
Lecture  2

  Dis con t inuous  
fun c t i on s

2.1 Power Series  Expansion

It is useful to represent a function in terms of a power series. Assuming that such a series 

exists and that the value of the function f(u) is known at u =u0, then

f u  1
n!
-----

un

n

d
d f u 

u0

u u0– n

n 0=



= EQ (2-1 )

This series is known as the Taylor series expansion of f(u) about u0. Very near u0 the value 

of the function is given approximately by the first two terms of the series expansion

f u  f u0 
ud

d f u 
u0

u u0– + EQ (2-2 )

If u0 = 0 the series is called the Maclaurin series
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f u  1
n!
-----

un

n

d
d f u 

0

un

n 0=



= EQ (2-3 )

2.2 Summation of  N+1 terms of  a  power ser ies

SN an

n 0=

N

 1 a a2  aN+ + + += =

SN
1 aN 1+–

1 a–
-----------------------=

EQ (2-4 )

This series is known as the geometric power series. In the limit as N approaches infinity

S an

n 0=



 1
1 a–
------------= = a 1 EQ (2-5 )

2.3 Trigonometric  formulae

Euler’s formula:

e i   i sincos= i 1–= EQ (2-6 )

The following relations can be used using Euler’s formula

cos 1
2
--- ei e i–+ = sin 1

2i
----- ei e i–– =

1 2 cos 1 2 1 2sinsincoscos=

1 2 sin 1sin 2 2 1cossincos=

sin 2 1
2
--- 1 2cos– = cos 2 1

2
--- 1 2cos+ =

EQ (2-7 )

2.4 Discontinuous Mathematical  Functions

Solutions of simple problems in field theory are facilitated when mathematical discontinu-

ous functions or functions whose derivatives are discontinues, are introduced to describe 

“point source” distributions, such as point charges, line currents, surface currents, etc. 
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Among the special functions used here: (1) the Heaviside or step function, (2) the Signum 

function, (3) the absolute value function, and (4) the Dirac delta function. The definitions 

presented here emphasize intuitive understanding rather than mathematical rigor.

2.5 Heaviside or  step function in rectangular  

coordinates

Consider the independent variable u as one of the rectangular coordinates whose value 

spans the interval

– u    

Definition of the step function (u) 

 u 
1 if u 0
0 if u 0 

 
 

= EQ (2-8 )

This is a weak definition because the value of the function is left open at u = 0. Also

 u– 
1 if u 0
0 if u 0 

 
 

= EQ (2-9 )

and

 u u0– 
1 if u u0– 0 u u0

0 if u u0– 0 u u0 
 
 

=

u0
u

1 (u-u0)

u0
u

1 (u0-u)

0
u

1 (u)

u

1

0

(-u)

0

0

Figure   2-1 Graphic representation of the Heaviside function

EQ (2-10 )
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The Heaviside function can be visualized as the limit of a sequence of continuous functions. 

For example consider the continuous function

a u 

1
2
--- u

a
---+ u a

2
---

1 u a
2
---

0 u a
2
---–

=

 u  a u  
a 0
lim=

 

where a is a label associated with the behavior of the function in three regions of space. The 

Heaviside function can be defined as the limit of the sequence of functions a(u) as a

approaches zero. A plot of a component of the sequence is shown below

u

a/2

1

0
-a/2

(u)

a(u)

Figure   2-2 The Heaviside discontinuous function is defined as the limit 
of a sequence of functions a(u) as a approaches zero.

2 .6 Some propert ies  of  the Heaviside function

 u   u– + 1=  au 
 u  if a 0
 u–  if a 0 

 
 

=

 au   a–  u–   a  u += 2 u   u =

 u u– f u  ud

–



 f u  ud

u



=  u u– f u  ud

–



 f u  ud

–

u

=

EQ (2-11 )
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2.7 Integrat ion of  the step function over  a  f ini te  

integral

Consider the following integral

f u  u  ud

u1

u2

 EQ (2-12 )

Let 

f u  u  ud g u  u  C+= EQ (2-13 )

where C is an integration constant. The above assumption requires that g(u) satisfy the fol-

lowing equation. 

ud
d  u g u  C+   u f u =

 u g u   u 
ud

d g u +  u f u =
 

The last equality demands that

 u g u  0=

ud
d g u  f u =  

The solution of the first equation is

g 0  0=  

The solution of the second equation is

g u  g 0 – f u'  u'd

0

u

=

g u  f u'  u'd

0

u

=

EQ (2-14 )
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Hence, combining and Figure  2-12, Figure  2-13, and Figure  2-14 yields

f u  u  ud

u1

u2

  u  f u  ud

0

u2

  u  f u  ud

0

u1

–= EQ (2-15 )

