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Abstract. We examine the phase space dynamics of closed Friedmann–
Robertson–Walker universes with a massive inflaton field, where the Friedmann
equations contain additional terms arising from high energy corrections to
cosmological scenarios. The model is based upon a Randall–Sundrum type of
action, with an extra timelike dimension, and the corrections implement non-
singular bounces in the early evolution of the universe. In narrow windows of the
parameter space of the models non-linear resonance phenomena of Kolmogorov–
Arnold–Moser tori are shown to occur, leading to the destruction of tori that
trap the inflaton. As a consequence the escape into inflation takes place. These
resonance windows are labeled with an integer n ≥ 2, where n is related to the
ratio of the frequencies in the scale factor to those in the scalar field degrees
of freedom. We examine the constraints imposed by non-linear resonance in the
physical domain of parameters of the model so that inflation may be realized. The
larger the order n of the resonance, the stronger the gravitational interaction
in the braneworld universe inflated from initial conditions connected with the
resonance considered. We also discuss the structural stability of the resonance
pattern, the complex dynamics arising in this pre-inflationary phase and some of
its possible imprints in the physics of inflation.
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1. Introduction

We may consider that the initial conditions of our present expanding Universe were fixed
when the early Universe emerged from the semi-classical Planckian regime and started
its classical evolution. By evolving back the initial conditions using Einstein classical
equations, the Universe is driven towards a singular point, where the classical regime is
no longer valid. In this domain, quantum processes must be taken into account. Among
several propositions a recent and quite attractive one is provided by string based formalism
of D-branes that encompass general relativity as a low energy limit of a quantum gravity
theory [1]. In this scenario extra dimensions are introduced, the bulk space, and all
the matter in the universe would be trapped on a brane with three spatial dimensions;
only gravitons would be allowed to leave the surface and move in the full bulk [2]. At
low energies general relativity is recovered but at high energies significant changes are
introduced in the gravitational dynamics. Our main interest here is connected to the high
energy/quantum corrections that are dominant in the neighborhood of the singularity,
resulting in a repulsive force that avoids the singularity and leads the universe to undergo
non-singular bounces. Bouncing braneworld models were constructed by Shtanov and
Sahni [3] on the basis of a Randall–Sundrum-type action with one extra dimension. The
corresponding modified Friedmann’s equation on the brane is expressed as

H2 +
k

a2
− Λeff

3
=

κeff

3
ρ +

εκ2
5ρ

2

36
, (1)

where H is Hubble’s parameter and ρ is the fluid density of the model present in the
brane. The parameter κ5 is the 5-dim (five-dimensional) Einstein constant and

Λeff = Λ5 + 1
12

κ2
5εσ

2, (2)

κeff =
κ2

5

6
εσ, (3)

are respectively the effective cosmological constant, and the effective gravitational Einstein
constant on the brane. The parameter σ is the brane tension. We see that the brane
tension regulates the relation between the strength of the gravitational coupling in the
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5-dim bulk and in the brane. The crucial correction is the term quadratic in the density,
which modifies the dynamics of the scale factor. In the above ε = ±1 according to whether
the extra dimension is spacelike or timelike respectively. The choice ε = −1 implements
realistic bounces in the dynamics and we require σ to be negative in order that the
effective gravitational Einstein constant κeff on the brane be positive and compatible with
the observations. The energy scale of the bounce is given by ρ ∼ 2|σ|. Finally since
ε = −1 a braneworld with Λeff ≥ 0 must have a positive bulk cosmological constant
Λ5 > 0. An elegant geometrical derivation of braneworld dynamics embedded in 5-dim
spacetimes may be found in [4, 5] where both high energy local corrections and non-local
bulk corrections on a Friedmann–Robertson–Walker (FRW) brane are analyzed.

In the present paper our purpose is to examine the dynamics of spatially closed
FRW inflationary braneworld models with a minimal set of ingredients, namely, a coupled
massive scalar field plus a radiation fluid. These matter fields evolve on the brane, where
high energy/quantum gravity corrections due to the bulk are included and implement non-
singular bounces. We will restrict ourselves to non-singular bouncing solutions that are
oscillatory and bounded, or initially bounded. Such configurations avoid the problem of
initial conditions at past infinity occurring with one-single-bounce solutions; furthermore
they would be amenable to a straightforward semi-classical treatment. These solutions are
in principle stable and would never enter an inflationary phase with an exponential growth
of the scale factor since they correspond to periodic orbits of the integrable dynamics in
the gravitational sector. It is worth noting that in the realm of general relativity the
dynamical behavior of homogeneous and isotropic cosmological models in the presence of
a massive scalar field was analytically studied for the first time in the pioneer papers by
Starobinsky [6], and by Belinsky, Grishchuk, Zel’dovich and Khalatnikov [7]. Starobinsky
examined the possibility of a non-singular model due to quantum corrections of the scalar
field near the region of maximum contraction of a k = 1 model. Belinsky et al used the
methods of the qualitative theory of dynamical systems to examine the generality and
conditions of realization of inflationary stages of expansion.

