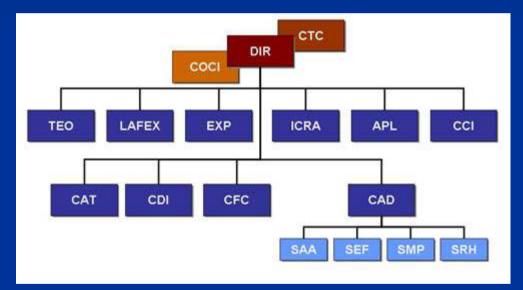


CBPF Localização

CBPF Localização



Rio de Janeiro Ipanema

CBPF Urca - Perto da Praia Vermelha

CBPF fundado em 1949 www.cbpf.br DIR - Direção

CTC - Conselho Técnico Científico

COCI - Comitê Científico Assessor

CCI - Coordenação de Colaborações

Científicas Institucionais

EXP - Coordenação de Física

Experimental e Baixas Energias

LAFEX - Coordenação de Física

Experimental de Altas Energias

ICRA - Coordenação de Cosmologia,

Relatividade e Astrofísica

APL - Coordenação de Física Aplicada

TEO - Coordenação de Física Teórica

CAT - Coordenação de Atividades

Técnicas

CDI - Coordenação de Documentação e

Informação Científica

CFC - Coordenação de Formação

Científica

CAD - Cordenação de Administração

Pesquisa Fundamental e Desenvolvimento

- Matéria Condensada
- Biofísica
- Estatística e Sistemas Dinâmicos
- Cosmologia e Gravitação
- Altas Energias e Raios Cósmicos
- Física Nuclear e Astrofísica
- -Campos e Partículas

Aplicações da Física e Tecnologia

- Ciência dos Materiais
- Química, Catálise e Meio-Ambiente
- Geologia, Biologia, Medicina e Saúde
- Instrumentação Científica e Tecnológica
- Computação e modelagem
- Plasmas confinados magneticamente e gerados por lasers pulsados

CBPF RECURSOS HUMANOS E PRODUÇÃO

O quadro permanente do CBPF hoje é composto por 159 funcionários permanentes.

62 pesquisadores doutores (incluindo o Diretor, que publica pelo CBPF, (63),

13 Doutores tecnologistas (publicam e realizam pesquisa e desenvolvimento tecnológico, (mais 4 mestres e 6 bacharéis),

25 técnicos de apoio e 38 gestores - Sendo 13 analistas (3 com mestrado e 1 doutorado)

Quadro flutuante de pesquisadores, visitantes e alunos tem sido de 240 por ano em média

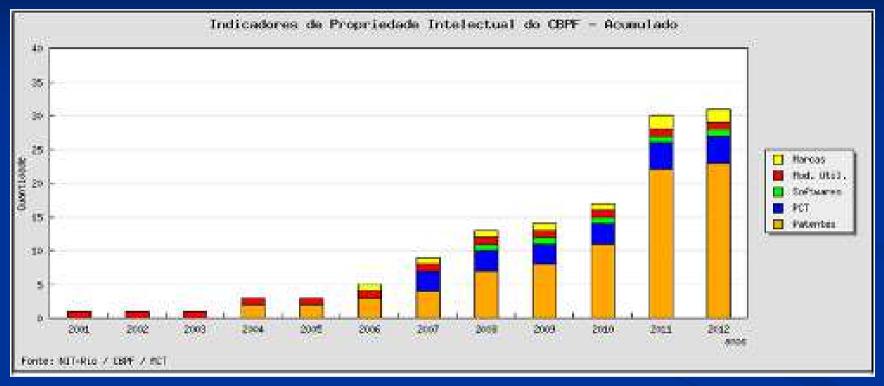
ANO	2002	2003	2004	2005	2006	2007	2008	2009
Artigos	169	170	236	178	198	202	246	221
Pesquisa dores	66	66	66	69	69	66	65	62
Média	2,6	2,6	3,6	2,6	2,9	3,6	3,8	3,6

CBPF PÓS GRADUAÇÃO

CBPF

CINQUENTA ANOS FORMANDO CIENTISTAS PARA O BRASIL E PARA O MUNDO

-PROGRAMA DE PÓS-GRADUAÇAO CONCEITO 7 (máximo) da CAPES-


-Programas acadêmicos de Doutorado e Mestrado em Física E o primeiro Mestrado Profissional em Física com Ênfase em Instrumentação Científica.

