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In the study of electronic transport in nanostructures, electric current is commonly considered

homogeneous along the sample. We use a method to calculate the magnetoresistance of magnetic

nanostructures where the current density may vary in space. The current distribution is numerically

calculated by combining micromagnetic simulations with an associated resistor network and by

solving the latter with a relaxation method. As an example, we consider a Permalloy disk

exhibiting a vortex-like magnetization profile. We find that the current density is inhomogeneous

along the disk, and that during the core magnetization reversal it is concentrated toward the center

of the vortex and is repelled by the antivortex. We then consider the effects of the inhomogeneous

current density on spin-torque transfer. The numerical value of the critical current density

necessary to produce a vortex core reversal is smaller than the one that does not take the

inhomogeneity into account. VC 2011 American Institute of Physics. [doi:10.1063/1.3582149]

I. INTRODUCTION

Electric transport in magnetic nanostructures is a useful

tool both for probing and for manipulating the magnetiza-

tion. In the low current density regime, magnetoresistance

curves are useful for probing the sample’s magnetization

state while, in the high current density regime, magnetization

patterns can be modified by a spin-transfer torque.1–3 Magne-

toresistance measurements have the advantage of being rela-

tively simple and fast, serving as an efficient magnetic

reading mechanism.4,5

Depending upon their thickness and diameter, small fer-

romagnetic disks exhibit stable topological defects known as

magnetic vortices.6,7 These vortices can be manipulated by

picosecond pulses of a few (tens of) oersted in-plane mag-

netic fields that switch their polarity,8–13 making them good

candidates for elementary data storage units.9

For their use as storage units, the most viable form of

manipulation of the magnetization is through spin-torque

transfer, with the injection of high density electrical cur-

rents.1 The effect of these currents in the magnetization dy-

namics is described theoretically by the incorporation of

adiabatic and nonadiabatic spin-torque terms in the Landau-

Lifshitz-Gilbert (LLG) equation.14,15 These two terms are

proportional to the injected current density and it is normally

considered an homogeneous current distribution inside the

disk. Although theoretical predictions using this approach

qualitatively agree with experimental results, there is a lack

of quantitative agreement between theoretical and experi-

mental results regarding the current densities necessary to

modify the magnetic structures.17–19

In this paper we investigate the effect of nonuniform cur-

rent distributions on electronic transport and spin-torque

transfer in ferromagnetic systems exhibiting vortices. We

numerically calculate the magnetoresistance (MR) and local

current distribution of a ferromagnetic disk by separating the

time scales for magnetic ordering and electronic transport. We

consider an effective anisotropic magnetoresistance (AMR)

that depends on the local magnetization. We discretize the disk

in cells and solve the Landau-Lifshitz-Gilbert (LLG) equa-

tion20 numerically with the fourth-order Runge-Kutta,21

thereby obtaining the magnetization profile of the disk. This

pattern is used to calculate the magnetoresistance of each cell

as a fixed current, I, is applied at two symmetrically distributed

electrical contacts, resulting in a voltage drop and an inhomo-

geneous current distribution along the disk.

This method couples the electric and magnetic proper-

ties of the metallic nanomagnets and can be used to analyze

the effect of inhomogeneous current distributions in different

contexts. First, we discuss the limit of low current density

where transport measurements can be used to probe the mag-

netic structure. We compare the magnetic structure with the

magnetoresistance curves and show how the magnetoresist-

ance measurements could be interpreted to obtain informa-

tion on the magnetization profile and its dynamics during the

vortex core magnetization reversal. Moreover, we discuss

the consequences of a nonhomogeneous current distribution

on the spin-torque transfer and find that the critical current

density that produces the vortex core reversal is reduced by

one order of magnitude whenever such noninhomogeneity is

taken into account. This result can be seen as a new route to

understanding why the experimental values of the critical

current densities are usually lower than the ones obtained in

the LLG calculations.17–19

This article is organized as follows: In Sec. II we discuss

the model and method for the calculation of the magnetore-

sistance and current distribution. In Sec. III, we exemplify

the calculations by considering the magnetoresistance and

current distributions of a Permalloy disk exhibiting a
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magnetic vortex. In Sec. IV, we study the consequences of a

nonhomogeneous current distribution on the spin-torque

transfer. In Sec. V we summarize the main results.

