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Using a simple probabilistic model, we illustrate that a small part of a strongly correlated many-
body classical system can show a paradoxical behavior, namely asymptotic stochastic independence. We 
consider a triangular array such that each row is a list of n strongly correlated random variables. The 
correlations are preserved even when n → ∞, since the standard central limit theorem does not hold for 
this array. We show that, if we choose a fixed number m < n of random variables of the nth row and 
trace over the other n −m variables, and then consider n → ∞, the m chosen ones can, paradoxically, turn 
out to be independent. However, the scenario can be different if m increases with n. Finally, we suggest 
a possible experimental verification of our results near criticality of a second-order phase transition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As well known, sensible differences exist between quantum and 
classical correlations. The basic reason for that is that the quan-
tum description of a many-body system allows the appearance 
of entangled states which do not have a clear classical counter-
part. For instance, a study of a finite-length part of an infinitely 
long quantum spin chain has shown, among other things, that 
quantum correlations remain present in the subchain [1]. The cor-
relations are strong enough to mandate the replacement of the 
additive von Neumann entropy for thermodynamical purposes. In-
deed, that entropy is known to be nonextensive for such systems, 
whereas the nonadditive q-entropy [2] for a special value of the 
index q re-establishes the desirable thermodynamical extensivity. 
For a quantum critical phenomenon of a one-dimensional many-
body model belonging to the universality class associated with the 
central charge c, the value of that index is given by

q =
√

9 + c2 − 3
c

. (1)

For instance, for the first-neighbor Ising ferromagnet in the pres-
ence of a transverse magnetic field, we have c = 1/2, hence q =√

37 − 6 ≃ 0.08.
The q-entropy associated with a density matrix ρ is defined by
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Sq(ρ) := k
1 − trρq

q − 1
, (2)

for any real q ̸= 1 (S1(ρ) = −k tr(ρ lnρ) is the von Neumann en-
tropy). This entropy is at the core of the so-called nonextensive 
statistical mechanics [2–4], which focuses on complex systems 
such as those involving long-range interactions or other sources 
of strong correlations (typically causing an ergodicity breakdown). 
Extremization of the q-entropy with appropriate constraints leads 
to the so-called q-exponential and q-Gaussian distributions. The 
q-exponential function is defined by

ex
q :=

{
[1 − (1 − q)x]1/(1−q) for any real q ≠ 1
ex for q = 1

(3)

for any x such that 1 + (1 − q)x > 0. The q-Gaussian distribution 
with real parameters q < 3 and β > 0 is characterized by the den-
sity

Gq(β, x) :=
{ √

β
Nq

e−βx2

q if 1 + (q − 1)βx2 > 0
0 otherwise,

(4)

where

Nq :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
3−q
1−q [#( 2−q

1−q )]2

√
1−q#( 2(2−q)

1−q )
for q < 1

√
π for q = 1√
π#( 3−q

2(q−1) )√
q−1#( 1

q−1 )
if 1 < q < 3.

(5)
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From (4), we notice immediately that a q-Gaussian distribution has 
compact support whenever q < 1. If 1 ≤ q < 3, the support of a 
q-Gaussian distribution is the whole real line. By the way, let us 
mention that, if β < 0, q-Gaussian distributions are normalizable 
for q ≥ 3.

Both the q-exponential and q-Gaussian distributions appear in a 
large number of natural, artificial and social systems, e.g., in long-
range-interacting many-body classical Hamiltonian systems [5–7], 
cold atoms in dissipative optical lattices [8,9], dusty plasmas [10], 
in the study of the over-damped motion of interacting particles 
[11–13], in high energy physics [14–16] and in biology [17].

A subsystem of a correlated system is in principle expected to 
also be correlated, even in classical systems. For instance, let us 
consider the following triangular array of random variables which 
take the values 0 or 1:

X1,1
X2,1 X2,2
...

...
. . .

Xn,1 Xn,2 · · · Xn,n
...

...
...

. . .

(6)

Each row can be thought as an outcome of the experiment of 
tossing n coins, where Xn,i = 1 if the ith coin falls head and 
Xn,i = 0 otherwise. For the distribution of the nth row of (6) we 
will use one introduced by Rodriguez et al. [18]. More precisely, 
fixed any list (x1, . . . , xn) formed with the digits 0 and 1 such that 
x1 + · · · + xn = k, we define

P(Xn,1 = x1, . . . , Xn,n = xn) := 1
Zq,n

(
n
k

)−1

e
−t2

q,n,k
q , (7)

where q < 1 is a real parameter,

tq,n,k := 1√
1 − q

[
1 − 2

(
k + 1
n + 2

)]
(8)

and

Zq,n :=
n∑

k=0

e
−t2

q,n,k
q . (9)

After some algebra, it follows from (7) that

P(Xn,i = 1) = P(Xn,i = 0) = 1
2

. (10)

This implies that the random variables in each row of (6) are not 
independent since the right-hand side of (7) is not equal to 1/2n . 
Moreover, putting Sn := Xn,1 + · · · + Xn,n , it can be verified that

(n + 2)
√

1 − q
2

P(Sn = k) ∼ Gq(1, tq,n,k) (11)

as n → ∞ (see Fig. 1). It becomes now transparent why we have 
adopted, for our illustration, the distribution in (7).