More generally

f u  u u0–  ud

u1

u2

  u2 u0–  f u  ud

u0

u2

  u1 u– 0  f u  ud

u0

u1

–=

f u  u0 u–  ud

u1

u2

  u0 u2–  f u  ud

u0

u2

  u0 u– 1  f u  ud

u0

u1

–=

f u  u u0+  ud

u1

u2

  u2 u0+  f u  ud

u– 0

u2

  u1 u+ 0  f u  ud

u– 0

u1

–=

EQ (2-16 )

The development of   Appendix EQ (2-16 ) will be left as an exercise at the end of this chap-

ter. As an application of Figure  2-16, consider the integral

eu u  ud

u1

u2

  u2  eu ud

0

u2

  u1  eu ud

0

u1

–=

eu u  ud

u1

u2

  u2  eu2 1–   u1  eu1 1– –=

 

2.8 Signum function

The Signum or sign function is defined as follows

 u 
1 if u 0
1– if u 0 

 
 

=

 u   u   u– – 2 u  1–= =

EQ (2-17 )

Plots of the signum function are shown below
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u0
u

1

0

(u0-u)



u0
u

1
0



(u-u0)

u
1

0

(-u)



u
1

0


(u)

Figure   2-3 Graphic representation of (a) (u) and (-u) and (b) (u-u0) and (u0-u)

2 .9 Propert ies  of  the s ign function

 u   u– + 0=  u  – u–   u =

 au   a  u   a–  u– += 2 u  1=

f u  u u0–  ud

u1

u2

  u2 u0–  f u  ud

u0

u2

  u1 u– 0  f u  ud

u0

u1

–=

f u  u0 u–  ud

u1

u2

  u0 u2–  f u  ud

u0

u2

  u0 u– 1  f u  ud

u0

u1

–=

EQ (2-18 )

EQ (2-19 )

2.10 Absolute value function

u
u if u 0
u– if u 0

0 if u 0= 
 
 
 
 

u u = =

f u  f u  f u  =

EQ (2-20 )

Note that the absolute function is continuous at f(u) = 0, however its derivative is discon-

tinuous at f(u) =0.
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u
0

|u|

Figure   2-4 Graphic representation of |u|

2.11 Integrat ion by parts  and handling of  the 

absolute value function

ue u– ud

–



 0= Odd function

u2e u– ud

–



 2 u2e u– ud

0



= Even function

u2e u– ud 2ue u– ud u2e u– d–=

u2e u– ud

–



 4 ue u– ud

0



 2 u2e u– 
0


– 4 ue u– ud

0



= =

u2e u– ud

–



 4 e u– ud

0



 ue u– d

0



– 4= =

u2e u– ud

–



 4=

 

2.12 Symmetric  square step

A symmetric square step SSS(u) of with u > 0 and height = +1 can be represented in 

terms of Heaviside or signum functions as follows
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SSS u   u u
2

-------+ 
   u u

2
-------– 

 –= u 0

SSS u 
 u u

2
-------+ 

   u u
2

-------– 
 –

2
----------------------------------------------------------=

SSS u   u
2

------- u– 
 =

SSS u   u u
2

-------+ 
   u

2
------- u– 
 =

EQ (2-21 )

2.13 Symmetric  square wel l

Similarly, a symmetric square well function SSW(u) can be described by

SSW u  SSS u = u 0

u
0

1

+u/2-u/2
u0 +u/2-u/2

-1

SSS(u)
SSW(u)

Figure   2-5 Symmetric square step and symmetric well functions

EQ (2-22 )

2.14 Dirac delta  function

The Dirac delta function is defined by

 u  0= if u 0

 u  ud

–



   = EQ (2-23 )

A non-rigorous definition of the Dirac delta function is
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 u 
ud

d  u  1
2
---

ud
d  u = = EQ (2-24 )

The delta function can be generated from a sequence of functions. There are two basic 

properties assigned to the delta function. The first is that the area of the delta function is 

normalized to one. 

 u  ud

–



 1= EQ (2-25 )

Using Figure  2-24

 u  ud

–



 ud
d  u  ud

–



  u d

–



= =

 u  ud

–



     – – 1= =

 

and

 u  ud

–



 1
2
---

ud
d  u  ud

–



 1
2
---  u d

–



= =

 u  ud

–



 1
2
---     – –  1= =

 

Hence the non-rigorous definition of the delta function, as defined by Figure  2-24, satisfies 

the first property. The second property is

f u  u  ud

–



 f 0 = EQ (2-26 )

where f(u) is a continuous function of u at and near u = 0. 
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2.15 Integrat ion of  the delta  function over  a  f ini te  

interval

 u  ud

a

b

 ud
d  u  ud

a

b

  u d

a

b

= =

 u  ud

a

b

  b   b –=

EQ (2-27 )

