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Abstract

The Kondo necklace model augmented by a Zeeman term, serves as a useful model for heavy fermion compounds in an applied

magnetic field. The phase diagram and thermodynamic behavior for arbitrary dimensions d has been investigated previously in the zero

field case [D. Reyes, M. Continentino, Phys. Rev. B 76 (2007) 075114. [1]]. Here we extend the treatment to finite fields using a

generalized bond operator representation for the localized and conduction electrons spins. A decoupling scheme on the double time

Green’s functions yields the dispersion relation for the excitations of the system. Two critical magnetic fields are found namely, a critical

magnetic field called henceforth hc1 and a saturation field nominated hc2. Then three important regions can be investigated: (i) Kondo

spin liquid state (KSL) at low fields hohc1; (ii) destruction of KSL state at hXhc1 and appearance of a antiferromagnetic state; and

(iii) saturated paramagnetic region above the upper critical field hc2.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The Kondo necklace model (KNM) [2] provides an
approximate description of Kondo insulators [3] and heavy
fermion (HF) materials. At half-filling, local singlet
formation dominates whenever the Kondo coupling ratio
J=t exceeds some value ðJ=tÞc called quantum critical point
(QCP); RKKY antiferromagnetism wins out otherwise. If a
magnetic field is applied, this interferes with the singlet-
RKKY competition by favoring triplet rather than singlet
formation at each site. Accordingly, it suppresses the
singlet amplitude and thus has the potential to stabilize an
antiferromagnetic (AF) phase. Moreover, the Zeeman
splitting lifts the degeneracy of the spin up and spin down
bands, shifting them with respect to one another and
potentially closing the spin gap. In this paper, we show by

bond operator mean-field calculations that as the applied
field is turned on the Kondo spin liquid ground state of the
KNM with Zeeman splitting gives way to a AF phase at
hc1. At sufficiently large field, the localized spins become
polarized and the system crosses over to a saturated
paramagnetic regime. The KNM hamiltonian in a external
magnetic field is given by

H ¼ t
X
hi;ji

ðtx
i t

x
j þ ty

i t
y
j Þ þ J

X
i

Si:si þ h
X

i

ðSi þ siÞ, (1)

where ti and Si are independent sets of spin-1
2

Pauli
operators, representing the conduction electron spin and
localized spin operators, respectively. The sum hi; ji denotes
summation over the nearest-neighbor sites. The first term
mimics electron propagation. The second term is the
magnetic interaction between conduction electrons and
localized spins Si via the coupling J. The last one is the
Zeeman term where h ¼ gmBH, g the gyromagnetic ratio,
mB the Bohr magneton and H a transversal magnetic field.
We assume that the g factors of the conduction electron
and localized spins are the same, and set gmB ¼ 1.
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2. Bond operator mean field formulation

For two S ¼ 1
2
spins, Sachdev and Bhatt [4] introduced

four creation operators to represent the four states in
Hilbert space. This basis can be created out of the vacuum
by singlet jsi and triplet jtai ¼ tyaj0i (a ¼ x; y; z) operators.
However, the classic bond operators are not the eigenstates
of an transversal magnetic field, and so we transform these
to the operators [5], tx ¼ 1=

ffiffiffi
2
p
ðd � uÞ and ty ¼

�i=
ffiffiffi
2
p
ðuþ dÞ, which create the triplet states, uyj0i ¼

j ""i, dyj0i ¼ j ##i and tyz j0i ¼ 1=
ffiffiffi
2
p
ðj "#i þ j "#iÞ. On

this basis the magnetic field term has the diagonal
representation hðS þ tÞ ¼ ihðtyytx � tyxtyÞ ¼ hðuyu� dydÞ,
ensuring that the operators uy, dy and tyz reproduce the
energy levels of the field eigenstates Sz ¼ þ1;�1; 0,
respectively. Further, the transformation conserves particle
number by sites, s

y

i si þ u
y

i ui þ d
y

i di þ t
y

iztiz ¼ 1. In terms of
these operators the localized (conduction electron) spin
operator is given by

