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ABSTRACT
In the paper, a hybrid image processing approach – the
adaptive morphological Hough transform AMHT – is de-
veloped and applied to detect straight line tracks in the
volumetrical images produced by particle collisions in the
ATLAS detector. The approach combines components of
the adaptive Hough transform (i.e. the resolution refine-
ment of the parameter space) and the morphological Hough
transform (i.e. using a morphological mask to increase the
chance for detecting the correct peak in Hough space). Ex-
perimental results show that the new AMHT method im-
proves the detection efficiency from 86% to 89% while
maintaining the timing requirements.
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1. Introduction

The Hough Transform (HT) is a feature extraction tech-
nique proposed by Hough in 1962 [1]. Up to now, hun-
dreds of papers have been published on the issues related to
HT. These issues include a lot of applications, variants, and
extensions of HT. Illingworth and Kittler introduced the
Adaptive Hough Transform (AHT) in 1987[2], which uses
recursion in parameter space to increase detection peak ef-
ficiency, as well as, precision. Schmidt, Schimmler and
Schröder in 1997 introduced the concepts of Morpholog-
ical Hough Transform[3]. Their proposition convolves a
morphological mask with parameter space, reducing noise
and increasing peak detection.

Hough Transform parameter space can have, depend-
ing on its generation, a n to 1 point relation regarding to
data space. Therefore, improvements to data space point
selection mechanisms were also the goal of many studies
throughout the years. In order to reduce HT computational
timing only relevant points or pixels should be used to form
the parameter space. For example, the Local Hough Trans-
form (LHT) approach reduces parameter space complexity
in straight line detection by peaking up pairs of pixels in
data space to represent one point in parameter space[4].

Besides pair formation, resolution and noise reduc-
tion of parameter space are important to be studied, in or-
der to increase efficiency and accuracy. The AHT varies the
resolution of parameter space until a particular condition is
satisfied. This condition is problem dependent and can be
dynamically adjusted[5, 6]. By doing this, parameter space
can be represented by small matrices, decreasing computa-
tional timing. In Schmidt implementation, the MHT con-
volves a morphological mask in parameter space in order to
accomplish noise reduction. By doing this, spurious points
in parameter space are eliminated, reducing noise, also the
mask shape and size is problem dependent.

The concepts of HT in its adaptive, local and mor-
phological form were specifically adjusted to a collision
vertex detection problem, in high-energy physics. All im-
ages in this paper represent fragments of proton-proton col-
lision simulations of the next-generation collider experi-
ment, LHC (Large Hadron Collider). The collision point
is obtained by detecting straight-lines in these volumetrical
images, and has to meet an execution latency requirement
of 1 ms. Because of these constraints, a detailed study of
point relevance were made, as well as a study of noise re-
duction in parameter space.

The paper is organized as follows: Section 2 describes
the AMHT; Section 3 details how 3D or volumetrical im-
ages are formed inside ATLAS detector; Section 4 shows
how AMHT was used in vertex collision reconstruction;
Section 5 presents the results obtained and; finally, Section
6 has the summary of our main conclusions.

2. The AMHT mechanism and its advantage

The AMHT consists of a hybrid implementation of AHT
and MHT. Initially the system has no knowledge of target
location. For this reason, a coarse granularity of the pa-
rameter space is defined. Resolution refinement of the pa-
rameter space occurs in subsequent iterations, as in AHT.
The stopping condition consists of outlining a desired pre-
cision and, at each iteration, verifies if such condition was
satisfied.

The adaptive mechanism reduces considerably the
computational effort of HT. However, when adjacent bins
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Figure 1. AMHT masks example.

in parameter space achieve similar heights at a coarse gran-
ularity, the adaptive method may choose the wrong bin to
expand in the next loop, causing an error at the final it-
eration. This is corrected by using morphological masks.
Not only is the maximum peak that is expanded to the next
iteration, but all coincident bins within the morphological
mask marked as 1. The size and shape of the mask may
vary according to the problem. We tested four different
masks in our system, as depicted in Figure 1. Detection
efficiency was measured to each of the four masks, where
good eficiency is set when a distance less than 1 mm is
found between the detected line and the desired one. Mask
1(c) had the best efficiency result. By doing this test with
different masks, we noticed the relevance of mask shape
and size in detection efficiency. 

An interesting point to address out is the fact that, in
this case of straight-line track detection, the mask is not
convolved in the parameter space, at variance from Schmidt
implementation. First, the maximum bin is detected, then
the mask center is positioned on this bin. With the mask
at this position, each parameter space bin is multiplied by
the correspondent mask bin, resulting at another parameter
space. Figure 2 presents the block diagram of the AMHT.

The main advantage of using AMHT is that it is more
precise than AHT and LHT, once the shape of mask repre-
sents parameter space characteristics. A restriction of this
method is computational timing and the determination of
best structuring element.

3. 3D Image Formation in ATLAS Detector

First this section describes the ATLAS detector, giving pri-
ority to track reconstruction constraints. In the sequence,
it explains how the 3D images are formed. At the end, an
example of a volumetrical image is presented.