The above result can be written as follows

 u  ud

a

b


1
1–

0
= if

a 0 b 
b 0 a 

otherwise
 

Using a test function that is continuous at u = 0 the following integration can be obtained

f u  u  ud

a

b

 f 0   u d

a

b

=

f u  u  ud

a

b

 f 0   b   a – =

 

More generally,

f u  u u0–  ud

a

b

 f u0   u d

a

b

=

f u  u u0–  ud

a

b

 f u0   b   a – =

EQ (2-28 )

Again, the non-rigorous definition of the delta function obeys the second property. Below is 

a graphical representation of the delta function.
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(u)
+u

0
Figure   2-6 Graphical representation of the Dirac delta 

function

2.16 General  propert ies  of  the delta  function

 au 
au d
d  au  1

a
---

ud
d  a–  u–   a  u + = =

 au  1
a
--- u   a   a– –  1

a
--- u  a  1

a
------ u = = =

 u–  1
1–

--------- u   u = =

u u  0= f u  u  f 0  u =
if f u  u  0= then f 0  0=
if f u  u u0–  0= then f u0  0=

 

2.17 Delta Sequences

The delta function can be described as the limit of a set of functions that become concen-

trated at a single point. A sequence of proper functions n can be constructed in such a way 

that

n u f u  ud

–



n 
lim f 0 = EQ (2-29 )

That is, n approaches the behavior of the delta function as n approaches infinity.

Example (2-1 )   

A simple sequence that behaves in this manner is the square step sequence 

n u  n
2
--- 1

n
--- u– 
 = EQ (2-30 )
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representing a sequence of rectangular blocks with unit area. The first four functions of this 

sequence are illustrated below

-1

2.04

u
0 1

0.5

1.0

0.5-0.5

1

2

3 1.5

Figure   2-7 Sequence of square step functions n(u) representing the delta function (u) 
as n approaches infinity. The area of the square steps remains fixed at 1. 

To check whether the above sequence represents (u), the sequence must satisfy

n 0 
n 
lim 

n u 0 
n 
lim 0

n u  ud

–



 1=

 

The first two requirements are met by Figure  2-30 as follows

n 0 
n 
lim n

2
--- 1

n
--- 
 

n 
lim  = =

n u 0 
n 
lim n

2
--- 1

n
--- u– 
 

n 
lim  u– = =

n u 0 
n 
lim  0 0= =

 

The integral requirement is also satisfied because 

n
2
--- 1

n
--- u– 
  ud

–



 n
2
--- ud

1 n–

1 n

 1= =  
Luis Elias 5/10/10
30



Example (2-2 )   

Consider the following sequence

 u   1
 
-----------e

u

--- 
 

2

–

=

 0  
 0
lim 1

 
-----------

 0
lim = =

 u 0  
 0
lim 1

 
-----------e

u

--- 
 

2

–

 0
lim 0= =

 

 

The last equation is true because the exponential function vanishes more rapidly than the 

factor 1/ as  becomes small. The integration test yields

e

u

--- 
 

2

–

ud

–



 
 
----------- e

2

d

–



 1= =  

2.18 Dirac delta  function of  a  continuous function as 

i ts  argument

The delta function has a discontinuity when the value of its argument is zero. Let the argu-

ment of the delta function be a continuos function of u such as f(u). Before evaluating the 

discontinuous function the zeros of f(u) must be found. Let un be the nth root of f(u) = 0. 

The value of f(u) near the root un is given approximately by the Taylor series expansion

f u  f un 
ud

d f u 
un

u un–  1
2
---

u2

2

d
d f u 

un

u un– 2 + + +=

f u  0
ud

d f u  un  u un– + an u un– =

an ud
d f u 

un

=

EQ (2-31 )

Consequently, the value of [f(u)] near un is
Luis Elias 5/10/10
31



 f u    an u un–   1
an
--------- u un– =

an ud
d f u 

u un=
= u un

 

It follows that for all values of u the following equation is a representation of the delta func-

tion of a function

 f u   1
an
---------

n
  u un– =

an ud
d f u 

u un=
=

EQ (2-32 )

where the summation is carried out for all real roots of f(u). 