In our model the introduction of a massive scalar field, even in the form of small
fluctuations, will turn out to have non-integrable dynamics. As a consequence, non-linear
resonance phenomena are present in the phase space dynamics for certain domains of
the parameter space of the models which we call windows of resonance. The associated
dynamical configurations become metastable allowing the orbits escape to the de Sitter
infinity in a finite time. The change from stable to metastable is mathematically
described as the bifurcation of the periodic orbit of the gravitational sector (in the
neighborhood of which the inflaton fluctuations take place) due to the resonance. We
organize the paper as follows. In section 2 we describe the model with its minimal sets
of ingredients and examine some of the structures of its phase space, such as critical
points and the invariant plane, that constitute the skeleton of the dynamics. In section 3
we make a semi-analytical approach to the phenomenon of non-linear resonance, with
an accurate approximation for the dominant resonances that allows us to localize and
label the dominant resonant windows in the parameter space. Section 4 discusses the
physical constraints imposed by the resonances on the parameters of the model in order
that inflation may be realized. We also discuss how typical this behavior is and the
structural stability of the resonance pattern. Section 5 is dedicated to final discussions
and conclusions.
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2. The model and the phase space dynamics

We consider a braneworld model with a closed Friedmann–Robertson–Walker (FRW)
metric embedded in a 5-dim conformally flat bulk with one extra timelike dimension. The
model contains a minimal set of ingredients, namely, a conformally coupled scalar field
(the inflaton field) φ and a radiation fluid, evolving on the brane with corrections due
to the bulk. Our task here is to derive the Hamiltonian of the model and characterize
its phase space. We start by giving a brief introduction to braneworld theory, making
explicit the specific assumptions used in obtaining the dynamics of the model. We rely
on references [3]–[5], and our notation basically follows [8]. Let us start with a 4-dim
Lorentzian brane Σ with metric gab embedded in a 5-dim bulk M with metric gAB. Capital
italic indices range from 0 to 4, small italic indices range from 0 to 3. We regard Σ as a
common boundary of two pieces M1 and M2 of M and the metric gab induced on the
brane by the metric of the two pieces should coincide, although the extrinsic curvatures
of Σ in M1 and M2 are allowed to be different. The action for the theory has the general
form

S =
1

2κ5

[ ∫
M1

(
(5)R − 2Λ5

)
− 2ε

∫
Σ

K1 +

∫
M2

(
(5)R − 2Λ5

)
− 2ε

∫
Σ

K2

]

+

∫
Σ

(
1

2κ4

(4)R − 2σ

)
+

∫
Σ

L4(gab, ρ, φ). (4)

In the above (5)R is the Ricci scalar of the Lorentzian 5-dim metric gAB on M, and (4)R
is the scalar curvature of the induced metric gab on Σ. The parameter σ is called the
brane tension. The unit vector nA normal to the boundary Σ has norm ε. If ε = −1
the signature of the bulk space is (−,−, +, +, +), so the extra dimension is timelike.
The quantity K = Kabg

ab is the trace of the symmetric tensor of extrinsic curvature
Kab = Y C

,a Y D
,b ∇CnD, where Y A(xa) are the embedding functions of Σ in M [3]. Also

L4(gab, ρ, φ) =
√
−g

[
ρ +

1

2
(gabφ,aφ,b − m2φ2) +

ξ

2
(4)Rφ2

]
(5)

is the Lagrangian density of the four-dimensional massive inflaton field φ plus a radiation
fluid (equation of state p = ρ/3), whose dynamics is restricted to the brane Σ. They
interact only with the induced metric gab. We further assume that the inflaton field is
non-minimally coupled with gab, with coupling parameter ξ. All integrations over the bulk

and the brane are taken with the natural volume elements
√

−ε(5)gd5x and
√

−(4)gd4x
respectively. κ5 and κ4 are Einstein constants in five and four dimensions. Throughout
the paper we use units such that � = c = 1.

Variations that leave the induced metric on Σ intact result in the equations

(5)GAB + Λ5gAB = 0, (6)

while considering arbitrary variations of gAB and taking into account (6) we obtain

(4)Gab + ε
κ4

κ5
(S

(1)
ab + S

(2)
ab ) = κ4(τab − σgab), (7)

where Sab ≡ Kab − Kgab and τab is the energy–momentum tensor of matter and fields
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on the brane. In the limit κ4 → ∞ equation (7) reduces to the Israel–Darmois junction
condition [9]

(S
(1)
ab + S

(2)
ab ) = εκ5(τab − σgab). (8)

We impose the Z2-symmetry [5] and use the junction conditions (8) to determine the
extrinsic curvature on the brane,

Kab = − ε

2
κ5

[(
τab −

1

3
τgab

)
+

σ

3
gab

]
. (9)

Now using the Gauss equation (4)Rabcd = (5)RMNRSY M
,a Y N

,b Y R
,c Y S

,d + ε(KacKbd − KadKbc)
together with equations (6) and (9) we arrive at the induced field equations on the brane

(4)Gab = −
(

Λ5 +
1

12
κ2

5εσ
2

)
gab +

κ2
5

6
εστab + εκ5πab. (10)

In the above

πab = −1
4
τacτ

c
b + 1

12
ττab + 1

8
gabτcdτ

cd − 1
24

gabτ
2. (11)

We remark the absence of the conformal tensor projection in equation (10) since the FRW
brane is embedded in a conformally flat bulk.

Equation (10) is the dynamical equation of the gravitational field on the brane. It is
similar to Einstein equations in four dimensions, except in the second term in the RHS
which is a correction resulting from the brane–bulk interaction quadratic in the extrinsic
curvature. Another important difference is that the effective Newton’s gravitational
constant GN = (κ2

5σε/48π) as well as the effective cosmological constant in the brane
depend basically on the brane tension σ, as we will discuss. We recall that for the
evaluation of the extrinsic curvature (9) we use the energy–momentum tensor of the matter
fields on the brane. In our model they are described by the Lagrangian density (5). Since
only small spatially homogeneous fluctuations of φ will be taken into account (they are
used just to trigger the resonances) we will assume that the bulk corrections arising from
the extrinsic curvature are dominated by the radiation fluid and the brane tension σ only.
In this instance we have

πab = 2
9
ρ2uaub + 5

36
ρ2gab, (12)

where ρ is the density of the radiation fluid as measured by an observer with 4-velocity
field ua. Therefore in our model—where the extra dimension is timelike (ε = −1)—the
bulk corrections behave effectively as a phantom fluid with negative energy density.