-Desde sua criação, foram formados pelo CBPF **365 Doutores** em Física e **400 Mestres** em Física Acadêmica e Profissional e Física com ênfase em Instrumentação Científica.

- Em 2012 : 73 alunos de doutoramento e 22 de mestrado.

MESTRADO PROFISSIONAL EM FÍSICA COM ÊNFASE EM INSTRUMENTAÇÃO CIENTÍFICA

Primeiro e único no País

Seleção ao Mestrado Profissional 2012.2 02/07/2012

Exame de Seleção ao Mestrado Profissional com Ênfase em Instrumentação Científica 2012.12 Inscrições: 02/07/2012 até 01/08/2012

Data e horário do exame: 06/08/2012 - 9 às 12h (Auditório do sexto - andar)

LABORATÓRIOS DE APOIO A PESQUISA:

Criogenia, Produção de Amostras, Oficina de vidro, Oficina Mecânica, Laboratório de Instrumentação Eletrônica, Laboratório de Bioquímica, Laboratórios de Coordenação de Atividades Técnicas (Informática, Computação de Alto Desempenho e Redes de Computadores).

LABORATÓRIOS MULTIUSUÁRIOS DE PESQUISA:

Difração de Raios-X, Magnetometria (SQUID e PPMS), Ressonância Paramagnética Eletrônica (EPR), e Refrigerador à Diluição de He3-He4, Laboratório de Superfícies e Nanoestruturas, Laboratório de Espectroscopia de Emissão, LABNANO – Laboratório de Nanociências e Nanotecnologia, Laboratório de Plasmas Aplicados e Ablação a Laser, Laboratório de Altas Energias - Laboratório Laser de elétrons livres (em construção)

LABORATÓRIOS VINCULADOS A GRUPOS DE PESQUISA:

Efeito Mössbauer; Supercondutividade; Ressonância Magnética Nuclear; Filmes Finos; Multicamadas, Fonte de Clusters; Correlação Angular; Magneto-Ótica; Sistemas de Detecção; Materiais Biocerâmicos; Lab. do Projeto Pierre Auger; Física de Altas Energias, Microorganismos Magnetotáticos; Magnetometria e Resistividade Elétrica; Laboratório de Eletrodeposição e Laboratório de Materiais Multifuncionais Multiferróicos (ínicio da implantação em 2010) e Laboratório de Instrumentação e Medidas.

nanômetro ou nanometro ?

Conselho Nacional de Metrologia, Normalização e Qualidade Industrial - CONMETRO

Resolução nº 12, de 12 de outubro de 1988

Na forma oral, os nomes dos múltiplos e submúltiplos decimais das unidades são pronunciados por extenso, prevalecendo a sílaba tônica da unidade. As palavras quilômetro, decímetro, centímetro e milímetro, consagradas pelo uso com o acento tônico deslocado para o prefixo, são as únicas exceções a esta regra; assim sendo, os outros múltiplos e submúltiplos decimais do metro devem ser pronunciados com acento tônico na penúltima sílaba (mé), por exemplo, megametro, micrometro (distinto de micrômetro, instrumento de medição), nanometro, etc.

3. Estabelecer que o Instituto Nacional de Metrologia, Normalização e Qualidade Industrial -INMETRO, seja encarregado de propor as modificações que se tornarem necessárias ao Quadro anexo, de modo a resolver casos omissos, mantê-lo atualizado e dirimir dúvidas que possam surgir na interpretação e na aplicação das unidades legais.

Introdução

Nanociências e Nanotecnologia

A escala nanométrica

Será a Nanociência uma nova ciência?

Com a Mecânica Quântica os físicos já vinham trabalhando na escala nano.

nanômetro ou nanometro ?

