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Abstract – The thermal conductance of a homogeneous 1D nonlinear lattice system with neareast-
neighbor interactions has recently been computationally studied in detail by Li et al. (Eur. Phys.

J. B, 88 (2015) 182), where its power-law dependence on temperature T for high temperatures is
shown. Here, we address its entire temperature dependence, in addition to its dependence on the
size N of the system. We obtain a neat data collapse for arbitrary temperatures and system sizes,
and numerically show that the thermal conductance curve is quite satisfactorily described by a
fat-tailed q-Gaussian dependence on TN1/3 with q ≃ 1.55. Consequently, its T → ∞ asymptotic
behavior is given by T −α with α = 2/(q − 1) ≃ 3.64.

Copyright c© EPLA, 2017

Introduction. – The breakdown of Fourier’s law in
low-dimensional lattices has attracted much attention in
recent years due to its fundamental importance within
non-equilibrium thermodynamics and statistical mechan-
ics [1–6]. In the 1D Fermi-Pasta-Ulam (FPU-β) lattice,
the thermal conductivities κ diverge with system sizes N
as κ ∝ Nγ , where 0 < γ < 1; consequently its ther-
mal conductance σ ≡ κ/N vanishes in the N → ∞ limit.
However, there is still no clear conclusion about the phys-
ical ingredient responsible for this kind of anomalous heat
conduction. It is believed that momentum conservation is
the crucial reason for the anomalous heat conduction [7–9],
but normal heat conduction has been found in the 1D cou-
pled rotator lattice, which also is a momentum-conserved
system [10,11].

Unlike the FPU-β-like lattices, the 1D coupled rotator
lattice has periodic interatomic potential which is finite.
As a result, the energy diffusion as well as the momentum

diffusion are normal [12]. In order to understand the effect
of this finite interatomic potential, previous works focus
on the temperature dependence of the thermal conduc-
tivities in the 1D coupled rotator lattice [10,11]. In both
works, the thermal conductivity was proposed to have an
exponential dependence on temperature. But it is argued
that κ(T ) ∝ e∆V/T , where ∆V is proportional to the po-
tential barrier height in [10], while κ(T ) ∝ e−T/A with
A a fitting parameter in [11]. It has only recently been
found that the temperature dependence in the 1D cou-
pled rotator lattice follows a power-law behavior on tem-
perature as κ(T ) ∝ T −α with α ≃ 3.2 for intermediate
temperatures [13]. Interestingly enough, this power-law
dependence is qualitatively consistent with the theoreti-
cal prediction for the Chirikov standard map which is a
single-rotator model [14,15].

On the other hand, the standard map, as well as
several other dynamical complex systems, has recently
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been shown [16] to present non-Gaussian probability
distributions for the sum of its position random variable.
These distributions are approached extremely well by the
q-Gaussian defined as

Pq(x) = Aqe
−Bqx2

q ≡
Aq

[1 + (q − 1)Bq x2]1/(q−1)
, (1)

where Aq is the normalization factor, Bq > 0 is a parame-
ter which characterizes the width of the distribution, and
the index q ≥ 1 [17–19]. In the q → 1 limit, this expres-
sion recovers the standard Gaussian distribution. This
family of distributions optimizes the nonadditive entropy

Sq = k
1−

∫
dx[p(x)]q

q−1 with S1 = SBG ≡ −k
∫

dxp(x) ln p(x)
under appropriate constraints, where k is the Boltzmann
constant, p(x) is the probability distribution, and BG
stands for Boltzmann-Gibbs.

Model and method. – In this letter, we study a
homogeneous 1D nonlinear lattice system with nearest-
neighbor interactions and try to see whether some of its
properties also are consistent with q-Gaussians. For this
lattice system, the Hamiltonian with the corresponding
dimensionless units can be written in the general form

H =

N
∑

i=1

[

p2
i

2
+ V (qi+1 − qi) + U(qi)

]

, (2)

where pi denotes the momentum for the i-th rotator. The
set qi are the displacements from the equilibrium position
for the i-th rotator; V (qi+1 − qi) is the interaction po-
tential between neighboring sites i and i + 1, and U(qi) is
the on-site potential, representing the interaction with the
substrate. To focus on the momentum-conserving system,
we set U = 0. The potential we employ is in the form

V (x) = V0(1 − cosx), (3)

where V0 is the interaction strength (without loss of gen-
erality we set V0 = 1).

