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We show that quantum mechanics can be interpreted as a modification of the Euclidean
nature of 3-d space into a particular affine space, which we call Q-wis. This is proved
using the Bohm–de Broglie causal formulation of quantum mechanics. In the Q-wis
geometry, the length of extended objects changes from point to point. In this formu-
lation, deformation of physical distances are in the core of quantum effects allowing a
geometrical formulation of the uncertainty principle.

Keywords: Foundations of quantum mechanics; Bohm–de Broglie interpretation; Weyl
integrable space; non-Euclidean geometry.

1. Introduction

The early years of quantum mechanics were marked by intense debates and contro-
versies related to the meaning of the new behavior of matter. While one group was
convinced that it was unavoidable to abandon the classical picture, the other group
tried incessantly to save its main roots and conceptual pillars. To be able to repro-
duce the atypical quantum effects, the latter group was forced to introduce new
ingredients such as de Broglie’s pilot wave [1–6] or Mandelung’s hydrodynamical
picture [7].

However, the lack of physical explanations for these ad hoc modifications weak-
ened these pictures. At the same time, the former group leaded by Schrödinger,
Bohr and Heisenberg was increasingly gaining new adepts until its climax in the
1927 Solvay’s conference when this picture was finally accepted as the orthodox
interpretation of quantum mechanics — the Copenhagen interpretation [8–10].
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Notwithstanding, a marginal group of physicists continued to develop other
approaches [11–13] to describe quantum mechanics that are more adequate to con-
nect to a classical picture.a One of the most prominent amongst these alternative
interpretations is the causal interpretation of quantum mechanics also known as
Bohm–de Broglie interpretation [14–17].

The development of quantum cosmological scenario brought to light some diffi-
culties intrinsic to the Copenhagen interpretation. More specifically, the measure-
ment process in a quantum closed universe seems inevitably inconsistent [18–20].
Fortunately, there are some alternative interpretations that are consistently applied
simultaneously to cosmology and to the micro-world. As two examples we mention
the many-worlds interpretation [18, 21, 22] and the consistent histories formulation
[23–26].

In the present work we will focus only on the Bohm–de Broglie interpretation
since it is amongst the well-defined interpretation that can be applied to any kind of
system, and up to date it is completely equivalent to the Copenhagen interpretation
when applied to the micro-world.

We will show that it is possible to interpret all quantum phenomena as a modifi-
cation of the geometrical properties of the physical space. Hence, we will deal with a
generalization of the Euclidean geometry. Several papers in the literature have advo-
cated a possible connection between non-Euclidean geometry and quantum effects
[29–43]. Despite the different approaches, a common feature of all these works is
the proposal of a new geometry that was first introduced by Weyl [27, 28]. The
so-called Weyl geometry is a modification of a Riemannian space-time to accom-
modate the conformal map as a pure gauge transformation. As it is well known,
this can be achieved only if not just the metric but all fields are also conformally
transformed. In addition, one has to redefine the covariant derivative to maintain
the Riemannian structure of the space-time.

Instead of working with this Weyl geometry, we shall define a different space
where the connection cannot be specified solely in terms of the metric and which
we shall call Q-wis.b There are at least two main differences. The Q-wis is not
conformally invariant nor is there any kind of geometrical gauge degree of freedom.
Furthermore, the covariant derivative is strictly defined only with the connection so
that the covariant derivative of the metric does not vanish. Contrarily to the Weyl
geometry, the affine degree of freedom of the Q-wis space raises physical implication
that allows us to re-interpret the quantum effects. In fact, we shall propose a phys-
ical description of quantum effects through a limitation of the classical standards,

aSince we are not concerned with relativistic phenomena, the term classical physics should be
understood as pre-relativistic physics unless otherwise specified.
bThis name is an acronym for quantum Weyl integrable space that is motivated from the fact
that it is similar to a Weyl integrable space and at the same time describes quantum phenomena.
Its mathematical properties are analyzed in the Appendix.