Dicionário do Aurélio

nanômetro – submúltiplo do metro, igual a 10⁻⁹ m; milimicron. [simb: nm]

Dicionário Houaiss de Física - Itzhak Roditi

nanômetro – unidade de comprimento equivalente à bilionésima parte do metro ou 10⁻⁹ m. [simb: nm]

Prefixos das Unidades SI

Nome	Símbolo	Fator de multiplicação da unidade
yotta	Υ	$10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000$
zetta	Z	$10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000$
exa	E	10 ¹⁸ = 1 000 000 000 000 000 000
peta	Р	1015 = 1 000 000 000 000 000
tera	Т	1012 = 1 000 000 000 000
giga	G	109 = 1 000 000 000
mega	М	10 ⁶ = 1 000 000
quilo	k	$10^3 = 1000$
hecto	h	$10^2 = 100$
deca	da	10
deci	d	$10^{-1} = 0,1$
centi	С	$10^{-2} = 0.01$
mili	m	$10^{-3} = 0.001$
micro	μ	$10^{-6} = 0,000\ 001$
nano	n	10 ⁻⁹ = 0,000 000 001
pico	р	$10^{-12} = 0,000\ 000\ 000\ 001$
femto	f	10-15 = 0,000 000 000 000 001
atto	a	10-18 = 0,000 000 000 000 000 001
zepto	z	10 ⁻²¹ = 0,000 000 000 000 000 000 000 000 000
yocto	у	10 ⁻²⁴ = 0,000 000 000 000 000 000 000 000 000

Nanociência & Nanotecnologia - N & N

Ciência e tecnologia na escala nano, 10-9 m

-1 mm

ácaro

fio de cabelo

1 μm

comprimento de onda da luz visível

virus

1 nm

distância entre planos atômicos no grafite

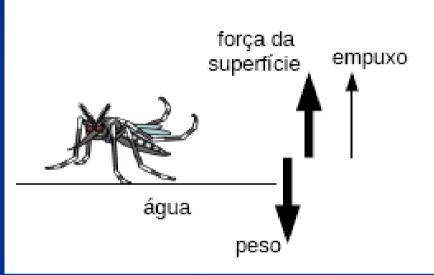
molécula de água

átomo

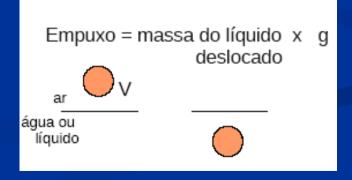
Nanociência & Nanotecnologia

Fabricação, manipulação, funcionalização de um único objeto na escala entre 1 e 100 nm.

Em dimensões (alguns nanometros) onde a relação superfície / volume proporcione novos fenômenos e aplicações.


Conceitos

Nanoestrutura é definida com uma estrutura em que pelo menos uma das dimensões é menor ou igual a uma dimensão crítica d* (d≤d*≈100nm).

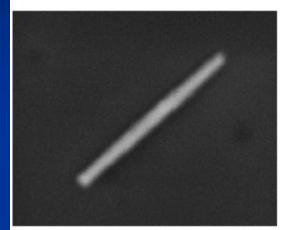

O valor de d* não possui determinada magnitude, sendo fisicamente determinado pela característica crítica de um determinado fenômeno físico e dando origem, assim, ao efeito do tamanho.

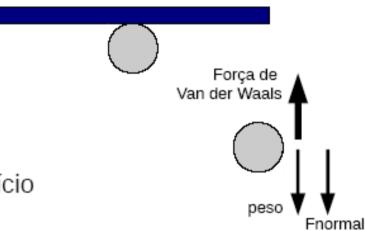
Forças no mundo pequeno

Tensão superficial → Força de atração dos átomos da superfície do líquido

Forças no mundo pequeno

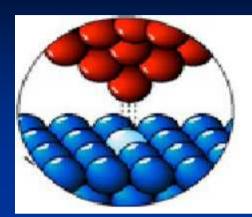
→ objetos micro e nano em um meio aquoso




