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Monte Carlo calculations of the magnetocaloric effect in RAl2 „R=Dy,Er…
E. P. Nóbrega
Centro Brasileiro de Pesquisa Físicas, Rua Xavier Sigaud 150, Rio de Janeiro, 22290-180, RJ, Brazil

N. A. de Oliveira and P. J. von Ranke
Universidade do Estado de Rio de Janeiro, Rua São Francisco Xavier 524, Rio de Janeiro,
20550-013, RJ, Brazil

A. Tropera�

Centro Brasileiro de Pesquisa Físicas, Rua Xavier Sigaud 150, Rio de Janeiro, 22290-180, RJ, Brazil
and Universidade do Estado de Rio de Janeiro, Rua São Francisco Xavier 524, Rio de Janeiro,
20550-013, RJ, Brazil

�Presented on 2 November 2005; published online 17 April 2006�

In this work we calculate the magnetocaloric effect in the Laves phase compound RAl2 by using a
model Hamiltonian of interacting spins where the spin-spin interaction is treated in the Monte Carlo
simulation. The isothermal entropy change and the adiabatic temperature change upon magnetic
field variations, for the compounds DyAl2 and ErAl2 are in good agreement with the available
experimental data. © 2006 American Institute of Physics. �DOI: 10.1063/1.2150815�
I. INTRODUCTION

The magnetocaloric effect,1–3 is characterized by the iso-
thermal entropy change ��S� and the adiabatic temperature
change ��Tad� upon magnetic field variation. From the theo-
retical point of view, the description4–9 of the magnetocaloric
effect in rare earth based compounds has been made by using
a Heisenberg model Hamiltonian in which the spin-spin in-
teraction is treated in the molecular field approximation. Al-
though the mean field approximation explains many experi-
mental data of the magnetocaloric quantities �S and �Tad, it
fails in explaining the magnetic part of the heat capacity
around the magnetic ordering temperature. This discrepancy
between theory and experiment, which occurs because the
molecular field theory does not take into account short range
interactions, points out that we should go beyond the mean
field approximation to understand the real physical mecha-
nisms involved in the magnetocaloric effect in rare earth
based compounds.

II. THEORETICAL CALCULATION

In this work, we use classical Monte Carlo
simulation10,11 to calculate the magnetocaloric effect in the
compounds RAl2 �R=Er and Dy�. In order to do so, we start
with the following energy:

E = − �
il

�ilJi · Jl + �
i

�i�ri · Ji�2 − �
i

g�BJi · hext, �1�

where �ij is the exchange interaction parameter between
neighboring sites, Ji is the total angular momentum of the R
ions and hext is the external magnetic field. The second term
represents the single ion anisotropy.

In order to calculate the energy given in Eq. �1�, via the
Monte Carlo simulation, we use a Potts-like model,10,11

where the z components of the total angular momentum are
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considered as quantum quantities, which can assume discrete
values in the interval −J�JZ�J. Within this consideration
the maximum value of the magnetic entropy Smag=R ln�2J
+1�, where R is the gas constant. For a given temperature,
the mean energy �E� is calculated by

�E� =
1

�Nc − N0� �
i�N0

NC

Ei, �2�

where Ei is the energy of the last spin configuration of a
given Monte Carlo step. Nc represents the total number of
Monte Carlo steps and N0 is the number of Monte Carlo
steps used for thermalization. A similar relation holds for the
mean square energy �E2�. The mean value of the total angu-
lar momentum per lattice site is calculated by

�J�� =
1

�Nc − N0� �
i�N0

NC � 1

NS
�
k=1

NS

Jk	
�

, �3�

where �=x ,y ,z. In Eq. �3�, the label “i” represents the
Monte Carlo step and the label “k” represents the lattice
sites. NS represents the number of lattice sites and Jk is the
spin at each lattice site. The total heat capacity is given by:
C�T ,hext�=Cmag�T ,hext�+Cel�T�+Clat�T�. The magnetic heat
capacity �Cmag�, per magnetic ions, is given by

Cmag�T,hext� =
�E2� − �E�2

kBT2 . �4�

Cel=�T is the contribution from the conduction electrons,
where � is the Sommerfeld coefficient. Clat is the contribu-
tion from the crystalline lattice which is taken here in the

Debye approximation as
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Clat�T� = 9RNi�4
 T

	D
�3�

0

	D/T x3

�ex − 1�
dx

− 
	D

T
� 1

�e	D/T − 1�	 , �5�

where Ni is the number of ions per formula unit and 
D is
the Debye temperature. The total entropy of the compound is
given by: S�T ,hext�=Smag�T ,hext�+Sel�T�+Slat�T�. The contri-
bution from the magnetic ions �Smag� is given by

Smag�T,hext� = �
0

T Cmag�T,hext�
T

dT , �6�

where Cmag is the magnetic heat capacity calculated in Eq.
�4�. The contribution from the conduction electrons is taken
as Sel=�T. The contribution from the crystalline lattice, also
taken in the Debye approximation, is given by