Example (2-3 )   Example of integration of a delta function of a 
function f(u)

Consider the integral

 1 u2– e u– ud

–





f u  1 u2–=

 

 

The roots of f(u) are (+1, -1) hence

f u  u 1= 2u– u 1= 2= =

f u  u 1–= 2u– u 1–= 2= =
 

finally
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 1 u2– e u– ud

–



 1
2
---  u 1–   u 1+ + e u– ud

–



=

 1 u2– f u  ud

–



 1
2
--- e 1– e+ =

 

Consider the function f (u) = 1- u2. The roots of this function are u1 and u2. Then

f u  1 u– 2= u1 1= u2 1–=

f u  2u–= f u1  2–= f u2  2=
 

Then,

 1 u2–  1
f un 
------------------

n 1=

2

  u un–  1
2
---  u u1–   u u2– + = =

 1 u2–  1
2
---  u 1–   u 1+ + =

 

Example (2-4 )   Delta function of a periodic function

The function f(u) = cos(u) has an infinite number of roots located at un = (2n+1)

with n = integer. Hence 

 u cos  1

2n 1+ 
2
--- 

 sin
----------------------------------------- u 2n 1+ 

2
---– 

 

n –=



  u 2n 1+ 
2
---– 

 

n –=



= =

u
0  

[cos(u)]



 

Figure   2-8 Graphic representation of [cos(u)]
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The representation of the delta function of a function in terms of a summation of delta 

function containing linear arguments allows for a simplified integration process. That is, for 

b> a

g u  f u   ud

a

b

 g u 
 u ui– 

ai
-----------------------

i
 ud

a

b

=

g u  f u   ud

a

b


g ui 

ai
--------------

i
  u ui–  ud

a

b

=

g u  f u   ud

a

b


g ui 

ai
--------------

i
  b ui–   a ui– – =

EQ (2-33 )

Example (2-5 )   

Consider the following integration

e u–  u cos  ud

0



  

with 

f u  ucos=

g u  e u–=

b =
a 0=

un 2n 1+ 
2
---=

f un  1=

 

then

e u–  u cos  ud

0



 e

2
---–

e n–     ui– – 
i –=



=  

The value of the ith term of the summation will be zero unless ui 0 . Hence
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e u–  u cos  ud

0



 e

2
---–

e n–

i 0=



=

e u–  u cos  ud

0



 e

2
---–

1 e ––
----------------- 1

2  2 sinh
-----------------------------= =

 

2.19 Derivat ive of  the delta  function

Consider the derivative of the delta function defined by 

 u 
ud

d  u =  

A test function f(u) which is continuous and has a continuous derivative at u = 0 will be 

used to evaluate the integral

f u  u 

a

b

 du  u a–  b u– f u  u 

–



 du=

f u 
ud

d  u 
ud

d f u  u    u 
ud

d f u –=

 

Integration by parts yields

f u  u 

a

b

 du f u  u  d

a

b

  u 
ud

d f u 

a

b

 du–=

f u  u 

a

b

 du f u  u  a
b

ud
d f 0   u 

a

b

 du–=

f u  u 

a

b

 du 0
ud

d f 0   b   a – –=
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The first integral on the right side of the equation is null because the value of the delta func-

tion is zero at both limits. Hence

f u  u 

a

b

 du f 0 –= a 0 b 

0= otherwise

 

Hence, under integration the following general relation exists

f u  u   u f u –= EQ (2-34 )

In particular, with f(u) = u 

uf u   u –= EQ (2-35 )

More generally

f u  u u0– 

a

b

 du
ud

d f u0   b   a – –= EQ (2-36 )

Thus, the value of the integral is equal to minus the derivative of f(u) evaluated at u = u0.

2.20 Addit ional  Mathematical  Relat ions

Differentiation results

ud
d u u    u  u

ud
d  u +=

ud
d u u    u  u u +  u = =

ud
d u u    u  u

ud
d  u +=

ud
d u u    u  2u u +  u = =

EQ (2-37 )
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u2

2

d
d u u  

ud
d  u  2u u + =

u2

2

d
d u u  

ud
d  u   2 u = =

u2

2

d
d u u  

ud
d  u  u u + =

u2

2

d
d u u  

ud
d  u    u = =

EQ (2-38 )

Integration results

 u 

u0

u

 du u u  a
u u u  u0 u0 –= = EQ (2-39 )

Also

 u  ud

u0

u

 u u  u0 u0 – u u0–= =

 u  ud

u0

u

  u   u0 –=

 u  ud

u0

u

 1
2
---  u   u0 – =

EQ (2-40 )

and

u2

2

d
d f u   u =

f u 
u u  cu d+ +

1
2
---u u  au b+ +

 
 
 
 
 

=
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2.21 Solution of  Simple dif ferential  equations 

containing the delta  function

Example (2-6 )   

Consider the following first order differential equation

ud
d  u   u = EQ (2-41 )

It is obvious that (u) must be a discontinuous function of u at u equal to zero, because its 

derivative generates a discontinuous delta function. Assume that the solution of the above 

differential equation is

 u  f > u  u  f < u– +=  

The first term represents the solution of the differential equation for u 0 , while the sec-

ond term represents the solution for u 0 . Substitution of the assumed solution into the 

differential equation yields

f > u  u  f < u–  f > u  f <–  u + +  u =

The order of discontinuity of the delta function is higher than that of the step function, 

hence the solution of the above equation must require that

ud
d f > u  0= f > u  C >=

ud
d f < u  0= f < u  C <=

f > u  f <– u 0= 1=

EQ (2-42 )

where C> and C< are integration constants. The solution of Figure  2-41 is therefore

 u  C > u  C < u– +=  

The two constants of integration are not independent of each other. The third relation in 