II. MAGNETORESISTANCE AND CURRENT
DISTRIBUTION CALCULATIONS

Let us consider a 36 nm-thick Permalloy disk with a diam-

eter of 300 nm discretized into a grid of 4� 4� 4 nm3 cells.

The dynamics of the magnetization vector associated with each

cell is given by the Landau-Lifshitz-Gilbert equation, which we

numerically integrate with the fourth-order Runge-Kutta

and discretization step, h ¼ 10�4.21 The parameters associated

with the LLG equation are the saturation magnetization Ms

¼ 8:6� 105 A/m, the exchange coupling, A ¼ 1:3 �10�11 J/

m, and the Gilbert damping constant a ¼ 0:05.13

By varying the external in-plane magnetic field, H, from

negative to positive saturation we obtain a hysteresis curve,

as depicted in Fig. 1, which is consistent with experimental

observations.7 As shown in Fig. 1(a), in static equilibrium

and in the absence of magnetic fields, a vortex structure with

a core magnetized perpendicular to the disk plane is formed

in the center of the disk. If a small in-plane magnetic field,

H, is applied, the core is displaced from the center [Fig.

1(b)]. At a critical field, Hc1, the vortex is expelled from the

disk, resulting in a discontinuity in the hysteresis loop. As

the external field, H, is lowered back, the vortex structure

reappears, but at a lower field, Hc2 < Hc1.

In order to investigate the electronic transport on the

nanomagnetic disk we consider the magnetization profile,

f~Mig, obtained as the stationary solution of the LLG equa-

tion, as a starting point to calculate the magnetoresistance,

Ri, in each cell, i, of the disk. It is well established that in rel-

atively clean magnetic metals the main source of magnetore-

sistance is the anisotropic magnetoresistance (AMR),22

which can be expressed as q ¼ q? þ ðqk � q?Þ cos2 u,

where u is the angle between the local magnetization and

the electric current and q? and qk are the resistivities when

the magnetization is perpendicular and parallel to the cur-

rent, respectively. We decompose the current into orthogonal

components, x and y, such that if the normalized projection

of the magnetization, ~Mi, on the current direction û (u ¼
x; y) is mu

i ¼ cos u, and the cell geometrical factor is taken

into account, the magnetoresistance, Ri, is split into orthogo-

nal components as Ru
i ¼ R?i þ ðR

k
i � R?i Þðmu

i Þ
2

in every cell,

i, of the disk (Fig. 2). Thus, we obtain a resistor network

where the resistances depend on the local magnetization and

are assumed to be approximately constant at the time scale

of electronic scattering processes.

Guided by recent experiments23 we allow a constant

current, I, to flow along the disk by attaching symmetrically

FIG. 1. (Color online) Magnetic hysteresis obtained with a micromagnetic

simulation of a Permalloy disk with a diameter of 300 nm and a thickness of

36 nm, subject to a static in-plane magnetic field, H. Two configurations for

the vortex core, corresponding to different external fields (0 and 75 mT), are

also depicted.

FIG. 2. Original cells used in the LLG simulation with the associated resist-

ance network.

FIG. 3. (Color online) (a) Magnetoresistance for the magnetic configura-

tions obtained in Fig. 1 for uniform (circle) and nonuniform (square) current

distribution. Bottom: electric current map for (b) zero field and (c) H¼ 75

mT. The red (blue) color corresponds a current density which is about

1� 2% larger (smaller) than the uniform current at the saturation field. The

red color is in the center of the vortex.
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placed electrodes on it (see Fig. 3). The voltage drop along

