• Start from ideal MHD equations:

ρ(
∂v

∂t
+ v · ∇v) = −∇p + j × B − ρ∇Φ , j = ∇× B , (1)

∂p

∂t
= −v · ∇p− γp∇ · v , (2)

∂B

∂t
= ∇× (v × B) , ∇ · B = 0 , (3)

∂ρ

∂t
= −∇ · (ρv) . (4)

assuming model I (plasma–wall) BCs:

n · v = 0 , n · B = 0 (at the wall) . (5)

• Linearize about static equilibrium with time-independent ρ0, p0, B0, and v0 = 0 :

j0 × B0 = ∇p0 + ρ0∇Φ , j0 = ∇× B0 , ∇ · B0 = 0 , (6)

n · B0 = 0 (at the wall) . (7)
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• Time dependence enters through linear perturbations of the equilibrium:

v(r, t) = v1(r, t) ,

p(r, t) = p0(r) + p1(r, t) , (
all, except v1: |f1(r, t)| ≪ |f0(r)|

)
. (8)

B(r, t) = B0(r) + B1(r, t) ,

ρ(r, t) = ρ0(r) + ρ1(r, t) ,

• Inserting in Eqs. (1)–(4) yields linear equations for v1, p1, B1, ρ1 (note strange order!):

ρ0
∂v1

∂t
= −∇p1 + j1 × B0 + j0 × B1 − ρ1∇Φ , j1 = ∇× B1 , (9)

∂p1

∂t
= −v1 · ∇p0 − γp0∇ · v1 , (10)

∂B1

∂t
= ∇× (v1 × B0) , ∇ · B1 = 0 , (11)

∂ρ1

∂t
= −∇ · (ρ0v1) . (12)

Since wall fixed, so is n, hence BCs (5) already linear:

n · v1 = 0 , n · B1 = 0 (at the wall). (13)
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Lagrangian reduction

• Introduce Lagrangian displacement vector field ξ(r, t):

plasma element is moved over ξ(r, t) away from the equilibrium position.

r
B0

ξ (r,t)ξ

⇒ Velocity is time variation of ξ(r, t) in the comoving frame,

v =
Dξ

Dt
≡ ∂ξ

∂t
+ v · ∇ξ , (14)

involving the Lagrangian time derivative
D

Dt
(co-moving with the plasma).
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• Linear (first order) part relation yields

v ≈ v1 =
∂ξ

∂t
, (15)

only involving the Eulerian time derivative (fixed in space).

• Inserting in linearized equations, can directly integrate (12):

∂ρ1

∂t
= −∇ · (ρ0v1) ⇒ ρ1 = −∇ · (ρ0ξ) . (16)

Similarly linearized energy (10) and induction equation (11) integrate to

p1 = − ξ · ∇p0 − γp0∇ · ξ , (17)

B1 = ∇× (ξ × B0) (automatically satisfies ∇ · B1 = 0 ) . (18)

• Inserting these expressions into linearized momentum equation yields

ρ0
∂2ξ

∂t2
= F

(
p1(ξ),B1(ξ), ρ1(ξ)

)
. (19)

⇒ Equation of motion with force operator F.
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Force Operator formalism

• Insert explicit expression for F ⇒ Newton’s law for plasma element:

F(ξ) ≡ −∇π −B× (∇×Q) + (∇×B) ×Q + (∇Φ)∇ · (ρξ) = ρ
∂2ξ

∂t2
, (20)

with change of notation (so that we can drop subscripts 0 and 1):

π ≡ p1 = −γp∇ · ξ − ξ · ∇p , (21)

Q ≡ B1 = ∇× (ξ × B) . (22)

• Geometry (plane slab, cylinder, torus, etc.) defined by shape wall, through BC:

n · ξ = 0 (at the wall). (23)

• Now count: three 2nd order PDEs for vector ξ ⇒ sixth order Lagrangian system;

originally: eight 1st order PDEs for ρ1, v1, p1, B1 ⇒ eight order Eulerian system.

• Third component of B1 is redundant (∇ · B1 = 0 ), and equation for ρ1 produces
trivial Eulerian entropy mode ωE = 0 (with ρ1 6= 0 , but v1 = 0 , p1 = 0 , B1 = 0 ).

⇒ Neglecting this mode, Lagrangian and Eulerian representation equivalent.
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Ideal MHD spectrum

• Consider normal modes:

ξ(r, t) = ξ̂(r) e−iωt . (24)

⇒ Equation of motion becomes eigenvalue problem:

F(ξ̂) = −ρω2ξ̂ . (25)

• For given equilibrium, collection of eigenvalues {ω2} is spectrum of ideal MHD.