February 28, 2011 13:42 WSPC/S0219-8878 IJGMMP-J043
S0219887811004987

On a Geometrical Description of Quantum Mechanics 89

or in other words, through a limitation of the Euclidean standards used to measure
physical distances.

The Appendix is reserved to develop in more detail the properties of a Q-wis
space, but it is worth to mention its main difference from an Euclidean space that
is related to the notion of a standard ruler.

A Q-wis is a geometrical space endowed with an Euclidian metric. Furthermore,
this space also posses an extra degree of freedom, which allows the length of a
vector to change from point to point. This means that a ruler of length l if parallel
transported will change by an amount

δl = lf ,adxa. (1.1)

A Q-wis is distinguished precisely by the fact that the length of the ruler trans-
ported along a closed curve does not change. Hence, if the change of the ruler’s
length is dl, for a closed path in Q-wis we have∮

dl = 0, (1.2)

which guarantees the uniqueness of any local measurement. The allowance of an
intrinsic modification of the standard rulers is the main geometrical hypothesis of
the present work. We shall argue how this geometrical modification can be in the
origin of quantum effects. For the sake of clarity we will deal with the simplest
system possible, namely an isolated point-like particle possibly subjected to an
external potential.

The outline of the paper is as follows. In the next section, we briefly review
the main points of quantum mechanics and in the section Non-Euclidean geometry,
we describe how to connect the Q-wis space to the quantum theory. We show
that quantum mechanics can be derived from a geometrical variational principle.
Then, in the conclusions we present our final remarks. The Appendix is reserved to
describe the main properties of the Q-wis geometry.

2. Quantum Mechanics

Quantum mechanics is a modification of the classical laws of physics to incorporate
the uncontrolled disturbance caused by the macroscopic apparatus necessary to
realize any kind of measurement. This statement, known as Bohr’s complementary
principle, contains the main idea of the Copenhagen interpretation of quantum
mechanics. The quantization program continues with the correspondence princi-
ple promoting the classical variables into operators and the Poisson brackets into
commutation relations.

In this non-relativistic scenario, the Schrödinger equation establishes the dynam-
ics for the wave function describing the system. Note that as in Newtonian mechan-
ics, time is only an external parameter and the 3-d space is assumed to be endowed
with the Euclidean geometry.
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Using the polar form for the wave function, Ψ = AeiS/�, the Schrödinger equa-
tion can be decomposed in two equations for the real functions A(x) and S(x)

∂S

∂t
+

1
2m

∇S · ∇S + V − �
2

2m

∇2A

A
= 0, (2.1)

∂A2

∂t
+ ∇

(
A2∇S

m

)
= 0. (2.2)

Solving these two equations is completely analogous to solving the Schrödinger
equation. The probabilistic interpretation of quantum mechanics associate ‖Ψ‖2 =
A2 with the probability distribution function on configuration space. Hence,
Eq. (2.2) has exactly the form of a continuity equation with A2∇S/m playing
the role of current density.

2.1. Bohm–de Broglie interpretation

The causal interpretation, which is an ontological hidden variable formulation of
quantum mechanics, propose that the wave function does not contain all the infor-
mation about the system.

An isolated system describing a free particle (or a particle subjected to a poten-
tial V ) is defined simultaneously by a wave function and a point-like particle. In
this case, the wave function still satisfies the Schrödinger equation but it should
also work as a guiding wave modifying the particle’s trajectory.

Note that Eq. (2.1) is a Hamilton–Jacobi-like equation with an extra term that
is often called quantum potential

Q = − �
2

2m

∇2A

A
, (2.3)

while, as already mentioned, Eq. (2.2) is a continuity-like equation. The Bohm–
de Broglie interpretation takes these analogies seriously and postulate an extra
equation associating the velocity of the point-like particle with the gradient of the
phase of the wave function. Hence,

ẋ =
1
m
∇S. (2.4)

Integrating Eq. (2.4) yields the quantum Bohmian trajectories. The unknown or
hidden variables are the initial positions necessary to fix the constant of integration
of the above equation.