Slat�T� = Ni�− 3R ln�1 − e−

D

T �

+ 12R
 T


D
�3�

0


D/T x3

ex − 1
dx	 . �7�

III. NUMERICAL RESULTS AND CONCLUSIONS

In order to calculate the mean energy and consequently
the magnetocaloric quantities �S and �Tad in the Laves
phase compounds DyAl2 and ErAl2 we use a tridimensional
cluster of 5�5�5 cubic unit cells with 8 R ions per cell and
consider only first next neighbors interactions. The total an-
gular momentum for both Dy and Er ions is J=15/2. The
Landè factor for Dy and Er are g=4/3 and g=6/5, respec-
tively. The exchange interaction parameters �ij, were chosen
to correctly reproduce the experimental data of the magnetic
ordering temperature. These parameters are about �ij

=0.064 meV for the compound DyAl2 and �ij

=0.0137 meV for the compound ErAl2. The anisotropic co-
efficients for the compounds DyAl2 and ErAl2 were taken as
�i=0.0043 meV and �i=0.0017 meV, respectively. In order
to establish the magnitude of the z components of the total
angular momentum of the Dy or Er ions at each lattice site
we proceed as follows: We draw a random number r such
that 0�r�1 and fix the value of Jz according to the follow-
ing scheme. If the random number �r� lies in the interval �0,
1 / �2J+1�� we take Jz=−J. If the random number �r� lies in
the interval �1/ �2J+1�, 2 / �2J+1�� we take Jz=−J+1; if the
random number �r� lies in the interval �2/ �2J+1�, 3 / �2J
+1�� we take Jz=−J+2; and so forth. The simulation was
performed using 2000 Monte Carlo steps for thermalization
of the system and more 3000 Monte Carlo steps to compute
the average values of the physical quantities. The magnetic
part of the heat capacity was calculated using Eq. �4� and the
magnetic entropy was obtained from Eq. �6�. The electronic
heat capacity and electronic entropy were calculated using
�=5.4 mJ/ �mol K2�. The lattice heat capacity and entropy

were calculated using 
D=330 K for the compound DyAl2
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and 
D=220 K for the compound ErAl2. The parameters �
and 
D are in the usual range of values used in the
literature.4

In Fig. 1, we plot the total heat capacity for the interme-
tallic DyAl2, calculated in the absence of an applied mag-
netic field and for an applied magnetic field of 5 T. For the
compound ErAl2, we obtain a similar curve not shown in this
article. From Fig. 1, we observe, a good agreement between
our calculations for hext=0 �solid line� and the corresponding
experimental data12 �open triangles�. Further experimental
data are necessary to compare with our theoretical calcula-
tions for hext=5 T �dotted line�. From the total heat capacity
curves, we calculate the total entropy for hext=0 and hext

=5 T. From the total entropy curves, we calculate the iso-
thermal entropy change and the adiabatic temperature change
for a magnetic field variation from 0 to 5 T. In Figs. 2 and 3,
we plot the isothermal entropy change and the adiabatic tem-
perature change for the compounds DyAl2 and ErAl2 upon

FIG. 1. Temperature dependence of the total heat capacity of the compound
DyAl2. The solid and dotted lines represent the calculations within the
Monte Carlo simulation for hext=0 and hext=5 T, respectively. Open tri-
angles are experimental data �see Ref. 12�.

FIG. 2. Isothermal entropy change in the intermetallic compounds DyAl2
and ErAl2 for magnetic field variation from 0 to 5 T. Solid lines correspond
to our Monte Carlo calculations whereas open triangles are experimental

data �see Ref. 4�.
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magnetic field variation from 0 to 5 T. From these figures,
we can observe that our theoretical calculations are in good
agreement with experimental data.4

In conclusion, in this work we discuss the magnetoca-
loric effect in the laves phase compound RAl2 by using a
model Hamiltonian of interacting spins, where the spin-spin
interaction is treated in the Monte Carlo simulation. The
Monte Carlo simulation is a powerful tool to study the mag-
netocaloric effect in rare earth compounds because it takes
into account short range interactions which are not well de-
scribed in the molecular field theory. Our theoretical calcu-
lations for the intermetallic compounds DyAl2 and ErAl2
show that the isothermal entropy change and the adiabatic
temperature change upon magnetic field variation from 0 to
5 T are in good agreement with experimental data.4 The

FIG. 3. Adiabatic temperature change in the compound DyAl2 and ErAl2 for
magnetic field variation from 0 to 5 T. Solid lines correspond to our Monte
Carlo calculations whereas open triangles are experimental data �see Ref. 4�.
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present Monte Carlo simulations can be used to calculate the
magnetocaloric effect in other compounds of RAl2 series as
well as in, e.g., the RNi2 series. Besides, the Monte Carlo
simulations enable us to calculate the magnetocaloric effect
of doped rare earth compounds, such as �R1−xRx��Al2 and
�R1−xRx��Ni2, where the molecular field theory is no longer a
good approximation.
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