⇒ Generally both discrete and continuous (‘improper’) eigenvalues.

• The operator ρ−1F is self-adjoint (for fixed boundary).

⇒ The eigenvalues ω2 are real.

⇒ Same mathematical structure as for quantum mechanics!
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• Since ω2 real, ω themselves either real or purely imaginary

⇒ In ideal MHD, only stable waves (ω2 > 0 ) òr exponential instabilities (ω2 < 0 ):

t

ξ

t

ξ

(a)

(b)
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  σ- 

⇒ F(ξ̂) ∼ −ξ̂ for ω2 > 0 and ∼ ξ̂ for ω2 < 0 (checks with intuitive picture).
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Dissipative MHD

• In resistive MHD, operators no longer self-adjoint, complex eigenvalues ω2.

⇒ Stable, damped waves and ‘overstable’ modes (≡ instabilities):

t
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Stability in ideal MHD

• For ideal MHD, transition from stable to unstable through ω2 = 0 : marginal stability.

⇒ Study marginal equation of motion

F(ξ̂) = 0 . (26)

⇒ In general, this equation has no solution since ω2 = 0 is not an eigenvalue.

• Can vary equilibrium parameters until zero eigenvalue is reached, e.g. in tokamak
stability analysis, the parameters β ≡ 2µ0p/B

2 and ‘safety factor’ q1 ∼ 1/Ip .

⇒ Find critical curve along which ω2 = 0 is an eigenvalue:

β

q
1

 stable

 unstable

⇒ this curve separates stable from unstable parameter states.
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Physical meaning of the terms of F

• Rearrange terms:

F(ξ) = ∇(γp∇ · ξ) − B × (∇× Q) + ∇(ξ · ∇p) + j ×Q + ∇Φ∇ · (ρξ) . (27)

First two terms (with γp and B) present in homogeneous equilibria, last three terms
only in inhomogeneous equilibria (when ∇p, j, ∇Φ 6= 0 ).

• Hogeneous equilibria

⇒ isotropic force ∇(γp∇ · ξ) : compressible sound waves;

⇒ anisotropic force B × (∇× Q) : field line bending Alfvén waves;

⇒ waves always stable (see below).

• Inhomogeneous equilibria have pressure gradients, currents, gravity

⇒ potential sources for instability: will require extensive study!
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Homogeneous case

• Sound speed c ≡
√

γp/ρ and Alfvén speed b ≡ B/
√
ρ constant, so that

ρ−1F(ξ̂) = c2∇∇ · ξ̂ + b × (∇× (∇× (b × ξ̂))) = −ω2ξ̂ . (28)

Plane wave solutions ξ̂ ∼ exp(ik · r) give

ρ−1F(ξ̂) =
[
− (k · b)2 I − (b2 + c2)kk + k · b (kb + bk)

]
· ξ̂ = −ω2ξ̂ (29)

⇒ recover the stable waves of Chapter 5.

• Recall: slow, Alfvén, fast eigenvectors ξ̂s, ξ̂A, ξ̂f form orthogonal triad

⇒ can decompose any vector in combination of these 3 eigenvectors of F;

⇒ eigenvectors span whole space: Hilbert space of plasma displacements.

• Extract Alfvén wave (transverse incompressible k · ξ = 0 , B and k along z ):

ρ−1F̂y = b2
∂2ξ̂y
∂z2

= −k2
zb

2 ξ̂y =
∂2ξ̂y
∂t2

= −ω2 ξ̂y , (30)

⇒ Alfvén waves, ω2 = ω2
A ≡ k2

zb
2, dynamical centerpiece of MHD spectral theory.
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Hilbert space

• Consider plasma volume V enclosed by wall W , with two displacement vector fields
(satisfying the BCs):

ξ = ξ(r, t) (on V ) , where n · ξ = 0 (at W ) ,
(31)

η = η(r, t) (on V ) , where n · η = 0 (at W ) .

Define inner product (weighted by the density):

〈ξ,η〉 ≡ 1
2

∫

ρ ξ∗ · η dV , (32)

and associated norm

‖ξ‖ ≡ 〈ξ, ξ〉1/2 . (33)

• All functions with finite norm ‖ξ‖ <∞ form linear function space, a Hilbert space.

⇒ Force operator F is linear operator in Hilbert space of vector displacements.
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Analogy with quantum mechanics

• Recall Schrödinger equation for wave function ψ :

Hψ = Eψ . (34)

⇒ Eigenvalue equation for Hamiltonian H with eigenvalues E (energy levels).

E = 0 

continuous

discrete

⇒ Spectrum of eigenvalues {E} consists of discrete
spectrum for bound states (E < 0 ) and continuous
spectrum for free particle states (E > 0 ).

