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Abstract. We study the nonlinear decay of the inflaton field with quartic
potential, V (φ) = 1

4λφ4, using the Galerkin projection method that provides
a natural mode decomposition of the field with the modal coefficients having
the dynamics of a set of nonlinear coupled harmonic oscillators. Three distinct
phases are definitely characterized according to the role of the nonlinear couplings
in the dynamics, starting from the linear regime of parametric resonance towards
a final turbulent phase dominated by the nonlinear effects and connected to the
chaotic behaviour of all modes, when the state of thermalization is accomplished.
Two features of the turbulent stage are displayed: first, an effective mechanism
of transfer of energy among the homogeneous modes and all other modes,
initially resonant or not; second, the distribution of energy versus the modal
wavenumber, characterizing the energy distribution per scale, which shows two
distinct decoupled components. One of the components, connected to the
energy distribution in small scales, has a Maxwell–Boltzmann form in thermal
equilibrium with temperature TR � 102λMPl.
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1. Introduction

In the realm of inflationary cosmology, the process of reheating plays a crucial role in
the transition of the Universe from the inflationary phase into the radiation dominated
phase, and in the creation of almost all matter constituting the present Universe. This
process begins at the end of inflation with a stage of parametric resonance when the energy
is rapidly transferred from the inflaton field into other matter fields, leading to particle
production and inflaton decay, far away from thermal equilibrium [1]–[3], [5].

The main object of this paper will be to describe the nonlinear decay of the inflaton
field in the theory 1

4
λφ4 after inflation. For this we shall use the Galerkin projection

method that is largely applied in problems of fluid mechanics and turbulence [6]. The
Galerkin method constitutes a powerful method for dealing with nonlinear problems
described by any type of differential equation, and whose main aspect is to approximate a
given partial differential equation by a finite set of coupled ordinary differential equations.
In the realm of the problem under consideration, the Galerkin method naturally provides
a mode decomposition of the fields (that is the basics of a QFT treatment of the problem)
and gives the dynamical equations of the modal coefficients. This allows us to approach the
problem from a dynamical system perspective, and the general dynamics of the inflaton
field with its fluctuations during preheating can be understood as a set of nonlinear coupled
harmonic oscillators, where the linearized equations account for the preheating phase in
which parametric resonance takes place. As the higher mode oscillations are amplified,
the nonlinear coupling begins to play a crucial role in the dynamics, restructuring the
resonance towards a final stage of thermalization. The method allows us to follow the
dynamics in the full nonlinear regime and in the long term, including the effects of
backreaction and rescattering, that will be responsible for dynamically restructuring the
resonance. Furthermore, the dynamical evolution of each mode can be followed and the
chaotic behaviour of all modes, resonant or not, is established in a long term regime leading
to a final thermalization of the produced particles. A picture of thermalization emerges
as due to the development of a full turbulent stage connected to the chaotic behaviour of
all modes.
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These dynamical mechanisms were first approached in several fundamental
papers [2, 3] in which the background was assumed to be unperturbed. Basically, by
integrating numerically the field equations on the lattice [4], Klebnikov and Tkachev found
several interesting nonlinear effects such as the set-up of parametric resonance in the initial
stages of reheating, how the resonance can be terminated by the backreaction of produced
particles, and a stage of the inflaton decay when the resonant peaks in the power spectrum
begin to interact and smear out, in a process denoted by the authors as semiclassical
thermalization. In some other papers the metric perturbations were included [8]–[10].