Figure  2-42 C > C <– 1=  connects the two constants. Hence
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 u  C > – u– =  

The constant C> is determined by the initial conditions of the problem. For example

if  –  0= then

 u   u =
 

Example (2-7 )   1D Scattering by a delta function potential

The time independent Schrodinger equation for a delta function potential barrier is 

h2

2m
--------

z2

2

d
d  z  k2 z + h2

2m
--------  z  z  = EQ (2-43 )

where hk  is the particle momentum and (z) is the wave function of the particle. Since 

the second derivative of (z) must be discontinuous at z = 0, the first derivative of the solu-

tion must contain a discontinuous function at z = 0. Assume that the solution for all values 

of z is

 z  f > z  z  f < z  z– +=  

where f>(z) and f<(z) are both continuous functions at z = 0. The continuity of f(u) at z = 

0 is represented by the following equation

f > z  f <– z  
z 0=

0= EQ (2-44 )

Substitution of the assumed solution into the differential equation yields the following 

result

z2

2

d
d f > z  z   f > z 

z2

2

d
d  z   z 

z2

2

d
d f > u +=

2
zd

d f > z 
zd

d  z +

z2

2

d
d f > z  z   f > z  z   z f > z +=

2 f > z   z +
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Using f > z  z  f > z  z –=  the result is

z2

2

d
d f > z  z   f > z  z   z f > z +=

z2

2

d
d f < z  z   f < z  z   z f < z +=

 

Therefore substitution of the solution into the differential equation EQ (2-43 ) yields the 

following constraints

f > z  k2f > z +  z  f < z  k2f < z +  z–  f > z  f <– z   z + + =

 z  f > u  u  f < u– + 
 

Taking into account the degree of discontinuity of the discontinuos functions, the above 

relations are satisfied if

f > z  k2f > z + 0= f < z  k2f < z + 0=

f > z  f <–  z 
z 0=

 f > z  z  f < z  z– + 
z 0=

=
 

The first two equations demand that f> and f< satisfy the homogeneous differential equation 

of the problem. The last relation describes the discontinuity of the derivative of the solution 

at the origin. Then, with 

 z   z– + z 0= 1=  

the discontinuity of the derivative of the solution at the origin is given by

f > z  f <–  z 
z 0=

 f < z  
z 0=

= EQ (2-45 )

The solution of the homogeneous differential equation is

f u  e iku=  

Assuming that the incident particle moves along the + z-direction there will be a reflection 

and a transmitted wave at the origin. Hence for z > 0 the transmitted wave function is given 

by
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f > z  teikz=  

where t is the complex transmission amplitude. The wave function of the particle for z < 0 

is given by

f < z  eikz re ikz–+=  

where r is the complex reflection amplitude of the wave function. Applying the BC’s speci-

fied in EQ (2-44 ) and EQ (2-45 ) yields

t 1 r+=

t 1 r– – 
ik
-----t=  

the solution of which is

t 1

1 
2ik
---------–

------------------= r


2ik
---------

1 
2ik
---------–

------------------=  

In complex polar notation

r 1

1 2k


------- 
  2

+

----------------------------e
i 2k


------- 
 atan

=

t 1

1 
2k
------- 
  2

+

----------------------------e
i 

2k
-------– 

 atan

=

 

The following result

r 2 t 2+ 1=  

establishes conservation of energy. The reflection and transmission amplitudes attain the 

following limiting values when k >>
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t 1= r 0=  

That is for a high energy particle the transmission through the delta potential is 100%. In 

the limit k <<, 

t 0= r 1–=  

That is, there is a 1800 phase difference between the phase of the reflected wave function 

and the phase of the incident wave function. Thus, the particle is fully reflected from the 

delta potential.

The phase difference between the reflected an incident wave functions is given by

 tan Im r 
Re r 
---------------- 2k


-------= =  

2.22 Closure property  of  complete orthonormal  sets

A set of functions {n(u)} defined over some interval [u1,u2], and satisfying specified 

boundary conditions at its ends, is complete if an arbitrary function f(u) can be represented 

over the interval as a linear combination of the set of functions {n(u)}.

f x  qnn u 
n
= EQ (2-46 )

provided that the coefficients qn are chosen appropriately. The set is orthonormal if 

n u m* u  ud

interval
 n m= EQ (2-47 )

where m* is the complex conjugate of m, and where the Kronecker symbol n,m is the dis-

crete version of the delta-function

n m
1 if m n=
0 otherwise 

 
 