⇒ Norm ‖ψ‖ ≡ 〈ψ, ψ〉1/2 gives probability to find particle in the volume.

• Central property in quantum mechanics: HamiltonianH is self-adjoint linear operator
in Hilbert space of wave functions,

〈ψ1, Hψ2〉 = 〈Hψ1, ψ2〉 . (35)
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	Back to MHD

• How about the force operator F? Is it self-adjoint and, if so, what does it mean?

• Self-adjointness is related to energy conservation. For example, finite norm of ξ , or
its time derivative ξ̇ , means that the kinetic energy is bounded:

K ≡ 1
2

∫

ρv2 dV ≈ 1
2

∫

ρξ̇
2
dV = 〈ξ̇, ξ̇〉 ≡ ‖ξ̇‖2 . (36)

Consequently, the potential energy (related to F, as we will see) is also bounded.

• The good news: force operator ρ−1F is self-adjoint linear operator in Hilbert space
of plasma displacement vectors:

〈η, ρ−1F(ξ)〉 ≡ 1
2

∫

η∗ · F(ξ) dV = 1
2

∫

ξ · F(η∗) dV ≡ 〈ρ−1F(η), ξ〉 . (37)

⇒ The mathematical analogy with quantum mechanics is complete.

• And the bad news: the proof of that central property is horrible!
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Proving self-adjointness

• Proving
∫

η∗ · F(ξ) dV =

∫

ξ · F(η∗) dV

involves lots of tedious vector manipulations, with two returning ingredients:

– use of equilibrium relations j × B = ∇p + ρ∇Φ , j = ∇× B , ∇ · B = 0 ;

– manipulation of volume integral to symmetric part in η and ξ and divergence

term, which transforms into surface integral on which BCs are applied.

• Notational conveniences:

– defining magnetic field perturbations associated with ξ and η ,

Q(r) ≡ ∇× (ξ × B) (on V ) ,
(38)

R(r) ≡ ∇× (η × B) (on V ) ;

– exploiting real-type scalar product,

η∗ · F(ξ) + complex conjugate ⇒ η · F(ξ) .
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• Omitting intermediate steps [ see book: Sec. 6.2.3 ], we get useful, near-final result:
∫

η · F(ξ) dV = −
∫

{ γp∇ · ξ∇ · η + Q · R + 1
2
∇p · (ξ∇ · η + η∇ · ξ)

+ 1
2
j · (η × Q + ξ × R) − 1

2
∇Φ · [ η∇ · (ρξ) + ξ∇ · (ρη) ] } dV

+

∫

n · η [ γp∇ · ξ + ξ · ∇p− B · Q ] dS . (39)

This expression is general, valid for all model problems I–V.

• Restricting to model I (wall on the plasma), surface integrals vanish because of BC
n · ξ = 0, and self-adjointness results:

∫

{η · F(ξ) − ξ · F(η)} dV =

∫

{n · η [ γp∇ · ξ + ξ · ∇p− B · Q ]

− n · ξ [ γp∇ · η + η · ∇p− B · R ] } dS = 0 , QED . (40)

• Proof of self-adjointness for model II, etc. is rather straightforward now. It involves
manipulating the surface term, using the pertinent BCs, to volume integral over the
external vacuum region + again a vanishing surface integral over the wall.
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Important result

• The eigenvalues of ρ−1F are real.

• Proof

– Consider pair of eigenfunction ξn and eigenvalue −ω2
n :

ρ−1F(ξn) = −ω2
n ξn ;

– take complex conjugate:

ρ−1F∗(ξn) = ρ−1F(ξ∗
n) = −ω2∗

n ξ∗
n ;

– multiply 1st equation with ξ∗
n and 2nd with ξn , subtract, integrate over volume,

and exploit self-adjointness:

0 = (ω2
n − ω2∗

n ) ‖ξ‖2 ⇒ ω2
n = ω2∗

n , QED .

• Consequently, ω2 either ≥ 0 (stable) or < 0 (unstable): everything falls in place!
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Quadratic forms for potential energy

• Alternative representation is obtained from expressions for kinetic enery K and
potential energy W , exploiting energy conservation: H ≡ W +K = const .

• (a) Use expression for K (already encountered) and equation of motion:

dK

dt
≡ d

dt

[

1
2

∫

ρ |ξ̇|2 dV
]

=

∫

ρ ξ̇∗ · ξ̈ dV =

∫

ξ̇∗ · F(ξ) dV . (41)

(b) Exploit energy conservation and self-adjointness:

dW

dt
= −dK

dt
= −1

2

∫ [

ξ̇∗ · F(ξ) + ξ∗ · F(ξ̇)
]

dV =
d

dt

[

−1
2

∫

ξ∗ · F(ξ) dV

]

.