movimento Browniano

viscosidade muda radicalmente

Forças no mundo pequeno

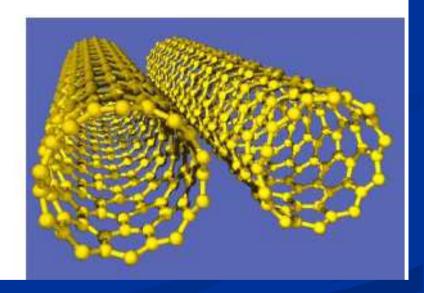


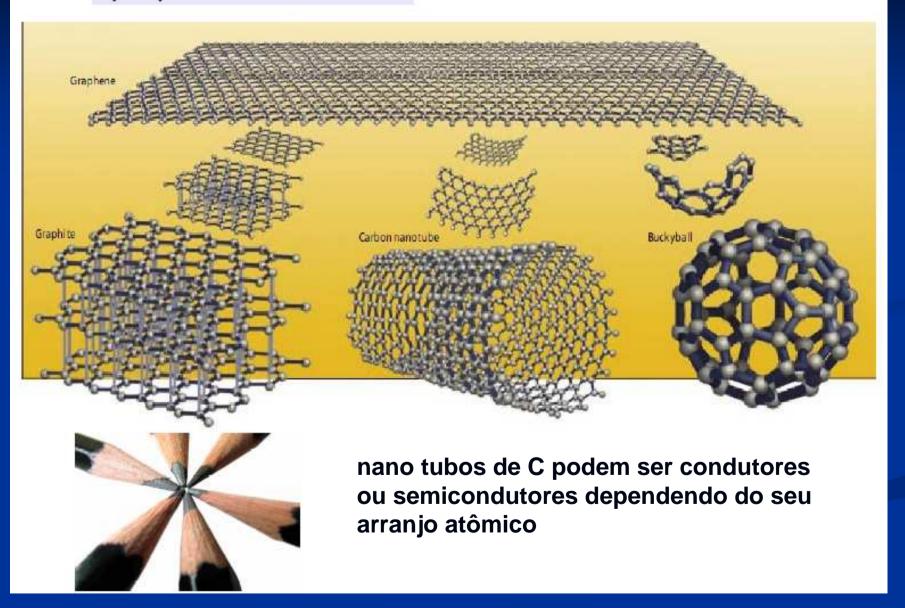
nanofio de cobalto (50nm x 2 μm) sobre silício

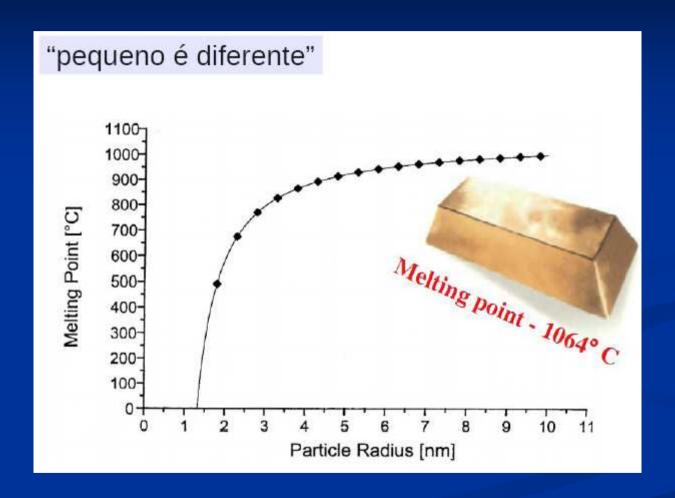
Força de Van der Waals é uma força de adesão

(tem por origem a interação eletrostática) (depende da superfície de contato)

- → Força de Van der Waals
- → Força de interação/ligação entre os átomos


No mundo pequeno – micro e nano


- → Tensão superficial (líquidos)
- → Movimento Browniano / temperatura
- → Fácil adesão / força de Van der Waals
- → Força de ligação entre átomos
- → Geralmente peso e empuxo podem ser desprezados


nanotubos de carbono

20 x mais resistente que o aço

1000 x condutor que o cobre

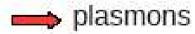
Quando o objeto é composto por "poucos" átomos, suas propriedades são diferentes

Qual a origem da diferença de comportamento?

Na escala nano, a relação entre o número de átomos na superfície e volume passa a ser importante.

Efeitos quânticos estão sempre presentes. No entanto, em objetos pequenos (nano e macro) podem ocorrer efeitos quânticos que não existem em objetos grandes. Isto é um efeito de tamanho.