Let us consider the closed FRW metric on the brane given by the line element

ds2 = N(t)2 dt2 − a(t)2

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (13)

where a(t) is the scale factor and N(t) is the lapse function. In view of the above, the
effective Lagrangian density that describes the dynamics (10) for our model is given by

L = −
√
−g[−R/2(1 − ξφ2) − Λeff + 1

2
(gabφ,aφ,b − m2φ2) − ρ̃], (14)

where

Λeff = (Λ5 + 1
12

κ2
5εσ

2) (15)
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and

ρ̃ =
κ2

5ε

12
(2σρ + ρ2). (16)

We notice that ρ̃ is obtained as the component (0, 0) of the last two terms in the
RHS of (10). The Lagrangian (14) corresponds to (5) properly modified. The non-
minimal coupling of the inflaton with gravitation considered here is partly motivated by
quantum calculations in curved spacetimes (taking into account quantum backreaction,
renormalization, etc) and partly by the possibility of constructing successful inflationary
and pre-inflationary scenarios [10]. The case ξ = 0 is the usual minimal coupling of the
scalar field with gravitation, and ξ = 1/6 is the so-called conformal coupling [11].

In the above, g is the determinant of the metric and R is the Ricci scalar given by

R = − 6

N2

(
ä

a
+

ȧ2

a2
+ N2 k

a2
− ȧṄ

aN

)
. (17)

Due to the spatial homogeneity of the model, the total action can then be expressed as

S = V0

∫
dt Na3

[
− R

2
(1 − ξφ2) +

1

2N2
φ̇2 − Λeff − m2

2
φ2 − ρ̃

]
, (18)

where the constant V0 = 4π(arcsin
√

k)/
√

k stands for the volume of the spatial sections
t = const. Discarding the total time derivative term in the integrand of (18), and further
introducing a new scalar field variable ϕ = φa6ξ, equation (18) turns into

S = V0

∫
dt

[
− 3aȧ2

N
+ 3kaN +

a(3−12ξ)

2N
ϕ̇2 +

3ξ(1 − 6ξ)

N
ȧ2a(1−12ξ)ϕ2

− Na3

(
Λeff +

m2

2
ϕ2a−12ξ

)
− 3kξNϕ2a(1−12ξ) − Na3ρ̃

]
. (19)

By a proper rescaling of the scale factor we set V0 = 1. From the kinetic terms of (19) we
define the momenta canonically conjugate to a and ϕ respectively as

pa = −6aȧ

N
+

6ξ(1 − 6ξ)

N
ȧϕ2a(1−12ξ),

pϕ =
a(3−12ξ)

N
ϕ̇,

so that (19) assumes the canonical form

S =

∫
dt (ȧpa + ϕ̇pϕ − NH), (20)

where

H =
p2

a

12a[−1 + (1 − 6ξ)ξϕ2a−12ξ]
+

p2
ϕ

2a(3−12ξ)
− 3ka

+ a3

(
Λeff +

m2

2
ϕ2a−12ξ

)
+ 3kξϕ2a(1−12ξ) + a3ρ̃. (21)
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Extremizing the action (20) with respect to variations in N results in the Hamiltonian
constraint

H =
p2

a

12a[−1 + (1 − 6ξ)ξϕ2a−12ξ]
+

p2
ϕ

2a(3−12ξ)
− 3ka

+ a3

(
Λeff +

m2

2
ϕ2a−12ξ

)
+ 3kξϕ2a(1−12ξ) + a3ρ̃ = 0. (22)

Partly due to analytical simplicity of the analysis of non-linear resonance phenomena,
in the remainder of the paper we will restrict ourselves to the dynamics in the conformal
coupling case ξ = 1/6. For an extended range of values of ξ, a larger parameter space
analysis is demanded and will be the object of a future investigation. Adopting the
conformal time gauge N = a, the dynamics of the model may then be derived from the
Hamiltonian constraint expressed in the form

H =
1

12
p2

a − a4Λeff + 3ka2 − 1

2
(p2

ϕ + ϕ2) − 1

2
m2a2ϕ2 − a4 εκ2

5

12
(2σρ + ρ2) = 0. (23)

We remark that this Hamiltonian coincides with equation (18) of the second reference [3]
(in the gauge N = 1, with the identification M3 = 2/κ5), up to the presence of a
conformally coupled scalar field. In the FRW geometry (13) the energy density of the
radiation fluid is given by ρ = E0a

−4 where E0 is a constant proportional to the total
energy of the fluid. We choose ε = −1 which implements realistic bounces in the model;
as a consequence we require σ to be negative. We also rescale k = 1. Substitution in (23)
results in

H =
1

12
p2

a + V (a) − 1

2
(p2

ϕ + ϕ2) − 1

2
m2a2ϕ2 − 2

κ2
5

12
|σ|E0. (24)

In the above V (a) is a potential in the gravitational sector (a, pa) given by

V (a) = 3a2 − Λeffa4 +
κ2

5

12
E2

0

1

a4
, (25)

displaying the contributions of the spatial curvature term, the effective cosmological
constant and the correction term arising from the bulk geometry responsible for the
bounces. The quantity κ2

5|σ|E0/6 ≡ κeffE0 is the Hamiltonian constant of motion, and
corresponds to the total mass–energy of the radiation fluid given in geometrical units,
scaled by |σ|κ2

5 which parametrizes the effective gravitational coupling in the brane. The
parameter σ will be a crucial component of the parametric space of the system labeled
by (m, E0, σ), the independent variation of which will determine regions of parametric
resonance as well as regions of parametric stability of the dynamics, for fixed m and
E0. As a consequence the effective gravitational constant will have distinct values in
configurations of the system where escape to inflation is allowed.

