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1. INTRODUCTION

In 1959, Velikhov [1] demonstrated that a nondissi-
pative Couette flow (the flow of an ideally conducting
liquid between rotating cylinders) can be destabilized
by a vertical magnetic field. A particular case of the
rotation frequency profile (the Velikhov profile,
described in detail below) was studied there. In 1960,
the analysis in [1] was extended to a general rotation
frequency profile in [2]. For a long time after that, this
destabilization effect was almost not claimed. The situ-
ation changed radically in 1991, when paper [3] was
published. It addressed the problem of an anomalous
viscosity in accretion disks, going back to the study in
[4]. (According to the definition in [5], accretion refers
to the accumulation of matter onto a massive central
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body.) The authors of [3] suggested that explaining the
anomalous viscosity in the disks should invoke an insta-
bility resulting in electromagnetic turbulence. The
essence of paper [3] was the idea that the role of such an
instability is played by the instability analyzed in [1, 2].

After [3], this instability was called the magnetorota-
tional instability (MRI). It was a basis for numerous
astrophysical studies forming the astrophysical trend in
the theory of MRI. The original papers of this trend are
[6–35]. The first stage of astrophysical applications of
MRI was summarized in review [5]. At present, MRI has
been mentioned in more than a thousand papers; the
overwhelming majority of these papers belong to the
astrophysical trend. In addition to astrophysics, MRI has
been suggested to be significant for magnetic geodynam-
ics [36]. There are also relatively narrow trends of exper-
imental and theoretical studies of MRI in liquid metals
[37–44] and plasmaphysical theoretical investigations of
this instability in particular equilibria [45–47].
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Abstract

 

—The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an
ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 

 

β

 

, where 

 

β

 

 is the ratio of the
plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed.
It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary 

 

β

 

. The mechanism of
MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The elec-
trodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in
terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into
the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general
theory of plasma instabilities is taken. The rotation effects on Alfvén waves are considered.
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There are many books and reviews summarizing the
advantages of the theory of plasma instabilities [48–
59]. This theory contains rather broad information on
several types of instabilities in a rotating plasma. The
best known among them is the Rosenbluth–Simon
instability [60]. At the same time, all these books and
reviews contain no information on MRI. This shows
that MRI has not yet been incorporated into the general
theory of plasma instabilities. One of the goals of the
present paper is to do such.

The reasonable question is: why is MRI not yet in
the general theory of plasma instabilities, although it
was discovered almost 50 years ago? The answer is that
papers [1, 2] treated it as a magnetohydrodynamic
(MHD) but not a plasmaphysical phenomenon (e.g., the
Couette flow is not a plasmaphysical notion). In addi-
tion, papers [1, 2], as well as [3], suggested that the con-
sidered liquid is incompressible. Meanwhile, incom-
pressible perturbations are often identified in plasma
theory as corresponding to high-

 

β

 

 plasmas, where 

 

β

 

 is
the ratio of the plasma pressure to the magnetic field
pressure. It has been suggested that such a plasma is the
most interesting for astrophysics, while plasma physics
typically deals with the opposite case of low-

 

β

 

 plasmas.
That MRI is actually possible for arbitrary 

 

β

 

 was
pointed out relatively recently in [61].

The fact that MRI, being one of a variety of electro-
magnetic instabilities, can develop in a low-

 

β

 

 plasma is
of principal interest for fundamental plasma physics.
There is a broadly shared standpoint in plasma physics
that only electrostatic instabilities are important for low
values of 

 

β

 

. This is the main reason why MRI is not
included in the general theory of plasma instabilities.

However, such a situation is unsatisfactory for a
number of reasons. First, plasma theory has elaborated
very powerful methods for studying instabilities and
related nonlinear processes. These techniques are not
involved in MRI theory. Second, plasma physics is a
source of ideas for a series of applied branches of phys-
ics including magnetic nuclear fusion and space phys-
ics. Therefore, the absence of plasmaphysical informa-
tion on the MRI theory is detrimental to these areas of
research. In addition, the discussed drawback deprives
the plasma theory predictions of sufficient complete-
ness.

In this paper, we collect the existing results on MRI
necessary to further develop the theory of this instabil-
ity, and complement them by a number of new results.
We then develop the electrodynamic theory of MRI,
thereby incorporating this instability into the general
theory of plasma instabilities.

In addition to the main MRI problem in a rotating
plasma, there is a subsidiary problem of elucidating the
rotation effects on oscillation branches of nonrotating
plasma. We study this problem by considering the rota-
tional effects on Alfvén waves. In other words, our
paper not only addresses MRI processes but also pro-

vides a more careful investigation of the wave proper-
ties of a rotating plasma.

The general theory of plasma instabilities is sepa-
rated into two main areas: the first can be formulated as
the theory of microinstabilities and the second deals
with stability problems of fusion-oriented magnetic
confinement systems of the tokamak type. The
approaches used by these branches are different. The
approach of the theory of microinstabilities is based on
investigation of the permittivity tensor, while the stabil-
ity analysis in confinement systems is often performed
by means of certain stability criteria, the simplest one
being the Suydam stability criterion (see [54] for
details). The present paper is oriented towards further
development of the theory of microinstabilities. There-
fore, the notion of plasma permittivity is central to our
investigation.

