JOURNAL OF APPLIED PHYSICS 105, 07E504 (2009)

Effect of hybridization on the magnetic properties of correlated two-band

metals
C. M. Chaves"? and A. Troper'2

! Centro Brasileiro de Pesquisas Fisica, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, Brazil
2Universidade do Estado do Rio de Janeiro, Rua S. Francisco Xavier 524, Rio de Janeiro 20550-013, Brazil

(Presented 11 November 2008; received 11 September 2008; accepted 31 October 2008;

published online 13 February 2009)

The magnetic properties of transitionlike metals are discussed within the single-site approximation,
which is a picture to take into account electron correlations. The metal is described by two
hybridized bands one of which includes Coulomb correlation. The presented results indicate that
ferromagnetism arises for adequate values of hybridization (V), correlation (U), and occupation
number (n,). Some similarities with dynamical mean-field theory are indicated. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3065671]

I. INTRODUCTION

Recently,l’2 the conventional view of the origin of ferro-
magnetism in metals has been under criticism. Traditional
mean-field calculations favor ferromagnetism but corrections
tend to reduce the range of validity of that ground state.”

Several recent works addressed the issue of ferromag-
netism in metals, going beyond the Stoner model: Vollhardt
et al.* furnished evidence of the stability of itinerant ferro-
magnetism in the one-band Hubbard model (HM) at elec-
tronic densities not too close to half-filling and large enough
U.

Nolting and Borgiel5 used, for the one-band HM, a spec-
tral density approach (SDA), a two-pole ansatz that is
equivalent to the Roth method,’ containing some free param-
eters to be determined by fitting some spectral moments.
Ferro- and antiferromagnetic states are obtained. Ferromag-
netic solution occurs only if the occupation number n ex-
ceeds a critical value and U exceeds a minimum value. The
ferromagnetic order arises due to a shift of the T and | qua-
siparticle subbands.

Jarrel” used a self-consistent quantum Monte Carlo
method for the d=2% one-band HM but did not find a ferro-
magnetic state for any filling, temperature, or correlation.

Herrmann and Nolting,8 also in the one-band HM, used
the SDA and a modified alloy analogy (MAA) method. In the
latter, the atomic levels of the fictitious alloy are the ones
found with the SDA. In both, a ferromagnetic state develops,
although in the MAA it happens in a rather restricted region
of occupation n. They pointed out that an imaginary part in
the self-energy, present in the MAA method but not in the
two-pole ansatz, causes important differences in the mag-
netic order of the model. An improved version of the AA
which incorporates the intersite magnetic correlations’ seems
to indicate a ferromagnetic instability for large U and n
~0.6.

Schwieger and Nolting1 considered a two-band HM, as
we do, but for d— o0, and used both the SDA and MAA
methods and showed that interband particle fluctuations
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cause a spin dependent band shift and a spin dependent
broadeninig of the Hubbard bands. This shift stabilizes and
the broadening destabilizes ferromagnetism. For U=5 the
critical temperature 7. is plotted versus hybridization; strong
fluctuations between the bands tend to suppress ferromag-
netic order.

We use instead a single-site approximation (SSA)." In
this formulation, only one site, the origin say, exhibits the
full Coulomb interaction; the others are subject to a local
field: the spin and energy dependent self-energy 2. 37 is
self-consistently determined by imposing the vanishing of
the scattering matrix, a condition formulated in the coherent
potential approximation (CPA) for alloys and impurity prob-
lems, to restore translation invariance. We will be working at
temperature 7=0.

The metal is described by two nondegenerate bands, a
and b; a is a Hubbard-like narrow band with in-site interac-
tion U, hybridized (V,,) with the second one, b, a broader
uncorrelated band.

Il. THEORETICAL MODEL: THE SELF-CONSISTENT
SSA

The starting Hamiltonian in this work is

H= 2 t?ja:-’oajg+ E t?jb;robjg+ 2 Unl(-?)ngf)
1

ij,o ij,o
+ E (Vabb;—oﬂjo-'- Vzaa;—o-bja')v (1)
ij,0

where n{ =a} a;, and o denotes spin. tg-’b is the tunneling
amplitude between neighboring sites i and j, in each band
and V,, the hybridization. In the SSA (Ref. 10) one adopts
the following effective Hamiltonian:

b
Hege= E t?ja;-(raj(r+ E tijb:‘rrrbj(r+ E ”?,UEU"' U”(ST”&

i,j,0 ij,o i#0,0
+ E (Vahb?-(raj0'+ V;;aa?—(rbja)' (2)
i,j,0

The method then replaces a translationally invariant prob-
lem, as defined by Eq. (1), by an impurity problem where
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only the origin incorporates the Coulomb interaction, the
other sites being acted by the local (k-independent) field 2.7.
But the effective Hamiltonian (2) describes an “impurity
problem” in the presence of Coulomb intra-atomic term and
we have to resort to some approximation.