This paper is organized as follows. In section 2 the basic equations of the model are
presented, along with the steps necessary for the implementation of the Galerkin method
that culminate with the derivation of the dynamical system. In section 3 the numerical
results obtained from the integration of the dynamical system are discussed. By keeping
track of the full evolution of the homogeneous inflaton field, and of the resonant and
nonresonant modes, we were able to envisage the presence of three distinct phases of the
dynamics towards the thermalization, as a generic feature of the system. Accordingly, we
have called them the linear, quasilinear and turbulent phases, inspired by the transition
from the laminar to the turbulent regime found in fluid mechanics. In our approach
the onset of turbulence will be of crucial importance for the transfer of energy among
the modes, and therefore in the establishment of thermalization. We have also derived
the energy spectrum of the inflaton field versus the wavenumber in the turbulent phase,
making explicit this mechanism of energy transfer. For numerical simplicity we first
perform the integration in a two dimensional spatial domain. However, with view to
reliable results of genuine cosmological interest, the numerical calculations leading to an
evaluation of the reheating temperature were performed in three dimensions. Also some
of the figures of the text, generated from calculations in two dimensions, are obtained
again in three dimensional calculations and shown to be qualitatively analogous. Finally,
our conclusions are given in section 4.

2. The model: basic equations and implementation of the Galerkin method

The basic equation of our problem is the evolution of the inflaton field φ(x, t) with the
potential V (φ) = 1

4
λφ4, in a spatially flat Friedmann–Robertson–Walker universe [1, 2].

Using the conformal time τ defined by a(τ) dτ =
√

λφ0(0)a(0) dt, the conformal field

ϕ = φa(τ)/φ0(0)a(0) and spatial coordinates x →
√

λφ0(0)a(0)x, it assumes the form

ϕ′′ −∇2ϕ − a′′

a
ϕ + ϕ3 = 0 (1)

where a prime stands for the derivative with respect to τ and φ0(0) is the homogeneous
component of the inflaton field at t = τ = 0. At the end of inflation the inflaton field
undergoes the phase of coherent oscillations. It can be shown that the effective energy–
momentum tensor of the inflaton in the theory 1

4
λφ4 averaged over several oscillations is

traceless [11], implying a(τ) ∼ τ , and allowing us to set a′′ = 0 in equation (1).
In order to simplify our procedure, the integration of equation (1) will be first

performed in a two dimensional square box D of size L with periodic boundary conditions.
The orthogonal functions that automatically satisfy these boundary conditions are
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ψk = exp((2πi/L)k · x), where k = (l, m) is the co-moving momentum (wavenumber
vector), so that the Galerkin decomposition is

ϕ(x, t) =

N∑

l=−N

N∑

m=−N

alm(τ)ψlm(x, y), (2)

where N is the order of truncation to be chosen and x = (x, y). For each N there are
(N + 1)(N + 2)/2 distinct moduli of the wavenumber vectors k, the latter corresponding
to a large number of independent modes with the same moduli. The basis functions are
orthogonal with respect to the inner product defined by 〈ψk, ψl〉 =

∫
D ψkψ

∗
l d2x = L2 δkl.

Not all modal coefficients ak(τ) are independent, since by imposing the scalar field to be
real, we arrive at a∗

k(τ) = a−k(τ), or equivalently a∗
lm = a−l−m.

The next step of the Galerkin procedure is to insert the decomposition (2) into (1),
the resulting equation then being projected into each kth mode ψk(x). As a result, we
obtain a set of equations for ak(τ) given by

a′′
k(τ) + ω2

kak(τ) +
∑

n,l

an(τ)al(τ)ak−n−l(τ) = 0, (3)

where ω2
k = (4π2/L2)k2. A further decomposition of the modal coefficients into their real

and imaginary parts is necessary, or ak(τ) = αk(τ) + i βk(τ). The symmetry imposed on
the modal coefficients produces αk(τ) = α−k(τ) and, βk(τ) = −β−k(τ). Consequently,
the modal coefficient β0(τ) is zero. Taking into account the symmetries of the modal
coefficients, and if N is the order of truncation, then there will be 2N(N + 1) + 1
independent modal coefficients αk and 2N(N +1) independent βk. From equation (3) the
equation of motion for the coefficient α0(τ) can be written as