the resistors and the associated current map of the disk are

obtained by solving Kirchhoff’s equation iteratively at each

node of the grid with a relaxation method24,25

V
ðnþ1Þ
i ¼

X
jð Þ

1=Rij

0
@

1
A
�1 X

jð Þ

V
ðnÞ
j

Rij
þ bi

0
@

1
A; (1)

where Rij is Rx
i ðR

y
i Þ if i and j are horizontal (vertical) neigh-

bors and bi is the boundary current, assumed to be Ið�IÞ at

the leftmost (rightmost) cells, and zero otherwise (see

Fig. 2). Here, Vn
i is the voltage at site i after n iterations and

the sums run over the nearest-neighbors jð Þ of node i. Start-

ing with a random initial condition, fVð0Þi g, at each site we it-

erate Eq. (1) until each V
ðnÞ
i becomes stationary (within 9

decimal digits precision). After convergence, we calculate

the equivalent resistance, the ratio, Req ¼ DV=I, between the

voltage drop, DV, between the electrodes, given by

DV ¼
X

ikbi¼I

Vi �
X

jkbj¼�I

Vj; (2)

and the current, I, entering the disk.

III. MAGNETO-STRUCTURE AND
MAGNETORESISTANCE

A. Hysteresis and magnetoresistance

In order to obtain the magnetoresistance curves, the cal-

culation discussed in the previous section is performed at dif-

ferent fields. The magnetoresistance and current distribution

for the same points of the hysteresis loop in Fig. 1 are

depicted in Fig. 3. Figure 3(a) displays the magnetoresist-

ance curves for both homogeneous (without using the resist-

ance network26) and nonhomogeneous current distributions.

The vortex expulsion and its formation at a different critical

field are clearly identified and, with qk ¼ 155 X nm and

q? ¼ 150 X nm, we obtain a MR of 1:2% for the nonhomo-

geneous distribution, which is a typical value found in previ-

ous experiments.23,27

One also observes that the magnetoresistance curves for

uniform and nonuniform current distributions differ signifi-

cantly, the latter being more comparable to experimental

results with the same contact geometry.23 As expected, a ho-

mogeneous current overestimates the magnetoresistance,

since the current will flow through regions of high resistance,

whereas with the current found by solving Laplace’s equa-

tion on the associated resistor network, one finds a preferen-

tial path (higher current density) on regions of low

resistance. This difference is more pronounced in the pres-

ence of a vortex, since the magnetization of the disk is highly

nonhomogeneous on such configurations.

In light of the discussion above, one sees in Figs. 3(b)

and 3(c) that the current is not homogeneously distributed

inside the disk, being stronger toward the center of the vortex

core. In the center of the disk the magnetization either points

in the ẑ direction, perpendicular to the direction of current

flow, or loops about the vortex core. In both cases, the current

has a path where its direction is always perpendicular to the

magnetization, reducing the local magnetoresistance. Above

the saturation field, the magnetization is uniform and at the

disk center the same applies to the current. The red (blue)

region has a current density 1� 2% larger (smaller) than the

current, I, at saturation. The red region is in the center of the

vortex. This effect might be enhanced if other sources of mag-

netoresistance are considered, such as giant magnetoresist-

ance, for example. Similar approaches using different sources

of magnetoresistance and geometries have been used to calcu-

late the magnetoresistance in nanomagnets.27–32

B. Dynamics

Next, we study the dynamics of the vortex core magnet-

ization reversal by the application of short in-plane magnetic

fields. Under a pulsed in-plane magnetic field or spin polar-

ized current excitation, the vortex with a given polarity (Vþ)

dislocates from the center of the disk with the nucleation of a

vortex (V�)-antivortex (AV�) pair with opposite polarity af-

ter the vortex attains a critical velocity of rotation about the

disk center.3,33 The original Vþ then annihilates with the

AV�, and a vortex with reversed core magnetization (V�)