We use the Green function method;'" after some algebra
one obtains for the a-band Green function

5kk/
Gaa’ w=————
kk 0'( ) w— Ez _ 20’
p— R (3)
+———T°W,2) ————.
w—g -7 w—g,-27
In this expression
V2, (k
8= e @
w—€

is the recursion relation of the a band including hybridization
and

B t[cos(k,a) + cos(kya) + cos(k.a)]

“ A

(5)
is the respective recursion relation of the bare band. In this
paper we use f,=1 and A=3 in arbitrary energy units. All
energy magnitudes are taken in units of 7,, making them
dimensionless.'” The bare a band width is then W=2. For
simplicity we use €,=aé€l+¢€, (homothetic bands) for the
bare b band. € is the shift between the center of the bands.
From now on we take kja—k;, i=x,y,z, and V,=V,, =V
=constant independent of k;. The scattering 77-matrix in Eq.
(3) is given by

Ulng_,) —2(w) + Z7(w)[U = 27(w)F(w)

w2 = {1 -[U=-37(w)]F W)} 1+ 2 W)F7(w)] ’
(6)
where
1
F0=3 7

The self-energy 27 is complex and spin dependent, thus giv-
ing a spin dependent band shift. The vanishing of the
T-matrix gives a self-consistent equation for the self-energy,

29(w) = Ulng_g) + 27 W)U = X9 (W) [F7(w). (8)

It is important to stress that Eq. (8) results from a configu-
ration average characteristic of a CPA approach and not from
a dynamical constraint.

The Green function Gj, then becomes

1

Giogw) = m 9)
while G2 is
Gro(w) = GL(w) + V2GL(w) Ga(w) Gy (w), (10)

with
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FIG. 1. Magnetization m=({n{)—(n{) of the correlated a-band vs V in a
regime U/W<1, namely, U=1.

—_—

G(w) = (11)

wod’
the Green function of the bare b band.

The procedure presented here has some similarity to the
one used in the dynamical mean-field theory13 in the follow-
ing sense: here the original lattice model with correlation in
every site is replaced by an effective one, where the correla-
tion is present only at the origin (“the impurity”) but at the
same dimension d=3.

lll. NUMERICAL RESULTS AND CONCLUSIONS

In the numerical calculations one chooses the total num-
ber of electrons per site as being about n=2.2, a little more
than half-filling. We start with ((n‘%)0>=0.52 and ((n‘f)o)
=0.45 in Eq. (8), searching for a ferromagnetic solution in a
less than half filled a-band. The dynamics generated by V
and U, then, redistributes the a and the b band electrons,
mixing the up and down states eventually producing a mag-
netization. In Ref. 1, however, the density of the correlated
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FIG. 2. (Color online) Magnetization m=(n?>—(nf> of the correlated a-band
vs Vin a regime U/W~ 1, namely, U=2.
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FIG. 3. (Color online) Magnetization m=(n{)~(n{) of the correlated a-band
vs Vin a regime U/W>1, namely, U=5.

band, rather than n, is kept fixed. For comparison, in Figs. 1
and 2, we took n=2.2, @=1.5, and €,=1.0 while in Fig. 3,
a=2.5,n=2.0, and €,=1.0.

We found that, for a certain range of parameters U and
V, a ferromagnetic state develops. We then investigate the
effect of V in this state, for a given U in the weak (U< W),
in the intermediate (U~ W) and in the strong coupling (U
>W) limits. In Fig. 1 we display the magnetization m versus
V for U=1. For V=0.3 the magnetization is already very
small or zero. For a given U, the effect of the hybridization is
such as to reduce or suppress the magnetization.

In the intermediate limit, e.g., U=2, U/W~ 1, as shown
in Fig. 2, ferromagnetism is also observed; again increasing
V the metal tends to a nonmagnetic state.
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In Fig. 3 we exhibit the magnetization for a typical
strong coupling situation, namely, U=5. We notice that the
decrease in the magnetization with V is now slower than for
smaller U.

We have shown that the present method is computation-
ally feasible, producing reliable and physically sensible re-
sults compatible with the existing literature on this important
subject, opening new insights concerning the possible U/ W
regimes. Further work, for 7> 0, and extending the model to
include a two sublattice system in order to describe possible
antiferromagnetic states, is in progress.
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