α′′
0(τ) + α3

0(τ) + V0(α0, αk, βk) = 0, (4)

with the last term representing nonlinear mode–mode couplings. α0(τ) is identified as the
homogeneous mode of the inflaton. Note that by neglecting the potential-like term V0,
namely considering the modal coefficients αk and βk very small (k �= 0), we come up with
the equation that governs the evolution of the homogeneous component of the inflaton in
a period after inflation when all other modes are still small in amplitude [2]. The exact
solution in this situation is oscillatory, given in terms of an elliptic cosine with modulus√

2, up to a rescale of the conformal time.
In general, for any other modal coefficient (αk, βk) and for any order of truncation,

equation (3) yields

α′′
k(τ) + (ω2

k + 3α2
0(τ))αk(τ) + Vk(α0, αk, βk) = 0

β ′′
k(τ) + (ω2

k + 3α2
0(τ))βk(τ) + Uk(α0, αk, βk) = 0

(5)

where again Vk and Uk represents all types of nonlinear mode–mode couplings. The first
two terms of both equations (5) above describe the linear regime for the modes k �= 0,
namely when the amplitude of these modes are still small and we can neglect the nonlinear
couplings Vk(α0, αk, βk) and Uk(α0, αk, βk). In this situation α0 has an oscillatory
behaviour as mentioned previously, and equations (5) assume the form of the Lamé
equation, so that depending on a convenient choice of ωk, dictated by the corresponding
stability/instability chart, parametric resonance will occur [2]. The resonant modes will
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lead the dynamics into the nonlinear regime, therefore restructuring the resonance through
basically two concomitant mechanisms, backreaction on the homogeneous mode via the
nonlinear couplings V0, and on the nonzero modes themselves (resonant and nonresonant)
via α0 and via the nonlinear couplings Vk and Uk. For instance, expansion of V0 given
in (4) yields V0 = 6

∑
k (α2

k + β2
k)α0 + · · ·, where the first term may be interpreted,

in a QFT manner, as connected to one-loop Hartree corrections which will begin to
restructure the resonance (due to the backreaction of the created quanta of the inflaton on
its homogeneous mode), and further terms may be interpreted as describing higher-order
loop corrections.

The dynamical system contained in equations (4) and (5) is integrated with initial
conditions taken according to the following considerations [3, 10]. The fluctuations in the
inflaton are quantum in origin, and it is appropriate to consider the field to be in the
vacuum state at the end of inflation. The zero mode (homogeneous mode) is semiclassical
from the beginning. By virtue of our rescaling its initial value is α0(0) = 1, and we choose
α′

0(0) = 0 as the definition of the moment τ = 0 when the oscillations of the inflaton start.
From these initial conditions the time dependence of the homogeneous component of the
inflaton will be obtained from equation (3), once the initial conditions for the nonzero
modes αk and βk are specified. The classical complex coefficients ak(τ) = αk(τ) + iβk(τ),
solutions of equation (3), can be interpreted as c-number amplitudes associated with
processes of creation and annihilation of quantum fluctuations of the inflaton field in the
mode k. At the end of inflation, in the vacuum state, they may be given as

ak(0) =

√
λ

2Ωk
|Ak|e2πirk,

a′
k(0) =

[
−iΩk +

a′

a
(0)

]
ak(0)

(6)

where Ω2
k = ω2

k + 3α0(0)2, Ak is a number randomly taken from a Gaussian distribution
with zero mean and unit variance, and rk is a random number taken from the interval
[0, 1]. We note that λ regulates the magnitude of initial quantum evolutions in nonzero
modes relative to the magnitude of the zero mode; in our parametrization, (a′/a)(0) ≈ 1
and independent of λ. In obtaining equations (6), we treated the inflaton field as a
free quantum field in the vacuum state at τ = 0, with the c-number amplitude ak(τ)
satisfying the harmonic oscillator equation given by the linearized part of (3); also they
are applicable in the adiabatic limit, namely Ω′