If we analyze the marginal probabilities of the first two random 
variables of the nth row of (6), we will observe that, analogously 
to the case of two spins in a quantum spin chain [1], these two 
random variables are correlated (see Fig. 2), which is something 
we may intuitively expect. However, as we will see later on, this 
property does not necessarily follow from the fact that the random 
variables in each row of (6) are strongly correlated.

2. A paradoxical result

Suppose now that we have the array (6) and the distribution 
given in (7), but this time with q ≥ 1 and

Fig. 1. Representation of (n+2)

2
√

2
P(Sn = k) as a function of t1/2,n,k for n = 10, 100 and 

1000, where we have considered q = 1/2. The solid curve represent the right-hand
side of (11).

Fig. 2. Representation of P(Xn,1 = 1, Xn,2 = 1) − 1/22 as a function of n for q =
1/2. We see that the curve goes away from 0 as n increases. This numerical result 
is confirmed by the q = 0 case, which turns out to be analytically tractable, and 
provides P(Xn,1 = 1, Xn,2 = 1) − 1/22 = 1/20 , ∀n. The present available results are 
consistent with a value of limn→∞[P(Xn,1 = 1, Xn,2 = 1) − 1/22] which approaches 
zero for q approaching one from below.

tq,n,k :=
√

n + 1
(

k + 1
n + 2

− 1
2

)
. (12)

It follows immediately from (7) that, as in the q < 1 case,

P(Xn,π(1) = x1, . . . , Xn,π(n) = xn)

= P(Xn,1 = x1, . . . , Xn,n = xn) (13)

for any permutation π of {1, . . . , n}. This allows us to use the re-
duced notation

rq,n,k := P(Xn,1 = x1, . . . , Xn,n = xn) , (14)

where (x1, . . . , xn) is any list formed with the digits 0 and 1 such 
that and x1 + · · · + xn = k. Moreover, it follows from (13) that

sq,n,k := P(Sn = k) =
(

n
k

)
rq,n,k . (15)

Let us incidentally mention that, for q > 1, it has been shown 
[19,20] that the corresponding large deviation theory involves 
q-exponentials instead of the standard exponentials. More pre-
cisely, it has been shown numerically that, as n increases, the 
probability of large deviations P(Sn ≤ nx), x < 1/2, decay to zero 
like a q′-exponential, where q′ > 1 is some function q′(q) such that 
q′(1) = 1, thus recovering the usual theory.

Also, it follows from (12) that tq,n,n−k = −tq,n,k and, conse-
quently, rq,n,n−k = rq,n,k . This implies that P(Sn ≤ nx) = P(Sn ≥
n(1 − x)) for every x < 1/2. The fact that these probabilities con-
verge to zero as n → ∞ means that the weak law of large numbers 
holds for (6). It is easy to see from (7) that rq,n,k ≠ rq,n+1,k +
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Fig. 3. Representation of n+2√
n+1

sq,n,k as a function of tq,n,k for n = 10, 100 and 1000, 
where we have considered q = 3/2 (top) and q = 1 (bottom). In both cases, the solid 
curves represent the right-hand side of (16).

rq,n+1,k+1. Nevertheless, it has been verified [18] that the equal-
ity (Leibniz triangle rule) holds asymptotically when n → ∞, i.e., 
limn→∞

rq,n+1,k+rq,n+1,k+1
rq,n,k

= 1.
Also for q ≥ 1, (10) holds, meaning that the random variables 

in each row of (6) are not independent. Moreover, the distribution 
of Sn , after appropriate scaling, approximates, as n increases, to 
a q-Gaussian distribution with parameters q ≥ 1 and β = 1 [19]. 
More precisely,

n + 2√
n + 1

sq,n,k ∼ Gq(1, tq,n,k) (16)

for large values of n (see Fig. 3).
For n > 1, let us focus on the analysis of m < n random vari-

ables of the nth row of (6). Given any list (x1, . . . , xm) formed with 
the numbers 0 and 1 such that x1 +· · ·+xm = l, we obtain from (7)
that the marginal probabilities are given by

P(Xn,1 = x1, . . . , Xn,m = xm)

= 1
Zq,n

n−m∑

j=0

(
n − m

j

)(
n

j + l

)−1

e
−t2

q,n, j+l
q . (17)