= EQ (2-48 )

The orthonormal condition can be utilized to obtain the series coefficients as follows
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f u m* u  xd qnn u 
n
 m* u  ud=

f u m* u  xd qnn m
n
 qm= =

EQ (2-49 )

Substituting the expression for the coefficients into   Appendix EQ (2-48 ) yields

f u  cnn u 
n
 f u  n u 

n
 n* u  ud= = EQ (2-50 )

For the last equation to be correct for an arbitrary function f(u), the relation in square 

brackets must correspond to the delta function (u-u’). Thus

n u 
n
 n* u   u u– = EQ (2-51 )

This last relation represents mathematically the closure property of the set of functions. If 

the members of a complete orthonormal set are labeled by a continuous variable k instead 

of a discrete index n the orthonormal condition

 k x * k x  xd

–



  k k– = EQ (2-52 )

can be used to expand and arbitrary function f(x) in terms of an integral over k. The result 

is

f x  c k  k x  kd

–



=

c k  f x * k x  xd

–



=

EQ (2-53 )

The closure condition for continuous k is 

 k x * k x  kd

–



  x x– = EQ (2-54 )
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2.23 Three dimensional  Dirac delta  function

The previous section have dealt with the definition of the one dimensional delta function in 

rectangular coordinate. The transition to a three dimensional delta function in rectangular 

coordinates occurs in a straight forward manner.

 x x–   x x–  y y–  z z– = EQ (2-55 )

The volume integral of the 3D delta function over all space yields the required unity

V  x x– d  x x–  y y–  z z–  xd yd zd

–




–




–



 1= = EQ (2-56 )

2.24 Delta function in spherical  coordinates

The conversion from rectangular to spherical coordinates is given by

x r  cossin=
y r  cossin=

z r cos=
 

The conversion will be unique if the following restrictions are imposed on the range of 

spherical coordinates

r 0 0  2 0     

Integration over all space of the 3-D delta function must yield unity

V  x x– d r2 r   x x–  sin d

0



d

0

2

d

0



 1= = EQ (2-57 )

Hence the representation of the 3-D delta function in spherical coordinates must be

 x x–   r r–   –   – 

r2 sin
-------------------------------------------------------------------= EQ (2-58 )
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where here is assumed to be one of the independent variables. Using x = cos as an inde-

pendent variable the volume integral of the delta functions is expressed by

V  x x– d r2 r   x x–  Vd

1–

1

d

0

2

d

0



 1= =  

Hence the representation of the 3D delta function is also given by

 x x–   r r–   –  cos cos – 

r2
-------------------------------------------------------------------------------------= EQ (2-59 )

For the degenerate case (x’ = 0)

 x   r 

4r2
------------= EQ (2-60 )

The volume integration of (x) leads to the definition of the 1D property of the radial delta 

function

 r 

4r2
------------4r2 rd

0



  r  rd

0



 1= = EQ (2-61 )

The 1D radial delta function can be obtained from the step function as follows

 r 
rd

d  r =  

The strong definition (0) = 0 and (r)= 1 of the Heaviside function is needed to satisfy 

Figure  2-61. That is

 r  rd

0

r

 rd
d  r  rd

0

r

  r   0 – 1= = =  

With the above definition of (0)=0, the following plots (a > 0) follow
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(r-a)

r

r
0

+1

a

(a-r)

Figure   2-9 The Heaviside function in spherical radial 
coordinate

and the following properties can be derived

 r a–   a r– + 1=
 r a–  a r–  0=

a 0  

2.25 Delta function in cyl indrical  coordinates

In terms of cylindrical coordinates (,,z) the transformation to rectangular coordinates are

x  cos= y  sin= z z=  

Again, a unique transformation requires restrictions on the cylindrical coordinates

 0 0  2 – z    

Integration the 3-D delta function over all space must yield unity
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V  x x– d     x x–  zd

–



d

0

2

d

0



 1= = EQ (2-62 )

Hence the representation of the 3-D delta function in cylindrical coordinates must be

 x x–    –   –  z z– 


--------------------------------------------------------------------= EQ (2-63 )

For the degenerate case (’ =0), the delta function must be independent of angle  the 3D 

representation is given by

 x     z 
2

-----------------------= EQ (2-64 )

with the understanding that 

   d

0



 1= EQ (2-65 )

A strong definition (0) = 0 and () = 1 of the Heaviside function is needed to satisfy Fig-

ure  2-65. That is

   d

0



 d
d    d

0



     0 – 1= = =  

With the above definition of (0)=0, the following plots (a > 0) follow
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Figure   2-10 The Heaviside function in cylindrical radial coordinates

and the following properties can be derived

  a–   a – + 1=
  a–  a –  0=

a 0  

2.26 Gradient  of  the Dirac delta  function

As it was the case with the 1-D derivative of the delta function, under integration the gradi-

ent of the 3D delta function can be represented in terms of an integral of a 3D delta func-

tion. Consider the test function f(x’). Remembering that  –=

f x  x x–  Vd f x  x x–  Vd–=

f x  x x–  Vd  f x  x x–  Vd–=

f x  x x–  Vd f x –=

 