In the low energy limit the cosmological constant Λeff may be interpreted as the
effective vacuum energy of the inflaton field and the ϕ are the spatially homogeneous
expectation values of the inflaton fluctuations about its vacuum state. For numerical
purposes we fix κ2

5/12 = 1 and we will drop the subscript ‘eff’ from the effective
cosmological constant on the brane.
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The final form of the Hamiltonian to be discussed in the remainder of the paper is
then

H =
1

12
p2

a + 3a2 − Λa4 +
E2

0

a4
− 1

2
(p2

ϕ + ϕ2) − 1

2
m2a2ϕ2 − 2|σ|E0 = 0. (26)

The focus on the underlying bulk–brane structure of the gravitational dynamics will lead
us to label the parameter space of the system with (m, E0, σ).

We start by giving an overview of the basic skeleton of phase space, which organizes
the whole dynamics of the model. We note first that the Hamiltonian (26) is separable,
and consequently integrable, for m = 0. A non-zero mass couples the two degrees of
freedom (the gravitational sector and the scalar field sector), turning the system non-
integrable. The critical points (stationary solutions of the Hamilton’s equations derived
from (26)) in the finite region of phase space are characterized by

pa = pϕ = 0, ϕ = 0, V ′(a) = 0; (27)

and are connected to the extrema of the potential V (a). In the region a ≥ 0 there
are only two critical points, P0 and P1, associated with the maximum and minimum of
the potential, respectively. P0 corresponds to the configuration of the Einstein static
universe while the critical point P1 is a stable static solution arising as a consequence
of the effective negative energy density connected to the bulk–brane corrections to the
gravitational dynamics. P0 is a saddle center and P1 a pure center, as can be seen from
the linearization of the dynamics about each critical point [12].

A careful analysis of the potential V (a) shows that the energy of the critical points
P0 and P1 is always greater than zero, namely, V (P0) > 0 and V (P1) > 0. Furthermore
the presence of both critical points depends crucially on a relation between Λ and E0: for
a given Λ the value of E0 such that both critical points are present is limited by

E2
0(max) =

2187

4096

1

Λ3
. (28)

Namely, if E2
0 > E2

0(max) we have V ′(a) < 0 for all a > 0, implying that no critical points
exist in the finite phase space domain.

The critical points are contained in a two-dimensional submanifold of the phase space,
called the invariant plane and defined by

ϕ = 0, pϕ = 0. (29)

Orbits with initial conditions on this plane are totally contained in it, actually
corresponding to the dynamics in the sector (a, pa) of the separable case m = 0. The phase
portrait in the invariant plane is depicted in figure 1(b), connected to the one-dimensional
motion in the potential V (a). Due to the character of fluctuations of ϕ, physical
configurations are the ones corresponding to initial conditions near the invariant plane.

Also, a straightforward analysis of the infinity of phase space shows the presence
of a pair of critical points in this region, one acting as an attractor (stable de Sitter
configuration) and the other as a repeller (unstable de Sitter configuration).

The model allows for the presence of perpetually bouncing universes in the invariant
plane (cf figure 1(b)). We remark that the smaller Λ, the larger the phase space domain
available for bouncing orbits; in contrast, if the cosmological constant increases while
E0 is maintained fixed the domain of phase space available for these bouncing solutions
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Figure 1. (a) Plot of the potential V (a) for positive Λ, and (b) the phase portrait
of the invariant plane with the critical points P0 and P1.

decreases; beyond a certain value of Λ fixed by equation (28) only solutions with one single
bounce are possible. The latter have a behavior analogous to the integrable solutions
shown in the phase portrait of figure 1(b) for |σ|E0 > EP0, where EP0 ≡ V (P0) is the
value of the Hamiltonian constant for the saddle center P0.

As we mentioned already, we will restrict ourselves to dynamical configurations with
initial conditions for which the universe undergoes a series of bounces before it enters
an inflationary regime. They represent a hypothetical pre-inflationary phase where the
terms arising from high energy corrections play the fundamental role of preventing the
initial singularity, and produce a non-trivial dynamics before the exit to inflation4. These
configurations are basically the ones for which 2|σ|E0 < EP0 . They have the theoretical

4 The exit to inflation occurs whenever a given orbit approaches asymptotically the de Sitter configuration; the
inflationary phase is characterized by the de Sitter configuration driven by the effective cosmological constant
understood as part of the scalar field, as its vacuum energy is dominant during inflation.
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advantage over one-single-bounce models in that they avoid the problem of initial
conditions at past infinity; furthermore they would be amenable to a straightforward semi-
classical treatment. Values of 2|σ|E0 < EP0 actually correspond to bounded motions in
the integrable case m = 0, or to initially bounded motion in the non-integrable cases when
stable configurations may be disrupted by non-linear resonance phenomena. Windows of
resonance in the parameter space (m, E0, σ) favor inflation since the resonances destroy
KAM tori that trap the orbits about the origin (ϕ = 0, pϕ = 0). Among other complex
dynamical phenomena, non-linear resonances may create structures such as Cantori that
favor inflation after a process of long time diffusion. We have recently dealt with analogous
phenomena in a cosmological scenario with a phantom fluid having ρph ∼ −1/a6 [13]. The
analysis there will be briefly reviewed in the next section as applied to the system (26), in
order that we can examine properly one of the main questions of the paper, namely the
physical constraints that non-linear resonance phenomena impose on the brane tension
parameter, the mass of the inflaton and E0. As we will see, only very narrow windows in
the parameter space will allow for phase space configurations that realize inflation.

3. The non-linear resonance windows: a semi-analytical approach

Let us consider the dynamics in the energy surface 2|σ|E0 corresponding to a bounded
motion in the integrable case m = 0, or to initially bounded motion in the non-integrable
cases.