For the case of a spinless particle, the quantum potential is solely responsible
for all novelties of quantum effects such as non-locality or tunneling processes. As a
matter of fact, the Bohm–de Broglie interpretation has the theoretical advantage of
having a well formulated classical limit. Classical behavior is obtained as soon as the
quantum potential, which has dimensions of energy, becomes negligible compared
to other energy scales of the system.
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In what follows, we will show that it is possible to reinterpret quantum mechanics
as a manifestation of non-Euclidean structure of the 3-d space. Hence, we propose
a geometrical interpretation to describe quantum effects.

3. Non-Euclidean Geometry

Since ancient times, Euclidean geometry was considered as the most adequate math-
ematical formulation to describe the physical space. However, its validity can only
be established a posteriori as long as its construction yields useful notions to connect
physical quantities such as the Euclidean distance between two given points.

Special relativity modified the notion of three-dimensional Euclidean space to
incorporate time in a four-dimensional continuum (Minkowski space-time). Later
on, General Relativity generalized the absolute Minkowski space-time to describe
gravitational phenomena. General Relativity considers the spacetime manifold as a
dynamical field that can be deformed and stretched but in such a way that it always
preserves its Riemannian structure. It is worth noting that both the Euclidean and
Minkowskian spaces are nothing more than special cases of Riemannian spaces.

Nonetheless, Riemannian manifold are not the most general type of geometrical
spaces. In the same way as above, Riemannian geometries can be understood as a
special subclass of a more general structure where the connection is not uniquely
determined by the metric. Geometries where the connection is not just the Christof-
fel’s symbol are known as affine space. As to the matter of which geometry is
actually realized in Nature, it has to be determined by physical experiments.

Instead of imposing a priori that quantum mechanics has to be constructed over
an Euclidean background as it is traditionally done, we shall argue that quantum
effects can be interpreted as a manifestation of a non-Euclidean structure derived
from a variational principle. The validity of the specific geometrical structure pro-
posed can be checked a posteriori comparing it to the usual non-relativistic quantum
mechanics.

Thus, consider a point-like particle with velocity v = ∇S
m and subjected to a

potential V . We shall follow Einstein’s idea to derive the geometrical structure of
space from a variational principle by considering the connection as an independent
variable and hence by using Palatini’s variational procedure. The validity of an
action principle can only be justified a posteriori by deriving the correct dynamical
equation of motion but normally its formulation already specifies the kinematical
properties of the theory. In particular, we consider an action that includes geometry
and the particle’s Lagrangian with the peculiarity that the particle is non-minimally
coupled to geometry through a scalar field Ω which we shall show to be related to
the affine structure of 3-d space. Thus we define the action by

I =
∫

dt d3x
√

g[λ2Ω2R− Ω2Lm], (3.1)

where the connection of the 3-d space Γi
jk, the Hamilton’s principal function S and

the scalar function Ω should be understood as independent variables. Each term
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in Eq. (3.1) is defined as follows: we are considering the line element in Cartesian
coordinates given by

ds2 = gijdxidxj = dx2 + dy2 + dz2 (3.2)

with

g = det gij . (3.3)

The Ricci curvature tensor is defined in term of the connection through

Rij = Γm
mi,j − Γm

ij,m + Γl
miΓ

m
jl − Γl

ijΓ
m
lm (3.4)

and its trace defines the curvature scalar R ≡ gijRij which has dimensions of
inverse length squared, [R] = L−2. The constant λ2 has dimension of energy times
length squared, [λ2] = E · L2, and the particle’s Lagrangian is defined by the
Hamilton’s function through

Lm =
∂S

∂t
+

1
2m

∇S · ∇S + V, (3.5)

where ∂S
∂t is related to the particle’s total energy.