In accordance with the above, papers [1–3] studied
MRI in the scope of the one-fluid MHD approach
invoking the approximation of an incompressible
medium, and therefore their results are valid only for
high 

 

β

 

. In Section 2, we follow the same approach but
take plasma compressibility into account. In so doing,
we obtain results valid for arbitrary 

 

β

 

.
In Section 3, we develop the kinetic theory of MRI

relevant to collisionless plasmas. Section 4 addresses the
explanation of the MRI mechanism. Section 5 is aimed
at the development of the electrodynamic theory of MRI.
This involves introducing and calculating the above per-
mittivity tensor for the rotating plasma, which is the
essence of Section 5. We explain the structure of this ten-
sor and represent the corresponding dispersion relations
allowing us to calculate the oscillation frequency. Sec-
tion 6 is devoted to the analysis of rotation effects on
Alfvén modes. Conclusions are given in Section 7.

2. ONE-FLUID MHD THEORY OF MRI
IN AN IDEAL PLASMA

 

2.1. Dispersion Relation for MRI

2.1.1. The original one-fluid MHD equations

 

. We
consider an axisymmetric plasma cylinder placed in the
magnetic field 

(2.1)

directed along its axis. We use the cylindrical coordi-
nates (

 

R

 

, 

 

φ

 

, 

 

z

 

) and call 

 

φ

 

 the azimuthal coordinate. For
simplicity, the field 

 

B

 

0

 

 is assumed to be uniform,

 

dB

 

0

 

/

 

dR

 

 = 0. We suppose that the plasma rotates in the
azimuthal direction such that its equilibrium velocity

 

V

 

0

 

 is given by

(2.2)

where 

 

V

 

0

 

 = 

 

R

 

Ω

 

 and 

 

Ω

 

 = 

 

Ω

 

(

 

R

 

) is the rotation frequency
dependent on the radial coordinate.

To describe the dynamics of the perturbed plasma,
we start from the equation of motion in the form

B0 0 0 B0, ,( )=

V0 0 V0 0, ,( ),=
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(2.3)

where 

 

d

 

/

 

dt

 

 = 

 

∂

 

/

 

∂

 

t

 

 + 

 

V

 

 · 

 

—

 

 and 

 

ρ

 

 = 

 

ρ

 

0

 

 + 

 

δρ

 

, 

 

V

 

 = 

 

V

 

0

 

 + 

 

δ

 

V

 

,

 

p

 

 = 

 

p

 

0

 

 + 

 

δ

 

p

 

, and 

 

B

 

 = 

 

B

 

0

 

 + 

 

δ

 

B

 

 are, respectively, the total
mass density, velocity, pressure, and magnetic field, 

 

δ

 

denoting the perturbations. Thus, we are dealing with
the perturbed mass density 

 

δρ

 

, the perturbed plasma
pressure 

 

δ

 

p

 

, the perturbed velocity 

 

δ

 

V

 

, and the per-
turbed magnetic field 

 

δ

 

B

 

. The vectors 

 

δ

 

V

 

 and 

 

δ

 

B

 

 are
represented as

The function 

 

δρ

 

 is governed by the continuity equation

(2.4)

We assume that the perturbations are independent of
the azimuthal coordinate 

 

φ

 

. The dependence of each
perturbed value 

 

δ

 

F(r, t) can then be written as

(2.5)

where ω is the mode frequency and kR and kz are the
perpendicular and parallel projections of the wave vec-
tor. The radial dependence of the functions F(R) is
assumed to be negligibly weak. Approximately, we
then have

(2.6)

Using Eq. (2.5), we reduce Eq. (2.4) to

(2.7)

The perturbed plasma pressure δp is found by invok-
ing the adiabatic condition

(2.8)

where Γ is the adiabatic exponent. It follows from
Eq. (2.8) that

(2.9)

2.1.2. Derivation of the general dispersion relation.
As a consequence of Eq. (2.3), the perturbed velocity
δV is governed by the equation of motion with the com-
ponents

(2.10)

(2.11)

ρdV
dt
------- — p

B2

8π
------+⎝ ⎠

⎛ ⎞–
1

4π
------ B —⋅( )B,+=

δV δV R δVφ δVz, ,( ),=

δB δBR δBφ δBz, ,( ).=

∂
∂t
-----δρ ρ0— δV⋅+ 0.=

δF δF R( ) iωt– ikRR ikzz+ +( ),exp=

— δV⋅ ikRδV R ikzδVz.+=

iωδρ– iρ0 kRδV R kzδVz+( )+ 0.=

d
dt
----- p

ρΓ-----⎝ ⎠
⎛ ⎞ 0,=

δp
Γ p0

ω
--------- kRδV R kzδVz+( ).=

iωδV R–
ikRcs

2

ω
------------ kRδV R kzδVz+( )+

– 2ΩδVφ
iv A

2

B0
-------- kRδBz kzδBR–( )+ 0,=

iωδVφ–
κ2

2Ω
-------δV R

iv A
2

B0
--------kzδBφ–+ 0,=

(2.12)

where  = /4πρ0 is the squared Alfvén velocity

and  = Γp0/ρ0 is the squared sound velocity. The
parameter κ2 is introduced by

(2.13)

To describe the behavior of the perturbed magnetic
field, we use the freezing condition

(2.14)

Then we find

(2.15)

(2.16)

Additionally, using the Maxwell equation — · B = 0, we
arrive at

(2.17)

Turning to (2.12), we obtain

(2.18)

where

(2.19)

Using (2.11) and (2.15), we obtain

(2.20)

where

(2.21)

The superscript “ID” means “ideal” and the subscript
“A” denotes the Alfvén oscillation branches.