We start from the integrable case m = 0 in which the motion is separable with the
separately conserved quantities Ea = p2

a/12 + V (a) and Eϕ = (p2
ϕ + ϕ2)/2, satisfying

2|σ|E0 = −Eϕ + Ea. For Ea < E(P0) it is not difficult to see that the equation
Ea − V (a) = 0 has three real positive roots (a3 < a2 < a1) in the physical domain
a > 0, and two conjugate imaginary roots ±iα. For the non-integrable case m2 	= 0, with
m small and/or initial conditions ϕ0 small, Ea 
 2|σ|E0 and the period of the associated
periodic orbit is given approximately by

Ta =

√
3

Λ
N, (30)

where N is the complete elliptic integral of the third kind [14]

N =

∫ a2
2

a2
3

√
x dx√

(x + α2)(x − a2
3)(x − a2

2)(x − a2
1)

. (31)

The associated frequency is defined as

νa = 1/Ta, (32)

such that the angle variable Θa = νaτ varies in the interval [0, 1] during a complete cycle
of the original variable a. In the sector (ϕ, pϕ) the frequency in the non-integrable case
may be approximated by5

ν̃ϕ =
1

2π

√
1 +

m2

2
(a2

2 + a2
3). (33)

5 The correction of νϕ = 1/2π into ν̃ϕ in equation (33) is obtained by using the exact equation ϕ̈+(1+m2a2(τ ))ϕ =
0 and substituting in it the solution a(τ ) of the associated integrable case and extracting the dominant correction.
This gives an accurate approximation that is very efficient for localizing the resonances, as shown in figure 2.
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For future reference, we note that the periodic orbits of the sector (a, pa), in the
integrable case, will be represented by the elliptic fixed point (ϕ = 0, pϕ = 0) of the
Poincaré map with surface of section pa = 0. For m small this picture is maintained with
(ϕ = 0, pϕ = 0) as a center of a primary island of invariant KAM tori; in fact, for a
small coupling parameter m, the KAM theorem [15] establishes the stability of tori with a
sufficiently incommensurate frequency ratio, which in the present case means νa sufficiently
irrational. Other integrable tori are destroyed by the non-integrable perturbation, and the
region between two remaining invariant tori presents an intricate dynamics (unstable
periodic orbits, stable periodic orbits surrounded by islands, broken separatrices and
stochastic layers, this structure repeating down to smaller scales [16]). However this
dynamics is bounded by the two invariant tori with irrational νa implying in a certain
sense the stability of the dynamics. As m increases numerical experiments show that
invariant KAM tori may be destroyed leading to a loss of the stability of the system. This
is the case of interest to us as orbits initially trapped about the center (ϕ = 0, pϕ = 0) can
escape into an inflationary phase. An important mechanism for this break-up of invariant
tori is non-linear resonance [17], a phenomenon that occurs in a restricted domain of the
parameters, as we proceed to discuss.

Approximate analytical treatment analogous to that of [13] shows that the dominant
resonances of the system are determined by

R ≡ νa

ν̃ϕ

=
2

n
, n ≥ 2. (34)

For a fixed integer n ≥ 2, equation (34) determines surfaces in the parameter space
(m, E0, σ), in the neighborhood of which an n-resonance occurs. The setting up of
the resonance is signaled by the bifurcation of the stable periodic orbit at the origin
(ϕ = 0, pϕ = 0) into an unstable periodic orbit plus one or two characteristic stable
periodic orbits of the resonance, according respectively to whether n is odd or even. The
condition n ≥ 2 guarantees that the mass m is real for values of 2|σ|E0 corresponding to
initially bounded orbits.

The actual resonant chart is now constructed numerically using the exact dynamics.
The expression (34)—where approximations as well as the neglect of non-resonant terms
were used—constitutes an accurate guide for localizing and labeling the resonances.
However in the actual resonance chart constructed numerically with the exact dynamics
the surfaces will be spread into small finite volumes; these volumes are called windows of
resonance for the exact dynamics. In the numerical experiments of the paper we adopted
Λ = 3/2 for computational convenience. The stability of the results with respect to the
variation of Λ is discussed in section 4.

In figure 2 we display the resonance chart in the parametric plane (m, σ) for Λ = 3/2
and E0 = 0.013. The chart corresponds to initial conditions taken near the invariant plane,
with pa = pϕ = 0, ϕ = 10−4. The continuous lines are solutions of equation (34) while
the gray regions spreading about the lines are the sections of the resonance windows by
the plane E0 = 0.013. The remaining regions (white) of the parameter space correspond
to otherwise stable motion (namely motion between two KAM tori). On driving the
configuration of the system towards a resonance zone in the parametric space we turn a
stable configuration into a metastable one with possible disruption of orbits and escape
towards the de Sitter infinity in a finite time.
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Figure 2. Resonance chart of the exact dynamics in the parameter plane (m,σ)
for E0 = 0.013 and ϕ0 = 10−4. The continuous lines are solutions of the
approximate resonant condition (34), while the gray regions about the continuous
lines correspond to parametric domains of resonance for the exact dynamics, with
bifurcation of the periodic orbit at the origin. The white regions correspond to
stable motion.

It is worth noticing that the resonance windows are bounded above and below, a
feature independent of the value of Λ. For resonances n ≥ 2 the theoretical upper bound
for σ obtained from equation (34) results in σupper 
 −57.75; for the resonance n = 2
however we obtain a smaller upper bound σupper 
 −57.294 corresponding to the minimum
value of m 
 0.034 575 550. The lower bound σlower 
 −8.35 results for all n resonances.
These numerical values were obtained for Λ = 3/2 adopted in our numerical experiments.
The upper and lower bounds for σ and the lower bound for m are associated with the
existence of the three real roots (a3, a2, a1) of the polynomial Ea − V (a) = 0, where
Ea 
 2|σ|E0, and consequently with the existence of initially bouncing motion.