From Eq. (3.1), variation of the action I with respect to the independent vari-
ables gives respectively (see Appendix for details)

δΓi
jk : gij;k = −4(ln Ω),kgij , (3.6)

where “;” denotes covariant derivative and a common “,” simple spatial derivative.
Equation (3.6) characterizes the affine properties of the physical space. Hence, the
variational principle naturally defines a Q-wis space. Variation with respect to Ω
gives

δΩ : λ2R =
∂S

∂t
+

1
2m

∇S · ∇S + V. (3.7)

The right-hand side of this equation has dimension of energy while the curvature
scalar has dimension of [R] = L−2. Furthermore, apart from the particle’s energy,
the only extra parameter of the system is the particle’s mass m. Thus, there is only
one-way to combine the unknown constant λ2, which has dimension of [λ2] = E ·L2,
with the particle’s mass such as to form a physical quantity. Multiplying them, we
find a quantity that has dimension of angular momentum squared [m · λ2] = �

2.
In terms of the scalar function Ω, the curvature scalar is given by (see Appendix)

R = 8
∇2Ω
Ω

. (3.8)

Hence, setting λ2 = �
2

16m , Eq. (3.7) becomes

δΩ :
∂S

∂t
+

1
2m

∇S · ∇S + V − �
2

2m

∇2Ω
Ω

= 0. (3.9)
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Finally, varying the Hamilton’s principal function S we find

δS :
∂Ω2

∂t
+ ∇

(
Ω2∇S

m

)
= 0. (3.10)

Equations (3.9) and (3.10) are identical to Eqs. (2.1) and (2.2) if we identify Ω =
A. Thus, the “action” of a point-like particle non-minimally coupled to geometry
is given by

I =
∫

dtd3x
√

gΩ2

[
�

2

16m
R−

(
∂S

∂t
+

1
2m

∇S · ∇S + V

)]

exactly reproduce the Schrödinger equation and thus the quantum behavior. The
straightest way to compare this geometrical approach to the common quantum
theories is to relate it to the Bohm–de Broglie interpretation.c Note that this for-
mulation has the advantage of giving a physical explanation of the appearance of
the quantum potential, Eq. (2.3). In a Q-wis, this term is simply its curvature
scalar. The inverse square root of the curvature scalar defines a typical length Lw

(Weyl length) that can be used to evaluate the strength of quantum effects

Lw ≡ 1√Rw

. (3.11)

As we have already mentioned, the classical limit of Bohm–de Broglie inter-
pretation is achieved when the quantum potential is negligible compared to other
energy scales of the system. In the scope of this geometrical approach, the classi-
cal behavior is recovered when the length defined by the Q-wis curvature scalar is
small compared to the typical length scale of the system. Once the Q-wis curvature
becomes non-negligible the system goes into a quantum regime.

3.1. Geometrical uncertainty principle

As long as we accept that quantum mechanics is a manifestation of a non-Euclidean
geometry, we are faced with the need of reinterpreting geometrically all theoretical
issues related to quantum effects. As a first step, we associate the uncertainty
principle to a break down of the classical notion of a standard ruler.

In Euclidian space, there is a clear notion of distance between two points. Gen-
eralizing to curved spaces, it is still possible to define distance as the smallest length
between two given points calculated along geodesics in 3-d space. This is a consis-
tent definition since the 3-d space has a true metric in the mathematical sense that
its eigenvalues are all positives. However, this definition does not encompass the
classical notion of a standard ruler since standard rulers are based on Euclidean
space. This means that if quantum mechanics can be interpreted as a modification

cUp to date, all interpretation of quantum mechanics are on equal footing. Thus, establishing the
connection with the causal interpretation automatically links this geometrical interpretation with
all others.
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of Euclidean space it shall have a limit of validity for the notion of Euclidean dis-
tance. In other words, it should not be possible to perform a classical measurement
of distances smaller than a given value that of course should be related to the cur-
vature scale of the space, i.e. the Q-wis curvature length. Thus, we propose that
any measurement can only measure distances bigger than the Weyl length

