Superconductivity in a strongly correlated electron system: A theoretical study

E. S. Caixeiro^{1,a)} and A. Troper^{1,2}

¹Centro Brasileiro de Pesquisas Fisicas, R. Xavier Sigaud 150, Rio de Janeiro 22290180, Brazil ²Universidade do Estado do Rio de Janeiro, R. São Francisco 524, Rio de Janeiro 20550013, Brazil

(Presented 13 November 2008; received 10 September 2008; accepted 30 October 2008; published online 17 February 2009)

In this work we study the superconductivity within an attractive two-dimensional one-band Hubbard model. We consider a *d*-wave superconducting gap and a Hubbard-I approximation to describe the strongly correlated superconducting regime. We use the Green's function method to obtain the order parameter Δ and the superconducting critical temperature T_c . The results show that for fixed values of the superconducting attractive potential U(U < 0), the gap increases for low temperatures but diminishes abruptly as the temperature increases. The effect of pressure is discussed, varying the next-nearest-neighbor hopping t_2 , yielding a change in T_c , and also in Δ_0 , and a tendency to suppress the superconductivity. © 2009 American Institute of Physics. [DOI: 10.1063/1.3063667]

I. INTRODUCTION

It is known that some high temperature superconducting (HTSC) materials, such as cuprates, as well as superconducting heavy fermions, show strong electronic correlations.¹ In spite of the large use of the Bardeen-Cooper-Schrieffer (BCS) first order mean field approach to study the behavior of these materials, it is more appropriate to use a more suitable approximation to treat the strong coupling regime. Therefore, we apply here a Hubbard-I approximation² to obtain the zero temperature superconducting gap Δ_0 and the superconducting critical temperature T_c in a two-dimensional Hubbard model for different values of densities of charge carriers $\langle n \rangle$. Besides the calculation of Δ_0 and T_c , we have studied the effect of t_2 , the next-nearest-neighbor hopping integral, on T_c observing that when t_2 increases, T_c and Δ_0 tend to be suppressed. This is because the pressure effect on the cuprates can be attributed to the variation in t_2 and hence to the variation in the lattice parameter. The effect of t_2 on T_c has been studied by different groups^{3,4} for some HTSC materials. Pavarini et al.³ reported a correlation between the experimental maximum superconducting temperature (T_c^{max}) and the value of t_2 evaluated from band structure calculations in different cuprates, but, in most of the cases, the mechanism which may govern the relationship between T_c and t_2 in these materials is not well understood. It should be noticed that both t (the nearest neighbor) and t_2 are affected by external pressure P⁵. The effect of P on t has almost the same behavior as in t_2 , in what concerns the variation in lattice parameter of the material,⁵ and hence on T_c . Therefore, since we have adopted throughout this work t(P=0) as the energy unity, we expect that the variation in t_2 with P gives a very fair approximation of the effect of P on T_c . In our calculations we fixed U = -8.0t(t > 0), a parameter suitable to describe a strong coupling regime.

II. THEORY

In order to study the dynamics of the charge carriers with correlations and the basic attractive interaction, we consider a two-dimensional one-band Hubbard Hamiltonian,

$$H = \sum_{\langle \langle ij \rangle \rangle \sigma} t^d_{ij} d^{\dagger}_{i\sigma} d_{j\sigma} + U \sum_{\langle ij \rangle \sigma} n_{i,\sigma} n_{j,-\sigma}, \qquad (1)$$

where $d_{i\sigma}^{\dagger}(d_{i\sigma})$ is the fermionic creation (annihilation) operator at site \mathbf{r}_i for the *d* band and spin $\sigma = \{\uparrow\downarrow\}$. $n_{i\sigma} = d_{i\sigma}^{\dagger}d_{i\sigma}$ is the density operator and t_{ij}^d is the hopping integral between sites *i* and *j* nearest neighbors and next-nearest neighbors for the *d* electrons. U(U < 0) is the attractive potential between the *d* electrons, which can result from the elimination of the electron-phonon coupling through a canonical transformation or, as suggested by Hirsch and Scalapino,⁶ it may be provided by the competition between on-site and nearestneighbor site Coulomb interactions for some range of parameters. The dispersion relation is given by

$$\boldsymbol{\epsilon}_{d\mathbf{k}} = -2t[\cos(k_x) + \cos(k_y)] + 4t_2\cos(k_x)\cos(k_y) + \boldsymbol{\epsilon}_0,$$
(2)