From the point of view of pre-inflationary models, stability versus non-linear resonance
instability will be considered connected to initial conditions near the invariant plane only,
namely with ϕ, pϕ small, corresponding to fluctuations of the inflaton field. Non-linear
resonance will turn orbits generated from these initial conditions from stable to unstable
(and vice versa) as a consequence of bifurcation of the critical point ϕ = pϕ = 0, at the
origin of the Poincaré map with surface of section pa = 0, from a center to a saddle (and
vice versa). We recall that the origin of the map is a periodic orbit of period Ta in the
(a, pa) sector.

Analogous schematic analysis of the dynamics near the resonances is given in [13]. The
basic pattern that emerges as the system enters a resonance window is a characteristic
structure of stable periodic orbits, associated with the particular resonance n. These
periodic orbits are enclosed by KAM tori and the primary islands of KAM dynamics have
a border beyond which the dynamics is stochastic, filling large domains of phase space.
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Table 1. Classification of resonances according to the characteristic periodic
orbits.

Resonance

Characteristic
periodic
orbits

Primary
KAM islands,
section ϕ = 0

Primary KAM
islands,
section pa = 0

n = 2k 2 k 1
n = 2k + 1 1 2k + 1 2

This is the general picture but some remarkable differences appear according to whether
the resonance is odd or even, namely, n = odd or even. These results are summarized in
table 1.

In table 1, for even resonances n = 2k, the number k of primary KAM islands in the
surface of section ϕ = 0 refers to each characteristic periodic orbit.

We should remark that in a given surface of constant Hamiltonian, namely 2|σ|E0 =
const, a family of invariant KAM tori is present about each characteristic periodic orbit.
However, according to the above table, the number of invariant tori in the case of n = even
resonances is twice the number of invariant tori in the case of n = odd resonances; so
for an n = even resonance two distinct invariant tori (each about one of the two distinct
characteristic periodic orbits of the resonance) may end up with the same energy (they
differ by ϕ → −ϕ). This degeneracy in the classical configuration may be raised in a
quantum version of the bounded dynamics with possible tunneling between these two
classically allowed regions, with the quantum state having a non-null amplitude on both
tori. Therefore the expected tunnelings enhanced by resonances between the classically
allowed regions inside and outside the well of figure 1(a) do not have to be treated
separately, in an eventual quantum version of the dynamics.

4. Resonance bifurcations and physical constraints on the parameters of the model

Let us consider a fixed value of the Hamiltonian constant of motion 2|σ|E0 in the
resonance chart of figure 1(a). For values of m not in the resonance windows, the origin
(ϕ = 0, pϕ = 0) of the Poincaré map with surface of section pa = 0 is a center connected
to a stable periodic orbit in the sector (a, pa). However as the system is driven into a
given resonance window by an appropriate change of m and/or σ this stable periodic
orbit bifurcates into an unstable periodic orbit, namely the origin of the Poincaré map
turns into a saddle.

The instability versus the stability of the origin (ϕ = 0, pϕ = 0) is crucial for the
dynamics of inflation (namely, the escape to inflation), having a bearing on the dynamics
of the spatially homogeneous expectation values ϕ(τ) of the inflaton field, related to the
escape into inflation. In this instance the initial conditions for ϕ are assumed to be small,
and are to be taken near the invariant plane ϕ = 0, pϕ = 0, which corresponds to a
neighborhood of the critical point of the map at the origin (ϕ = 0, pϕ = 0). Therefore
the region of parametric stability is unfavorable for producing inflation since the orbit
(a configuration of the early universe) will be trapped in a stable state enclosed by two
invariant tori of a main KAM island of the map. On the other hand, if the system is in
the region of parametric resonance, orbits with initial conditions near the invariant plane
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Figure 3. Resonance tongue n = 3 (in gray) in the parameter plane (m,E2
0 )

for 2|σ|E0 = 1.3. The heavy black dotted sheet dividing the tongue constitutes
a threshold region between disruptive resonances with rapid escape to inflation
(τ ≤ 15 000, lower portion of the resonance tongue) and long time diffusion with
no escape to inflation (up to τ = 100 000, upper part of the resonance tongue).
Configurations on the threshold correspond to orbits which escape to inflation in
a time 15 000 ≤ τ ≤ 100 000. Points in the upper part of the tongue correspond
to a diffusion dynamics with no escape to inflation, in spite of the bifurcation of
the origin (cf text).

are metastable configurations that either escape rapidly to de Sitter infinity or undergo
a long time diffusion through stochastic regions of phase space before finally escaping
(cf figures 4 and 5 and discussions below).

The resonance windows in the complete parameter space (m, E0, σ) are constituted
of n disjoint 3-dim volumes, the section of which with the plane E0 = 0.013 results in
the n shaded regions of figure 2. The volumes of the windows are small as compared to
the whole volume of the parameter space, and only initial configurations inside them may
realize inflation.

From the point of view of the dynamics of inflation, the resonance windows present a
further structure connected with disruptive resonances and/or long time diffusion before
escape to inflation. In fact, as we proceed to discuss, a considerable domain of the
resonance windows—although corresponding to a bifurcation of the stable periodic orbit
at the origin—does not lead to escape into inflation and must be properly discarded.

