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In this work we study the superconductivity within an attractive two-dimensional one-band Hubbard
model. We consider a d-wave superconducting gap and a Hubbard-I approximation to describe the
strongly correlated superconducting regime. We use the Green’s function method to obtain the order
parameter � and the superconducting critical temperature Tc. The results show that for fixed values
of the superconducting attractive potential U�U�0�, the gap increases for low temperatures but
diminishes abruptly as the temperature increases. The effect of pressure is discussed, varying the
next-nearest-neighbor hopping t2, yielding a change in Tc, and also in �0, and a tendency to suppress
the superconductivity. © 2009 American Institute of Physics. �DOI: 10.1063/1.3063667�

I. INTRODUCTION

It is known that some high temperature superconducting
�HTSC� materials, such as cuprates, as well as superconduct-
ing heavy fermions, show strong electronic correlations.1 In
spite of the large use of the Bardeen–Cooper–Schrieffer
�BCS� first order mean field approach to study the behavior
of these materials, it is more appropriate to use a more suit-
able approximation to treat the strong coupling regime.
Therefore, we apply here a Hubbard-I approximation2 to ob-
tain the zero temperature superconducting gap �0 and the
superconducting critical temperature Tc in a two-dimensional
Hubbard model for different values of densities of charge
carriers �n�. Besides the calculation of �0 and Tc, we have
studied the effect of t2, the next-nearest-neighbor hopping
integral, on Tc observing that when t2 increases, Tc and �0

tend to be suppressed. This is because the pressure effect on
the cuprates can be attributed to the variation in t2 and hence
to the variation in the lattice parameter. The effect of t2 on Tc

has been studied by different groups3,4 for some HTSC ma-
terials. Pavarini et al.3 reported a correlation between the
experimental maximum superconducting temperature �Tc

max�
and the value of t2 evaluated from band structure calculations
in different cuprates, but, in most of the cases, the mecha-
nism which may govern the relationship between Tc and t2 in
these materials is not well understood. It should be noticed
that both t �the nearest neighbor� and t2 are affected by ex-
ternal pressure P.5 The effect of P on t has almost the same
behavior as in t2, in what concerns the variation in lattice
parameter of the material,5 and hence on Tc. Therefore, since
we have adopted throughout this work t�P=0� as the energy
unity, we expect that the variation in t2 with P gives a very
fair approximation of the effect of P on Tc. In our calcula-
tions we fixed U=−8.0t�t�0�, a parameter suitable to de-
scribe a strong coupling regime.

II. THEORY

In order to study the dynamics of the charge carriers
with correlations and the basic attractive interaction, we con-
sider a two-dimensional one-band Hubbard Hamiltonian,

H = �
��ij���

tij
d di�

† dj� + U �
�ij��

ni,�nj,−�, �1�

where di�
† �di�� is the fermionic creation �annihilation� opera-

tor at site ri for the d band and spin �= �↑↓	. ni�=di�
† di� is

the density operator and tij
d is the hopping integral between

sites i and j nearest neighbors and next-nearest neighbors for
the d electrons. U�U�0� is the attractive potential between
the d electrons, which can result from the elimination of the
electron-phonon coupling through a canonical transformation
or, as suggested by Hirsch and Scalapino,6 it may be pro-
vided by the competition between on-site and nearest-
neighbor site Coulomb interactions for some range of param-
eters. The dispersion relation is given by

�dk = − 2t�cos�kx� + cos�ky�� + 4t2 cos�kx�cos�ky� + �0,

�2�

where �0 is an adjustable constant and it is fixed so that the
convergence in each different density is attained. To obtain
the superconductor order parameter �0, we calculate the
equations of motion of the propagators ��di� ;dl�

† ���,
��di,−�

† ;dl�
† ���,7 and the equations of motion for the new gen-

erated Green’s functions ��nj,−�di� ;dl�
† ��� and

��nj�di,−�
† ;dl�

† ���, following the Hubbard-I approach2 and a
higher order mean field treatment,

2U�
jp

��np,−�nj,−�di�;dl�
† ��� 
 Ũ�

j

��nj,−�di�;dl����

+ 2�n��
j

�ij��dj,−�
† ;dl�

† ���,

�3�

where Ũ=2U�n� and �mn=U�dm,�
† dn,−�

† � is the superconduct-a�Electronic mail: caixa@if.uff.br.
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ing order parameter. We stress that the mean field adopted in
Eq. �3� is different from the BCS approach since the decou-
pling is made in a further step of the Green’s function. In the
momentum space, and considering a d-wave gap symmetry,
the order parameter is given by5 �k=2��cos�kx�−cos�ky��.