Substituting (2.18) and (2.20) in (2.10) and using
(2.15) and (2.16), we obtain the dispersion relation

(2.22)

where

(2.23)

(2.24)

(2.25)

iω0δVz–
ikzcs

2

ω
----------- kRδV R kzδVz+( )+ 0,=

v A
2 B0

2

cs
2

κ2 2Ω
R

-------d R2Ω( )
dR

------------------- 4Ω2 dΩ2

d Rln
------------.+≡=

∂B/∂t —– V B×[ ]× 0.=

iωδBR– ikzB0δV R– 0,=

iωδBφ–
dΩ

d Rln
------------δBR– ikzB0δVφ– 0.=

δBz kRδBR/kz.–=

δVz

kzkRcs
2

ω2αS

---------------δV R,=

αS 1 kz
2cs

2/ω2.–=

δVφ
i

ωαA
ID

------------ κ2

2Ω
-------–

kz
2
v A

2

ω2
------------ dΩ

d Rln
------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

δV R,=

αA
ID 1 kz

2
v A

2 /ω2.–=

α11 α12

α21 α22

0,=

α11 αA
ID,=

α12 α21– 2iΩ/ω,–= =

α22 αM
ID 1

ω2
------ dΩ2

d Rln
------------,–=
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with

(2.26)

and k2 =  + ; the subscript “M” means “magneto-
acoustic.” We also note that dispersion relation (2.22)
can be represented as

(2.27)

Substituting (2.21) and (2.26) in (2.27) yields

(2.28)

We introduce the dimensionless parameters

(2.29)

(2.30)

Then Eq. (2.28) is represented as

(2.31)

In the particular case where β  ∞ (   ∞) with

β = 8πp0/ , Eq. (2.31) becomes

(2.32)

Similarly to [3], we introduce

(2.33)

In terms of , Eq. (2.32) is written as

(2.34)

This is the same as the Balbus–Hawley dispersion rela-
tion [3] for an incompressible medium. It is therefore
reasonable to call Eq. (2.34) or Eq. (2.32) the Balbus–
Hawley dispersion relation.

Dealing with an arbitrary compressibility, Kim and
Ostriker [61] have derived the dispersion relation

αM
ID 1

k2
v A

2

ω2
------------–

kR
2 cs

2

ω2αS

------------–=

kR
2 kz

2

ω4αA
IDαM

ID ω2κ2– kz
2
v A

2 dΩ2

d Rln
------------+ 0.=

ω2 kz
2
v A

2–( ) ω4 ω2k2
v A

2 cs
2+( )– kz

2k2cs
2
v A

2+[ ]

+ ω2 kz
2cs

2–( ) ω2κ2– kz
2
v A

2 dΩ2

d Rln
------------+⎝ ⎠

⎛ ⎞ 0.=

∆ 1
1

k2
v A

2
------------ dΩ2

d Rln
------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

,–=

∆1 2 1
1

k2
v A

2
------------Ω

R
----d R2Ω( )

dR
-------------------+ 2

κ2

k2
v A

2
------------.+≡=

ω6 ω4k2
v A

2 2∆1
kR

2

k2
-----–

cs
2

v A
2

------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–

+ kz
2k2cs

2
v A

2 ω2 ∆1

v A
2

cs
2

------∆–
⎝ ⎠
⎜ ⎟
⎛ ⎞

kz
2
v A

2 ∆+ 0.=

cs
2

B0
2

ω4 kz
2
v A

2 ω2∆1 kz
2
v A

2 ∆+( )– 0.=

ω̃2 ω2 kz
2
v A

2 .–≡

ω̃

ω̃4 kz
2

k2
---- kz

2
v A

2 dΩ2

d Rln
------------ κ2ω̃2–⎝ ⎠

⎛ ⎞+ 0.=

ω2 kz
2
v A

2–( ) ω4 ω2kz
2
v A

2 cs
2+( )– kz

4cs
2
v A

2+[ ]

(2.35)

It can be seen that Eqs. (2.35) and (2.28) are identical.
Therefore, it is reasonable to call Eq. (2.35) or
Eq. (2.28) the Kim–Ostriker dispersion relation.

2.2. Analysis of MRI

2.2.1. General instability criterion. We assume that
∆ is small. Then Eq. (2.31) reduces to

(2.36)

We assume that
∆1 > 0. (2.37)

It then follows that for
∆ > 0, (2.38)

Eq. (2.36) describes unstable perturbations,

ω2 < 0, (2.39)

characterized by Reω = 0 and Imω = γ, where γ is the
growth rate, which, according to [1, 3], is given by

(2.40)

These unstable modes correspond to MRI. It follows
from condition (2.38) that MRI occurs if the wave vec-
tor is smaller than a critical value,

(2.41)

where

(2.42)

It is remarkable that Eq. (2.36) is independent of β.
Therefore, both instability criterion (2.38) and growth
rate (2.40) near the stability boundary are valid for an
arbitrary β.

2.2.2. MRI in the case of the Velikhov rotation fre-
quency profile. It was assumed in [1] that

(2.43)

where a and e are constants. Then (2.29) becomes

(2.44)

Hence, the result in [1] implies that MRI is possible
only if

e > 0. (2.45)

The expression (2.42) for the critical wave vector of
unstable modes in this case reduces to

(2.46)

=  kR
2 ω2 kz

2– v A
2( ) ω2

v A
2 cs

2+( ) kz
2cs

2
v A

2–[ ]

+ 4Ω2ω2 (ω2 k–+ z
2
v A

2 )
dΩ2

d Rln
------------ ω2 kz

2cs
2–( ).