k 
 Ω2
k. This choice of initial conditions is

a good approximation when applied prior to the onset of resonance, but the assumptions
leading to them are certainly violated at later times although we may consider that
they fix the quantum nature of the fluctuations involved in later processes. A complete
quantum-mechanical description of processes in the full nonlinear regime remains to be
done. In order to proceed with the integration of equations (4), (5), we have set N = 2
resulting in a dynamical system constituted by 25 independent second-order equations.
Our guide for choosing a suitable value for L is the linearized regime described after
neglecting the nonlinear mode–mode couplings Vk and Uk in equations (5). Several modes
were selected which undergo an initial phase of parametric resonance by considering the
stability/instability chart for the Lamé equation that governs the evolution of the modes
αk and βk in the linearized version [2]. We then set L = 5π/

√
2 such that all modes with

|l| = 2, |m| = 1 are inside the instability band (in this case ω2
|2||1| = 1.6) and are amplified.
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3. Numerical results

We have performed numerical experiments [12] with sets of initial conditions determined
by different values of λ ranging from 10−13 to 10−4 that determines (cf equation (6))
the initial amplitude of the modes αk and βk. As a consequence, the only observed
physical feature due to the choice of distinct values of λ is the time required for the
nonlinearities described by the potential terms V0, Vk and Uk to become important. These
nonlinear effects include the end of the initial stage of preheating with the suppression
of the exponential growth of the resonant modes due to parametric resonance and
the backreaction and rescattering followed by thermalization which is, as we shall see,
associated to the onset of a turbulent regime.

In figure 1, the long-time behaviour of the homogeneous mode of the inflaton field,
α0(τ), the resonant mode β12(τ) and the nonresonant mode α11(τ) are depicted for
λ = 10−4. We have identified three distinct phases, where the particular duration of each
phase is dictated by the value of λ. In the first phase that lasts from τ = 0 to τ ≈ 80, α0(τ)
oscillates with constant amplitude indicating that the mode–mode couplings present in
V0 (cf equation (4)) have negligible influence. The behaviour of the resonant mode β12(τ)
and the nonresonant mode α11(τ) is in agreement with the prediction provided by the
linearized theory, i.e. the former experiences exponential growth while the latter oscillates
without changing its amplitude considerably.

At this point it will be useful to discuss briefly the influence of the truncation
order N in the decay of the inflaton. By increasing N more modes are added in the
decomposition (2), so increasing the number of independent equations. From the Galerkin
decomposition it is expected that as N → ∞ the error between the exact and the
approximate values of the inflaton approaches zero. On the other hand, according to
an aforementioned aspect of the Galerkin method, a relatively small truncation is able to
reproduce efficiently the basic skeleton of the dynamics of the problem under consideration.
Indeed, this is confirmed by some numerical experiments in which the truncation order is
increased from N = 2 (48 equations)to N = 4 (162 equations). In figure 2 the evolution
of α0 for N = 2, 3 and 4 is depicted. It is then important to notice that the end of the first
phase and the subsequent one are almost identical no matter what the chosen truncation
order.

A quantitative measure of the sum of all modal fluctuations produced about the
homogeneous mode is given by the variance σ2 = 〈(ϕ − α0)

2〉 =
∑

(α2
k + β2

k), where α0

is the expected value of the inflaton field. In the Galerkin projection method used, it is
easy to compute the long-time behaviour of the variance and show that, during the initial
phase, the variance grows as expected by the linear theory of preheating (cf figure 3).
As we shall see, the power spectrum of the variance will be used to make a definite
characterization of the final turbulent phase as a thermalization phase due to the onset
of a turbulent regime.