(c) Integration yields linearized potential energy expression:

W = −1
2

∫

ξ∗ · F(ξ) dV . (42)

• Intuitive meaning of W : potential energy increase from work done against force F

(hence, minus sign), with 1
2 since displacement builds up from 0 to final value.
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• More useful form of W follows from earlier expression (39) (with η → ξ∗) used in
self-adjointness proof:

W = 1
2

∫

[ γp |∇ · ξ|2 + |Q|2 + (ξ · ∇p)∇ · ξ∗ + j · ξ∗ × Q

− (ξ∗ · ∇Φ)∇ · (ρξ) ] dV , (43)

to be used with model I BC

n · ξ = 0 (at the wall) . (44)

• Earlier discussion on stability can now be completed:

– first two terms (acoustic and magnetic energy) positive definite

⇒ homogeneous plasma stable;

– last three terms (pressure gradient, current, gravity) can have either sign

⇒ inhomogeneous plasma may be unstable (requires analysis).
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Three variational principles

• Recall three levels of description with differential equations:

(a) Equation of motion (20): F(ξ) = ρ ξ̈ ⇒ full dynamics;

(b) Normal mode equaton (25): F(ξ̂) = −ρω2ξ̂ ⇒ spectrum of modes;

(c) Marginal equation of motion (26): F(ξ̂) = 0 ⇒ stability only.

• Exploiting quadratic forms W and K yields three variational counterparts:

(a) Hamilton’s principle ⇒ full dynamics;

(b) Rayleigh–Ritz spectral principle ⇒ spectrum of modes;

(c) Energy principle ⇒ stability only.
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(a) Hamilton’s principle

• Variational formulation of linear dynamics in terms of Lagrangian:

The evolution of the system from time t1 to time t2 through the perturbation ξ(r, t) is
such that the variation of the integral of the Lagrangian vanishes,

δ

∫ t2

t1

Ldt = 0 , L ≡ K −W , (45)

with
K = K[ξ̇] = 1

2

∫

ρ ξ̇∗ · ξ̇ dV ,

W = W [ξ] = −1
2

∫

ξ∗ · F(ξ) dV .

• Minimization (see Goldstein on classical fields) gives Euler–Lagrange equation

d

dt

∂L
∂ξ̇j

+
∑

k

d

dxk

∂L
∂(∂ξj/∂xk)

− ∂L
∂ξj

= 0 ⇒ F(ξ) = ρ
∂2ξ

∂t2
, (46)

which is the equation of motion, QED.
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(b) Rayleigh–Ritz spectral principle

• Consider quadratic forms W and K (here I) for normal modes ξ̂ e−iωt :

F(ξ̂) = −ρω2ξ̂ ⇒ −1
2

∫

ξ̂∗ · F(ξ̂) dV
︸ ︷︷ ︸

≡W [ξ̂]

= ω2 · 1
2

∫

ρξ̂∗ · ξ̂ dV
︸ ︷︷ ︸

≡ I [ξ̂]

.

This gives
ω2 =

W [ξ̂]

I [ξ̂]
for normal modes . (47)

True, but useless: just conclusion a posteriori on ξ and ω2, no recipe to find them.

• Obtain recipe by turning this into Rayleigh–Ritz variational expression for eigenvalues:

Eigenfunctions ξ of the operator ρ−1F make the Rayleigh quotient

Λ[ξ] ≡ W [ξ]

I [ξ]
(48)

stationary; eigenvalues ω2 are the stationary values of Λ .

⇒ Practical use: approximate eigenvalues/eigenfunctions by minimizing Λ over
linear combination of pre-chosen set of trial functions (η1,η2, . . .ηN).
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(c) Energy principle for stability

• Since I ≡ ‖ξ‖2 ≥ 0 , Rayleigh–Ritz variational principle offers possibility of testing
for stability by inserting trial functions in W :

– IfW [ξ] < 0 for single ξ, at least one eigenvalue ω2 < 0 and system is unstable;

– If W [ξ] > 0 for all ξs, eigenvalues ω2 < 0 do not exist and system is stable.

• ⇒ Energy principle: An equilibrium is stable if (sufficient) and only if (necessary)

W [ξ] > 0 (49)

for all displacements ξ(r) that are bound in norm and satisfy the BCs.