∆L ≥ Lw =
1√Rw

. (3.12)

The quantum regime is extreme when the Q-wis curvature term dominates.
Thus, from Eqs. (3.8) and (3.9) we have

Rw = 2
(

2∆p

�

)2

− 16m

�2
(E − V ) ≤ 2

(
2∆p

�

)2

(3.13)

and finally combining Eqs. (3.12) and (3.13) we obtain

∆L · ∆p ≥ �

2
√

2
. (3.14)

We should emphasize that now the Heisenberg’s uncertainty relation has a pure
geometrical meaning. Our argument closely resembles Bohr’s complementary prin-
ciple inasmuch as the impossibility of applying the classical definitions of measure-
ments. However, we strongly diverge with respect to the fundamental origin of the
physical limitation.

Bohr’s complementary principle is based on the uncontrolled interference of a
classical apparatus of measurement. On the other hand, we argue that the notion
of a classical standard ruler breaks down because its meaning is intrinsically depen-
dent on the validity of Euclidean geometry. Once it becomes necessary to include
the Q-wis curvature, we are no longer able to perform a classical measurement of
distance.

There is another way to interpret the uncertainty principle. First, recall that in
scattering processes one can define the classical electron radius as re ≡ e2

mc2 since
it has dimension of length and it is the classical radius for which the electrostatic
self-energy is equal to the electron mass. Furthermore, the Thomson cross section
is approximately the area defined with this classical radius, σT ≈ 4πr2

e .
Now, we shall construct a similar notion for our quantum system. For a given

particle of mass m and energy E there is only one combination with the free param-
eter of the theory λ which has dimension of length, i.e. λ√

E
. We take this value as

a definition of the classical size of the particle, namely

lpart ≡ λ√
E

=

√
�2

16mE
. (3.15)

One might worry of the appearance of a � in the definition of a classical quantity.
However, as we shall show below, this length also establishes how far the system is
from a quantum regime which naturally should depend on �. The appearance of the
Planck constant in our definition is completely analogous to the appearance of the
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speed of light c for the classical electron radius in non-relativistic Thomson cross-
section. The above classical size lpart has the same meaning to quantum processes
as the classical electron radius has for the Thomson scattering.

Note that this definition coincides with the particle’s Compton wavelength if one
uses the relativistic relation E = mc2 which is its rest mass potential energy. For a
non-relativistic particle the contribution to its total energy comes mainly from its
rest mass. Thus, even though the particle might have a kinetic energy, for a non-
relativistic particle one is still allowed to use the above equation and compare it
to the particle’s Compton wavelength inasmuch the Compton wavelength specifies
the limits of validity of non-relativistic quantum mechanics. As soon as the system
attains the relativistic regime, not only the above equation is no longer valid but
also non-relativistic quantum mechanics. Hence, the above equation has the same
range of validity as non-relativistic quantum mechanics.

In connection with the definition of a classical radius from the Thomson cross-
section we shall conceive a free stationary particle. Moreover, the radius lpart defines
a volume which we suppose to be at rest so that its energy is related to the curvature
through

E =
�

2

16m
RW ⇒ lpart =

1√RW

. (3.16)

Notwithstanding this finite-size picture, the system describes a point-like par-
ticle. Thus, from Eq. (3.13) we can relate the volume defined by lpart with the
particle’s momentum through

lpart · ∆p ≥ �

2
√

2
. (3.17)

From this point of view, the uncertainty principle indicates that it is impossible
to perform a measurement smaller than the classical size of the particle defined by
Eq. (3.15). In other words, it is impossible to perform a classical measurement inside
what one would normally call a classical particle. This geometrical uncertainty
relation attribute to a point-like particle an effective size due to the Q-wis curvature
of the 3-d space.

4. Conclusions

It is well known that as soon as we consider high velocities or high energies, one
has to abandon the Euclidean geometry as a good description of the physical space.
These brought two completely different modifications where the physical space loses
its absolute and universal character. In fact, this is the core of classical relativistic
physical theories, namely Special and General Relativity.