In the second phase, lasting from τ ≈ 80 to τ ≈ 240, the nonlinear mode–mode
couplings start to alter the evolution of the homogeneous mode α0(τ), and of the resonant
and nonresonant modes as well. Basically, this phase is characterized by the end of the
parametric resonance, and therefore signals the beginning of the restructuring of the
resonance. From figure 1, it can be seen that α0(τ), the resonant mode β12(τ) and the
variance oscillate with modulated amplitude and the nonresonant mode α11(τ) oscillates
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Figure 1. The behaviour of (a) the homogeneous mode α0(τ), (b) a typical
resonant mode β12(τ) and (c) a nonresonant mode α11(τ) for λ = 10−4. The
overall dynamics is characterized by three phases: the linearized phase form
τ = 0 to τ ≈ 80, where the conventional preheating takes place; the quasi-
periodic phase (τ ≈ 80–240), whose relevant feature is the end of the parametric
resonance; and finally, the third phase—the turbulent phase. In this last phase
there is no distinction between a resonant and a nonresonant mode due to the
effective energy transfer from the inflaton to all modes.
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Figure 2. The evolution of the homogeneous mode α0(τ) for N = 2 (cross)
N = 3 (circle) and N = 4 (solid) truncations. The figure at bottom is a snapshot
of the upper envelope showing that its behaviour in the first phase and in the
beginning of the subsequent one are almost identical, for the several truncation
orders considered.

with increasing amplitude. Note that a minimum of the envelope of the oscillating mode
α0(τ) coincides approximately with a maximum of the envelope of the resonant mode
β12(τ), and vice versa, indicating a process of rescattering between these modes. Indeed,
these nonlinear effects constitute the first manifestations of what is known as backreaction
and rescattering, which in our dynamical system approach are entirely contained in the
potential terms V0, Vk and Uk. Then, we may denote this phase as the quasi-periodic
phase.

4. The turbulent regime

The third phase initiates at τ ≈ 240 when the amplitude of the homogeneous mode
reaches a minimum of approximately 70% of its initial value. Remarkably, this feature
was found for all values of λ in our numerical experiments. As can be seen from figure 1,
the homogeneous mode oscillates in an irregular pattern of modulated amplitude followed
by a sequence of small bursts. Nonetheless, the most important aspect to be pointed
out is the continuous decay of α0(τ). It is no longer possible to make a distinction
between the resonant and nonresonant modes. The variance displays a completely chaotic
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Figure 3. Behaviour of the variance.

pattern. These features are a dramatic consequence of the action of nonlinearities, namely
the backreaction of the created particles into the homogeneous mode, as well as the
rescattering of the produced particles into all other modes. Eventually, there will be no
distinction whatsoever between the homogeneous mode and any other mode. Physically,
this means that all modes will be on average equally populated, the particles dynamically
transferring and distributing the energy among the modes, producing, in this way, the
thermalization. Indeed, figure 4 depicts a sequence of the power spectra of the variance
evaluated at several times, from the first to the third phase. This transition is constituted
by period bifurcations, giving rise to approximate frequencies 1

3
ω1,

1
2
ω1,

5
7
ω2 and 5

8
ω2,

with ω1 � 1.77 and ω2 � 3.45, characteristic of a typical road to turbulence [13]. From
the power spectrum for τ = 655.36, the presence of broad band portions can be noted,
despite the presence of sharp frequencies, which tend to disappear asymptotically. This
last phase is denoted as the turbulent phase. It is worth mentioning that the exact moment
of onset of chaos may depend on the truncation order due to the distinct number of modes
to be excited. Nevertheless, the presence of these three phases seems to be robust and
independent of the truncation order. A comment is in order here. Our characterization
of the onset of chaos was qualitatively given by the presence of a broad band portion of
the power spectrum of the variance analogous to the analysis of [3]; on the other hand,
a quantitative characterization was tested in [4] with the use of Lyapunov exponents
associated with the phase space dynamics of the scalar field. Both results indicate that
the onset of the chaotic regime occurs at the end of preheating.