• Summarizing, the variational approach offers three methods to determine stability:

(1) Guess a trial function ξ(r) such that W [ξ] < 0 for a certain system
⇒ necessary stability (≡ sufficient instability) criterium;

(2) Investigate sign ofW with complete set of arbitrarily normalized trial functions
⇒ necessary + sufficient stability criterium;

(3) MinimizeW with complete set of properly normalized functions (i.e. with I [ξ] ,
related to kinetic energy) ⇒ complete spectrum of (discrete) eigenvalues.
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Returning to the two viewpoints

• Spectral theory elucidates analogies between different parts of physics:

MHD Linear analysis QM

Force operator ⇐⇒ Differential equations ⇐⇒ Schr ödinger picture

Energy principle ⇐⇒ Quadratic forms ⇐⇒ Heisenberg picture

The analogy is through mathematics ⇑ , not through physics!

• Linear operators in Hilbert space as such have nothing to do with quantum mechanics.
Mathematical formulation by Hilbert (1912) preceded it by more than a decade.
Essentially, the two ‘pictures’ are just translation to physics of generalization of linear
algebra to infinite-dimensional vector spaces (Moser, 1973).

• Whereas quantum mechanics applies to rich arsenal of spherically symmetric sys-
tems (symmetry with respect to rotation groups), in MHD the constraint ∇ · B = 0
forbids spherical symmetry and implies much less obvious symmetries.
⇒ Application of group theory to MHD is still in its infancy.
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Two ‘pictures’ of MHD spectral theory:

Differential eqs. Quadratic forms
(‘Schrödinger’) (‘Heisenberg’)

Equation of motion: Hamilton’s principle:

F(ξ) = ρ
∂2ξ

∂t2
δ

∫
t2

t1

(

K[ξ̇] − W [ξ]
)

dt = 0 ⇒ Full dynamics:
ξ(r, t)

Eigenvalue problem: Rayleigh’s principle:

F(ξ) = −ρω2ξ δ
W [ξ]

I[ξ]
= 0 ⇒ Spectrum{ω2}

& eigenf. {ξ(r)}

Marginal equation: Energy principle:

F(ξ) = 0 W [ξ] >

<
0 ⇒ Stability (y

n
)

& trial ξ(r)
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Why does the water fall out of the glass?

• Apply spectral theory and energy principle to simple fluid (no magnetic field) with
varying density in external gravitational field. Equilibrium: ∇p = −ρ∇Φ = ρg .

W f = 1
2

∫
[
γp |∇ · ξ|2 + (ξ · ∇p)∇ · ξ∗ − (ξ∗ · ∇Φ)∇ · (ρξ)

]
dV

= 1
2

∫
[
γp |∇ · ξ|2 + ρg · (ξ∇ · ξ∗ + ξ∗∇ · ξ) + g · ξ∗(∇ρ) · ξ

]
dV. (50)

Without gravity, fluid is stable since only positive definite first term remains.

• Plane slab, p(x), ρ(x), g = −gex ⇒ equilibrium: p′ = −ρg .

W f = 1
2

∫
[
γp |∇ · ξ|2 − ρg(ξx∇ · ξ∗ + ξ∗x∇ · ξ) − ρ′g|ξx|2

]
dV . (51)

• Energy principle according to method (1) illustrated by exploiting incompressible trial
functions, ∇ · ξ = 0 :

W f = −1
2

∫

ρ′g|ξx|2 dV ≥ 0 ⇒ ρ′g ≤ 0 (everywhere) . (52)

⇒ Necessary stability criterion: lighter fluid should be on top of heavier fluid.
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• Much sharper stability condition from energy principle according to method (2), where
all modes (also compressible ones) are considered. Rearrange terms in Eq. (51):

W f = 1
2

∫ [

γp
∣
∣∇ · ξ − ρg

γp
ξx

∣
∣2 −

(
ρ′g +

ρ2g2

γp

)
|ξx|2

]

dV . (53)

Since ξy and ξz only appear in ∇ · ξ, minimization with respect to them is trivial:

∇ · ξ =
ρg

γp
ξx . (54)

⇒ Necessary and sufficient stability criterion:

ρ′g +
ρ2g2

γp
≤ 0 (everywhere) . (55)

• Actually, we have now derived conditions for stability with respect to internal modes.
Original water-air system requires extended energy principle with two-fluid interface
(model II*), permitting description of external modes: our next subject. Physics will
be the same: density gradient becomes density jump, that should be negative at the
interface (light fluid above) for stability.
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	Interfaces
• So far, plasmas bounded by rigid wall (model I). Most applications require interface:

– In tokamaks, very low density close to wall (created by ‘limiter’) is effectively vacuum
⇒ plasma–vacuum system (model II);

– In astrophysics, frequently density jump (e.g. to low-density force-free plasma)
⇒ plasma–plasma system (model II*).