∆1ω2 kz
2
v A

2 ∆+ 0.=

γ 2 kz
2
v A

2 ∆/∆1.=

k2 kcrit
2 ,<

v A
2 kcrit

2 dΩ2/d R.ln–=

Ω R( ) a e/R2,+=

∆ 2

k2
v A

2
------------ e

R3
----- a

e

R2
-----+⎝ ⎠

⎛ ⎞ 1
2
---k2

v A
2– .=

kcrit
2 2e

R3
v A

2
------------- a

e

R2
-----+⎝ ⎠

⎛ ⎞ .=
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3. KINETIC THEORY OF MRI

3.1. Kinetic Approach

Turning to the case of a collisionless plasma, we
begin with modifying Eq. (2.3) as [54]

(3.1)

where

(3.2)

is the total pressure tensor, I is the unit tensor, and δp is
the perturbed pressure tensor.

According to [54],

(3.3)

where p⊥ = p0 + δp⊥, with δp⊥ being the perpendicular
(with respect to the equilibrium magnetic field) per-
turbed plasma pressure. Then, Eq. (2.10) is modified as

(3.4)

The value δp⊥ is expressed in terms of the perturbed
distribution function δf as

(3.5)

where v⊥ is the perpendicular particle velocity, dv is the
volume element in the velocity space, and M is the ion
mass.

According to [52], the function δf is equal to

(3.6)

where T is the ion equilibrium temperature, f0 is the
equilibrium distribution function, and v|| is the parallel
particle velocity. Substituting (3.6) in (3.5), we obtain

(3.7)

where vT =  is the ion thermal velocity and

(3.8)

is the plasma dispersion function [50].
As a result, we obtain dispersion relation (2.22)

characterized by the tensor αik (i, k = 1, 2) given by
Eqs. (2.23)–(2.25) with the substitution

ρdV
dt
------- —– p⋅ 1

4π
------ 1

2
---—B2 B —⋅( )B– ,–=

p I p0 δp+=

— p⋅ — p⊥,=

iωδV R αA
ID kz

2
v A

2

ω2
------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

– ikR

δ p⊥

ρ0
---------+

– 2ΩδVφ
iv A

2

B0
--------k2

kz

----δBR– 0.=

δ p⊥ M
v⊥

2

2
------δf v,d∫=

δf
Mv⊥

2

2T
------------ ω

ω kzv ||–
-------------------- f 0

δBz

B0
--------,=

δ p⊥ p0
i πω
kz v T

--------------W
ω

kz v T

--------------⎝ ⎠
⎛ ⎞ δBz

B0
--------,–=

2T /M

W x( ) x2–( ) 1
2i

π
------- t2( )exp td

0

x

∫+
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

(3.9)

where

(3.10)

(3.11)

With the known asymptotic form of the function W(x)

[50], the limit expressions for  are as follows:

(3.12)

By means of Eqs. (2.22)–(2.25) and (3.9), we obtain
that MRI in a collisionless plasma is described by the
dispersion relation

(3.13)

3.2. Hydrodynamic MRI in Collisionless Plasma

For ω � |kz |vT, in accordance with (3.10) and (3.12),
Eq. (3.13) can be written as

(3.14)

It hence follows that MRI occurs for

(3.15)

In contrast to one-fluid instability condition (2.38), the
perturbations considered are unstable only if the
parameter ∆ exceeds a threshold value.

3.3. Kinetic MRI in Collisionless Plasma

For ω � |kz |vT , it follows from Eq. (3.13) with
(3.12) taken into account that

(3.16)

For small ∆, this dispersion relation has a small root
given by

(3.17)

αM
ID αM

kin,

αM
kin 1

k2
v A

2

ω2
------------ 1 cM

kin+( ),–=

cM
kin i π

kR
2

k2
-----β ω

kz v T

--------------W
ω

kz v T

--------------⎝ ⎠
⎛ ⎞ .–=

cM
kin

cM
kin β

kR
2

k2
-----

1, ω � kz v T ,

i
πω

kz v T

--------------, ω � kz v T .–
⎩
⎪
⎨
⎪
⎧

=

ω2 kz
2
v A

2–( ) ω2 k2
v A

2 ∆ i πβ
kR

2
v Tω
kz

----------------+ +

× W
ω

kz v T

--------------⎝ ⎠
⎛ ⎞ 4ω2Ω2– 0.=

ω2 kz
2
v A

2–( ) ω2 k2
v A

2 ∆   k R 
2 –  v T 

2 +  ( ) 4 ω 
2 Ω 

2 –  = 0.

∆ kR
2 β/k2.≥

ω2 kz
2
v A

2–( ) ω2 k2
v A

2 ∆ i πβ
kR

2
v A

2 ω
kz v T

-----------------+ +⎝ ⎠
⎛ ⎞

– 4ω2Ω2 0.=

ω i

π
-------

kz v A
2

v Tβ
-------------- k2

kR
2

-----∆.=
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We can see that the perturbations considered are unsta-
ble under condition (2.38). We have thus shown that
MRI can occur in a collisionless plasma for an arbitrary
β if instability condition (2.38) is satisfied.