By virtue of (13), the joint distribution of any subset containing m
random variables of the nth row of (6) is given by the right-hand
side of (17). In order to simplify the notation, we will use

pq,n,m := P(Xn,1 = 1, . . . , Xn,m = 1) . (18)

We numerically verify that pq,n,2 approaches 1/22 as n in-
creases (see Fig. 4). This implies that any two variables of rows 
of (6) that are sufficiently far below are, surprisingly enough, 
asymptotically independent. This appears to be, in the present 

Fig. 4. Representation of pq,n,2 − 1/22 as a function of n, where we have considered 
q = 3/2 (top) and q = 1 (bottom). In both cases we notice that pq,n,2 approaches 
1/22 as n increases. The insets suggest that pq,n,2 − 1/22 decay to zero like a power 
law in both cases. The exponent of n appears to slightly depend on q: see also Fig. 5.

case, the reason why the law of large numbers holds for (6). 
Indeed, pairwise independence is sufficient for this law to
emerge [21]. Moreover, fixing m > 0, it can be verified that

Var(Xn,1 + · · · + Xn,m)

= m
(

1
2

− pq,n,2

)
+ m2

(
pq,n,2 − 1

4

)
, (19)

which, as n increases, approaches the value corresponding to inde-
pendence, namely m/2.

If instead of choosing a pair of random variables, we choose 
m > 2 ones from the nth row of (6), we will obtain that pq,n,m ap-
proaches 1/2m as n increases, as illustrated in Fig. 5. This implies, 
like in the case m = 2, that the correlations among m random vari-
ables of a row of (6) asymptotically vanish if n → ∞. However, 
the scenario seems to be different if we choose mn random vari-
ables of the nth row of (6), where m1, m2, . . . is some increasing 
sequence of positive integers with mn ≤ n (see Figs. 6 and 7). This 
is something that is not surprising since the nth row of (6) does 
not become independent as n → ∞; otherwise (6) would obey the 
standard central limit theorem, contradicting (16).

3. Final remarks and conclusions

We conclude that, for q ≥ 1 (i.e., unbounded support), if we are 
restricted to analyze a prefixed finite number of random variables 
in each row of (6), it is, for the present model, impossible to decide 
whether the chosen random variables are part of an independent 
or a correlated superset of random variables. However, this am-
biguity is removed if we focus on a number of random variables 
which increases with n.
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Fig. 5. Representation of p3/2,n,9 −1/29 (top) and p3/2,n,20 −1/220 (bottom) as func-
tions of n. The insets suggest that both functions decay to zero like a power law. 
The exponent of n appears to depend on m for a given value of q.

Fig. 6. Representation of the ratio of pq,n,n/2 and 1/2n/2 as a function of n for q =
3/2 (top) and q = 1 (bottom). Clearly, this ratio is increasingly different from 1
when n is very large. To construct this graph, we have considered even values of n.

Fig. 7. Representation of the ratio of pq,n,
√

n and 1/2
√

n as a function of n for q = 3/2
(top) and q = 1 (bottom). Clearly, this ratio is different from 1 when n is very large. 
To construct this graph, we have considered perfect squares for n.

In science, in many circumstances, we want to analyze a grow-
ing system; for instance, the evolution of a microbiological culture, 
the propagation of an epidemic, among others. However, some-
times by technical difficulties, we are just allowed to study parts 
of the system with a determined size, which is much smaller than 
the size of the whole system. Naturally, we can think that analyz-
ing several parts of that size can be sufficient to reach a conclusion 
about the whole system. However, as we have seen, this procedure 
may lead to the statement of false claims about the entire system, 
specially if strong correlations are present in it. In contrast, the re-
sults obtained by looking at a growing part of the system may be 
generalized to the whole system.

As a physical illustration of the present paradoxical results, we 
suggest the following experiment. Consider a macroscopic sample 
of some material which presents a second-order phase transition. 
We will perform measurements (e.g., magnetic or electric suscep-
tibility) on a part with fixed size of the large sample. This part can 
be macroscopic as well but much smaller than the whole sample. 
As we adjust the temperature of the sample to values near the 
critical one, the correlation length increases and eventually sur-
passes the size of the part we are focusing on. At this stage, the 
microscopic constituents in the whole sample clearly are strongly 
correlated. However, this correlation might, interestingly enough, 
not be detectable in the subsystem that we are studying.

Let us finally emphasize that the present surprising effects pos-
sibly are linked to the classical nature of the system, and to the 
fact that the support of the attractor is unbounded. Indeed, quan-
tum correlations, as well as classical ones with bounded support, 
are of a different nature, and therefore these correlations do per-
sist at the level of a part of the system, even if the size of the 
entire system keeps increasing.
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