• Model II: split vacuum magnetic field in equilibrium part B̂ and perturbation Q̂.

Equilibrium: ∇× B̂ = 0 , ∇ · B̂ = 0 , with BCs

n · B = n · B̂ = 0 , [[ p + 1
2
B2]] = 0 (at interface S) , (56)

n · B̂ = 0 (at outer wall Ŵ ) . (57)

Perturbations: ∇× Q̂ = 0 , ∇ · Q̂ = 0 , with two non-trivial BCs connecting Q̂ to
the plasma variable ξ at the interface, and one BC at the wall:

1st interface cond. , 2nd interface cond. (at interface S) , (58)

n · Q̂ = 0 (at outer wall Ŵ ) . (59)

Explicit derivation of interface conditions (58) below: Eqs. (62) and (63).
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Boundary conditions for interface plasmas

• Need expression for perturbation of the
normal n to the interface.

• Integrating Lagrangian time derivative of
line element (derived in Chap. 4) yields
perturbation: dl ≈ dl0 · (I + ∇ξ) .

n

r

r0

dl

perturbed
surface

unperturbed
surface

n0

0
dl ξξ

• For dl lying in the boundary surface:

0 = n · dl ≈ dl0 · (I + ∇ξ) · (n0 + n1L) ≈ dl0 · [ (∇ξ) · n0 + n1L ] .

⇒ Lagrangian perturbation: n1L = −(∇ξ) · n0 + λ , with vector λ ⊥ dl0 .

Since dl0 has arbitrary direction in unperturbed surface, λ must be ‖ n0 : λ = µn0 .
Since |n| = |n0| = 1 , we have n0 · n1L = 0 , so that µ = n0 · (∇ξ) · n0 .

This provides the Lagrangian perturbation of the normal:

n1L = −(∇ξ) · n0 + n0 n0 · (∇ξ) · n0 = n0 × {n0 × [ (∇ξ) · n0 ]} . (60)
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• Original BCs for model II come from jump conditions of Chap. 4:

(a) n · B = n · B̂ = 0 (at plasma–vacuum interface) ,

(b) [[p + 1
2
B2]] = 0 (at plasma–vacuum interface) .

Need Lagrangian perturbation of magnetic field B and pressure p at perturbed
boundary position r, evaluated to first order:

B|r ≈ (B0 + Q + ξ · ∇B0)|r0
,

(61)
p|r ≈ (p0 + π + ξ · ∇p0)|r0

= (p0 − γp0∇ · ξ)|r0
.

• Insert Eqs. (60) and (61) into first part of above BC (a):

0 = n · B = [n0 − (∇ξ) · n0 + n0 n0 · (∇ξ) · n0 ] · (B0 + Q + ξ · ∇B0)

≈ −B0 · (∇ξ) · n0 + n0 · Q + ξ · (∇B0) · n0 = −n0 · ∇ × (ξ × B0) + n0 · Q .

Automatically satisfied since Q ≡ ∇ × (ξ × B0). However, same derivation for
second part of BC (a) gives 1st interface condition relating ξ and Q̂:

n · ∇ × (ξ × B̂) = n · Q̂ (at plasma–vacuum interface S) . (62)

• Inserting Eqs. (61) into BC (b) yields 2nd interface condition relating ξ and Q̂:

− γp∇ · ξ + B · Q + ξ · ∇(1
2B

2) = B̂ · Q̂ + ξ · ∇(1
2B̂

2) (at S) . (63)
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Extended energy principle

• Proof self-adjointness continues from integral (39) for ξ , η , connected with vacuum
‘extensions’ Q̂ , R̂ through BCs (59), (62), (63), giving symmetric quadratic form.

• Putting η = ξ∗, R̂ = Q̂∗ in integrals gives potential energy for interface plasmas:

W [ξ, Q̂] = −1
2

∫

ξ∗ · F(ξ) dV = W p[ξ] +W s[ξn] +W v[Q̂] , (64)

where

W p[ξ] = 1
2

∫

[ γp |∇ · ξ|2 + |Q|2 + (ξ · ∇p)∇ · ξ∗ + j · ξ∗ × Q

− (ξ∗ · ∇Φ)∇ · (ρξ) ] dV , (65)

W s[ξn] = 1
2

∫

|n · ξ|2 n · [[∇(p + 1
2B

2)]] dS , (66)

W v[Q̂] = 1
2

∫

|Q̂|2 dV̂ . (67)

Work against force F now leads to increase of potential energy of the plasma, W p,
of the plasma–vacuum surface, W s, and of the vacuum, W v.
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• Variables ξ and Q̂ have to satisfy essential boundary conditions:

1) ξ regular on plasma volume V , (68)

2) n · ∇ × (ξ × B̂) = n · Q̂ (1st interface condition on S) , (69)

3) n · Q̂ = 0 (on outer wall Ŵ ) . (70)

• Note: Differential equations for Q̂ and 2nd interface condition need not be imposed !
They are absorbed in form ofW [ξ, Q̂] and automatically satisfied upon minimization.
For that reason 2nd interface condition (63) is called natural boundary condition.