4. MECHANISM OF MRI
It follows from the Ohm law,

(4.1)

that

(4.2)

The equilibrium part of (4.2) shows that there is an
equilibrium electric field E0R given by

(4.3)

In the presence of such an equilibrium electric field, the
perturbed part of (4.2) means that there is a perturbed
parallel electric field δEz in our problem, determined by

(4.4)

Hence, we obtain

(4.5)

Next, we take the φ-projection of the Maxwell equa-
tion

(4.6)

to obtain

(4.7)

where δER is the radial component of the perturbed
electric field. It follows from (4.5) that

(4.8)

Now, we take into account that according to the
Maxwell equation — · δB = 0 (cf. (2.17)),

(4.9)

Then Eq. (4.8) becomes

(4.10)

It follows from Ohm’s law (4.1) that the perturbed
radial electric field is expressed in terms of the per-
turbed velocity and perturbed magnetic field as

(4.11)

E
1
c
---V+ B× 0=

B E⋅ 0.=

E0R
ΩR
c

--------B0.–=

B0δEz δBRE0R+ 0.=

δEz
ΩR
c

--------δBR.=

∂δB
∂t

---------- c—– δE×=

δBφ
ckz

ω
-------δER

ic
ω
----

∂δEz

∂R
------------,+=

c
∂δEz

∂R
------------ dΩ

d Rln
------------δBR Ω ∂

∂R
------ RδBR( ).+=

1
R
--- ∂

∂R
------ RδBR( ) ikzδBz.–=

c
∂δEz

∂R
------------ dΩ

d Rln
------------δBR iΩRkzδBz.–=

δER
1
c
--- B0δVφ ΩRδBz+( ).=

Substituting (4.10) and (4.11) into (4.7) leads to (2.16).
We have thus shown that the mechanism of MRI is

explained by involving the perturbed parallel electric
field δEz .

5. INCORPORATION OF MRI
INTO THE GENERAL THEORY

OF PLASMA INSTABILITIES

5.1. Permittivity of a Rotating Plasma

We use the identity

(5.1)

where B and j are the total magnetic field and current
density, respectively. We then find from (2.10) and
(2.11) that

(5.2)

(5.3)

It follows from (2.15) and (2.16) that

(5.4)

(5.5)

With (5.4) and (5.5), Eqs. (5.2) and (5.3) become

(5.6)

(5.7)

The theory of instabilities in a homogeneous plasma
[52, 55–58] deals with the permittivity tensor εik (i, k =
1, 2, 3) related to the conductivity tensor σik by

(5.8)

The conductivity tensor σik is determined by the per-
turbed electric current

(5.9)

Therefore,

(5.10)

1
4π
------ B —⋅( )B

1
2
---—B2–

1
c
--- j B,×=

δ jR

cρ0

B0
-------- iωδVφ–

κ2

2Ω
-------δV R+⎝ ⎠

⎛ ⎞ ,–=

δ jφ
cρ0

B0
-------- iωδV R 1

kR
2 cs

2

ω2αS

------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2ΩδVφ+ .–=

δVφ
1

kzB0
---------- ωδBφ i

dΩ
d Rln
------------δBR–⎝ ⎠

⎛ ⎞ ,–=

δV R
ω

kzB0
----------δBR.–=

δ jR

ωcρ0

kzB0
2

------------ iωδBφ– 2ΩδBR+( ),=

δ jφ
ωcρ0

kzB0
2

------------=

× iω 1
kR

2 cs
2

ω2αS

------------–
1

ω2
------ dΩ2

d Rln
------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

δBR 2ΩδBφ+ .

εik δik 4πiσik/ω.+=

δ ji σikδEk.=

δ ji
ω

4πi
-------- εik δik–( )δEk.=
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Next, we take into account that in the general case,

(5.11)

where δE(1) and δE(2) are the electromagnetic and elec-
trostatic parts of the perturbed electric field, respec-
tively. The field δE(1) is governed by the Maxwell equa-
tion (cf. (4.6))

(5.12)

Then we have

(5.13)

(5.14)

The field δE(2) is defined by the perturbed electro-
static potential δΨ via

(5.15)

Because we have restricted ourselves to the case k =
(kR, 0, kz), it follows from (5.15) that

(5.16)

With (5.11) and (5.13)–(5.15), Eq. (5.10) yields

(5.17)

(5.18)

(5.19)

where

(5.20)

(5.21)

(5.22)

Comparing (5.17) and (5.18) with (5.6) and (5.7) yields
(i, k = 1, 2)

(5.23)

As is known [52, 53], the dispersion relation in the
approximation ε33  ∞ is of the form

(5.24)

Substituting (5.23) here, we arrive at dispersion relation
(2.22).

δE δE 1( ) δE 2( ),+=

∂δB
∂t

---------- c—– δE 1( ).⋅=

δER
1( ) ωδBφ/ckz,=

δEφ
1( ) ωδBR/ckz.–=

δE 2( ) —δΨ.–=

δE 2( ) ikRδΨ– 0 ikzδΨ–, ,( ).=

δ jR
ω2

4πickz

---------------- ε11δBφ ε12δBR–( ) ωk
4π
-------ε10δΨ,–=

δ jφ
ω2

4πickz

---------------- ε12δBφ ε22δBR–( ) ωk
4π
-------ε20δΨ,–=

δ jz
ω2

4πickz

---------------- ε31δBφ ε32δBR–( ) ωk
4π
-------ε30δΨ,–=

ε10 kRε11 kzε13+( )/k,=

ε20 kRε21 kzε23+( )/k,=

ε30 kRε31 kzε33+( )/k.=

εik
c2

v A
2

------

1 2iΩ/ω–

2iΩ
ω

--------- 1
kR

2 cs
2

ω2αS

------------
1

ω2
------ dΩ2

d Rln
------------––

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

ε11 c2kz
2/ω2– ε12

ε21 ε22 c2k2/ω2–
0.=

We can see from (5.23) that

(5.25)

where  is the nonrotational part of the permittivity
tensor, i.e., the part corresponding to the case of nonro-

tating plasma, while  is its rotational part.