SðtÞþ ¼
1ffiffiffi
2
p ð�syd � uysþ tyzd þ uytzÞ,

S�ðtÞ ¼ ðSþðtÞÞy,

SzðtÞ ¼ 1
2
ð�sytz � tyzsþ tyzd þ uytzÞ. (2)

At zero field, as for all magnetic fields below the critical
field hc1, the system is in the quantum disordered regime
with a spin gap between the singlet and triplet states on
each site. This situation, for which the bond-operator
technique is most directly applicable, is represented by
neglecting the dynamics of the singlet operator and
replacing si everywhere by a c-number si, corresponding
to a condensate of singlets. Proceeding within a mean-field
approximation, the operators si and the site-dependent
chemical potentials mi are replaced by uniform, global
average values hsii ¼ s and mi ¼ m. Substituting the
operator representation of spins defined in Eq. (2) into
the original Hamiltonian and making a Fourier transfor-
mation we obtain

Hmf ¼ N �
3

4
Js2 þ ms2 � m

� �
þ

J

4
þ m

� �X
k

t
y

k;ztk;z

þ
X
k

½ðLk þ hÞu
y

kuk þ ðLk � hÞd
y

kdk�

þ
X
k

½Dkðukd�k þ dku�k þ h:c:Þ�, (3)

where Lk ¼ o0 þ 2Dk,

lðkÞ ¼
Xd

s¼1

cos ks,

Dk ¼
1
4

ts2lðkÞ, N is the number of lattice sites, Z is the total
number of the nearest neighbors on the hyper-cubic lattice.
The wavevectors k are taken in the first Brillouin zone and
the lattice spacing was assumed to be unity. Diagonaliza-
tion of the Hamiltonian (3) using the Green’s functions

gives us the thermal averages as

U ¼ hHmf i ¼ �0 þ
o0

2

X
k

coth
bo0

2
� 1

� �

þ
X
k

ok þ h

2

� �
coth

bðok þ hÞ

2
� 1

� �

þ
X
k

ok � h

2

� �
coth

bðok � hÞ

2
� 1

� �
, (4)

where

�0 ¼ N �
3

4
Js2 þ ms2 � m

� �
þ
X
k

ðok � o0Þ

is the ground state energy of the system and b ¼ 1=kBT . In
this phase exist three modes with dispersion relations

ok þ h, ok � h and o0, where ok ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

k � ð2DkÞ
2

q
is the

dispersion relation for the field-free system and o0 ¼

ðJ=4þ mÞ the dispersionless spectrum of the longitudinal
spin triplet states. In the disordered regime the triplet
modes do not change the form of their dispersion, and are
merely split by the magnetic field due to the Zeeman
interaction.

3. Kondo spin liquid state ðhohc1Þ

An increase in the applied field leads to a shift in mode
energies without changing the shape of their zero-field
dispersion, until the lowest mode becomes soft at
Q ¼ ðp; p;pÞ. This determines the critical field as

hc1 ¼ D ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

yZ

2

r
, (5)

where y ¼ ts2=o0 is a dimensionless parameter and D the
energy spin gap. A simple understanding may be obtained
by considering a single, isolated site with AF coupling J: at
zero field the ground state is a singlet, and the threefold
degenerate triplet excitations at energy gap D ¼ J separate
in an applied field due to the Zeeman interaction. At a
critical field, given by hc1 ¼ D, the energy of the lowest
triplet j ##i is reduced to zero, and the crossing of levels
changes the ground state from singlet to triplet.