To illustrate this further restriction it will be more appropriate to consider the
resonant chart in the parameter plane (E0, m) for |σ|E0 = const. Without loss of
generality, we restrict our analysis to the resonance tongue n = 3, shown as the gray
region in figure 3, obtained for 2|σ|E0 = 1.3. As mentioned before, this resonance domain

Journal of Cosmology and Astroparticle Physics 10 (2007) 008 (stacks.iop.org/JCAP/2007/i=10/a=008) 14

http://stacks.iop.org/JCAP/2007/i=10/a=008


JC
A

P
10(2007)008

Non-linear resonance in bouncing braneworld universes and initial conditions for inflation

–0.15 –0.1 –0.05 0 0.05 0.1 0.15

–0.1

–0.05

0

0.05

0.1

–0.15

0.15

Figure 4. Poincaré map with surface of section pa = 0 for a single orbit
generated with initial conditions pa = 0 = pϕ, ϕ = 10−4, and parameters
(m = 3.572, E2

0 = 0.002) in the threshold region of the n = 3 resonance tongue
of figure 3. This configuration corresponds to a long time diffusion of the orbit
before escape to inflation at τ 
 76 300. The Poincaré map exhibits the structure
of the random motion of the orbit in the stochastic sea surrounding primary and
secondary KAM islands of the resonance.

is numerically constructed considering n = 3 bifurcations of the periodic orbit at the origin.
However a bifurcation does not necessarily correspond either to a disruptive resonance or
to a long time diffusion, both with escape of the orbit to the de Sitter infinity. Actually
for large parts of the resonance window the configurations with initial conditions about
the origin (ϕ = 0, pϕ = 0) remain trapped between two invariant tori of the main KAM
islands of the characteristic periodic orbits of the resonance.

Indeed a careful numerical examination shows that in the resonance tongue n = 3 of
figure 3 we have three dynamically distinct regions. The heavy black dotted sheet that
divides the tongue constitutes a threshold region in which the resonance induces the escape
of orbits in a time 15 000 ≤ τ ≤ 100 000, the larger times corresponding to a long time
diffusion before escape to inflation. The region below this threshold (at the lower part
of the tongue) corresponds to configurations for which the dynamics is highly unstable,
the resonances being disruptive with a rapid escape to inflation (τ ≤ 15 000). The region
above the threshold (at the upper part of the tongue) corresponds to configurations with
chaotic motion bounded between two KAM tori, but otherwise stable. We should note
that the borders of the threshold are not sharply defined (possibly with a fractal structure),
whatever its limits Δτ of definition.
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Figure 5. Time signals a(τ) and ϕ(τ) for parameters (m = 3.505, E2
0 =

0.002) below the threshold region of the n = 3 resonance tongue of figure 3,
corresponding to a disruptive resonance with escape to inflation at τ 
 300. The
orbit was generated from initial conditions pa = 0 = pϕ, ϕ = 10−4.

The three dynamically distinct behaviors are illustrated in figures 4–6. Figure 5
displays the time signals a(τ) and ϕ(τ) for values (m = 3.505, E2

0 = 0.002) taken in
the region of disruptive resonances, of the tongue n = 3 in figure 3. The escape to
inflation occurs in τ 
 300 and time signals are used since there is not enough recurrence
for constructing a well defined Poincaré map. On the other hand figure 4 displays the
Poincaré map of a single orbit with initial conditions pa = 0 = pϕ and ϕ = 10−4 and
corresponding to values (m = 3.572, E2

0 = 0.002) in the threshold region, with a long
time diffusion before escape to inflation. The Poincaré map exhibits the structure of
the random motion in the stochastic sea surrounding KAM islands, before the escape at
τ 
 76 300. Finally figure 6 shows the time signals of orbits with (m = 3.65, E2

0 = 0.02)
in the upper region of the resonance tongue, corresponding to bounded chaotic motion
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Figure 6. Time signals a(τ) and ϕ(τ) for parameters (m = 3.65, E2
0 = 0.02) in

the upper region (above the threshold) of the n = 3 resonance tongue of figure 3,
corresponding to chaotic stable motion trapped between two KAM tori, with no
escape to inflation. The orbit was generated from initial conditions pa = 0 = pϕ,
ϕ = 10−4.

between two KAM tori. We note that the resonance tongue of figure 3 was constructed
with ϕ0 = 10−4.

Therefore, from the point of view of the dynamics of inflation, the region of resonance
tongue n = 3 lying above the threshold and below the upper border of the tongue should
also be excluded, as such parameter configurations do not properly realize inflation. The
same considerations apply to all n-resonance tongues. The general picture is that bouncing
braneworld models have a very restricted domain in their parameter space where inflation
can be realized.

The structure of resonance windows imposes some interesting restrictions on the brane
tension σ that regulates the gravitational coupling strength on the brane as induced by
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Figure 7. Plot of the brane tension σ versus μ (cf equation (35)) for fixed m = 8
and E0 = 0.013. The discrete white dots correspond to values μ = 2/n, for
n = 2–12. We see that the larger the resonance, the stronger the gravitational
interaction on the braneworld inflated from the resonance considered. The
discrete values of σ accumulate towards an upper bound for increasing n.

the gravitational coupling strength κ5 of the bulk. In fact let us consider the approximate
resonance condition (34), R(m, E0, σ) = 2/n. Solving this condition for σ we obtain

|σ| = F(m, E0, 2/n). (35)

For fixed m = 8 and E0 = 0.013, the function F(m, E0, μ) versus μ is plotted as the
continuous line in figure 7. The small circles on the continuous line depict the points
corresponding to the discrete values μ = 2/n associated with the resonances. We then see
that the larger the resonance, the stronger the gravitational interaction in the braneworld
universe inflated from initial conditions connected with the resonance considered. For
the exact dynamics these small circles will extended to n small discrete spots (not shown
here) exhibiting a quantization of the brane tension and consequently of the gravitational
coupling strength in the respective brane inflated due to a specific resonance. An upper
bound for σ is also obtained, which will be fixed by m and E0 and also by the value of
the cosmological constant adopted.