In the scope of the one-fluid MHD approach consid-
ered in Section 2, in accordance with (5.23), we have

(5.26)

and the rotational part of εik (i, k = 1, 2) is given by

(5.27)

The kinetic approach leads to the same expressions for

, , and  and the following expression for

:

(5.28)

It can be seen that the elements  are independent
of the detailed plasma properties. In this context, each

element  is an invariant. In contrast to this, the val-

ues  depend on the detailed plasma properties.

5.2. General Dispersion Relation

To obtain the general dispersion relation, we recall
the Ampere law

(5.29)

With (2.17), projections of (5.29) are given by

(5.30)

(5.31)

(5.32)

In addition, the current continuity equation implies that

(5.33)

εik εik
0( ) εik

r( ) i k, 1 2,=( ),+=

εik
0( )

εik
r( )

εik
0( )MHD c2

v A
2

------

1 0

0 1
kR

2 cs
2

ω2αS

------------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

εik
r( ) c2

v A
2

------
0 2iΩ/ω–

2iΩ
ω

--------- 1

ω2
------ dΩ2

d Rln
------------–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

ε11
0( ) ε12

0( ) ε21
0( )

ε22
0( )kin

ε22
0( )kin c2

v A
2

------ 1 i
π

ω
-------

kR
2
v T

kz

------------W
ω

kz v T

--------------⎝ ⎠
⎛ ⎞+ .=

εik
r( )

εik
r( )

εik
0( )

— δB× 4πδj/c.=

kzδBφ i4πδ jR/c,=

k2δBR i– 4πkzδ jφ/c,=

kRδBφ i– 4πδ jz/c.=

kRδ jR kzδ jz+ 0.=
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Substituting (5.17) and (5.18) in (5.30) and (5.31), we
obtain

(5.34)

(5.35)

Next, substituting (5.17) and (5.19) in (5.33) yields

(5.36)

where

(5.37)

(5.38)

(5.39)

Equations (5.34)–(5.36) yield the dispersion rela-
tion

(5.40)

On the other hand, the theory of oscillations of a homo-
geneous nonrotating plasma deals with the general dis-
persion relation of the form

(5.41)

Then the question arises whether the structures of
(5.40) and (5.41) are identical or plasma rotation sub-
stantially modifies the fundamental plasma properties.
To answer this question, we multiply the first row of

matrix (5.41) by /k2 and add it to the third row mul-
tiplied by kzkR/k2. Similarly, we multiply the first col-

umn of (5.41) by /k2 and add it to the third column
multiplied by kzkR/k2. We then find that matrices (5.40)
and (5.41) are identical.

5.3. The Electrodynamic Theory of MRI Allowing
for Finite Electron Temperature in the Scope

of the MHD Approach

Freezing condition (2.14) is a consequence of
Ohm’s law (4.1). To justify this, we act on Eq. (4.1)
with the operator —× and use the Maxwell Eq. (5.12).

Evidently, Eq. (4.1) is relevant to a plasma with cold
electrons. In the case of a finite electron temperature, it
is modified as

(5.42)

where pe is the electron pressure, e is the ion charge,
and n0 is the equilibrium number density. It follows that
in the case of a homogeneous plasma, the appearance of
the term with the electron pressure does not lead to
modification of freezing condition (2.14). However, it
contributes to the parallel Ohm’s law, leading to

(5.43)

The perturbed part of (5.43) implies that

(5.44)

We also note that freezing condition (2.14) contains
the electron velocity V, while V entering the parallel
plasma motion Eq. (2.12) is the ion velocity. In other
words, the one-fluid MHD is based on the assumption
that 

Vi = Ve. (5.45)

We now allow a difference between δViz and δVez:

(5.46)

Generally,

(5.47)

where δjz is the perturbed parallel electric current.
The perturbed ion parallel motion Eq. (2.12) is mod-

ified as

(5.48)

We seek the perturbed electron pressure δpe using the
electron adiabatic condition similar to (2.8) with Γe = 1,
where Γe is the electron adiabatic exponent. Then we
obtain

(5.49)

Substituting (5.49) in (5.44) yields

ε11
c2kz

2

ω2
----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

δBφ ε12δBR–
ickzk

ω
------------ε10δΨ– 0,=

ε12δBφ– ε22
c2k2

ω2
----------–⎝ ⎠

⎛ ⎞ δBR
ick
kz

-------ε20δΨ+ + 0.=

ε01δBφ ε02δBR–
ickzk

ω
------------ε00δΨ– 0,=

ε01 kRε11 kzε31+( )/k,=

ε02 kRε12 kzε32+( )/k,=

ε00
1

k2
---- kR

2 ε11 kRkz ε13 ε31+( ) kz
2ε33+ +[ ].=

ε11 c2kz
2/ω2– ε12 ε10

ε21 ε22 c2k2/ω2– ε20

ε01 ε02 ε00

0.=

ε11 c2kz
2/ω2– ε12 ε13 c2kzkR/ω2+

ε21 ε22 c2k2/ω2– ε23

ε31 c2kzkR/ω2+ ε22 ε33 c2kR
2 /ω2–

0.=

kR
2

kR
2

E
1
c
---V+ B

— pe

en0
----------+× 0,=

B E
B — pe⋅

en0
------------------+⋅ 0.=

δEz ΩRδBR

ikzδ pe

en0
---------------+ + 0.=

δViz δVez.≠

δViz δVez δ jz/en0,+=

δ jz en0 δVez

kzkRcs
2

ω2αS

---------------δV R+
⎝ ⎠
⎜ ⎟
⎛ ⎞

.–=

δ pe

p0e

ω
------- kRδV R kzδVez+( ).=
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(5.50)

where Te is the equilibrium electron temperature. With
Eq. (5.50), Eq. (5.48) becomes