Hence the following substitution can be made
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f x  x x–   x x– f x –= EQ (2-66 )

2.27 Mathematical  descript ion of  charged sources 

q

O

x’

x
x-x’

Before solving Maxwell’s equation it is necessary to develop an 

appropriate compact mathematical description of the nature of 

the sources that give rise to the electro-magnetic field. Specifi-

cally it will be helpful to describe with precise mathematical 

functions the spatial and temporal distribution of the volume 

charge density (x,t) and the electric volume current density J(x,t) associated with a par-

ticular problem in terms of continuous and discontinuous functions. There are some ideal-

ized problems that can be solved exactly using special discontinuous functions such as the 

Heaviside, Signum and Dirac delta function whose definition and mathematical properties 

were introduced in the Mathematical Review section of this document.

2.28 Stat ic  volume charge density  distr ibution for  a  

point  charge

The simplest volume charge distribution is that of a point charge. The volume charge den-

sity of a point charge q located at position x’ can be mathematically described using a three 

dimensional delta function represented in the most commonly used curved coordinate sys-

tems. The following are three representations of the spatial distribution of a 3d point charge 

using rectangular, cylindrical and spherical coordinates. 

 x  q x x– =
 x  q x x–  y y–  z z– =

 x  q  –   –  z z– 


------------------------------------------------------------------------=

 x  q r r–   –   – 

r2 sin
-----------------------------------------------------------------------=

  

Here the vector coordinate x’ represents the source coordinate and x represents the field 

coordinate. Note that the first equation is independent of the coordinate system used. Since 

the delta function has units corresponding to the reciprocal of its argument, it is clear that 
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all the above relations have units volume charge density, Coulomb/m3. To check whether 

the above mathematical description of (x) are correct, it is necessary to show that the total 

charge (i.e. the volume integration of the charge density over all space) is q. Using the 

appropriate mathematical description of the volume elements for each of the coordinate sys-

tems used, integration of the volume charge density over all space yields the desired result. 

That is,

q x x–  Vd q=  

In rectangular coordinates

x y y q x x–  y y–  z z–  d

–



d

–



d

–



 q=  

In cylindrical coordinates

   z q  –   –  z z– 


------------------------------------------------------------------------d

–



d

0

2

d

–



 q=  

In spherical coordinates

r2 r    q r r–   –   – 

r2 sin
-----------------------------------------------------------------------dsin

0



d

0

2

d

0



 q=  

If the point charge is located at the origin of the coordinate system, the volume charge den-

sity must be independent of angles. It can only depend on distance from the origin. Thus

 x  q x  y  z =

 x  q     z 
2

---------------------------------------=

 x  q r  r 

4r2
---------------------------=

EQ (2-67 )
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Radial Heaviside functions have been inserted into the equations because the coordinates 

and r must be positive quantities. The reader can check that the total charge described by 

these functions is q. 

2.29 Simple volume charge density  distr ibutions

Other “point charge” distributions can be derived using discontinuous mathematical func-

tions. 

Example (2-8 )   

A thin infinite plane having a uniform surface charge density  can be described in rectan-

gular coordinates as follows

   0  0– = EQ (2-68 )

where  is one of the rectangular coordinates, and 0 is the location of the plane of charge 

on the -axis. The -dependence of charge per unit area is obtained from

      d

–



 0 
   0–  d

–



= =

   0   0–   – –  0  0– = =

 

Example (2-9 )   Volume charge density for a uniform line 
source

Let  be the constant charge per unit length of an infinitely long line located parallel to the 

z-axis and passing through the point (x0,y0) = (0,0). The volume charge density can be 

mathematically described by

 r   r r0– =

 x y   x x0–  y y 0– =

   
  0–   0– 


--------------------------------------------------=

EQ (2-69 )
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in vector notation, in rectangular coordinates and in cylindrical coordinates.