3.1 ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector[8] is
one of the multi-purpose detectors currently under con-
struction at the Large Hadron Collider (LHC). Its inner
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Figure 2. AMHT block diagram.

elements are tracking detectors enclosed in a solenoidal
magnet of around 2T in the central part. From the in-
side to the outside, it consists of pixel detectors, sili-
con strip detectors (SCT) and transition radiation detectors
(TRT). The tracking detectors are surrounded by a electro-
magnetic calorimeter based on liquid Argon technology
and a hadronic calorimeter. The global detector dimensions
are defined by a large air-core muon spectrometer[9].

The ATLAS trigger system must accept the high
40MHz bunch crossing frequency and reduce it to a man-
ageable rate of roughly 200 Hz. It is comprised of a three-
level system. The first-level hardware-based trigger (Level-
1) quickly analyzes data from the calorimeter and muon
spectrometer systems to derive an accept or reject deci-
sion within 2 µs. Events are passed on to a second-level
software-based trigger (Level-2) at a rate of 75 kHz which
must derive a decision within an average latency of 10 ms.
Level-2 accepted events are passed on to the third-level
software-based Event Filter (EF) at a rate of roughly 3 kHz
which has a more generous latency of roughly 1 s to pass
the event on to offline mass storage with a rate of roughly
200 Hz. It is axiomatic that only events surviving this three-
stage triggering system can be part of subsequent physics
analysis. Together, the Level-2 and EF are referred to as
the High Level Trigger (HLT)[10].

The online track reconstruction occurs at the HLT.
Primary vertex reconstruction represents the first of four
stages of the track reconstruction chain[11]. The position
of collision vertex in ATLAS is expected to vary within
±15 cm around the center of the detector (z = 0) along the
beam direction, or z direction. A precise knowledge (≤ 1
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Figure 3. Three-dimensional view of ATLAS Inner
Detectors.

mm) of the z-position (zvtx) is of high interest, once it can
improve performance and reduce execution time for pattern
recognition in ATLAS tracking detectors[12].

In this paper we describe an algorithm which eval-
uates zvtx using 3D or volumetrical images from ATLAS
tracking detectors Pixel and SCT (Semiconductor Tracker).
The algorithm is based on the quasi-linear relationship be-
tween track trajectories in a uniform magnetic field. There-
fore, the helix equation that governs tracks is approximated
to a line equation[12]. The target of HT is to detect the z

origin of ρ = mz + b equation, where m is the line slope
and b is the ρ interception.

3.2 Illustrating the Events

A three-dimensional cutaway view of the layout of the In-
ner Detector is shown in Figure 3. The Pixel detector is
designed to provide a very high-granularity, high-precision
set of measurements as close to the interaction point as
possible[13].

The SCT system is designed to provide four precision
measurements per track in the intermediate radial range,
contributing to the measurement of momentum, impact pa-
rameter and vertex position, as well as providing good pat-
tern recognition by the use of high granularity[13].

The volumetrical image is composed only by the de-
tector areas sensibilized by particles. Therefore, the 3D
image is a chained list of space points in cylindrical co-
ordinate (SP(φ, ρ, z)). Figure 4 presents an example of a
volumetrical image. It shows the p-p collision product as a
single electron (single-e).

The HT algorithms were evaluated over ≈10,000
single-e events or volumetrical images. These events were
divided in two sets: development and testing sets. The col-
lision point to be found by HT is a simulation target, i.e.,
already known. Therefore, a collision vertex found by HT
was considered as correct if it was less than 1 mm far away
from the simulation target.

4.   Collision vertex reconstruction using
AMHT

The vertex reconstruction system was divided in two
blocks: Space Point Selection and Collision Vertex Detec-
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Figure 4. An example of a volumetrical image. This is a
single-e shown by Pixel and SCT detectors. (a) ρ × z e (b)

φ × z .

tion. The Space Point Selection had two purposes. The
first one was to reduce the computational effort for the next
step, i.e., the Collision Vertex Detection. The second was
to improve system efficiency.

The Collision Vertex Detection block performs fully
localization of the primary vertex by means of HT. This
block receives on its input the filtered space points of the
Space Point Selection block. Three variations of Hough
transform were tested. The first   one consists on the
Local Hough Transform, second is the Adaptive Hough
Transform and third is the Adaptive Morphological Hough
Transform.

4.1 Space Point Selection

The space point selection method establishes a distance
where space points can interact, called contour area. The
contour area ray is determined in φ × z direction. Only
space points inside this area will be used by Hough Trans-
form.

Another space point selection restriction is on how
points inside the contour area are to be combined. Space
points within the same ρ value, i.e., belonging to the same
detector barrel were not combined. By doing this, the
noise caused by indiscriminate combination of points was
avoided.