• Great simplification by assuming incompressible perturbations, ∇ · ξ = 0 :

W p
inc[ξ] = 1

2

∫
[
|Q|2 + j · ξ∗ × Q − (ξ∗ · ∇Φ)∇ρ · ξ

]
dV . (71)

Note: In equation of motion, one cannot simply put ∇·ξ = 0 and drop −γp∇·ξ from
pressure perturbation π, since that leads to overdetermined system of equations for
3 components of ξ . Consistent procedure: apply two limits γ → ∞ and ∇ · ξ → 0
simultaneously such that Lagrangian perturbation πL ≡ −γp∇ · ξ remains finite.
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Application to Rayleigh–Taylor instability

• Apply extended energy principle to gravitational instability of magnetized plasma
supported from below by vacuum magnetic field: Model problem for plasma con-
finement with clear separation of inner plasma and outer vacuum, and instabilities
localized at interface (free-boundary or surface instabilities). Rayleigh–Taylor insta-
bility of magnetized plasmas involves the basic concepts of interchange instability ,
magnetic shear stabilization, and wall stabilization. These instabilities arise in wide
class of astrophysical situations, e.g. Parker instability in galactic plasmas.

• Gravitational equilibrium in magnetized plasma:

ρ = ρ0 , B = B0ez , p = p0 − ρ0gx , (72)

pressure balance at plasma–vacuum interface:

p0 + 1
2B

2
0 = 1

2B̂
2
0 , (73)

vacuum magnetic field:

B̂ = B̂0(sinϕ ey + cosϕ ez) . (74)

x

z

y

B

B

ϕ
g

x = - b

x = a

plasma

vacuum
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• Insert equilibrium intoW p
inc,W

s,W v, where jump in surface integral (66) gives driving
term of the gravitational instability:

n · [[∇(p + 1
2
B2)]] = p′ = −ρ0g . (75)

Potential energy W [ξ, Q̂] becomes:

W p = 1
2

∫

|Q|2 dV , Q ≡ ∇× (ξ × B) , ∇ · ξ = 0 , (76)

W s = −1
2
ρ0g

∫

|n · ξ|2 dS , (77)

W v = 1
2

∫

|Q̂|2 dV̂ , ∇ · Q̂ = 0 . (78)

Task: Minimize W [ξ, Q̂] for divergence-free trial functions ξ and Q̂ that satisfy the
essential boundary conditions (68)–(70).

• Slab is translation symmetric in y and z ⇒ Fourier modes do not couple:

ξ =
(
ξx(x), ξy(x), ξz(x)

)
ei(kyy+kzz) , similarly for Q̂ . (79)
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• Eliminating ξz from W p, and Q̂z from W v, by using ∇ · ξ = 0 and ∇ · Q̂ = 0, yields
1D expressions:

W p = 1
2B

2
0

∫ a

0

[
k2
z(|ξx|2 + |ξy|2) + |ξ′x + ikyξy|2

]
dx , (80)

W s = −1
2ρ0g|ξx(0)|2 , (81)

W v = 1
2

∫ 0

−b

[
|Q̂x|2 + |Q̂y|2 +

1

k2
z

|Q̂′
x + ikyQ̂y|2

]
dx . (82)

• To be minimized subject to normalization that may be chosen freely for stability:

ξx(0) = const , (83)

or full physical norm if we wish to obtain growth rate of instabilities:

I = 1
2ρ0

∫ a

0

[
|ξx|2 + |ξy|2 +

1

k2
z

|ξ′x + ikyξy|2
]
dx . (84)

• Essential boundary conditions always need to be satisfied:

ξx(a) = 0 , (85)

Q̂x(0) = ik0 · B̂ ξx(0) , k0 ≡ (0, ky, kz) , (86)

Q̂x(−b) = 0 . (87)
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Stability analysis

• Minimization with respect to ξy and Q̂y only involves minimization of W p and W v:

W p = 1
2
B2

0

∫ a

0

[ k2
z

k2
0

ξ′x
2
+ k2

zξ
2
x +

∣
∣
ky
k0
ξ′x + ik0ξy

∣
∣2

]
dx = 1

2
k2
zB

2
0

∫ a

0

( 1

k2
0

ξ′x
2
+ ξ2

x

)
dx ,

W v = 1
2

∫ 0

−b

[
|Q̂x|2+

1

k2
0

|Q̂′
x|2

]
+

1

k2
z

|ky
k0
Q̂′
x+ik0Q̂y|2

]
dx = 1

2

∫ 0

−b

( 1

k2
0

|Q̂′
x|2+|Q̂x|2

)
dx.