where ϵ_0 is an adjustable constant and it is fixed so that the convergence in each different density is attained. To obtain the superconductor order parameter Δ_0 , we calculate the equations of motion of the propagators $\langle\langle d_{i\sigma}; d_{l\sigma}^{\dagger}\rangle\rangle_{\omega}$, $\langle\langle d_{i,-\sigma}^{\dagger}; d_{l\sigma}^{\dagger}\rangle\rangle_{\omega}^{7}$ and the equations of motion for the new generated Green's functions $\langle\langle n_{j,-\sigma}d_{i\sigma}; d_{l\sigma}^{\dagger}\rangle\rangle_{\omega}$ and $\langle\langle n_{j\sigma}d_{i,-\sigma}^{\dagger}; d_{l\sigma}^{\dagger}\rangle\rangle_{\omega}$, following the Hubbard-I approach² and a higher order mean field treatment,

$$2U\sum_{jp} \langle \langle n_{p,-\sigma} n_{j,-\sigma} d_{i\sigma}; d_{l\sigma}^{\dagger} \rangle \rangle_{\omega} \approx \widetilde{U} \sum_{j} \langle \langle n_{j,-\sigma} d_{i\sigma}; d_{l\sigma} \rangle \rangle_{\omega} + 2 \langle n \rangle \sum_{j} \Delta_{ij} \langle \langle d_{j,-\sigma}^{\dagger}; d_{l\sigma}^{\dagger} \rangle \rangle_{\omega},$$
(3)

where $\tilde{U}=2U\langle n\rangle$ and $\Delta_{mn}=U\langle d_{m,\sigma}^{\dagger}d_{n,-\sigma}^{\dagger}\rangle$ is the superconduct-

0021-8979/2009/105(7)/07E307/3/\$25.00

105, 07E307-1

© 2009 American Institute of Physics

FIG. 1. The dependence of the doping $\delta = 1 - \langle n \rangle$ on ϵ_0 (see text).

ing order parameter. We stress that the mean field adopted in Eq. (3) is different from the BCS approach since the decoupling is made in a further step of the Green's function. In the momentum space, and considering a *d*-wave gap symmetry, the order parameter is given by $\Delta_k = 2\Delta |\cos(k_x) - \cos(k_y)|$.

From the above relations one obtains the self-consistent gap equation

$$\Delta = -\frac{1}{N_s} \sum_{k} \frac{2\Delta \gamma_k U}{E_{1\mathbf{k}}^2 - E_{2\mathbf{k}}^2} [E_{1\mathbf{k}} \tanh(\beta E_{1\mathbf{k}}/2) - E_{2\mathbf{k}} \tanh(\beta E_{2\mathbf{k}}/2)], \qquad (4)$$

where N_s is the number of sites in the lattice, $\gamma_k = |\cos(k_x) - \cos(k_y)|$ for the *d*-wave symmetry, and U < 0. Also,

$$E_{1,2\mathbf{k}} = \sqrt{\frac{\zeta_{\mathbf{k}}}{2}} \pm \frac{\sqrt{\zeta_{\mathbf{k}}^2 - 16\tilde{U}^2\Delta_{\mathbf{k}}^2}}{2},\tag{5}$$

with $\zeta_{\mathbf{k}} = \tilde{U}^2 + \epsilon_{d\mathbf{k}}^2 + 2\tilde{U}\epsilon_{d\mathbf{k}}$. We hope that our non-BCS approach is good enough to describe some features of the HTSC cuprates.

III. NUMERICAL RESULTS AND CONCLUSIONS

In Fig. 1 we show the dependence of the doping $\delta = 1 - \langle n \rangle$ on ϵ_0 , for $\epsilon_0 = -\tilde{U}/4.60$. This value of ϵ_0 gave the expected convergence for each different density $\langle n \rangle$. As expected, δ versus ϵ_0 is monotonically decreasing. A similar result was obtained by Civelli⁸ with a cluster extension of dynamical mean field theory. He obtained the dependence of δ on the chemical potential μ and, in the same way, δ decreases with μ . Also, in both works, the range of values of ϵ_0 and μ became near. In Fig. 2 we exhibit the Fermi surface for three different $\langle n \rangle$ values: 0.90 ($\epsilon_0 = 3.1304$), 0.85 ($\epsilon_0 = 2.9565$), and 0.70 ($\epsilon_0 = 2.4$), which are quite similar to some angle resolved photoemission spectroscopy (ARPES) cuprate data.⁹