The output of this block is a chained list of filtered
space points, SP(φ, ρ, z). This list is the input of Collision
Vertex Detection block.
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4.2 Collision Vertex Detection

The HT algorithms were implemented in this block. A total
of three different methods of Hough Transform were tested
for comparison, which are:

• Local Hough Transform (LHT)

The Local Hough Transform, as described in
Dantas[14] was implemented. All pair combination of
space points from the chained list provided by Space
Point Selection Block were used to form Hough's' pa-
rameter space.

The parameter space matrix had a fixed number of
bins for all single-e events. The development set of
events were used to determine the parameter space
range.

• Adaptive Hough Transform (AHT)

The Adaptive Hough Transform, as described in
Illingworth[2], was implemented. All pair combina-
tions of space points from the chained list provided
by Space Point Selection Block were used to form
Hough's' parameter space.

The parameter space matrix varies in accordance with
events. A fix number of recursions were used. The
development set of events determined the initial pa-
rameters for AHT, which are: 4 number of recursions
and the parameter space input range for all events.

• Adaptive Morphological Hough Transform (AMHT)

The AMHT method described in Section 2 was im-
plemented. As above, all pair combinations of space
points from the chained list provided by Space Point
Selection Block were used to form Hough's' parame-
ter space.

As in AHT, the parameter space varies accordingly to
the event. Four recursions were also determined by the
development set of events. The morphological masks
used are depicted on Figure 1. Figure 1(a) had the best
efficiency under development set, thus being chosen
for final system design, which was evaluated from the
testing set.

5. Results

Results were obtained using simulated data of single-e in
high luminosity with pile-up[15]. The maximum computa-
tion timing allowed for vertex detection was 1 ms scaled to
a 4 GHz machine.

The image database was divided in two sets: devel-
opment and testing, each one with ≈5000 samples. The
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Figure 5. Computation timing measurements of testing
samples for (a) AMHT implementation; (b) AHT and (c)

LHT.

samples used in development set were to adjust the algo-
rithm parameters in order to improve efficiency. The test-
ing set was used to verify system efficiency. The results are
presented over testing samples.

Table 1 presents results obtained by AMHT, AHT and
LHT. All values presented in this table are the mean and
standard deviation, in brackets, of computational timing in
milliseconds. The table is organized as follows: the first
column displays the HT algorithm, the second column indi-
cates the average timing of the Space Point Selection filter;
the third column contains the HT average effort; the next
column is the average of the total time and; the last column
is the efficiency, i.e., vertexes within a range of 1 mm from
the true one.

As we can observe from Table 1 the hybrid imple-
mentation of Hough Transform (AMHT), had the best eff-
ciency and a good timing result, i.e., less than 1 ms. One
aspect relevant to point out is that all results were mea-
sured on the same machine and using the same testing set.
Therefore a straightforward comparison can be made. The
computation timing histogram for all HT implementations
can be depicted in Figure 5.

The computation timing was measured with respect
to the number of space points at the input of AMHT and
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HT algorithm tSP (ms) tHT (ms) ttotal(ms) Ef�ciency
AMHT 0.0704(± 0.0093) 0.0266(± 0.0219) 0.0978(± 0.0739) 4403/4942(89.09%)
AHT 0.0702(± 0.0093) 0.0271(± 0.0232) 0.0959(± 0.0316) 4260/4942(86.19%)
LHT 0.0712(± 0.0093) 0.0342(± 0.0228) 0.1065(± 0.0424) 3652/4942(73.89%)

Table 1. Results from different HT algorithms. See text.
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Figure 6. Computational timing of (a) AMHT and (b) AHT
in relation to the number of space points at HT input.

AHT, as shown in Figure 6. There is an exponential relation
between computational effort and the number of points for
both HT implementations.

Figure 7 shows the difference between true collision
vertexes (ztrue) and calculated by AMHT and AHT algo-
rithms (zv tx 

). This figure shows how accurate and precise
are those methods. For AMHT ≈89% of the events were
inside the 1 mm difference range and the other 11% are
very close to this range. Almost the same characteristic
was observed for AHT, where ≈86% of events were inside
the 1 mm difference range and the ones not inside this range
are very close.

6. Conclusion

This paper presented a hybrid version of Hough Transform,
where adaptive and morphological flavors were combined.
Approximately ten thousand samples were used to adjust
and verify HT efficiencies. Computation timing measure-
ments were also a figure of merit, once the collision vertex
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Figure 7. Vertex Difference Histogram, i.e., difference of
simulated vertex (ztrue) and calculated by (a) AMHT and
(b) AHT (zvtx).

determination had speed constraints in ATLAS online trig-
ger chain.

Three different implementations of Hough transform
were evaluated. As observed in Section 5 AMHT had the
best collision vertex detection and accomplished the timing
constraints.

All tests made with testing samples were imple-
mented in the actual ATLAS Trigger system, called The
ATHENA[16]. The hybrid AMHT is in agreement with
ATLAS restrictions, showing to be a good tool for collision
vertex reconstruction.

The advantage of AMHT method is that it combines
the speed of the Adaptive Hough Transform with the mor-
phological characteristics of parameter space. The AMHT
achieved and effciency of 89% in vertex collision recon-
struction, within an average timing performance of 0.09 ms
per collision event.
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