(Ref. 9) remains. If a low-density electronic current is made

to flow through the sample (without disturbing the magnet-

ization dynamics), we observe changes in the magnetoresist-

ance, as the vortices nucleate and annihilate. In Fig. 4(a) we

depict the dynamics of the magnetoresistance as a pulsed in-

plane magnetic field is applied in the x̂ direction at t¼ 20 ps

for different pulse intensities. The pulses have their shape

sketched in gray in Fig. 4(a) with a full width at half maxi-

mum of t¼ 250 ps. Depending on the pulse intensity, the

vortex core magnetization does not reverse at all (l0H < 43

mT), reverses once (54 mT < l0H < 64 mT), or multiple

times (l0H > 64 mT).12,13

During the application of a field pulse in the x̂ direction,

i.e., parallel to the current flow, the vortex core is pushed to

the ŷ direction, breaking the rotation symmetry of the disk’s

magnetization, increasing both the total mx component and

the disk’s equivalent resistance [see Fig. 4(a)]. At t¼ 340 ps,

the field is practically zero and, from the decay of the mag-

netoresistance to its equilibrium (initial) value, one can infer

whether there was reversal of the vortex core polarization or

not: for pulses that induce reversal, the value of the magneto-

resistance just after the pulse is always larger than its initial

value. If there is no reversal the magnetoresistance attains a

minimum value that is lower than its initial value, i.e., before

the application of the pulse, and oscillates about it.

In Figs. 4(b)–4(e) we depict snapshots of current (color

map) and magnetization (arrows) distributions at time steps

marked with black dots in Fig. 4(a), in situations with or

without vortex core magnetization reversal. Whenever the

pulse decreases its intensity, the total mx component and the

equivalent resistance of the disk follow the same pattern

(although with some time delay), because the vortex core

tends to return to the disk center, where mx ¼ 0. Figure 4(b)

shows the current distribution and magnetization at a

moment corresponding to the minimum of the resistance

curve, for a field intensity, l0H ¼ 27 mT, for which there is
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no vortex core reversal. There is a large region with my mag-

netization (and small mx) in the center of the disk. This

region, together with the vortex core, creates a low resistance

path for the electronic current, decreasing the equivalent re-

sistance toward a value below the equilibrium resistance.

Figures 4(c)–4(e) show the magnetization and current distri-

butions at different moments of the vortex core magnetiza-

tion reversal for a situation where there is a single reversal

(l0H ¼ 64 mT). In Fig. 4(c) we depict the current distribu-

tion at the exact moment of nucleation of the V� -AV� pair,

the initial stage of vortex core magnetization reversal. Figure

4(d) shows the spin waves emitted just after the Vþ -AV�

annihilation, which is a process that occurs with energy dissi-

pation. Such energy loss drives the vortex core to the disk

center along with some small oscillations, mainly due to the

reflections of spin waves at the edges of the disk. It turns out

that the resistance follows an equivalent behavior: it

decreases toward the initial resistance value and remains

always above it. Figure 4(e) shows the current distribution

after the field pulse has vanished. As can be seen, the time

dependent resistance curves can give us an indication of the

vortex reversal process.

Let us discuss in further detail the interplay between the

magnetization pattern and the current distribution. In Fig. 5 (a)

we show a snapshot of the current distribution during the vor-

tex core magnetization reversal process, with the Vþ and the

V�-AV� pair with negative polarity. As shown in Figs. 3, 4,

and 5(b) the current is pushed to the vortex core, where

mx ¼ 0 and, consequently, the local resistance is minimum.

With the nucleation of the AV� vortex [Fig. 5(a)], mx becomes

larger than zero around it, with my ! 0. As the current flows

in the x̂ direction, it is repelled from the antivortex core.

In the latter analysis we considered a particular orienta-

tion of the AV. However, as can be seen in Figs. 5(c) and

5(d), depending on their orientation, antivortices can either

attract (in the first case) or repel currents (in the latter case).

Vortices are rotation invariant, and always attract current

toward their cores. It is important to point out that this differ-

ence in current distributions might have important conse-

quences in the high-density current spin-torque transfer

acting on either a vortex or an antivortex. For instance,

although the inversion process through spin-torque for an

AV is equivalent to the one for a V, we should expect differ-

ent current densities in each one, since currents can only pen-

etrate the AV core at a particular orientation.