In Fig. 3 we exhibit the temperature dependence of the gap for two different values of $\langle n \rangle$, in the strong coupling regime, U=-8t. We observe that for small temperatures, the

FIG. 2. The Fermi surface for three different densities: (a) $\langle n \rangle = 0.90$, (b) $\langle n \rangle = 0.85$, and (c) $\langle n \rangle = 0.70$.

gap increases slightly, whereas when the temperature increases approaching T_c , the gap decreases abruptly, for all values of $\langle n \rangle$. This behavior is quite different from BCS calculations,¹⁰ where the gap remains almost constant in the whole range of temperature, decaying abruptly when approaching T_c . Hence, we conclude that this is a direct consequence of the Hubbard-I approach, i.e., strong attractive coupling regime. Also, a similar behavior for the gap curve was obtained recently by Aryanpour et al.¹¹ using a Hubbard model, within a Monte Carlo (MC) mean field. Figures 4(a) and 4(b) show the t_2 -dependence of Δ_0 and T_c for different $\langle n \rangle$. In all the cases, Δ_0 and T_c decrease when t_2 increases. From Fig. 4(b) one can see that the curve is more inclined for higher values of $\langle n \rangle$, which shows that T_c is more affected by the change in t_2 in this range of $\langle n \rangle$, i.e., when the limit of one electron per site is achieved ($\langle n \rangle = 1.0$). When $\langle n \rangle$ $\leq 0.90, T_c$ is not so affected by a change in t_2 , i.e., the compound is not so dependent on external pressure, similar to the BCS behavior. Also, Khatami et al.¹² worked on the same problem. In their work they considered a positive U twodimensional Hubbard model with a Holstein term and a dynamical cluster approximation with a quantum MC cluster to develop the Hamiltonian. For $\langle n \rangle = 0.95$ they have obtained a small increase in T_c when t_2 increases, and for $\langle n \rangle = 0.85$, their results indicate an almost constant T_c for increasing t_2 .

d-wave

FIG. 3. (Color online) The temperature dependence of the gap.

FIG. 4. (Color online) t_2 -dependence of Δ_0 and T_c for different values of density $\langle n \rangle$.

In Fig. 5 it is shown the t_2 -dependence of $\xi = 2\Delta_0/k_BT_c$. One can see that as t_2 increases, ξ decreases. For higher densities, the curve is more inclined, and ξ is more sensitive to a change in t_2 .

Our results indicate that the increase in the hopping t_2

FIG. 5. (Color online) The t_2 -dependence of $\xi = 2\Delta_0/k_BT_c$.

tends to suppress T_c and Δ_0 for both higher and lower values of the density $\langle n \rangle$. Since the lower densities are less affected by a change in t_2 , we conclude that they are not so dependent on external pressure since external pressure affects t_2 .⁵

- ¹E. J. Calegari, S. G. Magalhães, and A. A. Gomes, Eur. Phys. J. B **45**, 485 (2005).
- ²J. Hubbard, Proc. R. Soc. London, Ser. A **276**, 238 (1963).
- ³E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. **87**, 047003 (2001).
- ⁴K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z.-X. Shen, X.-J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki, Phys. Rev. B **70**, 092503 (2004).
- ⁵G. G. N. Angilella, R. Pucci, and F. Siringo, Phys. Rev. B **54**, 15471 (1996).
- ⁶J. E. Hirsch and D. J. Scalapino, Phys. Rev. B 32, 5639 (1985).
- ⁷G. M. Japiassú, M. A. Continentino, and A. Troper, Phys. Rev. B **45**, 2986 (1992).
- ⁸M. Civelli, e-print arXiv:cond-mat/0808.3948.
- ⁹M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, R. Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. **95**, 077001 (2005).
- ¹⁰G. M. Japiassu, M. A. Continentino, and A. Troper, J. Appl. Phys. 73, 6648 (1993).
- ¹¹K. Aryanpour, T. Paiva, W. E. Pickett, and R. T. Scalettar, Phys. Rev. B **76**, 184521 (2007).
- ¹²E.Khatami, A. Macridin, and M. Jarrel, Phys. Rev. B 78, 060502(R) (2008).