Another relevant feature of this turbulent phase can be displayed by examining the
distribution of energy as a function of modal wavenumber, characterizing the energy
distribution per scale and making explicit the dynamical transfer of energy across the
spectrum towards higher wavenumbers (small scales). Within our formulation, the energy
Eφ = λ

√−g ρφ expressed in the dimensionless variables is decomposed according to (2)
as Eφ =

∑
k Ek(τ)ψk. For large values of τ , corresponding to the turbulent phase, Ek is

given by

Ek �
∑

n

(
1

2
a′
na′

k−n +
2π2

L2
n · (n− k)anan−k

)
+

∑

m

∑

l

∑

k

1

4
analamak−n−l−m. (7)
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Figure 4. Power spectra of the variance evaluated at τ = 81.92, τ = 327.68 and
τ = 655.36, the last two corresponding to the third phase. It is worth observing
that this sequence shows the periodic bifurcations 1

3ω1, 1
2ω1, for the first peak

5
7ω2, and 5

8ω2, for the second. This behaviour is typical of the onset of turbulence
found in fluid mechanics, as for instance in Couette flow.
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Figure 5. Decay of the homogeneous mode in the case of a three dimensional
spatial domain.

Here our numerical calculations were performed in three dimensions, so that in the
above expression k = (l, m, n). This generalization naturally encompasses more modes in
the Galerkin decomposition (2) than in the two dimensional case, which provides a direct
test for the convergence of this decomposition, along with a more realistic treatment of
the problem. Before considering the energy spectrum, and for the sake of completeness,
we depict the plot of the homogeneous mode in figure 5. As can be seen, this graph is
qualitatively identical to the corresponding one of figure 1(a), indicating that the main
features of the dynamics are not altered by considering the three dimensional case. Indeed,
the smoothness of the decay of the homogeneous mode due to the presence of more modes,
and therefore a better approach to the continuum limit, should be noticed.

In figure 6(a) we exhibit the spectrum of the energy Ek in wavenumbers k, where
the energy Ek is the arithmetic average of all the energies Ek whose corresponding k
have modulus k. The spectrum was evaluated at τ = 2000, when the dynamics is in the
turbulent phase. In order to have better statistics of points, we extended the Galerkin
projection method to a truncation N = 2. The spectrum exhibits two distinct decoupled
components separated by a gap of energy (cf figure 6). The majority of points lie in
the second component connected to the energy distribution in large wavenumbers, or
equivalently in small scales. This second piece of the spectrum can be understood as a
consequence of the transfer of energy, initially stored in the homogeneous mode, to small
scale modes. It can be interpreted as corresponding to a thermalized part of the system in
the so-called inertial range of turbulent regimes, characteristic of statistical equilibrium at
large wavenumbers. Indeed, such a component of the spectrum is fitted by the distribution
law

Ek = E0 exp(−bk2), (8)

with the constants E0 = 0.0093 and b = 0.0621 obtained from the best fit depicted
by the continuous line in figure 6(b). The distribution law (8) has the form of a
Maxwell–Boltzmann distribution, which reinforces the interpretation that this turbulent
component in the inertial range indeed corresponds to a thermalized part of the system.
The thermalization is then seem to be a consequence of the complete chaotic dynamics
of the strongly nonlinear coupled oscillators. In order to extract the value of the
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Figure 6. The energy spectrum Ek evaluated at τ = 2000 when the dynamics is in
the full turbulent regime. (a) The behaviour of ln(Ek/k

2) versus k2. (b) The plot
of ln(Ek/k

2) versus k2 for the points of the second component of the spectrum
connected to the distribution of energy at large wavenumbers. The continuous
straight line is the best fit of the Maxwell–Boltzmann distribution (8) with
E0 = 0.0093 and b = 0.0621.