IV. SPIN-TORQUE TRANSFER

In this section, we discuss the consequences of inhomo-

geneous currents in the spin-torque transfer. In order to

determine how the current distribution is incorporated in the

spin-torque terms of the modified LLG equation, we need to

review a few steps of their derivations. It is important to note

that in our approach, the only source of nonhomogeneous

FIG. 4. (Color online) (a) Evolution of magnetoresistance after the applica-

tion of pulsed in-plane magnetic fields (the shape is shown in gray) with dif-

ferent intensities. Snapshots of magnetization (arrows) and current distribution

(color map) for pulse fields (b) without and (c)–(e) with (a vortex core mag-

netization reversal. The white cross shows the position of the disk center.

Both the current and the magnetic field are applied in the x̂ direction.

FIG. 5. (Color online) (a)–(d) Snapshots of magnetization (arrows) and cur-

rent distribution (color map) of (a) the vortex core magnetization reversal

process at t ¼ 214 ps, (b) a vortex and its associated current distribution,

and (c) and (d) antivortices rotated by 45� with respect to each other and

their associated current distribution. Depending on the relative orientation of

the antivortex it can either focus (c) or repel (d) currents away from the cen-

ter of the core.
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current distribution is the anisotropic magnetoresistance, as

discussed in Sec. II. All other effects are neglected.

The itinerant electron spin operator satisfies the continu-

ity equation

d

dt
hsi þ r � hbJi ¼ � i

�h
ðh½s; H�iÞ (3)

where J is the spin current operator. The Hamiltonian, H, is

the s-d Hamiltonian (Hsd ¼ �Jexs � S), where s and

S=S ¼ �M=Ms are the spins of itinerant and localized elec-

trons, and Jex is the exchange coupling strength between

them. We define the spin current density, J ¼ hĴi ¼
�ðglBP=eMsÞjeðrÞ �M, where jeðrÞ is the current density,

and the electron spin density is given by m ¼ hsi.14 We use

the same approximations previously used to calculate the spin-

torque,14,15 with the new ingredient of nonhomogeneous cur-

rent density. We obtain

d

dt
m ¼ lbP

eMs
M r � jeðrÞ½ � þ jeðrÞ � r½ �f g

� JexS

Ms
m�M; (4)

where M is the matrix magnetization, g is the Landé factor

splitting, lB is the Bohr magneton, P is the spin current

polarization of the ferromagnet, and e is the electron charge.

From the continuity equation for charges, the term contain-

ing r � jeðrÞ is always zero, even if the current density is not

constant. As we discussed previously, the same divergent is

used to determine the current distribution in Sec. II. This

expression is exactly the same expression obtained previ-

ously, but with jeðrÞ in the second term of the right hand side

of the equation varying with r. This current distribution is

introduced at the modified LLG that considers spin-torque

transfer. Therefore, we obtain a spin-torque transfer where

the current distribution is not uniform.

To consider the spin-torque transfer effects we include

adiabatic and nonadiabatic spin torque terms in the LLG

equation,

d

dt
m ¼ �c0m�Heff þ am� d

dt
m� ðu � rÞm

þ bm� ½ðu � rÞm�; (5)

where, m¼M/Ms is the normalized local magnetization, a is

a phenomenological damping constant, c0 is the gyroscopic

ratio, and Heff is the effective field, which is composed of

the applied external field, the demagnetization field, the ani-

sotropy field, and the exchange field. The first term describes

the precession of the normalized local magnetization about

the effective field. The second term describes the relaxation

of the normalized local magnetization and b is a dimension-

less parameter that describes the strength of the nonadiabatic

term, which we consider to be 0.5.15,16 The velocity

u(r)¼ðgPlB=2eMsÞ je(r) is a vector pointing parallel to the

direction of the electron flow and je(r) is calculated using the

procedure discussed in Sec. II.

To explain the importance of our assumption about the

current distribution let us analyze the critical current density,

jc
e, which is the minimal current density needed to produce a

vortex core reversal. For this purpose, we simulated the mag-

netization dynamics of a system subjected to a DC current

with the modified LLG equation [Eq. (5)]. In Fig. 6(a) one

sees the vortex core polarity as a function of current density,

je. The different curves represent situations of homogeneous

current (squares) and three different values of AMR where

the magnetoresistance ranges from 2 to 10%. Such AMR, as

discussed in the previous sections, determines the degree of

current inhomogeneity throughout the disk. One can see that

the critical current density, jc
e in our model is 3� 10%

smaller than the one obtained for uniform currents. These

results suggest a new route, together with the nonadiabatic

term, to explain the discrepancy between the experimental

results and theoretical calculations of the critical current den-

sity, jc
e.