⇒ Determine ξx(x) and Q̂x(x) , joined by 1st interface condition (86) at x = 0.

• Recall variational analysis: Minimization of quadratic form

W [ξ] = 1
2

∫ a

0

(Fξ′2 +Gξ2) dx = 1
2

[
Fξξ′

]a

0
− 1

2

∫ a

0

[
(Fξ′)′ −Gξ

]
ξ dx (88)

is effected by variation δξ(x) of the unknown function ξ(x):

δW =

∫ a

0

(
Fξ′δξ′ +Gξδξ

)
dx =

[
Fξ′δξ

]a

0
−

∫ a

0

[ (Fξ′)′−Gξ
]
δξ dx = 0 . (89)

Since δξ = 0 at boundaries, solution of Euler–Lagrange equation minimizes W :

(Fξ′)′ −Gξ = 0 ⇒ Wmin = 1
2[Fξξ

′ ]a0 = −1
2[Fξξ

′](x=0) , (90)

where we imposed upper wall BC ξ(a) = 0 , appropriate for our application.
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• Minimization of integrals W p and W v yields following Euler–Lagrange equations,
with solutions satisfying BCs on upper and lower walls:

ξ′′x − k2
0ξx = 0 ⇒ ξx = C sinh [k0(a− x)] ,

(91)
Q̂′′
x − k2

0Q̂x = 0 ⇒ Q̂x = iĈ sinh [k0(x + b)] .

Modes are wave-like in horizontal, but evanescent in vertical direction.

• C and Ĉ determined by normalization (83) and 1st interface condition (86):

Ĉ sinh(k0b) = k0 · B̂ ξx(0) = Ck0 · B̂ sinh(k0a) . (92)

• Inserting solutions of Euler–Lagrange equations back into energy integrals, yields
final expression for W in terms of constant boundary contributions at x = 0 :

W =−k
2
zB

2
0

2k2
0

ξx(0)ξ′x(0) − 1
2
ρ0g ξ

2
x(0) +

1

2k2
0

|Q̂x(0)Q̂′
x(0)|

=
ξ2
x(0)

2k0 tanh(k0a)

[

(k0 · B)2 − ρ0k0g tanh(k0a) + (k0 · B̂)2
tanh(k0a)

tanh(k0b)

]

.(93)

Expression inside square brackets corresponds to growth rate.
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	Growth rate
• With full norm (84), we obtain dispersion equation of the Rayleigh–Taylor instability:

ω2 =
W

I
=

1

ρ0

[

(k0 · B)2 − ρ0k0g tanh(k0a) + (k0 · B̂)2
tanh(k0a)

tanh(k0b)

]

. (94)

• Field line bending energies ∼ 1
2
(k0 · B)2 for plasma and ∼ 1

2
(k0 · B̂)2 for vacuum,

destabilizing gravitational energy ∼ −1
2ρ0k0g tanh(k0a) due to motion interface.

• Since B and B̂ not in same direction (magnetic shear at plasma–vacuum interface),
no k0 exists for which magnetic energies vanish ⇒ minimum stabilization when k0

on average perpendicular to field lines. Rayleigh–Taylor instability may then lead to
interchange instability : regions of high plasma pressure and vacuum magnetic field
are interchanged.

• For dependence on magnitude of k0, exploit approximations of hyperbolic tangent:

tanhκ ≡ eκ − e−κ

eκ + e−κ
≈

{

1 (κ≫ 1 : short wavelength)

κ (κ≪ 1 : long wavelength)
. (95)

Short wavelengths (k0a , k0b≫ 1): magnetic ≫ gravitational term, system is stable.
Long wavelengths (k0a≪ 1), and b/a ∼ 1: competition between three terms (∼ k2

0)
so that effective wall stabilization may be obtained.
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	Nonlinear evolution from numerical simulation

• Snapshot Rayleigh–Taylor instability
for purely 2D hydrodynamic case:
density contrast 10, (compressible)
evolution.

• Shortest wavelengths grow fastest,
‘fingers’/’spikes’ develop, shear flow
instabilities at edges of falling high
density pillars.

• Simulation resolves small scales by
A(daptive)M(esh)R(efinement).

• Full nonlinear evolution (rthd.qt)