Finally a discussion of the structural stability of the above resonance pattern is in
order. A careful examination of the basic equations (25), (26) and (34), together with the
restriction (28), shows that the ranges of the parameters defining the non-linear resonance
domains are fixed basically by the value of Λ adopted (for numerical convenience we
adopted in our experiments the value Λ = 1.5). Indeed the smaller the value of Λ, the
larger the height of the barrier in the potential of figure 1(a) implying the existence of
bounded solutions for a larger domain of σE0 and leading to a decrease in values of m
corresponding to the dominant resonances. We verify that a decrease of one order of
magnitude in Λ results in a decrease of the values of m for the dominant resonances of
about the same order of magnitude. For instance if we adopt Λ = 0.1 we obtain m 
 0.5
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for the resonance n = 2 corresponding to a value of σE0 = 19.0. However the underlying
pattern of resonance windows and their internal substructure is maintained, being similar
to that of the figures shown above in the paper. In this sense the pattern is said to
be structurally stable. Once, for instance, the parameters m and Λ are determined, the
particular resonance might be fixed as well as the small range of values for E0 and σ that
would allow inflation to occur.

5. Conclusions and final discussion

In this paper we have examined the dynamics of spatially closed inflationary models in
which high energy corrections to general relativity are considered, leading to the presence
of non-singular bounces in the scale factor of the models. These corrections arise from
local bulk effects on the four-dimensional FRW braneworld, in the realm of a Randall–
Sundrum-type theory; for the case of a timelike extra dimension the corrections result in
a repulsive force that avoids the singularity and provide a concrete model for bounces in
the early phase of the universe. The matter content of the model, confined to the FRW
brane, consists of a radiation fluid plus a massive scalar field (the inflaton field). The
latter enters in the dynamics as small spatially homogeneous expectation values of its
fluctuations about the vacuum configuration. Therefore we use the approximation that
the local high energy corrections from the bulk, proportional to the square of the energy
density, are dominated by the radiation fluid. The resulting dynamics is non-integrable
and chaotic if the mass of the inflaton m 	= 0, and represents a pre-inflationary phase of
the universe with a non-trivial dynamics before the exit to inflation.

We restrict ourselves to dynamical configurations in which the scale factor is initially
bounded, bouncing in a potential well arising in the gravitational sector due to the effective
cosmological constant, the positive spatial curvature and the high energy corrections from
the bulk. They have the theoretical advantage over one-single-bounce models in that they
avoid the problem of initial conditions for the universe at past infinity. These metastable
configurations are disrupted at later times by non-linear parametric resonances of KAM
tori that drive the universe into a inflationary regime.

Non-linear resonance of KAM tori takes place for particular domains of the parameter
space (σ, m, E0) of the model, called windows of resonance, resulting in a complex phase
space dynamics. Each resonance is characterized by an integer n ≥ 2 and its main feature
is the bifurcation of the stable periodic orbit at the origin (ϕ = 0, pϕ = 0) into an unstable
periodic orbit accompanied by one or two characteristic stable periodic orbits according to
whether n is odd or even respectively. Since the initial conditions of the expectation values
ϕ are assumed to be small and are then taken near the invariant plane ϕ = 0, pϕ = 0,
it follows that the parametric domains of resonance are the ones that allow for inflation
in the system. Now if we adhere to the view—strongly sustained by observations—that
inflation is a sound paradigm for cosmology, then the values of the parameters of the
braneworld model must be constrained to the resonance windows of the parameter space.
In particular the brane tension σ, which regulates the relation between the strength of
the gravitational coupling in the 5-dim bulk and in the brane, will be restricted to small
sheets (depending on the integer n ≥ 2) as shown in figure 2. In this instance the larger
the order of the resonance, the stronger the gravitational interaction in the braneworld
universe inflated from initial conditions connected with the resonance considered. For
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fixed m and E0 we observe a quantization of the brane tension and consequently of the
gravitational coupling strength in the respective brane inflated due to a specific resonance.
Also through a careful numerical examination we observe that the pattern of resonance
windows in the parameter space of the model is structurally stable, with the range of
the parameters defining the non-linear resonance domains being fixed basically by the
value of Λ adopted. For a large domain of σE0 the decrease of Λ leads to a decrease
in values m corresponding to the dominant resonances; in particular we verify that a
decrease of one order of magnitude in Λ results in a decrease of the values of m for the
dominant resonances of about the same order of magnitude. However the underlying
pattern of resonance windows and their internal substructure is maintained. In this sense
the pattern is said to be structurally stable.

Three distinct dynamical patterns are set up by the resonance, according to the above
mentioned substructures in the resonance windows. As illustrated in figure 3, if the initial
conditions correspond to configurations in the lower region of the resonance tongue we
have short time disruption of the bounded orbit with a rapid escape to inflation. On the
other hand, if the initial conditions correspond to configurations in the threshold region of
the tongue the orbit undergoes a long time diffusion in the stochastic sea surrounding the
main KAM stability islands of the resonance, characteristic of quasi-turbulent regimes,
before escape to inflation. Finally for initial conditions connected to the upper part of
the tongue the orbit undergoes diffusion without escaping to inflation up to times larger
than τ = 100 000. This latter domain of the resonance window must also be excluded on
physical grounds since they correspond to configurations that do not realize inflation.

We should also mention that the number of invariant tori in the case of n = even
resonances is twice the number of invariant tori in the case of n = odd resonances, and
for an n = even resonance two distinct invariant tori (each about one of the two distinct
characteristic periodic orbits of the resonance) may end up with the same energy (they
differ by ϕ → −ϕ). However this degeneracy in the classical configuration could be raised
in a quantum version of the bounded dynamics with possible tunneling between these
two classically allowed regions, with the quantum state having a non-null amplitude on
both tori. Therefore expected tunnelings enhanced by resonances between the classically
allowed regions inside and outside the well of figure 1(a) do not have to be treated
separately, in an eventual quantum version of the dynamics.

Finally, if the above processes actually occur in the early dynamics of the universe,
the spectrum of perturbations should then have a signature of the particular resonance
and consequently of the particular value of the parameters (σ, m, E0) that were favored
in the early dynamical regime of the universe.
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