Taça de Lycurgus Roma antiga, 4 AC (The British Museum)


partículas de ouro e prata eram utilizadas para dar colorir objetos (e vitrais em igrejas)

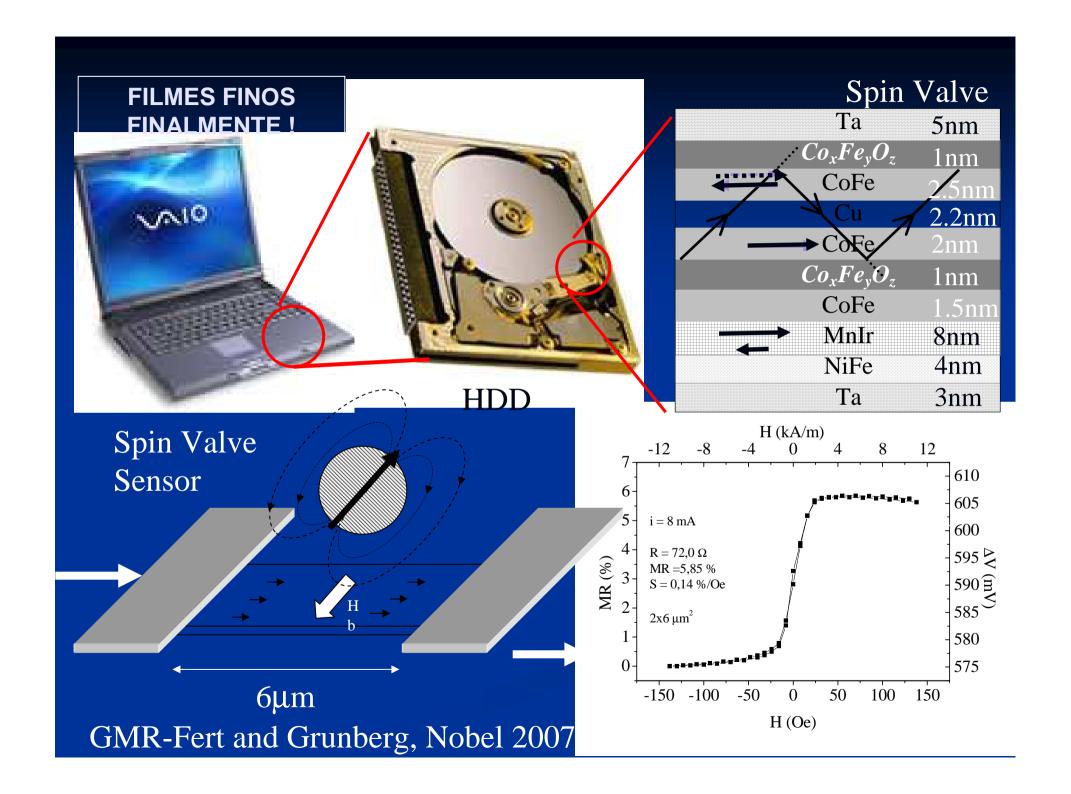
sem luz

com luz

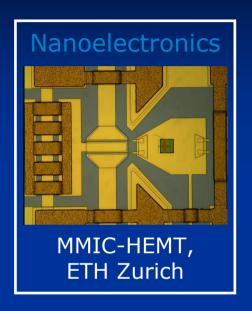
partículas de ouro

Potencial da nanotecnologia

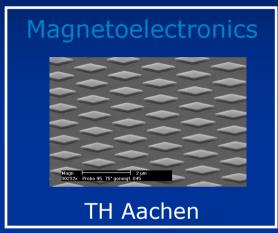
- → medicina: carreadores de medicamentos
- → eletrônica: processadores e sensores
- → materiais compósitos

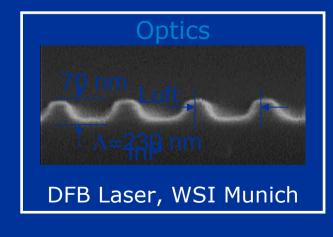

Potencial da nanotecnologia

eletrônica / sensores: miniaturização (uso de peças / componentes nano)