temperature associated with such a thermal distribution we proceed as follows. Due
to the reparametrization of our equations, the coordinates x and the momenta k were
made dimensionless. Returning to the physical variables the argument of the exponential
in the Maxwell–Boltzmann law is now expressed as

bL2

λφ2
0a

2
0

k2
phys (9)

where L is the dimensionless characteristic length of the box, φ0 and a0 are the values
of the inflaton field and the scale factor at the beginning of preheating, respectively.
In natural units (� = c = kB = 1), the temperature of the thermalized component at
τ = 2000 and corresponding to the small scales is given by

TR =
λφ0

b
≈ 102λ MPl ≈ 1017 GeV (10)

where b � 0.0621 is fixed by the fitting; also we have set a2
0 = L2, φ0 ∼ 3MPl and λ ∼ 10−4

(the value adopted in our computation). It is interesting to note that this temperature
is compatible with a reheating temperature. If a more realistic value of λ of the order
of 10−14 were adopted a much longer time evolution would be needed in order to achieve
the turbulent regime. Possibly, in this situation b would be smaller in such a way as to
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produce a compatible reheating temperature. This latter point deserves a more complete
examination along with the calculation of a saturation value of b in a time when the
homogeneous mode is energetically indistinguishable from other modes.

5. Conclusions

In conclusion, we gave an extended dynamical picture of the nonlinear decay of the inflaton
with potential V (φ) = 1

4
λφ4, from the initial linear parametric resonance phase towards

a final turbulent regime. We used the Galerkin projection method that describes the
dynamics of the inflaton as a countable set of nonlinear coupled harmonic oscillators. The
process develops in three distinct phases3, starting from the linear regime of parametric
resonance to a final thermalization process due to the onset of turbulence in the dynamics.
An essential feature of the process is the transition from the quasi-periodic phase, in which
the parametric resonance is suppressed, towards a turbulent regime characterized by a
highly effective transfer of energy among the homogeneous mode to all other modes, due
to the nonlinear coupling of the modes that dominates the dynamics in the long term.
As a result, the state of thermalization is accomplished due to the development of a full
turbulent phase. The onset of turbulence is characterized through the frequency spectrum
of the variance (a measure of the sum of all fluctuations about the homogeneous mode).
This spectrum is evaluated at several times, from the first to the third phase, clearly
showing period doubling towards a broad band spectrum characteristic of a full turbulent
regime. Two features of the turbulent stage are displayed: first, an effective mechanism of
transfer of energy among the homogeneous modes and all other modes, initially resonant
or not; second, the distribution of energy versus the modal wavenumber, characterizing
the energy distribution per scale, which shows two distinct decoupled components. One
of the components, connected to the energy distribution in small scales, has a Maxwell–
Boltzmann form, characteristic of the statistical equilibrium at large wavenumbers in the
inertial range of the turbulent regime. In this situation we found that the equilibrium
temperature is TR � λφ0b

−1 ≈ 102λ MPl, for b � 0.0621 for τ = 2000.
We finally remark that Micha and Tkachev [14] have recently discussed the process

of thermalization in the final stages of reheating in a λ φ4 inflationary model. Their
computation suggests that the evolution of particle spectra is self-similar at the final
turbulent stages. Based on this result they make an ansatz of the evolution of the
occupation number spectra and, by assuming a kinetic theory description, they evaluate
the temperature at thermalization to be T ∼ λ2MPl. In our approach, the Galerkin
projection method allowed us to extend the evolution of the amplitudes ak up to a phase
where a turbulent regime is clearly established, and the numerical evaluation of the energy
distribution per modal wavenumber shows a thermalized component that has a Maxwell–
Boltzmann distribution with temperature T � 102λMPl. Although our calculations
use fluctuations of the inflaton field that from the start have a quantum nature, the
explanation of this large discrepancy between our result and that of reference [14] can only
be fixed when a complete quantum-mechanical description of the full nonlinear regime of
the field is available.

3 It is important to remark that the presence of these three phases is robust with respect to the change of L, only
the timescales for each phase are modified.
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