Example (2-10 )   Volume charge density for a charged 
spherical surface 

Consider a charge Q uniformly distributed over the surface of a sphere of radius a. If the 

origin of coordinates is chosen to coincide with the center of the sphere the distribution is 

highly symmetric (i.e.,(x) should not depend on angles). In spherical coordinates, the vol-

ume charge density must be of the form  x  f r  r a– = . The delta function guar-

antees that charge exists only at r = a. The radial function f(r) can be obtained by 

requiring that the total charge must be Q. Integrating over all space yields 

r2 r    f r  r a–  dsin

0



d

0

2

d

0



 4a2f a  Q= =

f r  Q

4r2
------------=  x  Q

4r2
------------ r a– =

EQ (2-70 )

Example (2-11 )   Volume charge density for a charged plane 
surface

Let  be the constant surface charge density (C/m2) distributed uniformly over an infinite 

plane. In rectangular coordinates, let the plane be z = 0. The volume charge density cannot 

depend on coordinates transverse to the z-axis (i.e., either x and y in rectangular coordi-

nates or  and  in cylindrical coordinates). Therefore, the volume charge density must 

have the following forms

 x y x   A z =
   z   A z =

  

where A is a constant. Integration of the volume charge density over z from minus infinity 

to plus infinity should yield the uniform charge density . Thus A =  and

 x y x    z =
   z    z =
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Exercises for Chapter  2

Exercise  (2-1 )   

Sketch the functions f u   u a–   u b – –=  and  u a–  u b–   for b > a

Exercise  (2-2 )   

Evaluate: 

a   2u  u  udcos

1–

2



b   2u 1–  u  udatan

0





c  x  x y–  yd

0

1

d

0

1



d  e u–  u2 2u 3–+  ud

–





 

Exercise  (2-3 )   

Show that the following sequences of functions are delta functions

a  n u  n
2
---e n u–=

b  n u  n

--- 1

1 n2u2+
----------------------=

c  n u  1 nu cos–
nu2

------------------------------=

 

Exercise  (2-4 )   

Derive a mathematical description of the square function SSS and square well SSW shown 

using the signum function.
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Exercise  (2-5 )   

Derive a mathematical description of the symmetric square well function shown below 

using the Heaviside and/or the signum function. 

0

1

+u/2-u/2

+ �- �
1

Exercise  (2-6 )   

Describe mathematically in one equation the triangular step function shown below, using 

the discontinuous functions defined early in the chapter. 

1

+u/2-u/2
0

+ �- �
+u

Exercise  (2-7 )   

Differentiate twice the following functions:|x|, sin|x|, cos|x|

Exercise  (2-8 )   

Differentiate the function derived in   Appendix EQ (2-22 ). The result should be repre-

sented by only one equation.

Exercise  (2-9 )   

Derive and plot the following function

ud
d utan  
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Find and plot df(u)/du given that

f x    u–  usin=  

Exercise  (2-10 )   

Show that  u u0–  ud

–

u

  u u0– =

Exercise  (2-11 )   

Evaluate

a  u u 2–  ud

0

5



b  u u 2–  ud

0

3



c  e u–  u 1+  ud

–





 

Exercise  (2-12 )   

Evaluate

e u–  u sin  xd

0



  

The solution can be simplified using

an

n 0=

N 1–

 1 aN–
1 a–

----------------=  
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Exercise  (2-13 )   

Find and plot

f u   u  ud

u1

u

=   

Exercise  (2-14 )   

Show that eu u0 u–  ud

–



 2 u0  u0 sinh=

Exercise  (2-15 )   

Solve 
ud

d f u   u = . Plot f(u)-f(u0), for u0 = 1 and u0 = -1.

Exercise  (2-16 )   

Derive the three dimensional representation of the delta function (x-x’) in cylindrical 

coordinates.

Exercise  (2-17 )   

Integrate the following

a   u  ucos
b   u e u–


c   u un

 n 0

 

Exercise  (2-18 )   

Show that

 u u0– f u  ud
u1

u2

  u2 u0–   u1 u0– – f u0 =   
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Exercise  (2-19 )   

(a) Show through differentiation that  u   u f u =  is a solution of the differential 

equation

ud
d  u   u +  u =   

(where > 0), provided that f(u) satisfies

f 0  1= and

ud
d f u  f u + 0=  

(b) Find f(u)

Exercise  (2-20 )   

Derive:

f u  u  ud

u1

u2

  u2  f u  ud

0

u2

  u1  f u  ud

0

u1

–=  

Exercise  (2-21 )   

Test the relation

 u a– f u  ud

u1

u2

  u2 a–  f u  ud

a

u2

 – u1 a–  f u  ud

a

u1

=   

with

f u  ucos= a 
4
---= u1 –= u2 =   

Exercise  (2-22 )   
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(a) Integrate

e q u– ud

–

u

   

and show that the result can be written as

e q u– ud

–

u

 1
q
--- 1  u  1 e q u–– + =  

(b) Determine (u) for all u, given that (- �) = 0 and

ud
d  u  e q u–  u +=  

Answer:

 x  1
q
---  u   u e q u––– =  

Exercise  (2-23 )   

(a) Find (u) for all values of u given that 

ud
d  u  e q u–  u +=

 –  e
3
q
---–

=

EQ (2-71 )

(b) Show that    2 1
q
---cosh=
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