(5.51)

We now use representation (5.11), in so doing introduc-
ing the perturbed electrostatic potential δΨ. Then
Eq. (5.51) becomes

(5.52)

Comparing (5.6), (5.7), and (5.52) with (5.17)–(5.19)
given

(5.53)

(5.54)

(5.55)

To use dispersion relation (5.40), it is necessary to
know the values ε01, ε02, and ε00 defined by Eqs. (5.37)–
(5.39). Using (5.23) and (5.53)–(5.55), we obtain

(5.56)

(5.57)

(5.58)

where  = Te/M  is the squared ion Larmor radius
calculated for the electron temperature and ωBi =
eB0/Mc is the ion cyclotron frequency.

5.4. The Heuristic Kinetic Electrodynamic Theory
of MRI Allowing for Finite Electron Temperature

and Effects of the Finite Ion Larmor Radius

The idea that the permittivity tensor εik in the rotat-
ing plasma can be represented as the sum of the nonro-

tational  and rotational  parts (see Eq. (5.25))
makes it possible to suggest a heuristic electrodynamic
theory of MRI allowing for finite electron temperature.

δVez

kR

kz

-----δV R–
iωe

kz
2Te

----------δEz,+=

δ jz

iωe
2
n0

kz
2Te

----------------δEz–
en0kR

kzαS

-------------δV R+=

+
iωe2n0ΩR

kz
2Te

-------------------------δBR.

δ jz

ωe2n0

kzTe

--------------δΨ–
en0kRω
kz

2αSB0

------------------δBR.+=

ε10 ε20 ε31, ,( ) 0,=

ε32

4πicen0kR

kzαSωB0
-------------------------,–=

ε30

4πe2n0

kkzTe

-----------------.=

ε01
c2

v A
2

------
kR

k
-----,=

ε02

ikR

k
------- c2

v A
2 ω

----------- 2Ω
ωBi

αS

--------+⎝ ⎠
⎛ ⎞ ,–=

ε02
1

k2
---- c2

v A
2

------ kR
2 1

ρs
2

-----+⎝ ⎠
⎛ ⎞ ,=

ρs
2 ωBi

2

εik
0( ) εik

r( )

It is then convenient to use the general dispersion rela-

tion in form (5.41) because the values  (i, k = 1, 2,
3) are well known. In such a problem statement, the
effects of a finite ion Larmor radius can simultaneously
be taken into account.

From [49], we have

(5.59)

(5.60)

(5.61)

where  = Ti/M  is the squared ion Larmor radius.
The remaining components of the permittivity tensor
are

(5.62)

(5.63)

(5.64)

where  = Tα/4πe2n0 (α = e, i) is the squared Debye
length. In deriving (5.63) and (5.64), we have assumed

ω � |kz |vTe, where vTe =  is the electron ther-
mal velocity and Me is the electron mass.

6. ROTATION EFFECTS ON ALFVÉN WAVES

6.1. Dispersion Relation

Alfvén waves in a rotating plasma can be studied by
using the following particular case of dispersion rela-
tion (5.41):

(6.1)

where (cf. (5.25)–(5.27))

εik
0( )

ε11
0( ) c2
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2
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3
4
---kR
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2–⎝ ⎠
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------------+=

× βW
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ρi
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2
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0( ) 0,= =
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c2
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2
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kR

kz

-----
ωBi

kz v Ti

---------------W
ω

kz v Ti

---------------⎝ ⎠
⎛ ⎞ ,= =

ε33
0( ) 1

kz
2de

2
----------

1

kz
2di

2
---------- 1 i π ω

kz v Ti

---------------++=

× W
ω

kz v Ti

---------------⎝ ⎠
⎛ ⎞ ,

dα
2

2Te/Me

ε11 c2kz
2/ω2– ε12 c2kzkx/ω

2

ε21 ε22 c2kx
2/ω2– 0
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2 0 ε33 c2kx
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(6.2)

and the value ε33 is taken from the wave theory of a
homogeneous plasma [52] as

(6.3)

where

(6.4)

Equation (6.1) yields

(6.5)

6.2. Rotational Alfvén Waves

We consider the approximation of an infinite paral-
lel conductivity

(6.6)

Equation (6.5) then becomes

(6.7)

For a weak plasma rotation,

(6.8)

it follows from Eq. (6.7) that

(6.9)

The oscillation branches described by (6.9) can be
called the rotational Alfvén waves.

6.3. Kinetic Alfvén Waves in a Rotating Plasma

Let

(6.10)

Then we can use the approximation

c||  1. (6.11)

In this case, Eq. (6.5) is transformed to

(6.12)

In the case of a weak plasma rotation with condition
(6.8) satisfied, Eq. (6.12) reduces to (cf. (6.9))

ε11 ε12

ε21 ε22⎝ ⎠
⎜ ⎟
⎛ ⎞ c2

v A
2

------
1 2iΩ/ω–

2iΩ
ω

--------- 1

ω2
------ dΩ2

d Rln
------------–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

ε33 c||/kz
2de

2,=

c|| 1 i π ω
kz v Te

----------------W
ω

kz v Te

----------------⎝ ⎠
⎛ ⎞ .+=

ω2 kz
2
v A

2 kx
2
v A

2 dΩ2/d Rln+

kx
2
v A

2 κ2+
-------------------------------------------

kx
2ρs

2

c||
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0.=

kx
2ρs

2/c|| 0.=

ω2 kz
2
v A

2

1 κ2/kx
2
v A

2+
----------------------------- 1

1

kx
2
v A

2
------------ dΩ2

d Rln
------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

dΩ2/d R � kx
2
v A

2 ,ln

ω2 kz
2
v A

2 1 4Ω2/kx
2
v A

2–( ).=

β Me/M.>

ω2 kz
2
v A

2 kx
2
v A

2 dΩ2/d Rln+

kx
2
v A

2 κ2+
------------------------------------------- kx

2ρs
2+

⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

(6.13)