In a similar way, one should be allowed to consider that the difficulties that
appear while going from classical to quantum mechanics come from an inappropri-
ate extrapolation of the Euclidean geometry to the micro-world. Hence, the unques-
tioned hypothesis of the validity of the 3-d Euclidean geometry to all length scales
might be intrinsically related to quantum effects.



February 28, 2011 13:42 WSPC/S0219-8878 IJGMMP-J043
S0219887811004987

96 M. Novello, J. M. Salim & F. T. Falciano

In the present work, we have shown that there is a close connection between
the Bohm–de Broglie interpretation of quantum mechanics and the Q-wis spaces.
In fact, we point out that the Bohmian quantum potential can be identified with
the curvature scalar of the Q-wis. Moreover, we present a variational principle that
reproduces the Bohmian dynamical equations considered up to date as equivalent
to Schrödinger’s quantum mechanics.

The Palatini-like procedure, in which the connection acts as an independent
variable while varying the action, naturally endows the space with the appropriate
Q-wis structure. Thus, the Q-wis geometry enters into the theory less arbitrarily
than the implicit ad hoc Euclidean hypothesis of quantum mechanics.

The identification of the Q-wis curvature scalar as the ultimate origin of quan-
tum effects leads to a geometrical version of the uncertainty principle. This geomet-
rical description considers the uncertainty principle as a breakdown of the classical
notion of standard rulers. Thus, it arises an identification of quantum effects to the
length variation of the standard rulers.

Appendix A. Q-Wis Geometry

In this section we shall briefly review the mathematical properties of such 3-d Q-
wis space. Contrary to the Riemannian geometry, which is completely specified by
a metric tensor, the Q-wis space defines an affine geometry. This means that the
covariant derivative which is defined in terms of a connection Γm

ik depends not only
on the metric coefficients but also on the gradient of a scalar function f,a(x). For
instance, given a vector Xa its covariant derivative is

Xa;b = Xa,b − Γm
abXm. (A.1)

The non-metricity of the Q-wis geometry implies that rulers, which are stan-
dards of length measurement, changes while we transport it by a small displacement
dxi. This means that a ruler of length l will change by

δl = lf ,adxa. (A.2)

Note that even though it changes from point-to-point in a Q-wis, the length
does not change along a closed path∮

dl = 0. (A.3)

Contrary to a Riemannian space, the covariant derivative of the metric does not
vanish but it is given by

gab;k = f,kgab. (A.4)

Using Cartesian coordinates, it follows that the expression for the connection in
terms of f,k takes the form

Γk
ab = −1

2
(δk

af,b + δk
b f,a − gabf

,k). (A.5)
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As a matter of convenience, we define f = −4 lnΩ. The Ricci tensor equa-
tion (3.4) constructed with the above connection Eq. (A.5) is given by

Rij = 2
Ω,ij

Ω
− 6

Ω,iΩ,j

Ω2
+ 2gij

[
∇2Ω
Ω

+
�∇Ω · �∇Ω

Ω2

]
(A.6)

and its trace the scalar of curvature R ≡ gijRij = 8∇2Ω
Ω . In the present paper we

have used a variational principle, which proof is as follows. Consider the action

I =
∫

dtd3x
√

gΩ2R (A.7)

then, variation of the connection yields

δI =
∫

dtd3x
√

gΩ2gabδRab =
∫

dtd3xZab
m δΓm

ab (A.8)

with

Zab
m ≡ (

√
ggabΩ2);m − 1

2
(
√

ggakΩ2);kδb
m ± 1

2
(
√

ggbkΩ2);kδa
m. (A.9)

Taking its trace we obtain (
√

ggakΩ2);k = 0. Substituting this expression in
(A.9) we finally obtain the condition for a Q-wis geometry

gab;k = −4
Ω,k

Ω
gab. (A.10)
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