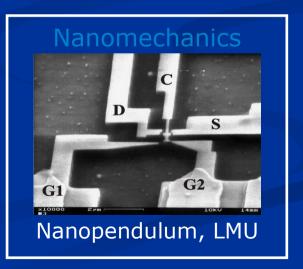

HD – disco duro para gravação de dados

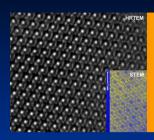


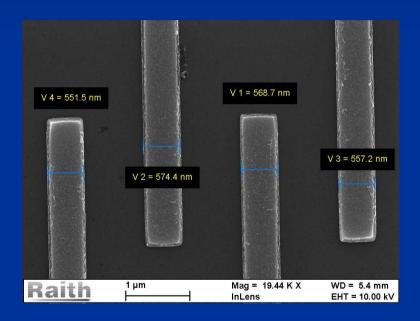




Aplicações – NANO DISPOSITIVOS







LABNANO

Laboratório Multiusuário de Nanociência e Nanotecnologia

Centro Brasileiro de Pesquisas Físicas CBPF/MCTI

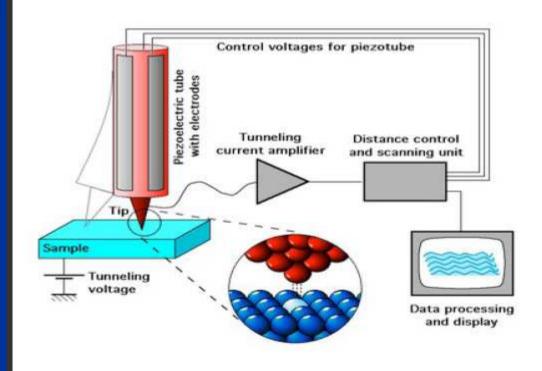
Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro RJ - http://www.cbpf.br/~labnano - E-mail: labnano@cbpf.br

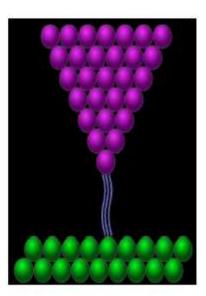
Nanolitografia por feixe de elétrons

O que proporcionou o "boom" da N&N ?

- Novas técnicas de análise :
 - se sofisticou: microscopia eletrônica
 - foram criadas: microscopia de tunelamento e varredura de ponta

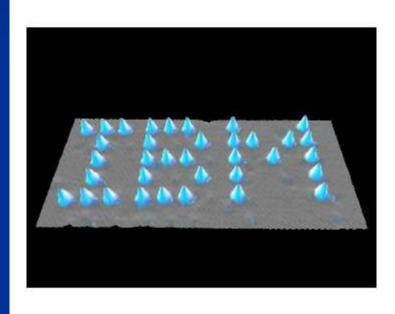
... e os preços baixaram

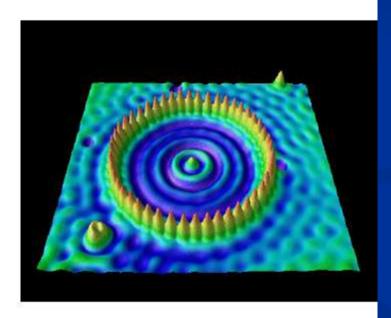

- → Novas técnicas de fabricação surgiram:
 - litografia óptica (circuitos integrados)
 - litografia por feixe de elétrons
 - auto-organização por via química


... e os preços baixaram

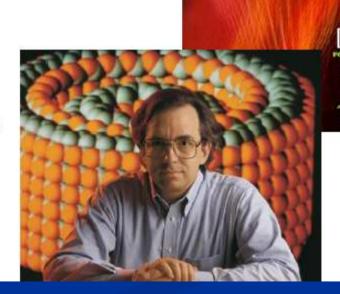
Histórico

- 1981 microscópio de tunelamento (STM)
- 1989 manipulação de átomos com STM





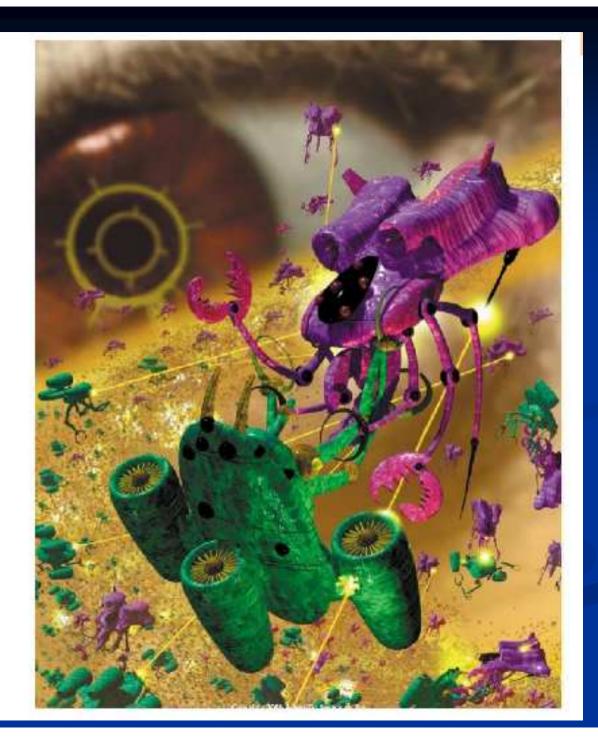
- 1981 microscópio de tunelamento (STM)
- 1989 manipulação de átomos com STM