With the term involving Ω2 neglected, this dispersion
relation describes the kinetic Alfvén waves [62]. It can
be seen that the rotational dispersion exceeds the Lar-
mor dispersion for

(6.14)

Instead of the positive dispersion, we then have Alfvén
waves with the negative dispersion.

6.4. Inertial Alfvén Waves in a Rotating Plasma

We now take

(6.15)

Then Eq. (6.4) is transformed to

(6.16)

Substituting Eq. (6.16) in Eq. (6.5) yields

(6.17)

where  = 4πn0e2/Me is the squared electron plasma
frequency. With the rotation neglected, this dispersion
relation describes the inertial Alfvén waves [63].

For weak rotation, Ω2 � , and weak electron

inertia, c2  � , Eq. (6.17) yields (cf. Eqs. (6.9)
and (6.13))

(6.18)

It follows that rotation leads to dispersion of the same
sign as the electron inertia; i.e., they are both negative.
The rotational dispersion exceeds the inertial disper-
sion for

(6.19)

The sign of the dispersion then remains unchanged.

7. CONCLUSIONS

We have collected and analyzed the results of the
one-fluid MHD theory of MRI in an ideal plasma. We
have shown that this instability can occur for an arbi-
trary β. In general, such a theory has the goal of predict-
ing regularities of MRI in a collisionless plasma. To
verify these predictions, it is necessary to develop the
kinetic theory of MRI. The simplest version of this the-
ory has been formulated in the present paper (see also
[64–66]). We have also shown that the one-fluid and
kinetic instability criteria are identical and are given by
Eq. (2.38). At the same time, the one-fluid and kinetic

ω2 kz
2
v A

2 1 4Ω2/kx
2
v A

2– kx
2ρs

2+( ).=

kx
2
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β Me/M.<
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2
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ω2 kz
2
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2

1 c2kx
2/ωpe

2+
------------------------------
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2
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2
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-------------------------------------------,=
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2
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2
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2 ωpe

2

ω2 kz
2
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2 1 4Ω2
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2
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------------–
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2

ωpe
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----------–
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growth rates of MRI turn out to be different (cf. (2.40)
and (3.17)). Roughly speaking,

(7.1)

This means that for β > 1, the kinetic growth rate is
small compared with the MHD one, while for β < 1 the
situation is the opposite. This difference is due to the
imaginary term in kinetic dispersion relation (3.13).
Physically, this term describes the gyrorelaxation effect
discovered in [67] and [68]. In the case of a collision-
dominated plasma, this effect is described in terms of
the parallel viscosity [53, 69].

We have discussed the mechanism of MRI and have
explained that it is intrinsically related to the appear-
ance of the parallel perturbed electric field (see
Eqs. (4.5) and (4.10)).

To incorporate the notion of MRI into the general
theory of plasma instabilities, we have developed the
electrodynamic theory generalizing the known disper-
sion relation for a homogeneous plasma by including
the rotation effects. Such a generalized dispersion rela-
tion is given by Eq. (5.40). In the approximation of an
infinite parallel conductivity, it reduces to Eq. (5.24).
According to the electrodynamic theory presented,
plasma rotation leads to two modifications of the per-
mittivity tensor entering the dispersion relation. The
first is the appearance of the Velikhov effect in element
ε22 and the second is the appearance of the nondiagonal
components ε12 and ε21, see Eq. (5.27).

We have noted that the rotation effects are additive,
implying that the permittivity tensor can be represented
as the sum of the nonrotational and rotational parts (see
Eq. (5.25)). It is remarkable that the rotational part of
the permittivity tensor has a universal structure inde-
pendent of the detailed plasma properties (see
Eq. (5.27)).

We have taken the effect of a finite electron temper-
ature on MRI into account. In this regard, it is reason-
able to note that the one-fluid MHD approach devel-
oped in [3, 61] is valid only for cold electrons. There-
fore, one of the goals for future studies on MRI is a
generalization of the Balbus–Hawley and Kim–
Ostriker dispersion relations (see Subsections 2.1.3 and
2.1.4) to the case of a finite electron temperature.

Using the fact that the rotational part of the permit-
tivity tensor is invariant, we have developed a heuristic
kinetic electrodynamic theory of MRI with both the
finite electron temperature effects and the effects of a
finite ion Larmor radius taken into account. In the scope
of the present paper, we restricted ourselves to using
this theory for studying the rotation effects on Alfvén
modes. As a result, we have shown that in addition to
the kinetic and inertial Alfvén waves, one more mode,
rotational Alfvén waves, can be realized in a rotating
plasma. At the same time, according to our analysis, the
rotation effects can substantially modify both kinetic
and inertial Alfvén waves, transforming them into rota-
tional Alfvén waves for not too small rotation frequen-

γ kin/γ MHD β 1/2– .≈

cies. The kinetic and inertial Alfvén waves have been
studied in [63, 70–72] as a possible reason for zonal
flow generation. It is evident from our analysis that the
same role can be played by the rotational Alfvén waves.
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