Even though the value of jc
e is reduced, the vortex-core

reversal process for nonhomogenous current distributions is

similar to the homogenous case. Figures 6(b) and 6(c) show

the magnetic configurations for the moment just before the

Vþ-AV� annihilation, at the critical current density, for the

model with nonhomogeneous and homogeneous current dis-

tributions, respectively. In the case of inhomegeneous cur-

rents, the fact that a V(AV) attracts (repels) the current

affects the velocity and separation distance of the V-AV pair

during the vortex core reversal. As the vortices attract cur-

rent, the current densities at their core are higher than the av-

erage and can reach values higher than jc
e of the homogenous

case. As a result, the vortex gains the necessary velocity to

produce the vortex core switching for a lower jc
e.

FIG. 6. (Color online) (a): Core polarity as a function of current density for

homogeneous (squares) and nonhomogeneous current distributions (with dif-

ferent MR). (b) and (c): Magnetization profiles during the inversion process

at the critical current for both (b) nonhomogeneous and (c) homogeneous (c)

current distributions. The color map represent the out-of-plane magnetiza-

tion, mz, and the arrows represent the in-plane component.
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Alternatively, as the antivortices repel currents, the current

density at their core is smaller, making them slower thanthe

vortices. As a result, after the nucleation of the V�-AV�

pair, their separation occurs faster than in the case where the

current density in the center of a V or an AV is the same, as

is usually considered in micromagnetic simulations. Conse-

quently, not only is jc
e reduced, but the inversion time is also

reduced.

Our analysis might also have important technological

implications, since we observe a (almost linear) correlation

between the current density necessary to produce a core

inversion and the anisotropic magnetoresistance of the mate-

rial. Thus, by increasing the AMR of the sample, one can

decrease the critical current, jc
e, which is strongly desirable in

memory devices for the sake of low energy comsumption

and minimal heat waste.

V. CONCLUSIONS

We performed a realistic calculation of the magnetore-

sistance effects in magnetic nanostructures that takes into

account inhomogeneous current densities. For that purpose,

we adapted a numerical relaxation scheme for the Laplace

equation to the solution of the LLG equation for the magnet-

ization profile along a Permalloy disk. Our results suggest

that resistance measurements might be useful to probe the

dynamics of the vortex core magnetization reversal, induced

by short in-plane magnetic pulses. Moreover, we note that

the difference between current distributions close to the vor-

tices and anti-vortices have significant consequences for the

spin-torque transfer effect. The inhomogeneous current dis-

tribution inside the magnet substantially reduces the critical

current density necessary to produce a vortex core reversal.

We conclude that materials with large anisotropic magneto-

resistance need lower current densities to modify their mag-

netic structure, a much desired feature for most modern

memory devices.

ACKNOWLEDGMENTS

This work was supported by CNPq and FAPERJ. L.C.S.

and T.G.R. acknowledge the ‘‘INCT de Fotônica’’ and
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11R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98,

117201 (2007).
12S. K. Kim, K. S. Lee, Y. S. Yu, and Y. S. Choi, Appl. Phys. Lett. 92,

022509 (2008); K. S. Lee, K. Y. Guslienko, J. Y. Lee, and S. K. Kim,

Phys. Rev. B 76, 174410 (2007).
13T. S. Machado, T. G. Rappoport, and L. C. Sampaio, Appl. Phys. Lett. 93,

112507 (2008).
14S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
15A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69,

990 (2005).
16L. Heyne, J. Rhensius, D. Ilgaz, A. Bisig, U. Rudiger, M. Klaui, L. Joly, F.

Nolting, L. J. Heyderman, J. U. Thiele, and F. Kronast, Phys. Rev. Lett.