- 1986 "máquinas moleculares" Eric Drexler

construções moleculares poderiam ser feitas átomo-a-átomo

- grandes: materiais (mais leves, resistentes, etc)

- pequenos: nanorrobôs


manipular átomos destruir vírus, células cancerígenas, consertar artérias e até se reproduzir (como células)

Nanorrobôs

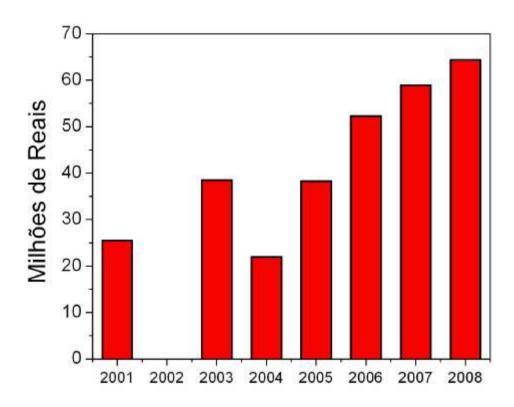
nanorobots "nanobots"...

nanoficção científica

- anos 90, movimentação política

Senador Al Gore (1992)

- "... novas tecnologias sustentáveis..."
- Eric Drexler
 - Richard Feynman (1959)
 - corrida tecnológica com os japoneses


Vice-presidente Al Gore (>1992) Mihail Roco, Neal Lane, Tom Kalil (NSF, indústria etc) Richard Smalley (Nobel de Química 96, fulerenos)

2000, criada a NNI (National Nanotechnology Iniciative)
 e "o planeta torna-se nano", a se formou a "moda nano"
 química, biologia, ciência de materiais, física e
 indústrias: microeletrônica, cosméticos, etc

Coordenação-Geral de Micro e Nanotecnologias – CGNT (criada em 2004)

Aplicações

Tissue

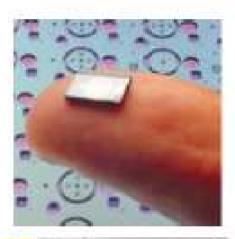
targeting, Delivery

NANOPARTICLES

Aplicações da Nanotecnologia

Eletrônica / Sensores

Compósitos

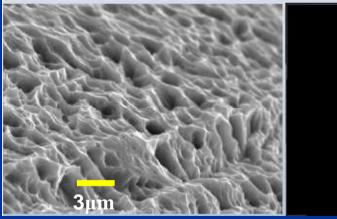

"Drug delivery"

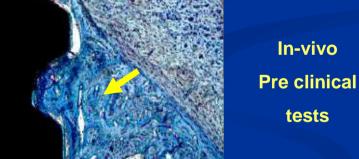
Potencial da nanotecnologia

eletrônica / sensores: miniaturização (uso de peças / componentes nano)

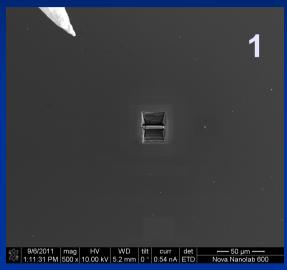
aplicador de insulina

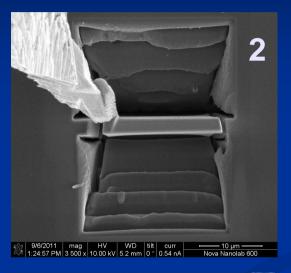
Debiotech SA

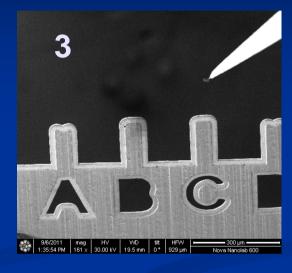


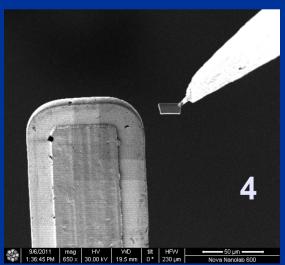

Labiomat + LabSurf + Colaboradores = Recobrimentos nanométricos de Fosfatos de cálcio biocompatíveis