From the above relations one obtains the self-consistent
gap equation

� = −
1

Ns
�

k

2��kU

E1k
2 − E2k

2 �E1k tanh��E1k/2�

− E2k tanh��E2k/2�� , �4�

where Ns is the number of sites in the lattice, �k= �cos�kx�
−cos�ky�� for the d-wave symmetry, and U�0. Also,

E1,2k =�	k

2



�	k
2 − 16Ũ2�k

2

2
, �5�

with 	k= Ũ2+�dk
2 +2Ũ�dk. We hope that our non-BCS ap-

proach is good enough to describe some features of the
HTSC cuprates.

III. NUMERICAL RESULTS AND CONCLUSIONS

In Fig. 1 we show the dependence of the doping �=1

− �n� on �0, for �0=−Ũ /4.60. This value of �0 gave the ex-
pected convergence for each different density �n�. As ex-
pected, � versus �0 is monotonically decreasing. A similar
result was obtained by Civelli8 with a cluster extension of
dynamical mean field theory. He obtained the dependence of
� on the chemical potential � and, in the same way, � de-
creases with �. Also, in both works, the range of values of �0

and � became near. In Fig. 2 we exhibit the Fermi surface
for three different �n� values: 0.90 ��0=3.1304�, 0.85 ��0

=2.9565�, and 0.70 ��0=2.4�, which are quite similar to some
angle resolved photoemission spectroscopy �ARPES� cuprate
data.9

In Fig. 3 we exhibit the temperature dependence of the
gap for two different values of �n�, in the strong coupling
regime, U=−8t. We observe that for small temperatures, the

gap increases slightly, whereas when the temperature in-
creases approaching Tc, the gap decreases abruptly, for all
values of �n�. This behavior is quite different from BCS
calculations,10 where the gap remains almost constant in the
whole range of temperature, decaying abruptly when ap-
proaching Tc. Hence, we conclude that this is a direct conse-
quence of the Hubbard-I approach, i.e., strong attractive cou-
pling regime. Also, a similar behavior for the gap curve was
obtained recently by Aryanpour et al.11 using a Hubbard
model, within a Monte Carlo �MC� mean field. Figures 4�a�
and 4�b� show the t2-dependence of �0 and Tc for different
�n�. In all the cases, �0 and Tc decrease when t2 increases.
From Fig. 4�b� one can see that the curve is more inclined for
higher values of �n�, which shows that Tc is more affected by
the change in t2 in this range of �n�, i.e., when the limit of
one electron per site is achieved ��n�=1.0�. When �n�

0.90, Tc is not so affected by a change in t2, i.e., the com-
pound is not so dependent on external pressure, similar to the
BCS behavior. Also, Khatami et al.12 worked on the same
problem. In their work they considered a positive U two-
dimensional Hubbard model with a Holstein term and a dy-
namical cluster approximation with a quantum MC cluster to
develop the Hamiltonian. For �n�=0.95 they have obtained a
small increase in Tc when t2 increases, and for �n�=0.85,
their results indicate an almost constant Tc for increasing t2.
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FIG. 1. The dependence of the doping �=1− �n� on �0 �see text�.
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FIG. 2. The Fermi surface for three different densities: �a� �n�=0.90, �b�
�n�=0.85, and �c� �n�=0.70.
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FIG. 3. �Color online� The temperature dependence of the gap.
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In Fig. 5 it is shown the t2-dependence of �=2�0 /kBTc. One
can see that as t2 increases, � decreases. For higher densities,
the curve is more inclined, and � is more sensitive to a
change in t2.

Our results indicate that the increase in the hopping t2

tends to suppress Tc and �0 for both higher and lower values
of the density �n�. Since the lower densities are less affected
by a change in t2, we conclude that they are not so dependent
on external pressure since external pressure affects t2.5
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FIG. 4. �Color online� t2-dependence of �0 and Tc for different values of
density �n�.
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FIG. 5. �Color online� The t2-dependence of �=2�0 /kBTc.
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