105, 187203 (2010).
17K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys.

Lett. 93,152502 (2008).
18K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys.

Lett. 96, 192508 (2010).
19G. S. D. Beach, M. Tsoi, and J. L. Erskine, J. Magn. Magn. Mater. 320,

1272 (2008).
20T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
21W. H. Press, B. P. Flannery, B. P. Teukolsky, S. A. Vetterling, and T. Wil-

liam, Numerical Recipes in C: The Art of Scientific Computing (Cambridge

University Press, Cambridge, 1992).
22R. C. O’Handley, Modern Magnetic Materials (Wiley-Interscience, New

York, 1999), Chap. 15.
23S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, Phys. Rev.

Lett. 97, 107204 (2006).
24R. Courant, K. Friedrichs, and H. Lewy, Phys. Math. Ann. 100, 32 (1928).
25H. Gould and J. Tobochnik, An Introduction to Computer Simulation

Methods (Addison-Wesley, Reading, MA, 1996), Chap. 10.
26R. A. Silva, T. S. Machado, G. Cernicchiaro, A. P. Guimaraes, and L. C.

Sampaio, Phys. Rev. B 79, 134434 (2009).
27P. Vavassori, M. Grimsditch, V. Metlushko, N. Zaluzec, and B. Ilic, Appl.

Phys. Lett. 87, 072507 (2005).
28H. Li, Y. Jiang, Y. Kawazoe, and R. Tao, Phys. Lett. A 298, 410 (2002).
29M. Bolte, M. Steiner, C. Pels, M. Barthelmess, J. Kruse, U. Merkt, G.

Meier, M. Holz, and D. Pfannkuche, Phys. Rev. B 72, 224436 (2005).
30M. Holz, O. Kronenwerth, and D. Grundler, Phys. Rev. B 67, 195312

(2003).
31J. Ohe, S. E. Barnes, H.-W. Lee, and S. Maekawai, Appl. Phys. Lett. 95,

123110 (2009)
32L. K. Bogart and D. Atkinson, Appl. Phys. Lett. 94, 042511 (2009).
33K. Y. Guslienko, K. S. Lee, and S. K. Kim, Phys. Rev. Lett. 100, 027203

(2008).

093904-6 Machado et al. J. Appl. Phys. 109, 093904 (2011)

Downloaded 03 May 2011 to 152.84.250.215. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
http://dx.doi.org/10.1038/nmat1867
http://dx.doi.org/10.1126/science.1105722
http://dx.doi.org/10.1063/1.2259813
http://dx.doi.org/10.1126/science.289.5481.930
http://dx.doi.org/10.1103/PhysRevLett.83.1042
http://dx.doi.org/10.1103/PhysRevLett.102.077201
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1103/PhysRevLett.98.117201
http://dx.doi.org/10.1063/1.2807274
http://dx.doi.org/10.1063/1.2985901
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1103/PhysRevLett.105.187203
http://dx.doi.org/10.1063/1.3001588
http://dx.doi.org/10.1063/1.3001588
http://dx.doi.org/10.1063/1.3428792
http://dx.doi.org/10.1063/1.3428792
http://dx.doi.org/10.1016/j.jmmm.2007.12.021
http://dx.doi.org/10.1103/PhysRevLett.97.107204
http://dx.doi.org/10.1103/PhysRevLett.97.107204
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1103/PhysRevB.79.134434
http://dx.doi.org/10.1063/1.1866212
http://dx.doi.org/10.1063/1.1866212
http://dx.doi.org/10.1016/S0375-9601(02)00570-4
http://dx.doi.org/10.1103/PhysRevB.72.224436
http://dx.doi.org/10.1103/PhysRevB.67.195312
http://dx.doi.org/10.1063/1.3237166
http://dx.doi.org/10.1063/1.3077174
http://dx.doi.org/10.1103/PhysRevLett.100.027203

	s1
	cor1
	s2
	F1
	F2
	F3
	E1
	E2
	s3
	s3A
	s3B
	s4
	F4
	F5
	E3
	E4
	E5
	F6
	s5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33