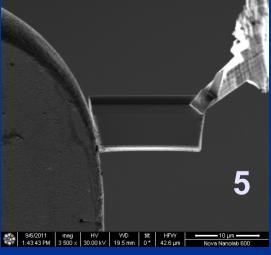
Comercial Ti implant with 100nm HAP coating

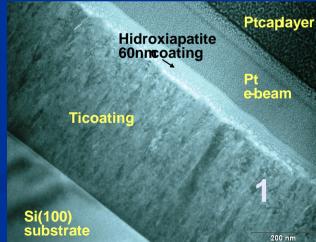

\$30nm | PILAR | SUBSTRATO | SU

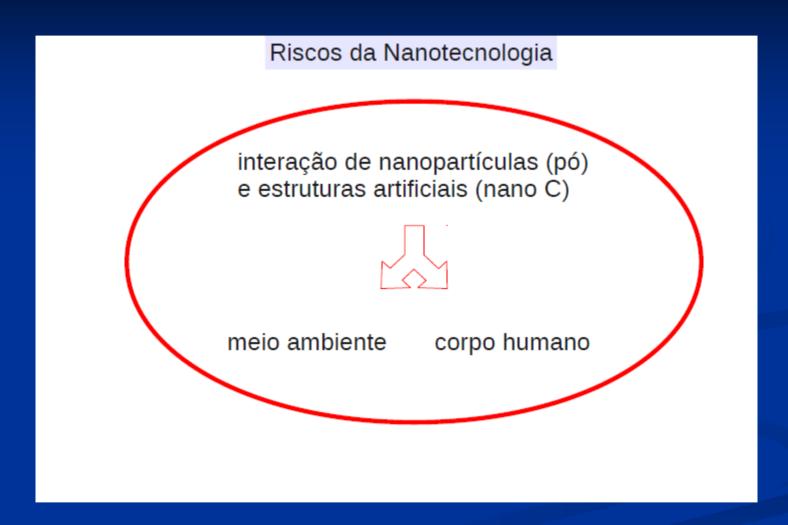

Titanium implant surface after acid treatment and HAP nano coating

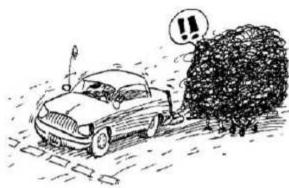





Filme de Si / Ti (400nm)/ Hidroxiapatita (60nm) Nanofabricação por feixe de íons (FIB) de uma amostra para ser observada em seção transversal

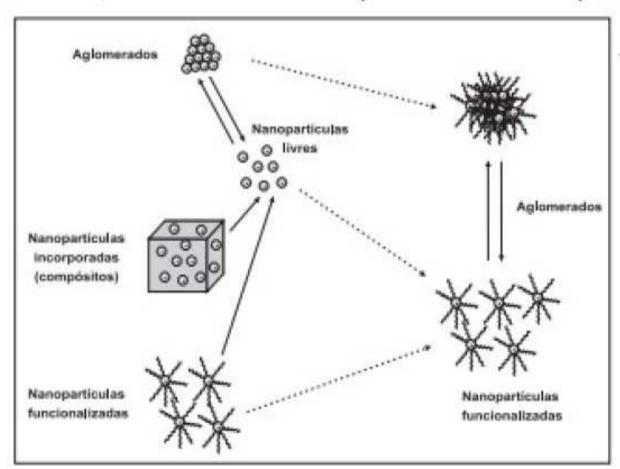





TOXICOLOGIA

Riscos

fontes naturais de nanopartículas



OS NANOMATERIAIS E A QUESTÃO AMBIENTAL

Matheus P. Paschoalino, Glauciene P. S. Marcone e Wilson F. Jardim*

Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas - SP, Brasil

Qual é a definição de N&N? Tudo se tornou N&N

Nanotecnologia é uma nova revolução industrial? É certamente um grande avanço


Produtos com nano-objetos são perigosos para a saúde e o meio ambiente? Não são especialmente nocivos

> Questões éticas Há questões relevantes mas há muito exagero