In our simulation, a Langevin form of heat bath is used.
For the chain with N particles, only the first and last par-
ticles are coupled to the heat bath, with the temperature
TL and TR, respectively. The dynamics equations of the
motion read

q̇i = pi, i = 1, 2, 3, . . . , N,

ṗi = F (qi − qi−1) + F (qi+1 − qi), i = 2, 3, . . . , N − 1,

ṗ1 = F (qi) + F (qi+1 − qi) − γp1 + ξ1,

˙pN = F (qi − qi−1) + F (−qi) − γpN + ξN , (4)

where F (x) = −∂V (x)/∂qi and γ is the friction coefficient;
ξ1, ξN stand for the Gaussian white noise with zero mean
〈ξ1(t)〉 = 0 and 〈ξN (t)〉 = 0. The correlation functions are
given by

〈ξ1(t)ξ1(t
′)〉 = 2γTLδ(t − t′),

〈ξN (t)ξN (t′)〉 = 2γTRδ(t − t′).
(5)
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Fig. 1: (Color online) Heat flow at stationary state for typical
lattice sizes. Top: thermal conductivity κ ≡ σN (notice that
data collapse occurs for the high-temperature region). Bottom:
thermal conductance σ (notice that data collapse occurs for
the low-temperature region). Different colors correspond to
the lattice lengths N = 50, 100, 200, 400, 800 and 2000. The
slope −3.2 indicated in [13] is shown here for comparison. The
dashed curves are guides to the eye.

For simplicity, the temperatures are set as TL/R =
T0(1 ± ∆), where T0 is the average temperature and ∆
is the temperature difference. Throughout our numerical
simulations, ∆ = 0.1 is restricted to the small perturba-
tion regime and γ = 1 is fixed. The evolution of dynamics
(eqs. (4)) is integrated by the Verlet velocity algorithm
and the time step ∆t = 0.01, which is small enough [20].
All the results are analyzed for the time scale 107–108,
after the system release to the steady state.

Results and discussion. – The thermal conductivity
κ is characterized by

κ(T ) =
JN

TL − TR
, (6)

where J = 〈Ji〉 is the average heat flux along the lattice
and Ji is the local heat flux. As already mentioned, the
thermal conductance is defined as σ ≡ κ/N . The tem-
perature dependence of the thermal conductance is given
in fig. 1 for six different lattice sizes. The asymptotic
power-law behavior is evident with an exponent −3.2.
One can easily obtain a clear data collapse as shown in
fig. 2. It is evident that the temperature dependence of the
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Fig. 2: (Color online) Data collapse for lattice sizes going
from N = 25 to N = 2000. The continuous curve (green

line) corresponds to σ = Aqe
−Bq (TN1/3)2

q with (q, Bq, Aq) =
(1.55, 0.40, 0.189). Notice that the maximum value 0.189
has naturally nothing to do with the normalizing factor
of a q-Gaussian distribution, which for the present values
(q, Bq) = (1.55, 0.40) would approximately be 0.28. Indeed,
q-exponential and q-Gaussian functions frequently appear in
diverse physical quantities (e.g., the time evolution of the non-
linear dynamical sensitivity to the initial conditions [21,22]),
and not only as probability distributions. The asymptotic slope
is given by 2/(1 − q) ≃ −3.64, in contrast with the interme-
diate slope −3.2 indicated in [13] (see fig. 1). Notice that the
asymptotic slope only becomes visible several decades further
down.

thermal conductance can be satisfactorily approached by
a q-Gaussian with q = 1.55. At this point, it is worth men-
tioning that another system which can be considered to be
similar to ours has already been shown to exhibit strong
deviations from the Gaussian behavior [23]. In that con-
tribution, the authors analytically study a Brownian par-
ticle with linear-position–dependent inverse temperature
with a confining potential and show that the behavior can
be well described by superstatistics [24], which includes
q-Gaussians as a special case.

In conclusion, we have numerically determined that
the thermal conductance for the classical one-dimensional
first-neighbor coupled planar-rotator (or inertial XY fer-

romagnetic) chain (eqs. (2) and (3), with vanishing on-site
potential U(qi) and unit potential strength V0) is amaz-

ingly well described by the q-Gaussian σ ∝ e
−0.40(TN1/3)2

1.55

for wide ranges of temperature T and lattice size N . This
result implies that, in the (TN1/3) → ∞ limit, we asymp-
totically expect σ ∝ [TN1/3]−α with α = 2/(q−1) ≃ 3.64,
close yet different from the value 3.2 determined in [13] for
intermediate temperatures. At thermal equilibrium (i.e.,
for TL = TR), it is clear that the present short-range in-
teracting model follows the Boltzmann-Gibbs statistical
mechanics. Why then, in the nonequilibrium stationary
state characterized by TL 
= TR, does such a strong sug-
gestion of q-statistics emerge? This remains as a highly
interesting and certainly intriguing open question, some-
what reminiscent of the aging and related phenomena in

various systems: see for example [25] (its fig. 1), [26],
and [27] (its fig. 1, for instance); see also [28] (its fig. 3).
It is of course not excluded that, due to the permanent
unidirectional heat flow, the phase space of the chain is
visited in an incomplete manner. Such type of behavior
could be related to the frequent emergence of q-statistics
in hydrology [29]. As a final remark let us consider
at this point why the distribution that we obtain is a
q-Gaussian and not a q-exponential. This is possibly due
to the fact that the heat flow occurs always from the hot
source to the cold one. This fact results in a symme-
try which is very reminiscent of the distribution observed
in [30] where the rotation periods of asteroids are found
to follow q-Gaussians, in contrast with asteroid sizes, ob-
served to follow a q-exponential. Indeed, the periods are
related to the angular velocities, which can rotate in both
senses. Further understanding would of course be very
welcome.
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