4. AF phase (hc1ohohc2)

In the intermediate-field regime, the ground state of each
site can be considered as a partially polarized ferromag-
netic configuration. It is important to note that there is no
explicit AF component in the singlet ground state, and that
the ordering emerges only from closing of the gap to the
lowest magnon branch at k ¼ Q. In the bond-operator
formulation, this ordered ground state is represented [6,7]
by finite expectation values s, u, and d of these singlet and
triplet operators. The component of the highest-lying
triplet mode in the ground-state condensate may appear
counterintuitive, and was neglected in a number of
approximate treatments [5,8]. However, the presence of

ARTICLE IN PRESS
D. Reyes, M. Continentino / Journal of Magnetism and Magnetic Materials 320 (2008) e461–e463e462



Author's personal copy

terms of the form ukd�k in the transformed Hamiltonian
Eq. (3) makes clear that a finite component of this state is
required in the consistent condensate. This process
becomes important when the hopping t is comparable to
the coupling exchange J and when h is not much larger
than hc1. So the ground state is of pure triplet nature and
the lowest-lying excitation is a singlet. Although the
conventional bond-operator treatment may lose consis-
tency in the description of these excitations because higher-
order interactions between triplets are contained in an
uncontrolled manner we believe that it will give us a correct
description. The coefficients of the ground-state single-
t–triplet admixture change continuously with the applied
field until the upper critical field or magnetic field of
saturation hc2, where all spins are aligned.

5. Saturated phase (h4hc2)

In the strong field regime the spins are full parallel
saturated. In bond operator notation the state with most
probability is j ""i so we make assumption of
huyi ¼ hui ¼ u. Making approximations already used in
the bond-operator formalism [5,9] and after performing a
Fourier transformation of the boson operators, we get,

Hmf ¼ Nððo0 þ hÞu2 � mÞ

þ
X
k

½Aks
y

ksk þ Bkt
y

k;ztk;z þ Ckd
y

kdk�

þ
X
k

½Dkðskt
y

�kz þ tkzs
y

�k þ h:c:Þ�, (6)

where Ak ¼ �
3
4

J þ mþ 2Dk, Bk ¼ o0 þ 2Dk, Ck ¼ o0 � h

and Dk ¼
1
4

tu2lðkÞ. Using the Green’s functions propaga-
tors method in Eq. (6) and solving the coupled equations of
motion obtained we get,

0sk; s
y

kTo ¼
1

2p
o� Lk

ðo� Lk þ J=2Þ2 �M2
k

,

0tk;z; t
y

k;zTo ¼
1

2p
o� Lk þ J

ðo� Lk þ J=2Þ2 �M2
k

,

0dk; d
y

kTo ¼
1

2pðo� ðo0 � hÞÞ
, (7)

where Mk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ=2Þ2 þ ð2DkÞ

2
q

, o0 and Lk as defined
before. The poles of the Green’s functions propagators
Eq. (7) determine the excitation energies of the system in
this phase as o1;2ðkÞ ¼ Lk � J=2�Mk and o3ðkÞ ¼

o0 � h. Then one may deduce the upper critical field,

hc2 ¼
J

4
þ m

� �
. (8)

This phase is characterized by a decoupling of the triplet
modes and by a finite energy gap to the lowest mode, which
corresponds to an excitation from the triplet ground state
to a singlet.
In summary, we have investigated the effect of an

applied magnetic field on the Kondo necklace ground state,
using bond operators mean field calculations (in the
thermodynamic limit) to characterize the phases of the
KNM with field. From these analytical results, a consistent
picture emerges: (i) In the J=t4ðJ=tÞc the magnetic
excitations at low fields are merely the Zeeman-split
magnons of the zero-field case, whose dispersion is
unaltered by any field up to the lower critical field hc1,
where the spin gap is closed. (ii) For hc1 ¼ D, the spin gap
closes and the local singlet phase gives way to an AF phase.
(iii) At larger fields, above the saturation field (hXhc2), the
ground state becomes a pure condensate of the lowest
triplet and a saturation field hc2 is required to overcome all
of the AF bonds.
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